

Direct Numerical Simulations for Interface-resolving of Gas-liquid Flows in Solid Sponge Structure

Xuan Cai, Dr. Martin Wörner, Prof. Olaf Deutschmann

Karlsruhe Institute of Technology (KIT), Germany

9th International Conference on Multiphase Flow (ICMF 2016), May 22 to 27, 2016, Firenze, Italy

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

- Motivation of Direct Numerical Simulations (DNS) for interface resolving
- Phase field method and phaseFieldFoam in OpenFOAM
 - Validation for droplet or bubble interacting with solid surface
- DNS for interface-resolving of gas-liquid flows in sponge structure
- Summary & outlooks

Motivation

Direct numerical simulation for understanding hydrodynamic interaction of gas-liquid interfacial flows with solid surface

Motivation

Direct numerical simulation for understanding hydrodynamic interaction of gas-liquid interfacial flows with solid surface

For sharp-interface method, classical paradox between:

- motion of contact line
- no-slip boundary condition

Volume fraction equation in VOF:

$$\frac{\partial F}{\partial t} + (\mathbf{u} \cdot \nabla)F = 0$$

 $\mathbf{u} = \mathbf{0}$ on wall

dynamics of moving contact line

- Common remedy is to allow for slip at wall by Navier slip BC
- Another strategy is to abandon "sharp-interface" and embrace "diffuse-interface" concept

Phase Field Method

- Phase field (C) as phase indictor
 - Smooth transition from -1 to 1 → diffuse interface
- Phase field evolution governed by Cahn-Hilliard equation $\frac{\partial C}{\partial t} + (\mathbf{u} \cdot \nabla)C = \kappa \nabla^2 \phi(C) \qquad \phi = \frac{\lambda}{\varepsilon^2} C(C^2 - 1) - \lambda \nabla^2 C$ describes motion of contact line!
 - Wetting boundary condition for static contact angle θ_e $\hat{n}_s \cdot \nabla C = \frac{\sqrt{2}}{2} \frac{\cos \theta_e}{\varepsilon} (1 - C^2)$ $\phi = ct$
 - Single-field Navier-Stokes equation:

$$Φ$$
 = chemical potential [J/m³]
 $λ$ = mixing energy [J/m]
 $ε$ = diffuse interface thickness [m]
 $κ$ = mobility [m³s/kg]

$$\frac{\partial(\rho_{C}\mathbf{u})}{\partial t} + \nabla \cdot (\rho_{C}\mathbf{u} \otimes \mathbf{u}) = -\nabla p + \nabla \cdot \left[\mu_{C}\left(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathsf{T}}\right)\right] + \mathbf{f}_{\sigma} + \rho_{C}\mathbf{g}$$
$$\rho_{C} = \frac{1+C}{2}\rho_{\mathsf{L}} + \frac{1-C}{2}\rho_{\mathsf{G}}, \quad \mu_{C} = \frac{1+C}{2}\mu_{\mathsf{L}} + \frac{1-C}{2}\mu_{\mathsf{G}}, \quad \mathbf{f}_{\sigma} = -C\nabla\phi$$

Method implementation and verification

- Close cooperation with **Dr. Holger Marschall** (TU Darmstadt, Germany)
- Phase field method implemented in OpenFOAM (foam-extend-1.6 & 3.2)
 - A novel OpenFOAM solver phaseFieldFoam*
- Verification by extensive test cases against analytical solutions**
- Validation by a series of test case for dynamics of droplet or bubble interacting with solid surfaces, such as …

* H. Marschall, X. Cai and M. Wörner. Conservative finite volume discretization of the two-phase Navier Stokes Cahn-Hilliard and Allen-Cahn equations on general grids with applications to dynamic wetting, **2016**, in preparation

^{**} X. Cai, H. Marschall, M. Wörner and O. Deutschmann, Chem. Eng. Technol. 2015, 38: 1985–1992

Validation on droplet wetting on flat surface

- Diameter ≈ 3 mm
- PIB solution μ = 25 pa·s
- smooth PTFE surface ($\theta_e = 58^\circ$)

