Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Institut für Reaktorsicherheit

Numerical Study of Bubble Train Flow in a Square Vertical Mini-Channel: Influence of Length of the Flow Unit Cell *

M. Wörner, B.E. Ghidersa, A.F. Shahab

Research Center Karlsruhe, Institute for Reactor Safety, Germany

5th International Conference on Multiphase Flow Yokohama, Japan, May 30 – June 4, 2004

* Oral presentation by E. Laurien, University of Stuttgart, Germany

Motivation

- Multi-phase chemical process engineering
 - Miniaturized devices offer certain advantages
 - High interfacial area per unit volume
 - ⇒ Enhanced heat and mass transfer
 - Defined interface geometry
 ⇒ Numbering up instead
 of scaling up
 - Example: Micro bubble column*

• Of interest: gas-liquid flow in single channel

Objective

- Investigate gas-liquid flow in narrow channel numerically by volume-of-fluid method
- Verification by experiments of Thulasidas et al.*
 - Square vertical channel
 cross section: 2 mm × 2 mm (W = 2 mm)
 - Air bubbles in silicon oil
 - Bubbles of identical shape move with same velocity = "bubble train flow"
 - Flow is fully characterized by a single "flow unit cell" of length L_{fuc}

In-house code TURBIT-VOF

- Volume-of fluid method for interface tracking
 - Interface is locally approximated by plane (PLIC method)
- Governing equations for two incompressible fluids (see paper)
- Solution strategy
 - Projection method resulting in pressure Poisson equation
 - Explicit third order Runge-Kutta time integration scheme
- Discretization in space
 - Finite volume formulation for regular staggered grid
 - Second order central difference approximations

Numerical set up

- Consideration of <u>one</u> flow unit cell
- Account for influence of trailing/leading unit cells by <u>periodic boundary conditions</u> in axial direction
- Length of flow unit cell, L_{fuc} , is input parameter
- <u>Here:</u> investigate influence of L_{fuc} / W
- Flow is driven in vertical direction (y) by specified axial pressure gradient and buoyancy

Physical parameters

• Fluid properties Factor 10 higher than ρ and μ of air

$ ho_{l}$	$ ho_{g}$	μ_l	μ_g	σ
957 kg/m ³	11.7 kg/m ³	0.048 Pa s	1.84×10 ⁻⁴ Pa s	0.022 N/m

• Initial bubble shapes^{*} (void fraction $\varepsilon = 33\%$)

Simulations are started from gas and liquid at rest

Computational parameters

Case	$L_{ m fuc}$ / W	Domain	Grid	Time steps
A1	1	1 × 1 × 1	$48 \times 48 \times 48$	24,000
A2	1	1 × 1 × 1	$64 \times 64 \times 64$	60,000
В	1.25	1 × 1.25 × 1	$48 \times 60 \times 48$	24,000
С	1.5	1 × 1.5 × 1	$48\times72\times48$	26,000
D	1.75	1 × 1.75 × 1	$48 \times 84 \times 48$	26,000
Е	2	$1 \times 2 \times 1$	$48 \times 96 \times 48$	28,000

Results on both grids show only slight differences

Time history of mean velocities

Steady state values of bubble velocity U_B and mean liquid velocity U_l increase with increasing length of the flow unit cell

Bubble shape and trajectories of mass less particles for case A

- One large vortex inside the bubble
- Small azimuthal flow inside bubble

Bubble shape and velocity field

Velocity field in vertical mid-plane

Right half: frame of reference moving with bubble Left half: fixed frame of reference

Comparison with experiment

Non-dimensional bubble diameter			Relative velocity Non-dimensional U _B		dimensional U _B	
Case	L _{fuc} / W	Ca _B	D_B/W	$(U_B - J_{total})/U_B$	U_{B}/J_{total}	
Α	1	0.204	0.81	1.80	0.445	
В	1.25	0.207	0.84	1.75	0.430	
С	1.5	0.215	0.85	1.75	0.430	
D	1.75	0.238	0.85	1.78	0.438	
Е	2	0.253	0.85	1.8	0.445	
Experimental data [*] correlated in terms of Capillary number $Ca_B \equiv \mu_l U_B / \sigma$						
0.2 – 0.25		0.82 – 0.86	6 1.68 – 1.84	0.435 – 0.475		
			\checkmark	\checkmark	\checkmark	

* Thulasidas, Abraham, Cerro, Chem. Eng. Science 50 (1995) 183-199

D_B measured along channel diagonal^{*}

* Thulasidas, Abraham, Cerro, Chem. Eng. Science 50 (1995) 183-199

Bubble diameter in simulations

 D_B/W decreases with increase of Ca_B <u>only</u> if the bubble length L_B is larger than about 1.2 the channel width (this is the case in the experiments by Thulasidas et al.)

* Thulasidas, Abraham, Cerro, Chem. Eng. Science 50 (1995) 183-199

Conclusions

- Numerical simulation of bubble train flow
 - Square vertical mini-channel of width W = 2 mm
 - Investigation of influence of flow unit cell length
- Good agreement with experimental data from literature
- Dependence of bubble diameter on Capillary number
 - Regime I: increase of D_B with Ca_B for $L_B < 1.2 W$
 - Regime II: decrease of D_B with Ca_B for $L_B > 1.2 W$
 - From experiments so far only regime II is reported (long bubbles)