Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Forschungszentrum Karlsruhe GmbH, Institut für Reaktorsicherheit, Postfach 36 40, 76021 Karlsruhe, Germany Bradut Eugen Ghidersa, Martin Wörner, Dan Gabriel Cacuci

Numerical simulation of bubble-train flow with heat transfer in a square mini-channel

Application

- Periodic incompressible gas-liquid flow: bubble-train flow
- Rectangular channels with hydraulic diameter D_b~1 mm
- $\Rightarrow~$ Compute the flow of a train of bubbles in a square channel with constant wall heat flux.
 - 3D flow structure both in the liquid and inside the bubble
 - 3D temperature distribution

Cross-section temperature distribution

Fully developed heat transfer model (two-phase)

- Hydrodynamic fully developed flow
- Stationary regime : Balance between the heat introduced in the system and the one removed from the system
- Wall heat flux uniform in stream-wise direction (y)
- Fluids with constant properties; no phase change at the interface
 - \Rightarrow Subdivide the temperature in two components:

$$T_k(x, y, z) = \theta_k y + \Theta_k(x, y, z) \quad k = 1, 2$$

$$\theta_k = \frac{T_k(x, y + L, z) - T_k(x, y, z)}{L} = \theta = const.$$

 Θ_k : periodic

$$\begin{split} \frac{\partial \left\langle \rho C_{p} \Theta \right\rangle_{V}}{\partial t} + \nabla \cdot \left\langle \rho C_{p} \Theta \mathbf{v} \right\rangle_{V} &= -\frac{1}{\text{Pe}} \nabla \cdot \left\langle \lambda \nabla \Theta \right\rangle_{V} \\ &- \left\langle \rho C_{p} v \right\rangle \theta - \frac{\left(\lambda_{1} - \lambda_{2}\right) \theta}{\text{Pe}} a_{int.} \end{split}$$

Axial variation of the liquid temperature at the wall compared with single phase case (lines)

Conclusions

• The flow structure for different flow parameters has been studied and the coupling between the flow inside the bubble and in the liquid could be analyzed.

 \rightarrow Better understanding of the basic hydrodynamics

- Detailed information about the mechanisms of heat transport in the channel have been obtained and a characterization of the bubbles influence on the heat transfer was possible
 - ightarrow Better understanding of the mixing properties of the flow

Numerical method

Computer code: TURBIT-VoF

- Incompressible single and two-phase flows
- Dimensionless mass, momentum and energy equations
- Interface tracking method: Volume-of-Fluid procedure (VoF)
- Piecewise linear interface reconstruction: EPIRA algorithm
- Finite volume (space) + 3-rd order Runge-Kutta method (time) discretization
- Grid: 64 × 64 × 64 mesh cells (uniform grid)

