Institut für Reaktorsicherheit

Evaluation of residence time distribution for bubble train flow in a square mini-channel by direct numerical simulation

Martin Wörner, Bradut Ghidersa, A. Onea

Forschungszentrum Karlsruhe, Institut für Reaktorsicherheit

ECI International Conference on Heat Transfer and Fluid Flow in Microscale Castelvecchio Pascoli, 25 – 30 September 2005

Outline

- Introduction and motivation
- Bubble train flow (BTF)
 - Computational setup
 - Simulation results and validation
- Residence time distribution (RTD)
 - Procedure to evaluate RTD
 - Results for RTD of bubble train flow
 - Model for the RTD
- Conclusions and outlook

Gas-liquid flow in narrow channels with rectangular cross section

- Examples for devices
 - Monolithic reactors with catalytic walls
 - Micro-channel network (MIT)
 - Micro bubble column (IMM)
- Advantages
 - Enhanced mixing in liquid slug
 - Reduced axial dispersion
 - Efficient mass transfer across interface

Motivation

- Experimental investigation of these two-phase flows is difficult because of small dimensions and often yield integral data only
- <u>Goal:</u>
 - Perform direct numerical simulation (DNS) of bubble train flow in a single channel to resolve local flow phenomena
 - Use DNS results to evaluate residence time distribution for liquid phase

Flow characterization

- Elongated bubble which fill almost the entire channel cross section (Taylor bubbles)
- Bubbles have identical shape and move with same axial velocity
- The flow is fully described by a unit cell of length L_{uc} consisting of one bubble and one liquid slug

Numerical set up

- In-house code TURBIT-VOF
 - Navier-Stokes eq. with surface tension term for two incompressible fluids
 - Volume-of-fluid method (interface is locally approximated as plane)
- Consider <u>one</u> flow unit cell only (one bubble, one slug)
- Account for influence of trailing/leading unit cells by <u>periodic boundary conditions</u> in axial direction
- Co-current upward vertical flow driven by specified pressure gradient
- Length of flow unit cell, L_{uc} , is input parameter
 - simulations for different values of L_{uc} and fixed void fraction $\varepsilon = 33\%$
- Comparison with experiments of Thulasidas et al.*
 - Air bubbles in silicon oil
 - Square channel with $2mm \times 2mm$ cross section (W = 2mm)

^{*} Thulasidas, Abraham, Cerro, Chem. Eng. Science 50 (1995) 183-199

Computational parameters

Case	L _{uc} / W	Domain	Grid	Time steps
A1	1	1 × 1 × 1	$48 \times 48 \times 48$	24,000
A2	1	1 × 1 × 1	$64\times 64\times 64$	60,000
В	1.25	1 × 1.25 × 1	$48 \times 60 \times 48$	24,000
С	1.5	1 × 1.5 × 1	$48\times72\times48$	26,000
D	1.75	1 × 1.75 × 1	$48\times84\times48$	26,000
Е	2	$1 \times 2 \times 1$	$48\times96\times48$	28,000

Results on both grids show only slight differences

Computed bubble shape and velocity field for different values of *L*_{uc}

Velocity field in vertical mid-plane

У

Right half: frame of reference moving with bubble Left half: fixed frame of reference

Comparison with experiment

Non-dimensional bubble diameter			Relativ	Relative velocity Non-dimensional U _B			
Case	L _{uc} / W	Ca _B	D_B/W	$(U_B - J_{total})/U_B$	U_{B}/J_{total}		
Α	1	0.204	0.81	1.80	0.445		
В	1.25	0.207	0.84	1.75	0.430		
С	1.5	0.215	0.85	1.75	0.430		
D	1.75	0.238	0.85	1.78	0.438		
Е	2	0.253	0.85	1.8	0.445		
Experimental data [*] correlated in terms of capillary number $Ca_B \equiv \mu_I U_B / \sigma$							
0.2 – 0.25		0.82 – 0.86	1.68 – 1.84	0.435 - 0.475			
			\checkmark	\checkmark	\checkmark		

* Thulasidas, Abraham, Cerro, Chem. Eng. Science 50 (1995) 183-199

4

Residence time distribution

- The residence time distribution (RTD) is an important measure for characterization of any chemical reactor
 The RTD influences yield and selectivity
- Common experimental method to determine RTD*
 - Add tracer at reactor inlet as a pulse and measure the tracer concentration at the outlet

* Figures are taken from book "Chemical Reaction Engineering" by O. Levenspiel

Examples for RTD

- Problems for micro reactors
 - Reaction volume is usually much smaller than the volume of inlet and the volume necessary to measure tracer at outlet
- <u>Alternative</u>: Determine RTD from DNS data

Procedure to evaluate RTD from DNS data

- Use fully developed DNS results for a certain instant in time
- Introduce virtual particles in mesh cells entirely filled with liquid – particle distance = 1 / n_{ppul} (number of particles per unit length)
- Track particles in fixed frame of reference
 - Problem: Velocity field in fixed frame of reference is <u>unsteady</u>
 - But: steady velocity field in frame of reference moving with bubble
 - Determine fluid velocity at instant particle position from its relative position to the bubble, which is virtually moved with velocity $U_{\rm B}$
- Store time the particle needs to travel an axial distance of L_{uc}
- Normalize histogram for all particles to obtain two RTD curves
 - E^* : no special weighting of particle residence times
 - E: weighting of particle residence time by axial velocity at release

RTD for single phase planar Poiseuille flow

Influence of *n*_{ppul} for BTF case A

Compartment model

Plug flow reactor and stirred vessel in series (single phase flow)

$$E = \begin{cases} 0 & \text{for } t < L_{\text{uc}} / U_{\text{B}} \\ \frac{U_{\text{L}}}{L_{\text{uc}}} \exp\left(-\frac{U_{\text{L}}}{L_{\text{uc}}} \cdot t + \frac{U_{\text{L}}}{U_{\text{B}}}\right) & \text{for } t \ge L_{\text{uc}} / U_{\text{B}} \end{cases}$$
$$F = \begin{cases} 0 & \text{for } t < L_{\text{uc}} / U_{\text{B}} \\ \frac{J_{\text{L}}}{L_{\text{uc}}} \exp\left(-\frac{J_{\text{L}}}{L_{\text{uc}}} \cdot t + \frac{J_{\text{L}}}{U_{\text{B}}}\right) & \text{for } t \ge L_{\text{uc}} / U_{\text{B}} \end{cases}$$

Compartment model for case A

Compartment model for case C

Compartment model for case E

Conclusions

- Direct numerical simulation of bubble train flow (BTF)
 - Square vertical mini-channel of width W = 2 mm
 - Co-current vertical flow of air bubbles in silicon oil
 - Good agreement with experimental data from literature
- Original procedure to evaluate the liquid phase RTD
 - Introduction of mass-less particles into volume of liquid phase
 - Tracking of particles and detecting time to travel distance L_{uc}
 - Evaluated RTD can be approximated by compartment model with plug flow reactor and stirred vessel in series
- Outlook
 - Identifying better model for liquid RTD of unit cell (?)
 - Determine RTD for traveling distance $n_{uc} \cdot L_{uc}$ ($n_{uc} = 2, 3, ...$)
 - Obtain RTD for arbitrary n_{uc} by convolution of RTD for $n_{uc} = 1$ (?)