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ABSTRACT

We propose a novel multispectral imaging technique employing complementary notch filters instead of bandpass
filters which are conventionally used in filter-based multispectral cameras. Therefore, only little power of the
incoming photon signal is lost and thus the SNR of the multispectral data can be significantly improved. To
validate the proposed approach, simulations of conventional bandpass filters as well as complementary notch
filters are presented. To compare the resulting SNRs, the EMVA 1288 standard is adopted in such a way that it
is applicable to notch filter-based multispectral cameras. It is found that the SNR can be significantly improved
by using complementary filters instead of the conventional bandpass filters, especially at high spectral resolution.
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1. INTRODUCTION

Digital cameras most prevalent in consumer electronics are color cameras which capture a 3-channel RGB color
image. In many scientific or industrial applications however, color images are not sufficient and cameras that are
able to sample the electromagnetic spectrum more densely are required. To this end, multi- or hyperspectral
cameras, i.e., cameras that capture a spatially resolved spectrum of a scene, have been developed. These spectral
cameras have found applications in remote sensing,1 farming and agriculture,2,3 material abundance estimation,4

sorting tasks,5,6 medical diagnostics,7 food inspection,8 and more.

There are mainly two categories of spectral cameras: dispersion-based and filter-based cameras. Dispersion-
based cameras use prisms or gratings to code the spectral dependence of the incoming spectrum in the spatial
domain. The most commonly used dispersion-based cameras are hyperspectral line-scan cameras as well as recent
snapshot designs such as the Coded Aperture Snapshot Spectral Imagers (CASSI) and its derivatives.9,10,11

While dispersion-based cameras offer a very high spectral resolution, their optical design is often complex, bulky
and challenging to calibrate mechanically. Filter-based cameras on the other hand employ spectral filters to
spectrally sample a scene. The spectral filters can either be used to perform several measurements each with
a different filter (spectral scanning) or used as a pixel-wise spectral mask similar to the most commonly used
techniques in color imaging based on Bayer-pattern sensors. Filter-based cameras are usually more compact and
robust compared to diffraction-based ones. Furthermore, spectrally masked sensors can be manufactured using
existing, well scaling technology12,13 opening spectral imaging to the mass market. Compared to diffraction-based
spectral imaging techniques however, conventional filter-based spectral cameras have the major disadvantage
that only a small fraction of the incident light’s power is transmitted by the filters and ultimately captured by
the sensor. The higher the spectral resolution of the camera, the narrower the individual filters and the fewer
photons can be detected per wavelength range. At very high resolution, heavily cooled electron multiplying CCD
sensonrs are used in combination with very narrow bandpass filters, usually acousto-optic tunable filters. This
tradeoff is a significant limitation of bandpass filter-based spectral cameras.

To overcome this dilemma, we propose to use notch filters in multispectral imaging. We will formulate this
complementary sampling technique rigorously in Section 2. By transmitting a large amount of the incoming
spectral power, the usage of notch filters results in a much higher signal-to-noise ratio (SNR) of the captured
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multispectral data which we will show in detail in Section 3 and 4. While complementary sampling approaches
have been investigated in color imaging, sampling the complementary colors cyan, magenta, and yellow instead of
red, green, and blue14,15 the filter width in both cases is very large as compared to those in multi- or hyperspectral
imaging. Therefore, the advantages of complementary sampling are not as severe in color imaging as compared to
spectral imaging. In the case of multispectral imaging, complementary sampling has drawn only little attention,
lacking a detailed sampling formulation and theoretical considerations as well as thorough evaluation.16

2. MULTISPECTRAL IMAGING

We consider a multispectral sensor which spectrally samples an incident spectral flux Φ(λ). The sensor has a
wavelength dependent sensitivity which is called the quantum efficiency η(λ). The wavelength range of interest
is denoted by Λ = [Λ0,Λ1] and limited by the support of the quantum efficiency. For example, silicon-based
sensors have a range of ΛSi = [300 nm, 1100 nm].17 If one is interested in a smaller wavelength range, for example
the visible range ΛVIS = [450 nm, 700 nm], one can use a bandpass filter or a set of short- and longpass filters to
restrict the support of the incident spectral flux.

