Joint International Conference on Mathematical Methods and Supercomputing in Nuclear Applications (M & C + SNA 1993), Karlsruhe, Germany, April 19-23, 1993

Contributions to Turbulence Modelling of Natural Convection in Liquid Metals by Direct Numerical Simulation

M. Wörner, G. Grötzbach

Kernforschungszentrum Karlsruhe Institut für Reaktorsicherheit 7500 Karlsruhe, F.R.G.

Introduction

• Problem

fast breeder reactor

- passive decay heat removal
- Procedure

 \bigcirc

experiment

reactor

1:1

- model (1:20, 1:5)
- water
- mainly laminar flow

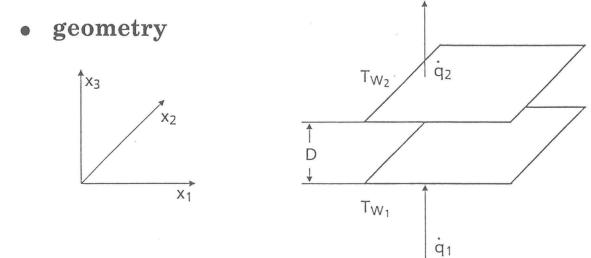
turbulent convection

liquid sodium

computer codes

- statistical turbulence models
- calibration for new application
- Objectives
 - preparation of statistical turbulence data from direct numerical simulation
 - calibration of turbulence models
 - suggestions for model improvements

Rayleigh-Bénard convection



• dimensionless numbers

 \bigcirc

()

- Rayleigh-number:

$$Ra = \frac{g\beta(T_{W1} - T_{W2}) D^3}{v \kappa}$$

- Prandtl-number: $Pr = \nu/\kappa$ air: Pr = 0.71, sodium: Pr = 0.006
- Grashof number: Gr = Ra/Pr
- convection: $Ra \ge 1708$

Direct simulation method

• full 3d, time-dependent conservation equations

- mass

()

$$\frac{\partial u_i}{\partial x_i} = 0$$

- momentum

$$\frac{\partial u_i}{\partial t} + \frac{\partial (u_i \ u_j)}{\partial x_j} = -\frac{\partial p}{\partial x_i} - \left(T_{ref} - T \right) \delta_{i3} + \frac{1}{\sqrt{Gr}} \frac{\partial^2 u_i}{\partial x_j^2}$$

- thermal energy

$$\frac{\partial T}{\partial t} + \frac{\partial (T u_j)}{\partial x_j} = \frac{1}{Pr\sqrt{Gr}} \frac{\partial^2 T}{\partial x_j^2}.$$

- resolve all scales
 - → no model assumptions no parameters

only low turbulence levels

Computer code TURBIT

- spatial discretization
 - second order central finite differences
 - staggered grid
- time integration

momentum equation

- explicit Euler-Leapfrog scheme

$$\Delta t \leq \left(\frac{|u_i|_{max}}{\Delta x_i} + \frac{4}{\sqrt{Gr} \Delta x_i^2}\right)^{-1}$$

thermal energy equation

- semi-implicit Leapfrog-Crank-Nicholson scheme
- factor of time step increase: 20-40
- additional computational expense: 10-20%

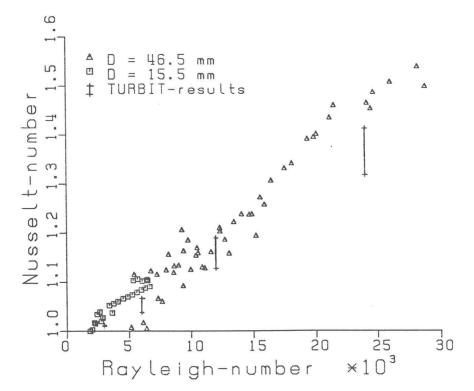
Case specifications

Pr	Ra	Gr	N _{1,2}	N_3
0.006	3,000	$0.5 \cdot 10^6$	128	31
0.006	6,000	$1.0 \cdot 10^{6}$	200	31
0.006	12,000	$2.0 \cdot 10^{6}$	250	39
0.006	24,000	$4.0.10^{6}$	250	39
0.71	630,000	$0.9 \cdot 10^{6}$	200	39

- boundary conditions:
 - periodic in horizontal directions $(X_{1,2} = 8)$
 - walls: no slip condition constant wall temperature
- initial conditions
 - fluid at rest
 - final data of simulations with lower Ra

