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Abstract

With the progressing implementation of the smart grid, more and more smart meters
record power or energy consumption and generation as time series. The increasing
availability of these recorded energy time series enables the goal of the automated
operation of smart grid applications such as load analysis, load forecasting, and load
management. However, to perform well, these applications usually require clean data
that describes the typical behavior of the underlying system well. Unfortunately, recorded
energy time series are usually not clean but contain anomalies, i. e., patterns that deviate
from what is considered normal. Since anomalies thus potentially contain data points
or patterns that represent false or misleading information, they can be problematic for
any analysis of this data performed by smart grid applications.

Therefore, the present thesis proposes data-driven methods for managing anomalies in
energy time series. It introduces an anomaly management whose characteristics correspond
to steps in a sequential pipeline, namely anomaly detection, anomaly compensation, and
a subsequent application. Using forecasting as an exemplary subsequent application and
real-world data with inserted synthetic and labeled anomalies, this thesis answers four
research questions along that pipeline for managing anomalies in energy time series. Based
on the answers to these four research questions, the anomaly management presented
in this thesis exhibits four characteristics. First, the presented anomaly management
is guided by well-defined anomalies derived from real-world energy time series. These
anomalies serve as a basis for generating synthetic anomalies in energy time series to
promote the development of powerful anomaly detection methods. Second, the presented
anomaly management applies an anomaly detection approach to energy time series that is
capable of providing a high anomaly detection performance. Third, the presented anomaly
management also compensates detected anomalies in energy time series realistically by
considering the characteristics of the respective data. Fourth, the proposed anomaly
management applies and evaluates general anomaly management strategies in view of
the subsequent forecasting that uses this data. The comparison shows that managing
anomalies well is essential, as the compensation strategy, which detects and compensates
anomalies in the input data before applying a forecasting method, is the most beneficial
strategy when the input data contains anomalies.
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Kurzfassung

Im Zuge der fortschreitenden Realisierung des intelligenten Stromnetzes zeichnen im-
mer mehr intelligente Zähler die verbrauchte oder erzeugte Leistung oder Energie als
Zeitreihe auf. Die zunehmende Verfügbarkeit dieser aufgezeichneten Energiezeitreihen
ermöglicht den automatisierten Betrieb von Anwendungen des intelligenten Stromnet-
zes wie Lastanalysen, Lastprognosen und Lastmanagement. Damit diese Anwendungen
gut funktionieren, benötigen sie jedoch in der Regel saubere Daten, die das typische
Verhalten des zugrunde liegenden Systems richtig beschreiben. Leider sind die aufgeze-
ichneten Energiezeitreihen in der Regel nicht sauber, sondern enthalten Anomalien, d.h.
Muster, die von dem abweichen, was als normal angesehen wird. Da Anomalien also
potenziell Datenpunkte oder Muster enthalten, die falsche oder irreführende Informa-
tionen darstellen, können sie für jegliche Analyse dieser Daten durch Anwendungen
des intelligenten Stromnetzes problematisch sein.

In der vorliegenden Arbeit werden daher datengetriebene Methoden für das Management
von Anomalien in Energiezeitreihen vorgestellt. Es wird dabei ein Anomaliemanagement
eingeführt, dessen Merkmale den Schritten einer sequentiellen Pipeline entsprechen,
nämlich der Erkennung von Anomalien, der Kompensation von Anomalien und einer
nachfolgenden Anwendung. Anhand von Prognosen als beispielhafter Folgeanwendung
und realen Daten mit eingefügten synthetischen und markierten Anomalien beantwortet
diese Arbeit vier Forschungsfragen entlang dieser Pipeline zum Management von Anoma-
lien in Energiezeitreihen. Ausgehend von den Antworten auf diese vier Forschungsfragen
weist das in dieser Arbeit vorgestellte Anomaliemanagement vier Merkmale auf. Erstens
orientiert sich das vorgestellte Anomaliemanagement an genau definierten Anomalien, die
aus realen Energiezeitreihen abgeleitet werden. Diese Anomalien dienen als Grundlage
für die Erzeugung synthetischer Anomalien in Energiezeitreihen, um die Entwicklung leis-
tungsfähiger Anomalieerkennungsmethoden zu fördern. Zweitens wendet das vorgestellte
Anomaliemanagement einen Ansatz zur Erkennung von Anomalien auf Energiezeitreihen
an, der eine hohe Leistung bei der Erkennung von Anomalien bietet. Drittens kompensiert
das vorgestellte Anomaliemanagement auch erkannte Anomalien in Energiezeitreihen
realistisch, indem es die Eigenschaften der jeweiligen Daten berücksichtigt. Viertens
wendet das vorgeschlagene Anomaliemanagement allgemeine Strategien zum Anomaliem-
anagement an und bewertet sie im Hinblick auf die anschließende Vorhersage, die diese
Daten nutzt. Der Vergleich zeigt, dass ein gutes Anomaliemanagement von wesentlicher
Bedeutung ist, da die Kompensationsstrategie, die Anomalien in den Eingabedaten vor
der Anwendung einer Prognosemethode erkennt und kompensiert, die vorteilhafteste
Strategie ist, wenn die Eingabedaten Anomalien enthalten.
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1 Introduction

In view of climate change as a serious threat to life on earth, the countries of the
world agreed on the Paris Agreement. It specifies to take measures to limit the increase
in global mean temperature to well below 2 °C and preferably below 1.5 °C compared
to preindustrial values (Paris Agreement 2015). Since anthropogenic greenhouse gas
emissions are considered to be the main cause of the observed temperature rise, strong and
timely measures are necessary to reduce global greenhouse gas emissions and to reach the
agreed net zero emissions by 2050 (Skea et al. 2022). In addition to the observed rise in
temperature, it also becomes increasingly apparent that global resources are finite and that
resource use must be changed (Giljum and Hinterberger 2014; Shafiee and Topal 2009).

The selection of the energy sources, the amount of energy used, and the efficiency
of its use strongly influence both the greenhouse gas emissions and the use of finite
resources. Conventional energy supply based on converting the inner energy of finite
resources such as hard coal or natural gas into, for example, mechanical or electrical
energy causes tremendous greenhouse gas emissions. For this reason, several societies
aim to reduce the environmental impact of their energy supply and use through the
increased use of so-called renewable energy sources such as wind and sun.

Transitioning from conventional to renewable energy sources, i. e., increasing the share of
renewable energy sources in energy supply, implies changes in the corresponding energy
system. A core change and at the same time enabler of the increased use of renewable
energy sources is the implementation of the smart grid (Fang et al. 2012). It aims to
intelligently connect and control all elements of an energy system using information and
communication technology (Fang et al. 2012; Ipakchi and Albuyeh 2009; Li et al. 2010a).
To acquire relevant information, smart grids use, among others, smart meters that are
installed at consumers and producers (Alahakoon and Yu 2016). Smart meters record
and transmit various information as time series, including voltage, reactive power, and
power or energy consumption and generation (Alquthami et al. 2020).