2.1 Conventional Sampling

The spectral sampling of the spectral flux Φ(λ) over the wavelength range Λ is realized in conventional filter-
based multispectral cameras via a set of N bandpass filters with transmission coefficients ϕi(λ) : Λ → [0, 1]
centered around the central wavelengths λi which are spread out equidistantly across the wavelength range Λ.
As an example, we will consider two bandpass filter types. On the one hand, ideal rectangular filters of width
b = (Λ1 − Λ0)/N with central wavelengths

λi = Λ0 + ib (1)

and transmission coefficients

ϕi(λ) =

{
1 if |λ− λi| < b/2

0 else
, i = 1, 2, . . . , N . (2)

In practise, close-to-ideal bandpass filters can be achieved by high-OD interference filters. And on the other hand,
we investigate Gaussian bandpass filters with the same central wavelengths as in the ideal filter case but with
Gaussian-like transmission coefficients

ϕi(λ) = exp
(
− (λ− λi)2

2σ2

)
, i = 1, 2, . . . N. (3)

Here, the standard deviation σ is assumed to be constant across all N bandpass filters and can equivalently be
expressed via the full width at half maximum FWHM = 2

√
2 ln 2σ. In practise, Fabry-Perot interference filters

show a Gaussian-shaped transmission coefficient.

Given the transmission coefficients ϕi(λ) of the filters and the quantum efficiency η(λ) of the sensor, the
transmitted spectral power ci of the spectral channel i is calculated as

ci =

∫
Λ

ϕi(λ)η(λ)Φ(λ) dλ . (4)

For example, in the case of the ideal rectangular filters, this simplifies to

ci =

∫ λi+b/2

λi−b/2
η(λ)Φ(λ) dλ . (5)

The total signal power P across the considered wavelength range is given by

P =

∫
Λ

η(λ)Φ(λ) dλ . (6)
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(b) Complementary sampling.

Figure 1: Schematic comparison of conventional (a) and complementary sampling (b) of an arbitrary example spectral flux
Φ and quantum efficiency η in the case of N = 10 spectral filters. For clarity, only the transmission coefficient of a single
filter is shown in each case. The shaded area indicates the sampling range of the corresponding filter.

In this definition, P is the power of η(λ)Φ(λ) rather than the actual spectral flux Φ(λ). However, this can easily
be normalized via calibration (white balance). Finally, we can concatenate the spectral measurements ci to the
vector x with respect to the standard basis ei,

x =

N∑
i=1

ciei . (7)

Using narrow bandpass filters in a multispectral camera, high spectral resolution can be achieved. However,
narrow bandpass filters lead to a low number of detected photons per spectral channel and therefore to a low
power ci which is depicted in Figure 1. The low power in turn results in a low SNR of the measured data as we
will discuss in more detail in Section 3.

2.2 Complementary Sampling

To increase the transmitted power per spectral channel, we propose a multispectral imaging approach using
complementary notch filters. Instead of using a collection of N bandpass filters with transmission coefficients
ϕi(λ), we propose to use the complementary filters with transmission coefficient

ϕ̂i(λ) = 1− ϕi(λ) (8)

to sample the spectral flux Φ(λ). The motivation for this is simple: By using notch filters, a large amount of the
incident spectral power is transmitted and detected by the sensor resulting in a much larger SNR as compared to
the conventional sampling using bandpass filters. At the same time, the set of the used complementary filters
result in a multiplexing scheme which provides the same spectral information as the conventional approach as we
will discuss shortly.

