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Universität Erlangen-Nürnberg, Erlangen, Germany

Contents

� Motivation

� Formulation of the approximate equation for the dissipa-

tion rate using two-point correlations technique

� Validation of derived equation using DNS data for

Rayleigh-Bénard convection

� Closure for the sink term and buoyant production term in

the dissipation rate equation

� Conclusions

1/12Title and contents



� Equations governing the second moments:
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� Dissipation correlations in u
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� Modelling of �

ij

is very important for reliable

flow prediction

� Requirement of special care for the flows domi-

nated by buoyancy

� Objective: Turbulence closure for dissipation

rate

� Tools: -DNS data for Rayleigh-Bénard

convection

-Two-point correlation technique

-Invariant theory
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DNS data for Rayleigh-Bénard convection
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� The simulation were performed with the TUR-

BIT code( Grötzbach, 1987).

� Parameters of the simulation data

Pr Ra Gr Re

t

Pe

t

0.006 6,000 106 497 3

0.006 24,000 4� 106 2240 13

0.7 381,000 5:4� 105 109 76

0.7 630,000 8:9� 105 154 107
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� Using two-point correlation technique (Chou 1945, Kolo-

vandin & Vatutin 1972), the dissipation tensor �
ij

can be

decomposed into:
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� Dynamic equation for �
h
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� The properties of homogeneous turbulence for two-point

correlations:
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0

)0 = 0

� Testing the assumption of the local homogeneity for two-

point velocity correlations of third rank

If (∆
�

u

s

u

k

u

0

s

)0 + (∆
�

u

s

u

0

s

u

0

k

)0 ' 0 ;

�

@

@x

k

@u

i

@x

l

@u

k

u

i

@x

l

| {z }

T l

=

1

4
�

@

@x

k

∆
x

u

i

u

k

u

i

�

1

2
�

@

@x

k

[(∆
�

u

i

u

k

u

0

i

)0 + (∆
�

u

i

u

0

k

u

0

i

)0]

'

1

4
�

@

@x

k

∆
x

u

i

u

k

u

i

| {z }

Tr

5/12Assumption of the local homogeneity



� Testing the assumption of the local homogeneity

for two-point temperature-velocity correlations
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� For Rayleigh-Bénard convection the approxi-

mate equation for �
h

:
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� Budget of the equation above
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Anisotropy invariant map of Reynolds stress
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� Ra = 381; 000, Pr = 0:71

+ Ra = 630; 000, Pr = 0:71

4 Ra = 6000, Pr = 0:006

� forced convection (Kim et al)

Model for the sink term T
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� Model for the buoyant production term T
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is the dissipation of �2, �2 is temp. variance).

� Distribution of the time scale ratio R

� Distribution of the buoyant production

� Ra = 381000
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4 Ra = 24000
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� The modeled equation for �
h

:
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� The closure of the equation for turbulent dissipa-

tion rate was investigated by means of the DNS

data of Rayleigh-Bénard convection.

� The assumption of local homogeneity was tested:

Valid: for the derivatives of two-point

velocity correlations of third rank

Except: for the derivatives of

the two-point velocity/temp.

correlations

� The derived closure for the sink term in the equa-

tion for the homogeneous part of the dissipation

rate shows a good agreement with the DNS data.

� A new model for the buoyant production term

in the equation for �
h

was proposed, which can

account for the influence of Prandtl number and

turbulence level.

� The model for buoyant production term can be

also used for the modelling dissipation term �

i�

in the transport equation for the heat flux u

i

�
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� Buoyant production term in � equation
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