Since more and more smart meters are installed, the number of recorded energy time
series increases, enabling and opening up a wide range of possible applications for this
data. Exemplary applications include customer profiling, load analysis, load forecast-
ing, and load management (Rossi and Chren 2020; Wang et al. 2019), but also grid
simulations for stability analyses, grid development, fault-detection, and efficiency im-
provements as well as research platforms to develop technologies for the grid of the
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future (Hagenmeyer et al. 2016). In addition, the increasing availability of recorded
energy time series enables the goal of automated operation of the mentioned applications
(see e.g., Capozzoli et al. 2018; Meisenbacher et al. 2022). However, to perform well,
these applications usually require clean data that describes the typical behavior of the
underlying system well (Luo et al. 2018c; Wang et al. 2019).

Unfortunately, recorded time series are usually not clean, but contain anomalies (Chen et
al. 2017). Anomalies are patterns that deviate from what is considered normal (Chandola
et al. 2009). They can occur in energy time series for many reasons, including smart
meter failures (Wang et al. 2020), abnormal user behavior (Nordahl et al. 2017), unusual
consumption (Seem 2007), and energy theft (Jokar et al. 2016). All anomalies have in
common that they potentially contain data points or patterns that represent false or
misleading information, which can be problematic for any analysis of this data performed
by the mentioned applications (Wang et al. 2019). For example, anomalies such as
positive or negative spikes may strongly deviate from what is considered normal and
a subsequent forecasting method using the data as input, may generate an incorrect
forecast, which in turn could lead to an inappropriate energy schedule and ultimately
affect the stability of the energy system in an automated smart grid setting.

Therefore, managing anomalies in energy time series is an important issue in energy
systems. To effectively manage anomalies, an anomaly management for energy time
series ideally models the relevant anomalies or what is considered normal and is able to
choose an appropriate strategy to deal with the anomalies. To apply anomaly management
strategies, the anomaly management commonly has to consider the typically used anomaly
detection and anomaly compensation. Moreover, the anomaly management should select
and apply the appropriate strategy considering the subsequent application thus providing
suitable data to this application. Furthermore, this anomaly management ideally leverages
the increasingly available energy time series and the information contained therein.

While works in other domains such as cybersecurity (Donevski and Zia 2019) and space
systems (Kitts 2006) design such an anomaly management, energy system research has
not yet taken this comprehensive view. For example, some works consider the management
of anomalies in the context of the predictive maintenance of technical or industrial facilities
such as power plants (e.g., Lee et al. 2017; Zhao et al. 2021), which mainly addresses
the anomaly detection of the described anomaly management. In a similar manner,
Samitier (2017) describes how to manage faults and anomalies in the communication
networks and services of utilities, which takes up the mentioned anomaly detection and
anomaly compensation. In literature using energy time series, researchers also mostly
consider only one element, such as anomaly detection (e.g., Himeur et al. 2021), or at
most few of the described elements of an anomaly management. Energy management
solutions for buildings, for example, only model and detect anomalies to reduce the energy
consumption (e.g., Capozzoli et al. 2018; Khalilnejad et al. 2020; Markus et al. 2021;
Zhu et al. 2019). Similarly, Akouemo and Povinelli (2017) apply anomaly detection and
compensation to improve the data quality used for a subsequent forecast. However, no
research on managing anomalies in energy time series takes a data-driven approach to
develop an anomaly management that coherently considers modeled anomalies, anomaly
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detection, and anomaly compensation for energy time series in view of general anomaly
management strategies and a potential subsequent application.

1.1 Research Questions and Contributions

The present thesis aims to provide data-driven methods for managing anomalies in energy
time series. It proposes an anomaly management for energy time series that exhibits
the following four characteristics: First, the proposed anomaly management is guided by
well-defined anomalies observed in real-world energy time series, which can serve as a basis
for generating synthetic anomalies in energy time series to promote the development of
powerful anomaly detection methods. Second, the proposed anomaly management applies
an anomaly detection to energy time series that is capable of providing a high anomaly
detection performance. Third, the proposed anomaly management compensates detected
anomalies in energy time series realistically by considering the characteristics of the re-
spective data. Fourth, the proposed anomaly management considers and evaluates general
anomaly management strategies in view of a subsequent application that uses this data.

The described characteristics for managing anomalies in energy time series correspond to
sequential steps that can be organized in a pipeline similar to the common process of
designing time series forecasts (Meisenbacher et al. 2022). As illustrated in Figure 1.1,
the corresponding pipeline comprises three steps, namely anomaly detection, anomaly
compensation, and a subsequent application such as load analysis, load forecasting, or
load management. More specifically, the pipeline starts with the detection of anomalies
in a given time series containing anomalies using an anomaly detection method. The
effective application and evaluation of this anomaly detection method requires the prior
identification and modeling or labeling of the anomalies to be detected and results in
a time series with detected anomalies. The detected anomalies are then compensated
with an anomaly compensation method. The time series with compensated anomalies
finally serves as an input for a subsequent application.

Anomaly
compensation

method
Time series

with compen-
sated anomalies

Time series
with detected

anomalies

Anomaly
detection
method

Time series
containing
anomalies

Subsequent
application

Figure 1.1 Pipeline for managing anomalies in energy time series. The
pipeline starts with the detection of anomalies in a given time series contain-
ing anomalies using an anomaly detection method, resulting in a time series
with detected anomalies. The detected anomalies are then compensated with
an anomaly compensation method. The time series with compensated anoma-
lies finally serves as an input for a subsequent application.

For the present thesis, we choose forecasting as exemplary subsequent application of
the proposed anomaly management since it is a representative and relevant application
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that is suitable for anomaly management. Forecasting is a highly relevant application in
energy systems faced with volatile renewable energy sources as it allows for good planning,
scheduling, and thus balanced and stable operation of the respective grid (González
Ordiano et al. 2018). At the same time, it is important to anticipate that the energy time
series used as input to forecasting methods can be inaccurate and can contain anomalies
(Akouemo and Povinelli 2017; Luo et al. 2018c). Anomalies can severely affect time
series forecasts, leading to erroneous forecasts in the worst case and making anomaly
management particularly crucial (Chen and Liu 1993; Petropoulos et al. 2022).

Given that forecasting serves as an example of a subsequent application, we adapt the
pipeline shown in Figure 1.1 accordingly. For this, we simply replace the subsequent
application with a forecasting method so that the time series with compensated anomalies
serves as an input to this forecast method. The forecast method then provides a forecast
based on that input time series. The resulting pipeline comprises the steps that one
can use to manage anomalies in energy time series forecasting.

Along this pipeline, the present thesis addresses four research questions on data-driven
methods for managing anomalies (see Figure 1.2). In the following, we introduce each
research question in detail and describe what is required to answer these questions
given the information contained in the data.

