

Analysis of bubble-induced turbulence and needs for model improvements

G. Grötzbach*, M.Ilić#, M. Wörner*(, #)

Forschungszentrum Karlsruhe

*Institute for Nuclear and Energy Technologies, #Institute for Reactor Safety

International Workshop on Thermal-Hydraulics of Innovative Reactor and Transmutation Systems – THIRS Forschungszentrum Karlsruhe, April 14-16 2008

- Introduction
- Phenomena in bubble-turbulence interaction
- Direct numerical simulations of bubble swarm flows
- Analysis of transport equation of liquid phase turbulent kinetic energy ($k_{\rm L}$) from DNS data
 - Budget of terms in $k_{\rm L}$ -equation
 - Assessment of closure assumptions
- Conclusions

2 | Grötzbach, Ilic, Wkörmeer | THIRS 15.04.2008

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Introduction

- For thermal-hydraulic design of innovative reactor and transmutation systems, computational fluid dynamics (CFD) is of great importance
 - Experiments at full scale and for realistic conditions (temperature, pressure, flow rates) are often hardly possible
 - The scale-up from laboratory experiments and the design and optimization of the reactor relies almost entirely on CFD
 - Due to large dimensions, the flow is usually in the turbulent regime, thus for reliable CFD results <u>turbulence models</u> play a critical role
 - Assessment and needs for turbulence models
 - Single phase heat transfer, see presentation A05 by G. Grötzbach (Monday)
 - Here: two-phase bubbly flows

Introduction

Phenomena in bubble-turbulence interaction

- Direct numerical simulations of bubble swarm flows
- Analysis of transport equation of liquid phase turbulent kinetic energy ($k_{\rm L}$) from DNS data
 - Budget of terms in $k_{\rm L}$ -equation
 - Assessment of closure assumptions
- Conclusions

4 | Grötzbach, Ilic, Wkörmeer | THIRS 15.04.2008

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Bubble-turbulence interaction

Experiments on cocurrent upward air-water flow in a vertical pipe (Samstag, FZKA 5662, 1996)

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

Bubble-turbulence interaction

Bubbles enhance turbulence for $0 \le r/R < 1$ for both, $\beta = 5\%$ and $\beta = 10\%$

Radial profile of mean axial liquid velocity at 70D Radial profile of liquid turbulent kinetic energy at 70D

 β =5%: bubbles damp turbulence for 0≤ r/R<1 β =10%: bubbles enhance turbulence for r/R<0.4 and damp it for r/R>0.4

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

Bubble-turbulence interaction

- Mechanisms of bubble-turbulence interaction
 - Direct
 - Gas bubbles displace liquid and induce velocity fluctuations
 - · Vortices in bubble wake induce velocity fluctuations
 - Dissipation of liquid phase turbulence kinetic energy by disperse elements
 - Indirect
 - Modification of mean liquid velocity profile by presence of bubbles
 - Modification of production rate of turbulent kinetic energy by shear stresses
 - Nonlinear feedback
 - Turbulence has strong influence on breakup and coalescence of bubbles and thus determines bubble size distribution
 - Bubbles of different size have different rise velocity and experience different magnitude and direction of lift force (toward wall or toward pipe center)
 - Bubble size distribution influences radial void fraction profile
 - Radial void fraction profile influences mean liquid velocity profile

- Introduction
- Phenomena in bubble-turbulence interaction
- Direct numerical simulations of bubble swarm flows
- Analysis of transport equation of liquid phase turbulent kinetic energy ($k_{\rm L}$) from DNS data
 - Budget of terms in $k_{\rm L}$ -equation
 - Assessment of closure assumptions
- Conclusions

8 | Grötzbach, Ilic, Wkörneer | THIRS 15.04.2008

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Direct numerical simulations

- Background and motivation for DNS
 - Experiments show that bubbles may enhance turbulence or damp turbulence as compared to single phase flow
 - Experimental data in literature are not conclusive and contradictory*
 - Qualitatively, phenomena are partly understood, but not quantitatively
 - A reliable model to account for turbulence in bubbly flows in Euler-Euler CFD codes (two-fluid model) is missing
 - Model development is hindered by difficulty to measure relevant correlations between various fluctuating quantities
- <u>Goal:</u> use DNS data to analyze turbulence kinetic energy equation for liquid phase and to test closure assumptions

* For recent literature overview see Hu et al, CES 62 (2007) 1199

In-house code TURBIT-VOF

- Volume-of fluid method for interface tracking
 - Interface is locally approximated by a plane (PLIC method)
- Governing equations for two incompressible fluids
 - Single field momentum equation with surface tension term
 - Zero divergence condition for center-of-mass velocity
 - Advection equation for liquid volumetric fraction f
- Discretization in space and solution strategy
 - Projection method with 3rd order explicit Runge-Kutta time integration
 - Finite volume formulation for regular staggered grid
 - Second order central difference approximations
- Verification
 - Test problems with known analytical solution
 - Experimental results for single bubbles of various shape

Bubble swarm simulations

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

- Simulations for central region of a flat bubble column (Ilić, FZKA 7199, 2006)
 - No-slip side walls and periodic b.c. in vertical and lateral direction
 - Bubbles drive liquid flow and induces "pseudo-turbulence"

