Institut für Reaktorsicherheit

Numerical simulation of bubble-train flow in a small channel of square cross-section

B.E. Ghidersa, M. Wörner, D.G. Cacuci Forschungszentrum Karlsruhe, Institut für Reaktorsicherheit

> German-Japanese Workshop on Multi-Phase Flow Karlsruhe, 26.-27. August 2002

Contents

- Motivation
- Computer code TURBIT-VoF
- Bubble flow in small channels
 - numerical setup
 - comparison with experimental data
 - flow visualization and analysis
- Conclusions

Motivation

- Problem
 - *small channels*: compact heat exchangers, small-sized refrigeration systems, chemical processing
- Subject
 - gas-liquid two-phase flows in small channels
 - flow channels with hydraulic diameters of the order of 1 mm
 ⇒ continuum model
- Objectives:
 - local characteristics: velocities and temperature profiles; flow structure;
 - \Rightarrow better understanding of the basic hydrodynamics

TURBIT-VoF

- In-house code: bubbly flow in large channels
- Applicability:
 - incompressible single and two-phase flows
 - plane and rectangular channels
 - spatially periodic flows: fully developed regime
- Features
 - dimensionless equations
 - finite volume + 3-rd order Runge-Kutta method
 - volume tracking method: Volume-of-Fluid procedure (VoF)
 - piecewise linear interface reconstruction: EPIRA algorithm
 - heat transport equation (passive scalar)

Bubble flow in capillaries of square cross section

Numerical setup

- Channel: *L*×*L*; flow cell: *L*
 - \Rightarrow Computational domain: 1x1x1
- Initial bubble diameter: d = 0.858 \Rightarrow void fraction $\alpha = 33\%$
- Walls: x = 0, x = 1; z = 0, z = 1;
- Periodic b.c. in y-direction
- Mesh: 64x64x64
- Constant pressure drop in y-direction
 - \Rightarrow determine the liquid/gas flow rates

Comparison with experiments

- T.C. Thulasidas et al (1995)*
 - vertical channel 2×2mm
 - silicone oil and air

	$ ho_{liquid}/ ho_{gas}$	$\mu_{ ext{liquid}}/\mu_{ ext{gas}}$
Case A	775.8	249.1
Case B	813.2	2599.7

- Measurements for:
 - \succ bubble diameter : D_b,
 - \succ bubble velocity : U_b,
 - relative bubble velocity : W=(U_b-v_{ls})/U_b (v_{ls} : liquid slug velocity)

*Thulasidas, Abraham & Cerro, Chem. Eng. Sci., 50, pp 183, 1995

Simulation parameters

	ρ _l / ρ _g	μ _l / μ _g	J _I [cm/s]	J _g [cm/s]	Re	Ca	Eö
Case A	78	25	6.52	6.87	75.8	0.043	1.35
Case B	81	260	2.82	3.72	1.35	0.205	1.06

- > Capillary number: Ca = $\mu_l U_b / \sigma$
- > Reynolds number: Re = $\rho_1 U_b D_b / \mu_1$
- Eötvös number: Eö = $(\rho_l \rho_g)gD_b^2 / \sigma$

Fig. 10. Dimensionless bubble velocity defined as the ratio of bubble velocity to total superficial velocity for square capillaries: (■) 1000 centistokes silicone oil, bubble-train flow; (□) 50 centistokes silicone oil, bubble-train flow; (□) so centistokes silico

Total superficial velocity: $J = J_1 + J_{\alpha}$

Velocity field and reduced pressure field

referential linked to the bubble center of mass

Flow structure inside the bubble -top view-

Ca = 0.043

13

Conclusions

- **3D** numerical simulation of a bubble-train flow in a square channel at **low Ca** and **Eö** numbers
- Use global parameters as input in order to get
 local information about the flow
- Good agreement with experimental data
- Structure of the flow in the bubble / liquid slug
 - ➢ lower Ca:

⇒ intense mixing inside the bubble and in the liquid slug;
 ⇒ larger bubble diameter : thin liquid layer between the bubble and the wall;

Future work

- Further validation of the numerical method
- Assessment of the limits of method
- Computation of heat/mass transfer
- Chemical reaction