Anomaly
compensation

method
Time series

with compen-
sated anomalies

Time series
with detected

anomalies

Anomaly
detection
method

Time series
containing
anomalies

Forecast
method

Forecast of
the time

series

[RQ1]

[RQ2]

[RQ3]

[RQ4]

Figure 1.2 The four research questions [RQ1] to [RQ4] on data-driven meth-
ods for managing anomalies that the present thesis addresses along the
pipeline for managing anomalies in energy time series forecasting.

Research Question 1 [RQ1]: How can anomalies in energy time series be modeled
and generated to improve anomaly detection?

Anomaly management benefits from an anomaly detection that reliably identifies all
relevant anomalies in an energy time series. Anomaly detection, in turn, profits from a
precise knowledge of the anomalies. However gaining this precise knowledge is challenging.
Common approaches to achieve this aim are manually labeling anomalies, defining a
minority of the data as anomalous, or reproducing anomaly-free or labeled time series.
However, all of these approaches are dependent on the considered data set and the
number and location of the contained anomalies. Furthermore, these approaches require
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expert knowledge throughout the process, which can be costly and time-consuming.
These drawbacks therefore can limit the applicability of these approaches in developing
anomaly detection methods for an anomaly management.

To improve the detection of anomalies in energy time series for anomaly management, we
therefore aim to accurately model anomalies in real-world time series and to provide means
to intentionally generate them. This approach should include identifying typical anomalies
in both time series containing energy measurements and time series containing power
measurements, before modeling the identified anomalies including parameters derived from
real-world data. The modeled anomalies should serve as the basis for generating synthetic
anomalies in time series containing energy measurements or time series containing power
measurements. Taking into account these aspects, the present thesis contributes to this
research question by proposing a method that is capable of generating synthetic anomalies
that are modeled on real-world anomalies and that can be inserted in arbitrary quantity
at random points of time into an arbitrary energy or power time series.

Research Question 2 [RQ2]: How can anomaly detection methods for
energy time series be enhanced?

Before anomalies can be managed to limit their potential impact, we need to detect them
in a given energy time series so that we obtain a time series with detected anomalies.
While a large variety of methods addresses the detection of anomalies, the focus mostly
lies on improving a method’s individual performance. The aim of finding a single high
performing anomaly detection method may be advantageous for certain use cases, but it
also comes with limitations. First, in a given use case, it may be necessary to search for
the best hyperparameters of an anomaly detection method. Second, one has to compare
available methods in order to eventually select the best performing anomaly detection
method. This hyperparameter search and selection process might be too time-consuming
and costly in the context of anomaly management, even when using existing data-driven
anomaly detection methods that work independent from expert knowledge.

To provide a solid foundation for the application in anomaly management, we thus aim to
generally enhance anomaly detection methods for energy time series using a data-driven
approach that does not require additional input from an expert. This aim implies that the
enhancement considers both supervised and unsupervised anomaly detection methods.
Moreover, the data-driven enhancement should take into account that various anomalies
can occur in energy time series. While some anomalies such as the anomalies previously
modeled in research question [RQ 1] can violate the underlying distribution corresponding
to normal behavior and can be easily recognized by a human, other anomalies remain
in the underlying distribution and are hard to detect. Considering these aspects, the
present thesis contributes to this research question by introducing a novel approach that
generally enhances anomaly detection methods for energy time series.
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Research Question 3 [RQ3]: How can anomalies detected in energy
time series be compensated?

Once anomalies are detected, they need to be compensated to obtain an energy time
series that better reflects the actual normal behavior. When detected anomalies are
regarded as missing values, compensating anomalies can be considered as imputation,
where missing data in a time series is replaced with substitution values. While various
methods address the imputation of time series, these methods are mostly only designed
for imputing missing values in time series containing power measurements. Moreover,
none of these methods considers inherent properties of time series containing energy
measurements. As a result, detected anomalies compensated by imputation may re-
sult in time series that exhibit atypical patterns and do not match the total recorded
energy, thus limiting their applicability in an anomaly management for energy time
series where human intervention should be restricted.

To provide a good basis for the application in an anomaly management, we therefore aim
to compensate anomalies detected in energy time series with a realistic imputation using
information contained in the data. This implies that the imputation preserves the inherent
patterns of the respective time series. Moreover, the imputation should consider the total
recorded energy and should guarantee that it remains unchanged during the imputation.
Considering these aspects, the present thesis contributes to this research question by
a novel imputation method for time series containing energy measurements that uses
matching patterns and preserves the total energy of each part with missing values.

Research Question 4 [RQ4]: How can an anomaly management account for
anomalies in energy time series forecasting?

Given that anomalies detected in an energy time series are compensated, the resulting time
series with compensated anomalies can serve as an input for a forecast method that then
calculates a forecast. However, using a time series with compensated anomalies as input is
only one strategy for managing anomalies in energy time series forecasting. Another general
strategy is to only apply an anomaly detection method and to let the applied forecasting
method use the information about detected anomalies. An alternative general strategy is
to apply neither an anomaly detection method nor an anomaly compensation method, but
to use a forecasting method that is known to be robust against anomalies. Furthermore,
one could simply rely on the assumption that the anomalies possibly contained in the
time series do not strongly influence the forecast, and thus use the respective time series
unchanged as input for the applied forecasting method. While all of these strategies aim
to achieve a good forecast accuracy, it is not known which strategy is actually the best.
Despite being essential for anomaly management, a rigorous comparison of the available
strategies for managing anomalies in energy time series forecasting is lacking.

To provide a sound basis for managing anomalies in energy time series forecasting, we
therefore aim to take on the typically used strategies mentioned above and describe general
strategies. Given these described strategies, matching representative forecasting methods
should be selected and compared on real-world data to determine the best anomaly
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management strategy. The comparison should consider that some of the strategies
use the same input data but different forecasting methods and could be compared
beforehand to keep the number of strategies in the overall comparison manageable.
Furthermore, the comparison should take into account that certain strategies principally
include a choice between a supervised and an unsupervised detection method. Considering
these aspects, the present thesis contributes to this research question by proposing and
comparing different general strategies for managing anomalies in energy time series
forecasting to identify the most beneficial strategy.

1.2 Outline

The present thesis is organized along the above mentioned research questions [RQ1]-[RQ4]
(see Figure 1.3). Before addressing these research questions, we introduce in Chapter 2
the fundamental concepts on which this thesis is based. Afterward, we start with research
question [RQ1]. In Chapter 3, we describe how we model anomalies in energy time series
and generate synthetic anomalies. Using these synthetic anomalies, we proceed with re-
search question [RQ2] in Chapter 4, which focuses on improving the detection of anomalies
in energy time series. Afterward, we continue with research question [RQ3] in Chapter 5
where we present how we compensate previously detected anomalies in energy time series.
Since the answers on the research questions [RQ1], [RQ2] and [RQ3] contribute to the
answer on research question [RQ4], we finally turn to research question [RQ4]. Chapter 6
brings the previous chapters together and considers strategies for managing anomalies
in energy time series forecasting. Lastly, we discuss this thesis and its contributions in
Chapter 7, before we conclude it with a summary and an outlook in Chapter 8.
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Figure 1.3 Organization of the present thesis along the research questions
[RQ1] to [RQ4].
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2 Preliminaries

In order to answer the research questions mentioned above, we need to introduce some
fundamental concepts on which this thesis is based. After defining energy time series, we de-
scribe anomalies in energy time series that are the main object of investigation in this thesis.