In complete analogy to the bandpass filter case, we calculate the transmitted spectral power in the case of the
complementary filters to

ĉi =

∫
Λ

ϕ̂i(λ)η(λ)Φ(λ) dλ (9)

=

∫
Λ

(
1− ϕi(λ)

)
η(λ)Φ(λ) dλ = P − ci , (10)

where we have used (4) and (6). In a vectorized fashion, analogous to (7), we identify

x̂ = P − x . (11)

That is, the complementary spectral measurement x̂ is equivalent to the conventional spectral measurement x
if the power P is known. The most straightforward way to obtain P is to perform an additional measurement



without any spectral filters. In fact, measurements without spectral filters in combination with bandpass filters
measurements have been studied in the case of color filter array-based cameras.14 Note that in this case we have
not made any use of the explicit definition of the transmission coefficient ϕi. That is, the above equivalence
between the spectral measurements with the filters ϕi and the complementary measurements holds for all filters
ϕi and is not specific to bandpass filters. While of course bandpass filters are the most commonly used ones in
multispectral imaging, this general complementary imaging approach therefore also holds for alternative filters
such as short- and longpass filters.

Using bandpass respectively notch filters however makes it possible to calculate the power P from the filtered
measurements directly. To this end, the set of filters {ϕi}Ni=1 has to fulfil the sum-to-one constraint

σ(λ) :=
∑
i

ϕi(λ) = 1 (12)

which can equivalently be expressed using the complementary filters as∑
i ϕ̂i(λ)

N − 1
= 1 . (13)

If the constraint is fulfilled, we can calculate, using (4) and (6),

‖x‖0 =
∑
i

ci =

∫
Λ

∑
i

ϕi(λ)︸ ︷︷ ︸
=1

η(λ)Φ(λ) dλ = P (14)

and analogously

‖x̂‖1 = (N − 1)

∫
Λ

∑
i ϕ̂i(λ)

N − 1︸ ︷︷ ︸
=1

η(λ)Φ(λ) dλ = (N − 1)P . (15)

Finally, we obtain from (11)

x =
‖x̂‖1
N − 1

− x̂ , or equivalantly x̂ = ‖x‖1 − x . (16)

That is, if the sum-to-one constraint is fulfilled, the conventional measurement x and the proposed complementary
measurement x̂ are fully equivalent, without the need to measure the total power P separately. In particular,
given the complementary measurement x̂, the conventional measurement x can be calculated from it.

Note that the sum-to-one constraint (12) is exactly fulfilled for the ideal bandpass respectively notch filters
as defined in (2). Here, the above result reflects the fact that each wavelength subband which is sampled just
once in the case of the conventional bandpass filters is instead sampled N − 1 times by the complementary filters
due to the large filter overlap. Therefore, only little power of the incoming photon signal is lost even at high
spectral resolution and the transmitted power ĉi increases compared to ci as shown in Figure 1. To be precise,
the measured complementary signal x̂ is (N − 1)-times stronger than the conventionally sampled spectrum x,
since from (14) and (15) it follows

‖x̂‖1 = (N − 1)‖x‖1 . (17)

In those instances where the constraint (12) is not fulfilled exactly, which is the case for the considered Gaussian
bandpass and notch filters, equations (14)–(16) only hold approximately. We investigate the sum-to-one constraint
in the case of Gaussian filters in more detail in Section 4.



np ∼ P(µp) η
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Figure 2: Schematic overview of the linear digital camera model according to the EMVA 1288 standard.

3. EMVA 1288 CAMERA MODEL

To objectively evaluate the proposed complementary sampling, a quantitative evaluation measure is needed. To
this end, we employ the EMVA 1288 standard.18 The standard introduces a digital camera model, calibration,
and quantitative measures such as the camera’s SNR to enable an objective comparison of different digital
cameras. As of version 4 of the EMVA 1288 standard,19 working with black-box cameras is supported. However,
throughout this presentation we will employ the linear camera model as depicted in Figure 2. Here, np denotes
the incoming number of photons, which is usually assumed to Poisson-distributed with mean µp. Each incoming
photon is absorbed by the sensor with a chance of η, called the quantum efficiency, resulting in ne electrons. This
can be modelled as a Bernoulli experiment. The composition of the resulting Binomial distribution with a Poisson
distribution yields again a Poisson distribution. This is also referred to as thinning of a Poisson distribution.
The mean number of electrons is hence also Poisson-distributed with mean ηµp. All of the sensor’s sources of
noise are incorporated into the dark noise d which is assumed to be normally distributed since it is the sum of
multiple statistically independent (possibly unknown) noise sources. Usually, the largest contribution to the dark
noise is the thermal noise which can be explicitly modelled. The electrons are read out and converted into a
voltage which is amplified by the system gain K and digitized. The quantization is introduced using the linear
quantization model by addition of the quantization noise n which is uniformly distributed. The output of the
model is the digital greyscale value g.

