

Development of Phase Field Methods using OpenFOAM® Part II: Application to Complex Wetting Physics

Xuan Cai¹, Holger Marschall², Martin Wörner¹, Olaf Deutschmann¹

¹ Karlsruhe Institute of Technology, Germany ² Technische Universität Darmstadt, Germany

10th OpenFOAM[®] Workshop, June 29 – July 2, 2015 in Ann Arbor, Michigan, USA

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

- Droplet spreading/sliding on flat/inclined surface
- Wetting on chemically heterogeneous surface
- Two-phase flows in sponge (foam) structure
- Rising bubble interacting with solid cell structure

Droplet Spreading on Flat Surface

- PIB solution μ = 25 pa·s
- on smooth flat PTFE surface
- contact angle $\theta_e = 58^\circ$
- $R_0 = 1.2 \sim 1.5 \text{ mm}$

time

Rapid Wetting on Initial Spreading Stage

$$\mathbf{n} \cdot \nabla C + \frac{3}{4\lambda} \sigma \cos\theta_e \left(C^2 - 1 \right) = -\Gamma \left(\frac{\partial C}{\partial t} + \mathbf{u}_{\mathbf{w}} \cdot \nabla C \right)$$

Yue 2011 provides a guideline on how to choose Γ
Γ = 1 ~1.5 should produce best-fit with exp. data. → Confirmed!

4 19. March 2015

Droplet Sliding on Inclined Surface

Water droplets (initial radius: 1 mm) jetted onto circular chemicallypatterned surface:

 $\theta_{\rm e} = 60^{\circ}$ Hydrophilic $\theta_{\rm e} = 120^{\circ}$ Hydrophobic

Effect of surface pattern (impact velocity: 0 m/s)

Water droplets (initial radius: 1 mm) jetted onto circular chemicallypatterned surface:

 $\theta_{\rm e} = 60^{\circ}$ Hydrophilic $\theta_{\rm e} = 120^{\circ}$ Hydrophobic

Effect of droplet impact velocity (U_i)

- Experiment by Léopoldès at al. 2003
 - Inkjet droplets (initial radius = 11 μm)
 - released onto rectangular patterned surface:

$$\theta_{\rm e}$$
 = 20° $\theta_{\rm e}$ = 64°

Different initial impact points

Final droplet shapes

Experimental observation on final droplet shapes using scanning electron microscope (source: Léopoldès at al. 2003)

- Experiment by Jansen et al. 2013
- Alternating stripes made of:

SiO₂, $\theta_e = 40^\circ$ PFDTS, $\theta_e = 106^\circ$

H.P. Jansen et al., Lattice Boltzmann modeling of directional wetting: comparing simulations to experiments, Phys. Rev. E 88 (2013) 013008–013017.

Bottom View

Time

Experiment Jansen et al. 2013

Lattice-Boltzmann simulation Jansen et al. 2013

Our simulation (four cells per stripe)

Two Phase Flow in Sponge (Foam) Structure

- Institute of Thermal Process, KIT provides the sponge geometry
 - (µ)CT scannings
 - reconstruction of sponge structure in MATLAB produces STL file
- calculations on exemplary sponge sample type:
 - Al_2O_3
 - porosity = 80%
 - 20 pores per inch (ppi)
- \rightarrow investigations on SiSiC sponge ongoing
- blockMesh + snappyHexMesh

solid sponge chemical reactor

Representative Elementary Volume (REV) for CFD

Two Phase Flow in Sponge (Foam) Structure

- Blue iso-surface → interface btw. liquid and gas
- Pressure-driven (from left to right)

Two Phase Flow in Sponge (Foam) Structure

- Blue iso-surface → interface btw. liquid and gas
- Pressure-driven (from left to right)

Validation for Hydrodynamics of Gas Flow

- Apply the solver for gas flow through sponge structure
- Compare simulated pressure drop versus superficial velocity against:
 - experimental results (Dietrich et al. 2009 [1])
 - CFD results using "simpleFoam" (Meinicke et al. 2014 [2])

sample sponge type: Al₂O₃, 80% porosity, 20 ppi

- [1] B. Dietrich, W. Schabel, M. Kind, H. Martin. Pressure Drop Measurements of Ceramic Sponges Determining the Hydraulic Diameter. Chem. Eng. Sci. 64 (16), 3633-3640. 2009
- [2] S. Meinicke, B. Dietrich, Th. Wetzel. CFD-Simulation der einphasigen Durchströmung fester Schwammstrukturen ProcessNet Fachausschuss CFD, Mischvorgänge u. Rheologie,Würzburg, 2014