2.1 Energy Time Series

In the present thesis, we consider a time series to be a set of sequential observa-
tions obtained at regular intervals of time (Hyndman and Athanasopoulos 2021). For-
mally, a time series is defined as follows:

Definition 2.1 (Time Series). The observations x1, x2, . . . , xN obtained at the equidis-
tant points of time 1, 2, . . . , N form the time series X “ x1, x2, . . . , xN with the length
N .

In the context of energy systems, multiple time series exist including frequency mea-
surements, energy prices, and weather observations. From available time series in the
energy system, this thesis focuses on energy time series1 that contain observations of
various forms of energy such as gas, heat, or electricity. In the smart grid, these forms of
energy are typically measured with smart meters (Mohassel et al. 2014). Smart meters
usually meter the amount of energy consumed or generated up to a certain point in
time or, less often, the average power consumption or production in a given period of
time, resulting in energy measurements or power measurements. In this thesis, we define
time series containing energy or power measurements as follows.

Definition 2.2 (Time Series Containing Energy or Power Measurements). A
time series containing NE energy measurements is defined by E “ e1, e2, . . . , eNE

and a
time series containing NP power measurements by P “ p1, p2, . . . , pNP

.

1 Note that this commonly used term does not refer to energy as the specific physical quantity in
which the observations are measured. Sometimes power measurements are also referred to as energy
time series as they belong to the energy domain.
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In the following, we use energy time series to refer to a time series observed in the
energy system and energy time series E and power time series P to refer to time series
containing measurements in a specific physical quantity.

Since power is the amount of energy converted at a unit of time, one can derive an
energy time series E to obtain the corresponding power time series P (see Figure 2.1
for an example of a energy time series E and its corresponding power time series P ).
Each entry pt of the power time series P represents the average power between the
two time steps t and t ´ 1. Therefore, each pt is calculated as the difference between
two consecutive entries et´1 and et of the energy time series E divided by the time
∆t between the two time steps t and t ´ 1, i. e.,

pt “
et ´ et´1

∆t
. (2.1)

Jul Aug Sep Oct Nov Dec Jan

0

500

1,000

Time

E
le
c
tr
ic
a
l
e
n
e
rg

y
in

M
W

h

(a) An energy time series E containing energy measurements.
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(b) A power time series P containing the corresponding derived power measurements.

Figure 2.1 An exemplary energy time series E and the corresponding power
time series P . The shown time series is a 2012 section of MT_013 from the
“ElectricityLoadDiagrams20112014 Data Set” provided by the UCI Machine
Learning Repository (Dua and Graff 2019).

Reversely, an energy time series E can also be obtained from a power time series P by
integration. For each entry et of the energy time series E, all entries pi of the power time
series P up to this point in time t are integrated in a time-discrete manner, i. e.,
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et “ ∆t ¨

t
ÿ

i“1
pi ` k, (2.2)

where k is a constant representing the offset of the energy time series E. This offset
is required to account for the potentially unknown history of the power time series P .
Therefore, this calculation requires a power time series P without any missing values and
with a known offset k to reproduce the corresponding original energy time series E.

Power time series P from the energy system usually share three, potentially interde-
pendent characteristics because they originate from the same complex physical system.
The first characteristic is the multi-seasonality. A power time series P typically com-
prises, for example, daily, weekly, and seasonal patterns (see Figure 2.2). The second
characteristic is the aggregation-level-dependent predictability. A power time series P

is easier to forecast the more it is aggregated in, for example, time and space. The
third characteristic is the exogenous influence. A power time series P strongly de-
pends on, for example, meteorological influences such as temperature and economic
influences such as large events (Dannecker 2015).

In the present thesis, we consider energy time series that principally exhibit these char-
acteristics. However, we focus on energy time series representing electrical power or
energy consumption with a low to medium aggregation level regarding time and space.
The considered time series originate from a single client or building and thus only
aggregate the consumption of a small entity. Moreover, the considered time series
have a quarter-hourly temporal resolution, which is typical for the majority of data
collected by smart meters (Wang et al. 2019).

2.2 Anomalies in Energy Time Series

Since the energy system is a complex physical system, the energy time series measured
in this system can contain atypical patterns. Depending on the goal and focus of
the investigation of these patterns, different terms are used for them, including, for
example, anomaly (Chandola et al. 2009), outlier (Aggarwal 2017; Barnett and Lewis
1978; Hawkins 1980; Rousseeuw and Leroy 1987), novelty (Dasgupta and Forrest 1996),
surprise (Keogh et al. 2002; Shahabi et al. 2000), deviant (Jagadish et al. 1999),
unusual pattern (Lonardi et al. 2006), change point (Yamanishi and Takeuchi 2002),
concept drift (Heidrich et al. 2022), event (Guralnik and Srivastava 1999), discord
(Yankov et al. 2008), abnormality (Duong et al. 2005), exception (Arning et al. 1996),
fault (Katipamula and Brambley 2005a; Katipamula and Brambley 2005b), and noise
(Aggarwal 2017). Due to the focus on the management of these patterns, the present
thesis uses the term anomaly – and the reference to normality contained therein. In
this thesis, we generally define anomalies as follows:

Definition 2.3 (Anomalies). “Anomalies are patterns in data that do not conform to
a well defined notion of normal behavior.” (Chandola et al. 2009, p. 15:2)
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(a) Daily patterns.
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(b) Weekly patterns.
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(c) Seasonal patterns.

Figure 2.2 An exemplary power time series P that exhibits daily, weekly,
and yearly patterns. To illustrate these patterns, one year, four weeks, and
one week of the same time series from the year 2012 are shown. The shown
time series is MT_013 from the “ElectricityLoadDiagrams20112014 Data Set”
provided by the UCI Machine Learning Repository (Dua and Graff 2019).

As this definition refers to normal behavior, it is related to a perception of normality that
can be “a matter of subjective judgment” (Barnett and Lewis 1978, p. 4). In data mining,
for example, this perception is associated with the assumption that at least one process
exists that generates the data points representing normal behavior (Aggarwal 2017).
From this perspective, anomalies are assumed to be generated by another mechanism
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(Hawkins 1980) or by an unusual behavior of the actual generation process (Aggarwal
2017). In statistics, the perception of normality relates to the selection of a model that
covers the normal behavior of the generation process such that data points deviating
from the model are considered as anomalies (Rousseeuw and Leroy 1987).

For the present thesis, one could naturally consider the above-mentioned three char-
acteristics of energy time series – i. e., multi-seasonality, aggregation-level-dependent
predictability, and exogenous influence – as the basic perception of normality. Since
the present thesis uses energy time series with a low to medium aggregation level
and considers only energy time series as data to develop data-driven methods for the
management of anomalies, the multi-seasonality commonly observed in energy time
series and as shown in Figure 2.2 serves as a basic perception of normality in the
present thesis. More specifically, it focuses on the daily patterns as the smallest ele-
ment of multi-seasonality because anomalies contained herein are very likely to manifest
themselves in the larger weekly and seasonal patterns as well.