According to the EMVA 1288 standard, the wavelength dependence is only explicitly taken into account by the
quantum efficiency. Furthermore, spectral effects are assumed to be linearly superimposed. That is, the incoming
number of photons can be viewed as a collection of finitely many Poisson-distributed np,i with central wavelengths
λi. Hence, the quantum efficiency is actually only sampled at these discrete central wavelenghts λi. Incorporating
a spectral filter into this model is straightforward since the action of a spectral filter is essentially identical to that
of the quantum efficiency η(λi). That is, the filter’s transmission coefficient ϕ(λi) is interpreted as the probability
of transmittance. Therefore, applying a spectral filter leads to a thinning of the Poisson distribution just as did
the quantum efficiency. Now this thinned Poisson distribution can be viewed as the input to the camera model
which leads to a mean number of electrons µe = η(λi)ϕ(λi)µp,i. One can now interpret η(λi)ϕ(λi) as an effective
quantum efficiency of the camera and transfer all formulas and metrics specified by the EMVA 1288 standard by
replacing

η(λi)→ η(λi)ϕ(λi) . (18)

3.1 Signal-to-noise ratio

Using the linear camera model, one finds the mean and variance of the stochastic greyscale value

µg = µd + ηµp , (19)

σ2
g = σ2

0 + ηµp , (20)

where we have defined σ2
0 = σ2

d + σ2
q/K for brevity. As one of the main values to compare digital cameras, the

EMVA 1288 standard defines the (monochromatic)

SNR =
µg − µd

σg
=

ηµp√
σ2

0 + ηµp

. (21)



Here, a single calibrated monochromatic light source with a central wavelength close to the maximum of the
camera’s quantum efficiency is used to measure the required quantities. In that sense, the SNR defined above
represents the highest possible SNR that can be achieved with the camera under consideration. The SNR of
an ideal camera can easily be derived by neglecting the dark and quantization noise terms and using an ideal
quantum efficiency η = 1, leading to

SNRideal =
√
µp . (22)

Note that even for an ideal camera, the photon noise still leads to a non-zero noise variance and thus yields an
upper bound for the SNR.

The EMVA 1288 standard also specifies how to measure the SNR for color and spectral cameras: Given a
camera with N color or spectral channels, one uses N monochromatic light sources with central wavelengths
corresponding to the maxima of the N color filters ϕi. One than applies (21) to the quantities obtained from all
monochromatic light source measurements independently, obtaining

SNRi =
ϕi(λi)η(λi)µp,i√
σ2

0 + ϕi(λi)η(λi)µp,i

, i = 1, . . . , N . (23)

However, this procedure is limited to bandpass filters since it is ambiguous to refer to the filter’s maxima in other
instances. This in particular yields a problem when evaluating the proposed notch filter-based multispectral
cameras. However, the problem also arises for other filter types such as highpass or lowpass filters which may
also be suitable for multispectral imaging. Furthermore, measuring only with one light source per filter neglects
effects depending on the filter width and filter overlap. This becomes quite clear in the case of the proposed
notch filter imaging: Using a white light as input, the proposed technique yields a much higher power throughput
than bandpass-based cameras as we have elaborated in Section 2. Furhtermore, large parts of the spectrum are
sampled multiple times by different filters. However these characteristics are in no way reflected by the current
EMVA 1288 standard.

3.2 Proposed extension

To overcome these limitations of the EMVA 1288 standard, we propose the following extension. For a spectral
cameras with N spectral channels, i.e. using N different spectral filters ϕi of arbitrary type, one uses N
monochromatic light sources with central wavelengths spread out equidistantly over the spectral range of interest.
For example, when using bandpass filters these central wavelengths can be chosen to coincide with the central
wavelengths of the used filters. In the case of the proposed notch-filters, the central lengths of the light sources
are chosen to coincide with the absorption wavelength of the filters.