Validation for Hydrodynamics of Gas Flow

- Apply the solver for gas flow through sponge structure
- Compare simulated pressure drop versus superficial velocity against:
 - experimental results (Dietrich et al. 2009 [1])
 - CFD results using "simpleFoam" (Meinicke et al. 2014 [2])

- U₀: superficial gas velocity
- $\Delta p / \Delta z$: pressure drop per unit length
- [1] B. Dietrich, W. Schabel, M. Kind, H. Martin. Pressure Drop Measurements of Ceramic Sponges Determining the Hydraulic Diameter. Chem. Eng. Sci. 64 (16), 3633-3640. 2009
- [2] S. Meinicke, B. Dietrich, Th. Wetzel. CFD-Simulation der einphasigen Durchströmung fester Schwammstrukturen ProcessNet Fachausschuss CFD, Mischvorgänge u. Rheologie,Würzburg, 2014

- Exp. data will be provided by our project partner
- Representative domain → difficult to get inlet liquid distribution from exp.

- Exp. data will be provided by our project partner
- Representative domain → difficult to get inlet liquid distribution from exp.
- Mirroring original geometry and applying periodic boundary conditions

- Exp. data will be provided by our project partner
- Representative domain → difficult to get inlet liquid distribution from exp.
- Mirroring original geometry and applying periodic boundary conditions

- Exp. data will be provided by our project partner
- Representative domain → difficult to get inlet liquid distribution from exp.
- Mirroring original geometry and applying periodic boundary conditions

- Exp. data will be provided by our project partner
- Representative domain → difficult to get inlet liquid distribution from exp.
- Mirroring original geometry and applying periodic boundary conditions

- Specify initial liquid distribution along x
- Mesh Info
 - Background: 80*80*80
 - Two-level mesh refinement near solid surface

- Specify initial liquid distribution along x
- Mesh Info
 - Background: 80*80*80
 - Two-level mesh refinement near solid surface

Bubble Rise in Periodic Open Cell Structure (POCS)

- POCS as internals in bubble column reactor can enhance gas-liquid mass transfer (by disturbing/renewing the liquid concentration boundary layer)
 - Cooperation with Institute of Multiphase Flows, TU Hamburg-Harburg, Germany

Windows size: 4mm; Grid Angle: 90° Manufactured at FAU Erlangen, Germany Geometry provided by TUHH, Germany Subdomain for CFD simulation A gas bubble (D = 4mm) in stagnant water Surface Wettability: $\theta_e = 90^\circ$

Bubble Rise in Periodic Open Cell Structure (POCS)

- POCS as internals in bubble column reactor can enhance gas-liquid mass transfer (by disturbing/renewing the liquid concentration boundary layer)
 - Cooperation with Institute of Multiphase Flows, TU Hamburg-Harburg, Germany

Windows size: 4mm; Grid Angle: 90° Manufactured at FAU Erlangen, Germany Geometry provided by TUHH, Germany

Subdomain for CFD simulation A gas bubble (D = 4mm) in stagnant water Surface Wettability: $\theta_e = 90^\circ$

Bubble Rising in Periodic Open Cell Structure

Wettability effect on interaction of rising bubble with cell structure

Summary

- Droplet spreading/sliding on flat/inclined surface
- Wetting on chemically heterogeneous surface
- Two-phase flows in sponge (foam) structure
- Rising bubble interacting with solid cell structure

KIT Karlsruhe Institute of Technology

Outlooks

- Pinning effect of droplet on inclined surface (contact angle hysteresis)
- Droplet wetting on topologically heterogeneous surface
- Provide closure relation (e.g. interfacial area) for Euler-Euler simulation for sponge structure
- Coupling hydrodynamics with heat transfer, mass transfer and chemical reactions ...

Acknowledgement

PhD study funded by Germany Helmholtz Energy Alliance "Energy-efficient chemical multiphase processes"

Partners:

- Dr. B. Dietrich, S. Meinicke (KIT-TVT, Germany)
- Prof. M. Schlüter, C. Möller (TU Hamburg-Harburg, Germany)
- Prof. M. Grünewald, C. Hecht (Ruhr Uni. Bochum, Germany)
- Prof. P. Yue (Virginia Tech, USA)
- Prof. H. Alla (USTO, Oran, Algeria)