In addition to the underlying perception of normality, the definition of anomalies also
depends on the considered data structure (Foorthuis 2021). With regard to time series
data, anomalies can, for example, either refer to entire time series or parts of a time
series (Gupta et al. 2014). In the present thesis, we focus on anomalies as parts of
a single time series. In a single energy time series, such anomalies can occur due to
a variety of causes, including technical faults (see e.g., Moghaddass and Wang 2018;
Wang et al. 2020), theft (see e.g., Jokar et al. 2016; Nizar et al. 2008), and unusual
consumption (see e.g., Seem 2007; Wang et al. 2020).

In the present thesis, we consider the two common anomaly groups of technical faults and
unusual consumption (see Figure 2.3 for examples). While technical faults are related to
the measuring using the metering infrastructure, unusual consumption can be associated
with the unusual behavior of users or technical devices. Since these two groups contain
distinct anomalies, they cover a variety of anomalies. While technical faults comprise
anomalies whose values are not in the common range or are not part of typical patterns,
unusual consumption consists of anomalies that represent usual patterns within the
common value range but at an uncommon level (Wang et al. 2020).
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(a) Normal behavior.
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(b) Technical fault.
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(c) Normal behavior.
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(d) Unusual consumption.

Figure 2.3 Examples of normal behavior and anomalies from the two consid-
ered groups of anomalies, namely technical faults and unusual consumption.
The examples are specific days from a power time series P of an office build-
ing on the Campus North of the KIT.

14



3 Modeling Anomalies in Energy
Time Series

As established in the introduction, anomaly management benefits from an anomaly
detection that reliably identifies all relevant anomalies in an energy time series. Since
reliably and effectively detecting anomalies is also important for various applications such
as load analysis, load forecasting, and load management (Wang et al. 2019), anomaly
detection in energy time series is generally a recent research topic (Himeur et al. 2021).
While a portion of existing works develop detection methods with an exploratory approach
to discover anomalies contained in time series (e.g., De Nadai and van Someren 2015; Fan
et al. 2018; Li et al. 2010b), several works base their method development on knowledge
about the anomalies to be detected (e.g., Himeur et al. 2020a; Jakkula and Cook 2010;
Jokar et al. 2016; Pereira and Silveira 2018). However, gaining precise knowledge of the
anomalies to be detected is associated with several challenges. By definition, anomalies are
scarce and thus available data sets are imbalanced and hence there are comparatively few
instances available in the time series that can be used for developing anomaly detection
methods (Wen et al. 2021). Furthermore, this scarcity is particularly problematic for
promising deep learning anomaly detection methods that require large training data sets
to perform well (Pang et al. 2021). Additionally, a precise and comprehensive definition
of relevant anomalies is missing (Himeur et al. 2021). Moreover, there is a lack of openly
available energy time series with labeled anomalies or at least energy time series known
to contain anomalies (Himeur et al. 2020b; Himeur et al. 2021).

In order to meet these challenges, different strategies can be applied for time series.
Obviously, one can manually label anomalies in energy time series (Gulati and Arjunan
2022; Pereira and Silveira 2018; Ruff et al. 2021; Zhang et al. 2021). This strategy
provides potentially very accurately labeled anomalies. However, it is limited to the
anomalies contained in the time series, requires knowledge of the underlying system

Parts of this chapter are reproduced from
M. Turowski, M. Weber, O. Neumann, B. Heidrich, K. Phipps, H. K. Çakmak, R. Mikut,
and V. Hagenmeyer (2022b). “Modeling and Generating Synthetic Anomalies for Energy
and Power Time Series”. In: The Thirteenth ACM International Conference on Future
Energy Systems (e-Energy ’22). ACM, pp. 471–484. doi: 10.1145/3538637.3539760.
cb
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3 Modeling Anomalies in Energy Time Series

and typical patterns, often involves third parties such as facility managers or users, is
time-consuming and costly, and potentially raises privacy concerns (Gaur et al. 2019).

Alternatively, one can apply means to define the majority of the time series as non-
anomalous and the rest as anomalous, including selection (Ruff et al. 2021), rules
(Himeur et al. 2020a), one-class classification (Zhao et al. 2013), statistical meth-
ods (Gaur et al. 2019), and pattern recognition methods (Zhang et al. 2021). This
strategy depends less on experts. However, it can also be limited to the anomalies
contained in the time series, it requires a strong notion of non-anomalous time series,
anomalies may remain hidden in the time series, and a time-consuming and costly
verification by an expert could still be necessary.

Another strategy is to increase the number of available time series through generation,
augmentation, or sampling methods, either assuming the used time series to be anomaly-
free or reproducing time series with labeled anomalies (Heidrich et al. 2023; Krawczyk 2016;
Lu et al. 2021; Wen et al. 2021; Zhou et al. 2019). This strategy allows one to control the
number of available time series containing or not containing anomalies, while also requiring
a strong notion of non-anomalous time series or time series with labeled anomalies.

Lastly, as a special case of augmentation, one can insert synthetic anomalies into existing
time series (Gaur et al. 2019; Ruff et al. 2021; Zhang et al. 2021). This strategy requires
anomalies that well resemble real-world anomalies (Gaur et al. 2019; Ruff et al. 2021).
Being able to control the number and location of specified anomalies provides a properly
defined object of investigation for anomaly detection methods (Ruff et al. 2021) and
turns an unsupervised into a supervised learning task (Steinbuss and Böhm 2021b). Since
this strategy can be applied to various data sets from a domain, it can also help increase
the use of available, currently underutilized unlabeled data sets to develop anomaly
detection methods (Rossi and Chren 2020; Steinbuss and Böhm 2021a).

Similar to other domains like intrusion detection (Fan et al. 2001; Pham et al. 2014),
security (Park et al. 2015), and performance monitoring (Wang et al. 2021), synthetic
anomalies are used to develop anomaly detection methods for energy time series (e.g.,
Fahim et al. 2020; Jakkula and Cook 2010; Jokar et al. 2016; Luo et al. 2018c; Villar-
Rodriguez et al. 2017). However, the inserted synthetic anomalies and their related
parameters such as amplitude and quantity are generally not derived from real-world
data and do not cover both energy and power, the typically recorded physical quantities.
Furthermore, although Laptev (2018) considers the insertion of anomalies for time series in
general, the implementations of methods to generate the considered synthetic anomalies
are not openly available and thus cannot yet be directly applied.