For every filter i one then measures the grey value gij for all light sources j obtaining

µgij = µd + ϕi(λj)η(λj)µp,j , (24)

σ2
gij

= σ2
0 + ϕi(λj)η(λj)µp,j . (25)

Accordingly, we generalize (23) to

SNRij =
ϕi(λj)η(λj)µp,j√

σ2
d + σ2

q/K + ϕi(λj)η(λj)µp,j

, i, j = 1, . . . , N . (26)

This way, the width and overlap of the spectral filters is explicitly taken into account and the individual SNR
values provide inside into the camera’s performance at different wavelengths for each channel. While the proposed
extension increases the number of necessary measurements per camera by a factor of N , we believe it is the only
meaningful backwards-compatible choice.

To reduce the above SNR definition to a single comparable quantity, we define the mean SNR to be the SNR
of the random variable

ḡ =
∑
ij

(
gij − µd

)
. (27)



In the case of the conventional filters, we find the mean

µḡ =
∑
ij

(
µgij − µd

)
=
∑
ij

ϕi(λj)η(λj)µp,j =
∑
j

η(λj)µp,j = µ̄p (28)

where we have used the sum-to-one constraint (12) and defined µ̄p as the mean total number of photons collected
from all light sources as the stochastic analogue to the power P previously defined in (6). Analogously, we
calculate the variance

σ2
ḡ =

∑
ij

σ2
gij

=
∑
ij

(
σ2

0 + ϕi(λj)η(λj)µp,j

)
= N2σ2

0 + µ̄p (29)

and obtain the overall

SNR =
µ̄p√

N2σ2
0 + µ̄p

(30)

which is conceptually very similar to the original definition (21). In a sense this can be viewed as the SNR
obtained when capturing a white scene with the multispectral camera. In complete analogy to the ideal SNR of a
monochromatic camera, we can calculate the ideal SNR by using ϕi = 1 = η and σ0 = 0 to obtain

SNRideal =

√
N
∑
i

µp,i . (31)

In the case of the proposed complementary filters, we find the mean

µ̂ḡ =
∑
ij

(
µ̂gij − µd

)
=
∑
ij

ϕ̂i(λj)η(λj)µp,j = (N − 1)µ̄p (32)

and the variance
σ̂2
ḡ =

∑
ij

σ̂2
gij

=
∑
ij

(
σ2

0 + ϕ̂i(λj)η(λj)µp,j

)
= N2σ2

0 + (N − 1)µ̄p . (33)

Here, the mean total number of photons detected using the complementary filters is a factor of (N − 1) larger
than in the conventional case which is the stochastic analogue of (17). Therefore, we find the overall

ŜNR =
(N − 1)µ̄p√

N2σ2
0 + (N − 1)µ̄p

. (34)

Finally, we find that the overall SNR in the case of the proposed complementary measurements is a factor
√
N − 1

to (N − 1) larger than the SNR of the corresponding conventional measurements, depending on the strength of

the camera’s noise: when σ0 = 0, we find ŜNR =
√
N − 1 · SNR. On the other hand, if σ0 is much larger than µ̄p

it dominates the denominator, resulting in approximately ŜNR = (N − 1) · SNR. We investigate this SNR in
more detail in Section 4.

3.3 Basis transform

Using the noise model as specified by the EMVA 1288 standard, we investigate the SNR when performing the
basis transform x̂ → x. That is, given the complementary measurements x̂, how does the SNR behave when
calculating the conventional spectral measurement x from it? As the stochastic analogue to the previously defined
channel-wise measurements ci, we define

ci =
∑
j

gij (35)

with mean and variance

µci = Nµd +
∑
j

ϕi(λj)η(λj)µp,j , (36)

σ2
ci

= Nσ2
0 +

∑
j

ϕi(λj)η(λj)µp,j (37)



and analogously the complementary measurements ĉi using the filters ϕ̂i. Note that, unlike previously, ci does
not correspond to a single measurement but to N measurements using the N different monochromatic light
sources. When investigating the behaviour in the case of a single measurement and a given spectral flux, the
noise terms would only appear once. Hence, the performance in the case of a single measurement will be better
compared to the following.