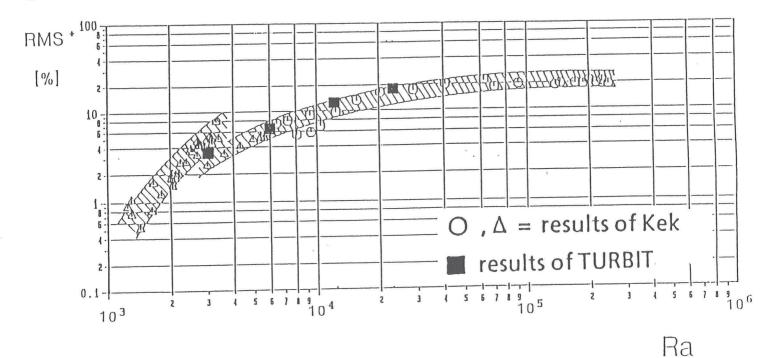
Verification (sodium)

- experiment of Kek (1989) Pr = 0.006 $1,500 \le Ra \le 250,000$
 - Nusselt number



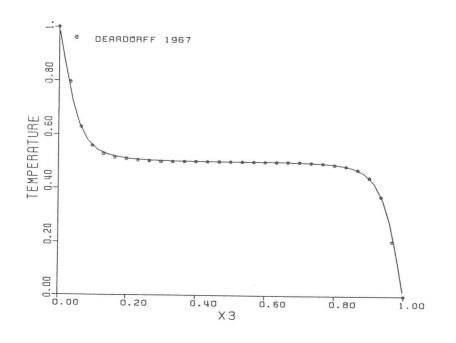
- T_{rms} in channel midwidth

 \bigcirc

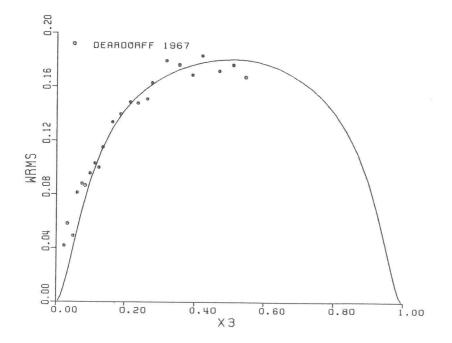


Verification (air)

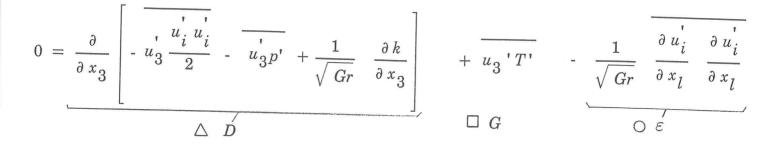
- experiment of Deardorff (1967) Pr = 0.71 Ra = 630,000
 - mean temperature



- rms-value of vertical velocity



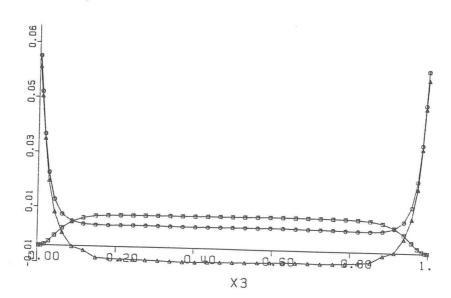
Balance of turbulent kinetic energy



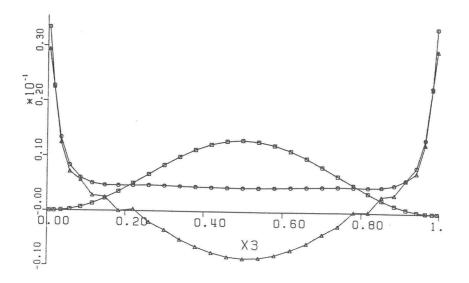
air: Ra = 630,000

()