Therefore, the present chapter proposes a method for generating four types of synthetic
anomalies derived from real-world energy and power time series E and P for assuring the
quality of to-be-developed anomaly detection methods. As a first step towards well-defined
anomalies derived from real-world data, we identify anomalies in real-world energy and
power time series E and P that are likely to be technical faults caused by the metering
infrastructure and that may violate the underlying distribution corresponding to normal
behavior. We then model the identified anomalies with parameters according to their
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3.1 Identifying Real-World Anomalies

characteristics observed in the considered real-world time series. Given the modeled
anomalies, we are able to insert them as synthetic anomalies into an arbitrary energy time
series E or power time series P . We evaluate the identified and modeled anomalies in
two ways. First, we examine whether inserted synthetic anomalies resemble the anomalies
identified in real-world time series. Second, we show the benefit of inserted anomalies
for training standard supervised anomaly detection methods as an initial analysis.

With the proposed method, we answer research question [RQ1] introduced in Section 1.1
that addresses how anomalies in energy time series can be modeled and generated
to improve anomaly detection. By answering research question [RQ1], the proposed
method provides the basis for the development and evaluation of the subsequent anomaly
detection in the pipeline for managing anomalies (see Figure 3.1).

Anomaly
compensation

method
Time series

with compen-
sated anomalies

Time series
with detected

anomalies

Anomaly
detection
method

Time series
containing
anomalies

Forecast
method

Forecast of
the time

series

[RQ1]

Figure 3.1 By answering research question [RQ1], the proposed method for
generating synthetic anomalies derived from real-world anomalies that can
be inserted into energy and power time series E and P provides the basis for
the development and evaluation of the subsequent anomaly detection in the
pipeline for managing anomalies.

The remainder of the present chapter is structured as follows. Section 3.1 introduces
the anomalies identified in real-world time series, before Section 3.2 describes how the
identified anomalies are modeled and generated to insert them as synthetic anomalies into
arbitrary time series. In Section 3.3, we describe the experimental setting of the performed
evaluation. In Section 3.4, we evaluate the generated synthetic anomalies. In Section 3.5,
we discuss the results and our method, before Section 3.6 concludes the chapter.

3.1 Identifying Real-World Anomalies

In order to be able to generate realistic synthetic anomalies, we first derive anomalies
from real-world energy and power time series E and P .

To this end, we consider electrical energy and power data collected on the Campus North
of the Karlsruhe Institute of Technology (KIT), which is a subset of the data described in
Wang et al. (2017) and whose publication is in preparation. This subset contains approxi-
mately 600 smart meter readings with a quarter-hourly resolution over a period of several
years. Since these smart meters are installed in a variety of locations such as office buildings,
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3 Modeling Anomalies in Energy Time Series

industrial facilities, gas motors, and photovoltaic panels, their recorded data presents typ-
ical patterns and anomalies of consumers and producers found in an ordinary city district.
For each smart meter, an energy time series E and a power time series P are available.

By carefully visually examining these time series, we are able to (i) find typical patterns
for each smart meter and (ii) identify unusual patterns across all smart meters. In
addition to both, we make use of knowledge about the facilities recorded by the smart
meters to distinguish between anomalies and normal behavior in each time series. For
example, we expect the power consumption of an office building not to drop to zero
while an automatic lighting system may have no power consumption at all during the
day. During this examination, we focus on anomalies that are likely to be technical faults
caused by the metering infrastructure and that may violate the underlying distribution
corresponding to normal behavior with very low or high values.

Across all smart meters, we find that many of the observed anomalies can be assigned to
one of four anomaly types (see Figure 3.2) that also match general classes of anomalies
described in the literature (see Table 3.1). For each identified anomaly type, we shortly
describe its characteristics in an energy time series E and a power time series P and
provide a potential explanation considering the metering infrastructure in the following.

Anomaly Type 1 Anomalies of type 1 are characterized by a drop to zero for at least one
time step in the energy time series E. After the zero values, the energy time series E jumps
back to a plausible new value (see Figure 3.2a). The corresponding power time series P

is characterized by a negative spike potentially followed by multiple zero power values and
finally a positive spike. Anomalies of this type are likely to be caused by missing values in the
measured energy time series E that are filled with zeros when saving the recorded values.

Anomaly Type 2 Anomalies of type 2 are characterized by a noticeable decrease in
the gradient of the energy time series E. For one time step, there can be a decrease in
the gradient that can be followed by constant energy values and that ends with a sharp
increase in the gradient until a plausible new value is reached. Alternatively, there may be
immediately constant energy values ending with an increased gradient (see Figure 3.2b).
In the corresponding power time series P , there is a drop followed by a positive spike.
If the energy time series E contains constant energy values, the power values drop to
zero. In most of the observed cases, the height of the power spike is closely related to
the length of the anomaly, suggesting that the power values of the constant sequence
accumulate at one time step and thus form the spike. Anomalies of this type could be
due to an interruption in the transmission of smart meter readings.

Anomaly Type 3 Anomalies of type 3 are characterized by a sudden dip in the energy
time series E (see Figure 3.2c). In the corresponding power time series P , there is a
negative power spike at one time step. Since this spike is rather small in some occurrences
and rather strong in others, we observe two cases, i. e., a slight and an extreme negative
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(a) Anomaly type 1: The energy time se-
ries E drops to zero for at least one time
step and then jumps back to a plausible
new value, corresponding to a negative
spike potentially followed by zero values
and finally a positive spike in the power
time series P .
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(b) Anomaly type 2: The gradient of the
energy time series E decreases and can
fully stagnate for several time steps, be-
fore returning to the correct value. This
corresponds to a drop to potentially zero
followed by a positive spike in the power
time series P .
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(c) Anomaly type 3: The energy time se-
ries E dips suddenly, which corresponds to
a sudden negative spike in the power time
series P .
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(d) Anomaly type 4: The energy time se-
ries E contains a sudden increase in gra-
dient, corresponding to a sudden positive
spike in the power time series P .

Figure 3.2 Examples of the four anomaly types identified in the selected real-
world data. Note that the power time series of type 1 is in the MW scale.
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3 Modeling Anomalies in Energy Time Series

Table 3.1 Overview of the anomaly types identified in the power and energy
time series E and P of the considered data and exemplary matching classes
in the literature.

Time series Matching classes in literature

Anomaly type 1 Energy “temporary change (ST-VIIb)” and “variation change (ST-VIIf)”
(Foorthuis 2021, p. 313), “CONSTANT fault” (Sharma et al. 2010,
p. 23:6)

Power “temporary change (ST-VIIb)” and “variation change (ST-VIIf)”
(Foorthuis 2021, p. 313)

Anomaly type 2 Energy “temporary change (ST-VIIb)” and “variation change (ST-VIIf)”
(Foorthuis 2021, p. 313), “stuck-at fault” (Ni et al. 2009, p. 25:19),
“stuck fault” (Zhang and Yan 2001, pp. 1390–1391)

Power “temporary change (ST-VIIb)” and “variation change (ST-VIIf)”
(Foorthuis 2021, p. 313)

Anomaly type 3 Energy “level shift (ST-VIIc)” (Foorthuis 2021, p. 313)
Power “local additive (ST-IVe)” (Foorthuis 2021, p. 309), “outlier fault”

(Ni et al. 2009, pp. 25:16-25:17), “SHORT fault” (Sharma et al.
2010, p. 23:6), “spike fault” (Zhang and Yan 2001, pp. 1390–1391)

Anomaly type 4 Energy “level shift (ST-VIIc)” (Foorthuis 2021, p. 313)
Power “local additive (ST-IVe)” (Foorthuis 2021, p. 309), “outlier fault”

(Ni et al. 2009, pp. 25:16-25:17), “SHORT fault” (Sharma et al.
2010, p. 23:6), “spike fault” (Zhang and Yan 2001, pp. 1390–1391)

power spike. Anomalies of this type could occur due to an external adjustment of a
smart meter such as a recalibration that aims to match the readings from multiple smart
meters with a specific amount of energy. Anomalies with an extreme negative power
spike could be caused by a reset of the respective smart meter.