First, we consider the case when a separate measurement of the power P is performed. That is, we perform
additional measurements without any filters to calculate P and obtain the mean and variance

µP = Nµd +
∑
j

η(λj)µp,j , (38)

σ2
P = Nσ2

0 +
∑
j

η(λj)µp,j . (39)

Then, we calculate the channel-wise transformation

c̃i = P− ĉi (40)

with mean
µc̃i = µP − µĉi =

∑
j

η(λj)µp,j −
∑
j

ϕ̂i(λj)η(λj)µp,j =
∑
j

ϕi(λj)η(λj)µp,j (41)

and variance

σ2
c̃i

= σ2
P + σ2

ĉi
= 2Nσ2

0 +
∑
j

η(λj)µp,j +
∑
j

ϕ̂i(λj)η(λj)µp,j = 2Nσ2
0 + µ̄p +

∑
j

ϕ̂i(λj)η(λj)µp,j . (42)

We have used that the variables ĉi and P are statistically independent and hence their covariance is zero. Since
the mean of the dark current is in fact suppressed by the combination of the two measurements, we calculate the
overall SNR as

S̃NR =

∑
i µc̃i√∑
i σ

2
c̃i

=

∑
ij ϕi(λj)η(λj)µp,j√∑

i

(
2Nσ2

0 + µ̄p +
∑
j ϕ̂i(λj)η(λj)µp,j

)
=

µ̄p√
2N2σ2

0 +Nµ̄p + (N − 1)µ̄p

=
µ̄p√

2N2σ2
0 + (2N − 1)µ̄p

(43)

which is not as large as the original complementary measurement’s ŜNR (34) and even strictly smaller than the
conventional SNR (30).

Now, when we calculate the power P from the complementary measurements directly, we perform the
transform (16)

c̃i =

∑
j ĉj

N − 1
− ĉi . (44)

In a similar fashion to the above, we calculate the mean

µc̃i =

∑
j µĉj

N − 1
− µĉi =

N

N − 1
µd + µ̄p −

∑
j

ϕ̂i(λj)η(λj)µp,j (45)

and variance

σ2
c̃i

=

∑
j σ

2
ĉj

(N − 1)2
+ σ2

ĉi
=

[(
N

N − 1

)2

+N

]
σ2

0 +
1

N − 1
µ̄p +

∑
j

ϕ̂i(λj)η(λj)µp,j (46)



from which we find

S̃NR =

∑
i

(
µc̃i − µd

)
− µd√∑

i σ
2
c̃i

=
µ̄p + 1

N−1µd√
N

[(
N
N−1

)2

+N

]
σ2

0 +
(
N + 1

N−1

)
µ̄p

≈ µ̄p√
N2σ2

0 +Nµ̄p

, (47)

where the approximation holds for N � 1. Note, that in (43) and (47) the mean and the variance of the dark noise
are the same for each measurement gij . Thus it is assumed that the same exposure time is used for measurements
without any filter, with bandpass filters and with complementary filters. We will investigate in detail the gain in
SNR of the transformed variables compared to the conventional measurements in Section 4.

4. EXPERIMENTS

For the verification of the proposed approach we simulate the image formation process according to (4) and (9). To
this end, we discretize the spectral domain by sampling the range 300 nm – 1100 nm in steps of 0.1 nm. Throughout
all simulations, the wavelength range of interest is the (extended) visible range, i.e. Λ = [400 nm, 800 nm]. The
filters are spread out equidistantly across Λ as described in Section 2. For simplicity, we neglect the quantum
efficiency η(λ) in the simulations. However, if in a specific application the quantum efficiency is known, it is
trivial to incorporate.

4.1 Sum-to-one constraint

As we have seen, in order for the complementary filter basis to be equivalent to the conventional one, one either
has to measure the incoming power P separately (i.e. perform a measurement without any filter). Or, the
filters need, at least approximately, satisfy the sum-to-one constraint (12). While the ideal rectangular bandpass
naturally fulfil this constraint, this might not be true for other types, such as Gaussian bandpass and notch filters.