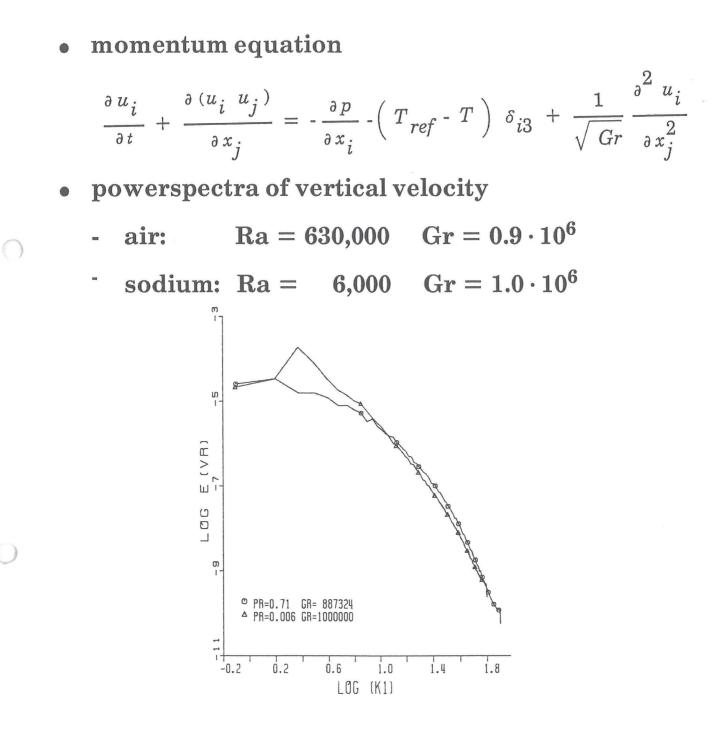
 \bigcirc



sodium: Ra = 6,000



Grashof analogy



- ε-equation
 - no need for model modifications expected for liquid sodium

Balance of turbulent heat flux

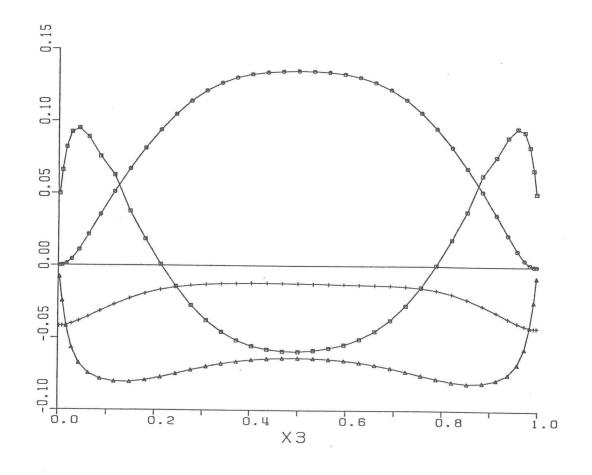
$$0 = -\frac{\partial}{\partial x_3} \left(\frac{u_3'^2 T'}{u_3'^2 T'} + \frac{p'T'}{p'T'} - \frac{1}{Pr\sqrt{Gr}} \frac{u_3'}{u_3'} \frac{\partial T'}{\partial x_3} - \frac{1}{\sqrt{Gr}} \frac{T'}{\sqrt{Gr}} \frac{\partial u_3'}{\partial x_3} \right)$$

$$\underbrace{-\frac{1}{u_{3}'^{2}} \frac{\partial \overline{T}}{\partial x_{3}} + \overline{T'^{2}}}_{O P} + \underbrace{p' \frac{\partial \overline{T'}}{\partial x_{3}}}_{+ PS} - \underbrace{\frac{1}{\sqrt{Gr}} \left(1 + \frac{1}{Pr}\right) \frac{\partial u_{3}}{\partial x_{i}} \cdot \frac{\partial \overline{T'}}{\partial x_{i}}}_{A D}$$

sodium: Ra = 24,000

 \bigcirc

()



Turbulent diffusion

sodium: Ra = 24,000

p'T'

0

 \bigcirc

 \bigcirc

u₃ '²T ' Δ 0.04 p'T' 0,02 $\overline{\mathbf{u}_{3}'^{2}\mathrm{T'}}$ ×10⁻¹ 0,01 0.20 00 -0. 6f 0.40 0.80 0.60 1. ΧЗ -0.02 -0.04

Conclusions

- Direct numerical simulation
 - turbulent Rayleigh-Bénard convection
 - sodium and air
 - verification by experimental data
- Results

()

k-equation (sodium and air)

- redistribution of k by diffusion
- no local equilibrium

e-equation

- Grashof analogy
- no need for model modifications expected for liquid sodium

u₃ 'T'-equation (sodium)

- molecular destruction is important sink
- redistribution by diffusion
- turbulent diffusion mainly due to pressure fluctuations

- standard models neglet:
 - molecular diffusion
 - pressure diffusion

 \bigcirc

- molecular destruction
- natural convection of liquid metals:
 - modelling of these terms is essential