3D phase-field simulation with adaptive mesh refinement near interface

Droplet base radius (r) over time

Reference: X. Cai, H. Marschall, M. Wörner and O. Deutschmann, Chem. Eng. Technol. 2015, 38: 1985–1992

Time: 0.00

Droplet wetting on chemically-patterned surface

time

Experiment by Jansen et al. 2013

- Glycerin droplet volume = $3 \mu L$
- Alternating stripes made of:

Reference: X. Cai, H. Marschall, M. Wörner and O. Deutschmann, Chem. Eng. Technol. 2015, 38: 1985–1992

Validation on cylinder-induced bubble breakup

Reference: X. Cai, M. Wörner, H. Marschall and O. Deutschmann, Catalysis Today, 2016, in press

Outline

- Motivation of Direct Numerical Simulations (DNS) for interface resolving
- Phase field method and phaseFieldFoam in OpenFOAM
 - Validation for droplet or bubble interacting with solid surface
- DNS for interface-resolving of gas-liquid flows in sponge structure
- Summary & outlooks

- Total Sponge structure
 - Height: 25 100 mm
 - Diameter: 100 mm
- Individual liquid jets
 - Approx. 1 10 mm
- Local gas-liquid interface
 - Approx. 0.1 1 mm
- Disparity of length scale up to 10² or 10³!

Computational mesh for sponge geometry

OpenFOAM's mesh generator snappyHexMesh

Validation for single-phase gas flow

- Apply the solver for gas flow through sponge structure
 - Compare our simulation results with experiment* and simpleFoam simulation**

Gas flow shown by velocity vector (yellow) in a AI_2O_3 sponge, 80% porosity, 20 ppi

- U_0 : superficial gas velocity
- $\Delta p / \Delta x$: pressure drop per unit length

- * Dietrich et al. Chem. Eng. Sci. 64 (16), 3633-3640. 2009
- ** Meinicke et al., 11th Int. Conf. on CFD in the Minerals & Proc. Industries 2015

- Representative Elementary Volume \rightarrow difficult to get inlet liquid distribution from exp.
- Mirroring geometry + periodic boundary conditions

SiSiC foam, 20 ppi, 85% porosity

- Representative Elementary Volume \rightarrow difficult to get inlet liquid distribution from exp.
- Mirroring geometry + periodic boundary conditions

SiSiC foam, 20 ppi, 85% porosity

- Conventionally (in experiment): inlet flow rate → pressure drop
- In current periodic domain: pressure drop → inlet/domain flow rate

$$p \equiv P - \frac{\overline{p_0} - \overline{p_{L_x}}}{L_x} \cdot \mathbf{x} = P - \mathbf{f}_x \cdot \mathbf{x}$$

$$-\nabla p = -\nabla P + \mathbf{f}_x$$

- Input to DNS:
 - liquid saturation ß
 (V_{liquid}) / (V_{liquid} + V_{gas})
 - Pressure drop $\Delta p / \Delta x$

Liquid saturation $\mathcal{B} = 0.2$ and $\Delta p / \Delta x = 200$ Pa/m

Equilibrium contact angle = 90°

Effect of equilibrium contact angle θ_{e} (i.e. solid surface wettability)

19

Summary and Outlook

- Phase Field Method and phaseFieldFoam in OpenFOAM
 - Validation for droplet or bubble interacting with solid surface
- DNS for interface-resolving of gas-liquid flows in sponge structure
 - Providing clear evidence that interfacial area can be increased by tuning surface wettability or interfacial tension
- Outlook for future work:
 - Further investigations on other initialization strategy
 - Derive closure relation for Euler-Euler modeling and simulation
 - Experimental study on local interface distribution is highly needed

Acknowledgement

PhD study funded by Germany Helmholtz Energy Alliance "Energy-efficient chemical multiphase processes"

Partners:

- Dr. H. Marschall (CSI, TU Darmstadt, Germany)
- Dr. B. Dietrich, S. Meinicke (KIT-TVT, Karlsruhe, Germany)
- Prof. B. Frohnapfel, V. Fink (KIT-ISTM, Karlsruhe, Germany)
- Prof. P. Yue
 (Virginia Tech, USA)
- Prof. H. Alla (USTO, Oran, Algeria)

HELMHOLTZ