Anomaly Type 4 Anomalies of type 4 are characterized by a sudden increase in
the gradient of the energy time series E relative to the quarter-hourly resolution (see
Figure 3.2d). In the corresponding power time series P , there is a positive power spike at
one time step. Since this spike is also rather small in some occurrences and rather strong
in others, we again observe two cases, i. e., a slight and an extreme positive power spike.
Anomalies of this type can be caused by, for example, the change from daylight saving
time to standard time. Because of this clock change by one hour, the consumption or
generation within that hour is allocated to a single time step. This type of anomaly
can also be observed in combination with anomalies of type 3, indicating an external
adjustment of the smart meter.

We label anomalies of these four identified types in 50 one-year energy and
one-year power time series E and P . Although it is theoretically possible to derive
energy time series E to obtain the power time series P , we simultaneously label
anomalies in both time series to eliminate possible sources of error and guarantee
reliable labels. To obtain the 50 one-year time series from the selected data, we
consider 2016 and 2017. We randomly select 23 smart meters from 2016 and 21
from 2017. Furthermore, we choose three smart meters that are present in both 2016
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3.2 Modeling Real-World Anomalies for Generating Synthetic Anomalies

and 2017, resulting in six additional one-year time series. As shown in Tables A.1
and A.2 in Appendix A, the 50 related energy and power time series E and P of
the selected smart meters are reasonably diverse, which is consistent with the fact
that the used data set comprises smart meters at various locations.

3.2 Modeling Real-World Anomalies for Generating Synthetic
Anomalies

To be able to generate the identified real-world anomalies as synthetic anomalies, we
need to model them and to design a respective insertion method. Modeling anomalies of
the different types requires several parameters. Before describing the specific modeling of
each anomaly type, we briefly introduce the used parameters and how to set them.

For each previously identified anomaly type, we describe the necessary changes in the time
series values — despite their proportional physical relationship — independently of each
other for a given arbitrary time series E “ e1, e2, . . . , eN containing energy measurements
and a given arbitrary time series P “ p1, p2, . . . , pN containing power measurements.
With the described changes, we replicate an anomaly êj,i or p̂j,i of type j with start index i.

While anomalies of types 1 and 2 have a length l, anomalies of types 3 and 4 affect all
entries after the time series entry i in an energy time series E and only the entry i itself
in a power time series P . More precisely, for anomalies of types 1 and 2, we assume the
length l „ Urlmin,lmaxs to be from a uniform distribution in an interval rlmin, lmaxs. For
anomalies of types 1 and 3 for a power time series P , we additionally consider the fact
that the amount of energy at a given time step in the power time series P in terms of the
constant offset k is lost when deriving a power time series P from an energy time series E.
For anomalies of these types, we thus explicitly consider the constant k, which has to be
identical for all anomalies inserted into the same power time series P , to better represent
the characteristics of a typical power time series P . Moreover, anomalies of types 3 and
4 comprise the random value r that determines the amplitude of their spike. We assume
to be from a uniform distribution in an interval rrmin,rmaxs, i. e., r „ Urrmin,rmaxs.

To generate anomalies of the modeled types, all these described parameters need to be
set. For this, they can either be determined from available labeled data (as, for example,
done in Section 3.3.2) or from values reported in literature (e.g., in Table 3.2).

Anomaly Type 1 We reproduce anomalies of type 1 with length l in an energy time
series E by setting its entries êi to êi`l´1 to zero. We model anomalies of this type as

ê1,i`n “ 0, 0 ď n ă l, (3.1)

where l is the length of the anomaly.
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Table 3.2 Summary of the values determined from the 50 one-year power
time series of the selected smart meters for the offset k, number, minimum
length, maximum length, rmin, and rmax as presented in Table A.3. These
values can be used as parameters to generate synthetic anomalies of the four
modeled types for power time series. Note that anomalies of types 3 and 4
always have a length of one and that these types comprise two cases.

Parameter Case Value

k r177, 431796s

Anomaly type 1 # r5, 18s

Min 3
Max r3, 4465s

Anomaly type 2 # r0, 15s

Min r2, 1731s

Max r2, 7434s

Anomaly type 3 # r0, 2s

rmin Slight 0.61
Extreme -

rmax Slight 1.62
Extreme -

Anomaly type 4 # r0,4s

rmin Slight 1.15
Extreme 11.01

rmax Slight 8.1
Extreme 13

In order to insert anomalies of type 1 with length l into a power time series P , we set
the first anomalous entry p̂i to the negative value of the power aggregated up to this
time step i. The next l ´ 2 entries are set to zero and the last entry of the anomaly
p̂i`l´1 to the sum of the power aggregated up to time step i ` l ´ 1 corresponding to
the jump in the energy time series E. Formally, we describe this as

p̂1,i`n “

$

’

&

’

%

´1 ¨ p
ři´1

t“1 ptq ´ k, n “ 0
0, 0 ă n ă l ´ 1
p
ři`l´1

t“1 ptq ` k, n “ l ´ 1,

(3.2)

where l ě 2 is the anomaly’s length and k is the constant offset.

Anomaly Type 2 To replicate anomalies of type 2 with length l in an energy time
series E, we determine the first anomalous value êi as the average of the observed
value at index i, ei, and the previous value ei´1 weighted by the random number
r „ Ur0,1q. All following l ´ 1 anomalous entries are then set to this first anomalous
value êi. Anomalies of this type can be described by

ê2,i`n “ r ¨ ei ` p1 ´ rq ¨ ei´1, 0 ď n ă l, (3.3)
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where l is the length of the anomaly and r „ Ur0,1q can be assumed from a uniform
distribution and the same for all entries. Note that, in the special case of r “ 0, the
anomaly directly starts with the value of the previous time step.

To insert anomalies of type 2 with length l into a power time series P , we scale down the
first anomalous entry p̂i using a random number r „ Ur0,1q and set the subsequent l ´ 2
entries to zero. In order to form the observed peak at the last entry of the anomaly, we set
the last entry p̂i`l´1 to the sum of the original values of the previously manipulated entries
and subtract the first manipulated value p̂i. Formally, the anomaly can be described as

p̂2,i`n “

$

’

&

’

%

r ¨ pi, n “ 0
0, 0 ă n ă l ´ 1
p1 ´ rq ¨ pi ` p

ři`l´1
t“i`1 ptq, n “ l ´ 1,

(3.4)

where l ě 2 is the length of the anomaly and r „ Ur0,1q. Analogously to the energy time
series E, in the special case of r “ 0, the manipulated entries directly start with a zero.