In the case of Gaussian notch filters, the constraint is visualized for different FWHMs of the complementary
bandpass filters and different number of spectral channels in Figure 3. As expected, the constraint is not exactly
fulfilled across the spectral range of interest. Furthermore, the deviation from the exact constraint also depends
on the number of spectral channels and the FWHM of the filters. To investigate this in more detail, Figure 4
shows the average Eλ[σ(λ)] of the constraint across the spectral domain Λ for different numbers of spectral
channels. It can be observed that for all considered FWHMs the constraint is on average fulfilled for some number
of spectral channels. Hence, when designing the camera with a specific number of spectral channels, one can
determine the optimal width of the notch filters by choosing the one with an average Eλ[σ(λ)] = 1. In the case of
the considered Gaussian notch filters, the solution can only be obtained numerically. The optimal FWHM is
depicted in Figure 5. As expected, for a lower number of spectral channels, filters with a larger FWHM are ideal,
while for higher number of spectral channels the ideal FWHM decreases. Comparing this curve with the width
of the rectangular filters FWHM = b = Λ/N , the optimal FWHM is also inversely proportional to the number
of filters N . Therefore, in the following we use FWHMopt = Λ/N also for the Gaussian filters. Note, that in
the simulation the filters are assumed to have a maximum transmittance of exactly 1. Therefore, in a specific
application using realistic filter shapes and values, the numeric optimization needs to be reevaluated.

4.2 SNR evaluation

To further evaluate the SNR of the proposed complementary spectral imaging, we apply the extended SNR
definition (26) to a camera with Gaussian notch filters. As previously mentioned, the quantum efficiency η(λ) is
assumed to be constant. Therefore, the SNR is identical for all spectral channels and the shown average SNR. For
the simulation of the measurements following the EMVA 1288 standard, we employ Gaussian-like light sources
with central wavelengths identical to those of the used filters, following (1). The light sources are simulated with
a FWHM = 10 nm. To illustrate the influence of the camera noise, we simulate two arbitrarily chosen values of
the overall noise term σ2

0 = σ2
d + σ2

q/K.

Figure 6 shows the average SNR in the case of 11 spectral channels. The width of the Gaussian filters was
optimally chosen to be 37.9 nm in accordance to the results given in Figure 5. Again, it can be observed that by
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Figure 3: Sum-to-one constraint σ(λ) for different number of channels and FWHM in the case of Gaussian notch filters.
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using complementary filters, the SNR is significantly improved compared to the SNR of conventional bandpass
filters due to the larger amount of transmitted photons. For a large number of photons µp the variance σ2

0 can be
neglected and the SNR using the complementary filters is about a factor of

√
N − 1 = 3.16 larger than SNR using

the conventional bandpass filters. For a small number of photons µp,j the effect of the noise is predominant which
makes the improvement achieved by the complementary filters even more significant. The SNR for complementary
filters at this point is N − 1 = 10 times larger than the SNR for bandpass filters. Note that the varying number
of photons in this case is caused by a varying photon flux from the light source. The exposure time and thus the
dark noise are constant in these calculations. In practise however this would not be the case. Given a scene with
a fixed spectral flux, the exposure time in the case of the proposed complementary sampling approach would
have to be much smaller than in the conventional case to yield the same digital greyscale value whilst avoiding
overexposure. Therefore, the dark noise, which is approximately proportional to the exposure time due to the
thermal noise, is much smaller in the proposed approach. In particular, this makes high resolution multispectral
imaging much more feasible than with bandpass filters which often require special low noise cameras such as
EM-CCD cameras which have to be heavily cooled down to reduce thermal noise. The comparison incorporating
the exposure time and model of the dark noise is left for future research.

Varying the number of used spectral channels, it can be observed from Figure 7 that the SNR actually increases
when using the complementary filters, as is expected. The more filters are used, the narrower the individual
filters are due to the sum-to-one constraint. In the case of conventional bandpass filters, increasing the number of
spectral channels results in a decreasing number of photons transmitting each filter. In the case of complementary
filters however, an increased number of channels actually results in an increased number of photons transmitted
by each filter. Using complementary filters, a high SNR can be achieved, especially at high spectral resolution.
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Figure 8: Ratio of the SNR of the complementary measurement and the conventional measurement according to (34)
and (30). Blue indicates improvements over the conventional sampling approach.