Influence of gas content

Scenario	1 <i>BM</i> 6	5BM6	8BM6	8BM4	8BM2
No. of bubbles	1	5	8	8	8
Gas content	0.818%	4.088%	6.544%	6.544%	6.544%
Morton number	3.06·10 ⁻⁶	3.06·10 ⁻⁶	3.06·10 ⁻⁶	3.06.10-4	3.06·10 ⁻²
ρ_{I}/ρ_{G} = 2, μ_{I}/μ_{G} = 1		Influence of bubble shape and velocity			

Visualization of bubble motion

Bubble shape and path

13 | Grötzbach, Ilic, Wörneer | THIRS 15.04.2008

und Universität Karlsruhe (TH)

- Introduction
- Phenomena in bubble-turbulence interaction
- Direct numerical simulations of bubble swarm flows
- Analysis of transport equation of liquid phase turbulent kinetic energy (k_L) from DNS data
 - Budget of terms in $k_{\rm L}$ -equation
 - Assessment of closure assumptions
- Conclusions

14 | Grötzbach, Ilic, Wkörmeer | THIRS 15.04.2008

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Averaging of simulation results

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

Terms in exact *k*_L-equation and budget

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

17 | Grötzbach, Ilic, Wörner | THIRS 15.04.2008

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

Models for interfacial term

exact:

 $-p_{\mathrm{L},\mathrm{in}}u_{\mathrm{L}\mathrm{i},\mathrm{in}}n_{\mathrm{L}\mathrm{i}}a_{\mathrm{in}}+\tau_{\mathrm{L}\mathrm{i}\mathrm{j},\mathrm{in}}u_{\mathrm{L}\mathrm{i},\mathrm{in}}n_{\mathrm{L}\mathrm{j}}a_{\mathrm{in}}$

CLOSURE ASSUMPTIONS					
DRAG CONTRIBUTION	Other	Model of:			
Defined in the form of:	contributions				
Mean quantities:					
As power of drag force	$M_{\rm vm}\overline{{f u}_{ m r}}$	Morel 🗇			
$W_{\rm D} = 0.75 C_{\rm D} \alpha_{\rm G} \rho_{\rm L} \overline{\mathbf{u}_{\rm r}} / d_{\rm B}$	none	Troshko&Hassan 🜀			
As part of power of drag force					
$0.05 \alpha_{\rm G} W_{\rm D}$	none	Boisson et al. 3			
$0.75W_{\rm D}$	none	Olmos et al. 🖮			
$1.44W_{\rm D}$	none	Pfleger et al. 🧪			
$0.075W_{\rm D}$	$\alpha_{\rm G}^{} \rho_{\rm L}^{k_{\rm L}^{2/3}/d_{\rm B}}$	Kataoka et al. 🕸			
Drag force not explicitly included:					
$0.25\alpha_{\rm L}\alpha_{\rm G}\rho_{\rm L}\left(1+C_D^{4/3}\right)\overline{\mathbf{u}_{\rm r}}^3/d_{\rm B}$	none	Lahey et al.☺			
Mean and turbulent quantities:					
Only liquid turbulence properties					
$0.45C_{\mathrm{D}}\alpha_{\mathrm{G}}\rho_{\mathrm{L}}k_{\mathrm{L}} \mathbf{\overline{u_{\mathrm{r}}}} /d_{\mathrm{B}}$	$2.53 \alpha_{\rm G} \alpha_{\rm L} \Pi$	Sheng et al. 🖏			
Turbulence properties of both phases					
$\left \frac{3}{4}C_{\rm D}\frac{ \mathbf{\bar{u}}_{\rm r} }{d_{\rm B}}\right 2\alpha_{\rm G}\rho_{\rm L}(C_{\rm t}-1)k_{\rm L}-\frac{\nu_{\rm L}^{\rm kc}\overline{\mathbf{u}_{\rm r}}\nabla\alpha_{\rm G}}{\alpha_{\rm L}\alpha_{\rm G}}\right $	none	Hill et al. 🖘			

Wall-normal co-ordinate [-]

Modeling as power of drag force gives good results (non-drag forces are insignificant here)
Which correlation to use for C_D?

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

Models for interfacial term

 $W_{\rm D} = 0.75 (C_{\rm D}/d_{\rm B}) \alpha_{\rm G} \rho_{\rm L} |\overline{\mathbf{u}_{\rm r}}| \overline{\mathbf{u}_{\rm r}} \cdot \overline{\mathbf{u}_{\rm r}}$

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

Conclusions

- Experimental data reveal complex bubble-turbulence interaction (enhancement/damping of shear turbulence)
- DNS of bubble driven liquid flow and analysis of transport eq. for liquid turbulence kinetic energy for pseudo-turbulence
 - Production by shear stresses is negligible (as expected)
 - Importance of interfacial term and diffusion term
- Evaluation of model assumptions
 - <u>Production term and diffusion term</u>: poor performance of standard singlephase type models (PT is over-, DT is underestimated)
 - Interfacial term: modeling as work of drag force together with Tomiyama correlation for C_D shows good performance
- Turbulence models for bubbly flows have strong deficiencies
 - Combined theoretical, experimental and numerical efforts are required to develop physically sound and general models for CFD