In order to compare the sampling using bandpass filters and complementary filters more generally, the ratio

ŜNR/SNR is examined according to (34) and (30) across all spectral channels. Figure 8 shows the ratio as
a function of a varying number of photons µ̄p, a varying number of channels N as well as for different noise

levels σ0. For N = 2, ŜNR and SNR are equal since in this case the bandpass and complementary filters are
in fact equivalent. The SNR using complementary filters is larger than the SNR using bandpass filters for any
constellation but especially for a large number of channels N . Even for a high noise level σ0 or for a small number
of photons µ̄p, corresponding to a small photon flux of the light sources, a much larger SNR is obtained using the
proposed complementary sampling approach. In practical scenarios with 10 or more spectral channels, the SNR
is about 6 dB larger in the proposed approach, further increasing with the numbers of spectral channels N .

Figures 9 and 10 show how the SNR using complementary filters behaves after a basis transformation compared
to the original SNR using bandpass filters. Due to the transformation, the mean value µci of the signal decreases
and is about the same as the mean value of the conventional signal using bandpass filters. The variance σ2

P of
the signal, on the other hand, increases due to the increased number of measurements and is significantly larger
than the variance of the conventionally sampled signal. If the power P is calculated from the complementary
measurements directly, the number of measurements is increased by factor N compared to a direct measurement
of P without any filters. Therefore, the variance of the dark noise and the photon noise is larger than the direct
measurement’s variance and the resulting SNR is smaller. If the basis transformation is performed using the
power P , the resulting SNR is smaller than the SNR using bandpass filters for all considered cases. A direct
transformation using ĉj improves the resulting SNR compared to a transformation via the power P, especially for
a high noise levels σ0, a small number of photons µci or a large number of channels N . For these parameters,
the SNR after the basis transformation approaches the SNR using bandpass filters. Since the transformation
can significantly degrade the SNR, we recommend evaluating the images in the complementary basis directly.
The complementary image data is not a multispectral image in the conventional sense while containing the same
spectral information.
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Figure 9: Ratio of the SNR of a conventional measurement obtained from the complementary measurement and an
additional measurement of the power P and the directly measured conventional measurement according to (43) and (30).
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Figure 10: Ratio of the SNR of a conventional measurement obtained from the complementary measurement and the
directly measured conventional measurement according to (47) and (30).

5. CONCLUSION

We proposed and evaluated a multispectral imaging approach using complementary notch filters to overcome
the limitations present in bandpass filter-based multispectral imaging. By using complementary filters with
transmission coefficients ϕ̂i(λ) = 1− ϕi(λ) instead of bandpass filters with transmission coefficients ϕi(λ), the
SNR of the multispectral measurements is improved significantly. This applies not only to ideal rectangular filters,
but also to different types of filters, if the filters fulfil a sum-to-one constraint which we investigated in detail in
the case of Gaussian filters.

Furthermore, we introduced an extension to the EMVA 1288 standard to overcome some of its limitations. In
particular, the present standard is only applicable to bandpass filter-based color and multispectral cameras. We
presented an extension, which contains the previous standard as a subset, to adapt the standard to arbitrary
filter-based cameras. By illuminating all N channels with N monochromatic light sources, additional information
about filter width and filter overlap is obtained. According to the presented detailed calculations and simulations,
the resulting SNR using complementary filters is significantly higher than the SNR using bandpass filters, especially
at high spectral resolution or in low-light environments. Therefore, it has great potential to increase the sensitivity
of multispectral imaging- The complementary image data is not a multispectral image in the conventional sense
while containing the same spectral information. A transformation of this data into the standard basis of bandpass
filters is possible but the advantages of the complementary over the conventional approach, in terms of a higher
SNR, are lost. Therefore, we recommend evaluating the data in the complementary basis, eliminating the need for
further postprocessing. Hence, in the future we will investigate multispectral imaging applications, such as object
classification, applied directly to the complementary image in comparison to the conventional measurements.
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