Anomaly Type 3 We reproduce anomalies of type 3 in an energy time series E

by subtracting a certain amount of energy from every time series entry with an index
greater than or equal to i. The amount of energy to be subtracted depends on the
observed case, i. e., the slight and the extreme negative spike. For the slight negative
power spike, we insert anomalies of type 3 by subtracting a value based on the energy
difference between the anomalous entry ei and its predecessor ei´1 multiplied by a
random value r. The anomaly can formally be described by

ê3,i`n “ ei`n ´ r ¨ |ei ´ ei´1|, n ě 0, (3.5)

where r is the random value defined above.

For the extreme negative power spike that is likely caused by a smart meter reset to zero,
we subtract the value of the entry ei from all subsequent time series entries, i. e.,

ê3,i`n “ ei`n ´ ei, n ě 0. (3.6)

In order to insert anomalies of type 3 into a power time series P , we generate anomalies
for the slight negative peak, by setting the anomalous entry p̂i to the previous value pi´1
multiplied by a random value r defined above. Formally, we describe this as

p̂3,i “ ´r ¨ pi´1, (3.7)

where r is the random value defined above.
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For the extreme negative spike corresponding to a drop of the energy time se-
ries E to zero, we use the same model as for the starting value of anomalies
from type 1 in Equation (3.2), i. e.,

p̂3,i “ ´1 ¨ p

i´1
ÿ

t“1
ptq ´ k, (3.8)

where k is the previously defined constant offset.

Anomaly Type 4 To replicate anomalies of type 4 in an energy time series E, we apply
a similar manipulation as for anomalies of type 3. To cover both the observed slight and
extreme cases, we use two different sampling intervals for r. The anomaly is thus defined as

ê4,i`n “ ei`n ` r ¨ |ei ´ ei´1|, n ě 0, (3.9)

where r is the random value defined above sampled twice to represent
the slight and the extreme case.

To insert anomalies of type 4 into a power time series P , we model the ob-
served positive spike p̂i by multiplying its predecessor pi´1 with a random value
r defined above sampled from two different intervals. Again, to cover both the
observed slight case and the observed extreme case, we use two different sampling
intervals for r. Formally, we define this anomaly as

p̂4,i “ r ¨ pi´1, (3.10)

where r is the random value defined above sampled twice to represent the slight and the
extreme case.

When generating anomalies of these four types, we need to consider the potential
interaction between the modeled anomaly types. With regard to an energy time series
E, one first has to insert anomalies of types 3 and 4 before inserting anomalies of types
1 and 2, because anomalies of types 3 and 4 affect all values after their occurrence
and thus potentially influence anomalies of the other types. Concerning a power time
series P , one can, however, insert anomalies in the ascending order of the type. To
avoid overlapping anomalies, we use a sequential approach. For each anomaly to be
generated, we firstly search for an anomaly-free sequence pxi, ..., xi`lq in the time
series X before we insert the anomaly. Figure 3.3 shows a synthetic anomaly of each
anomaly type generated with this implementation.

To be able to reproducibly generate anomalies of the four types for an energy time
series E or power time series P , we implement a publicly available pipeline in Python
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(a) Synthetic anomalies of type 1: The
characteristic drop to zero in the energy
time series E and the first negative, then
positive spikes in the power time series P
are clearly visible.
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(b) Synthetic anomalies of type 2: We ob-
serve the characteristic stagnation in the
gradient and following spring in the en-
ergy time series E, as well as the drop and
subsequent positive spike in the power
time series P .
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(c) Synthetic anomalies of type 3 (extreme
case): The characteristic decrease in the
gradient of the energy time series E and
corresponding negative spike in the power
time series P are clearly observable.
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(d) Synthetic anomalies of type 4 (ex-
treme case): We observe the characteristic
sudden increase in the gradient of the
energy time series e and corresponding
positive spike in the power time series P .

Figure 3.3 Examples of generated synthetic anomalies of the four modeled
anomaly types. Note that the power time series of type 1 is in the MW scale.
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using pyWATTS1 (Heidrich et al. 2021).2 It allows to control the types, the quanti-
ties, and the parameters of the synthetic anomalies that are inserted into an arbitrary
energy time series E or power time series P .

3.3 Experimental Setting

In this section, we present how we evaluate the modeled anomalies. After de-
scribing the selected data and the calculation of the parameters used for the
evaluated generation method, we introduce the applied evaluation methods, the
selected metrics, and the used hard- and software.

3.3.1 Used Data

For the evaluation, we use the previously introduced electrical energy and power data
collected on the KIT Campus North. More specifically, we again consider the previously
labeled 50 time series for the evaluation because of the available labels for the related
energy time series Ei and power time series Pi, where i is the number of the considered one-
year time series. Since an energy time series Ei is typically monotonically rising and thus
non-stationary, one would usually apply differencing to make it stationary and thus useful
for time series analyses (Hyndman and Athanasopoulos 2021). As each already available
power time series Pi is exactly the result of such a differencing due to the proportional
physical relationship between energy and power, we focus on them in the following.

To obtain an anomaly-free power time series Pi for the following analyses, we first use the
corresponding manually labeled 50 one-year energy time series Ei. More precisely, we mark
the labeled anomalies in these time series as missing values and apply the Copy-Paste
Imputation (CPI) method (Weber et al. 2021). The CPI method has shown a strong per-
formance in imputing missing values with realistic patterns while preserving the amount of
energy associated with the missing values. After imputing the anomalies marked as missing
values in each energy time series Ei, we calculate their derivative to obtain the correspond-
ing anomaly-free power time series Pi. We use the resulting anomaly-free power time series
Pi as the basis for inserting the generated synthetic anomalies used in the evaluation.

For the application of the selected evaluation methods, we finally create overlapping
samples with a size of 96 from all considered power time series, namely the power
time series Pi containing identified anomalies, the power time series P̂i reproducing the
identified anomalies with synthetic anomalies, and the power time series P̆i containing
more synthetic anomalies than anomalies identified in the original data.

1 https://github.com/KIT-IAI/pyWATTS
2 https://github.com/KIT-IAI/GeneratingSyntheticEnergyPowerAnomalies
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3.3.2 Used Anomaly Generation Parameters

We determine the parameters required for the generation of the desired synthetic anomalies
in each power time series P̂i from the labeled power time series Pi. From this time series,
we can directly determine the number of anomalies of all four types as well as the
minimum and maximum length lmin and lmax of type 1 and 2 anomalies. For k, we
use the first value in the corresponding available energy times Ei for the comparison
between synthetic and identified anomalies or set it to zero when evaluating the benefit
of synthetic anomalies for the training of detection methods.3

Lastly, we determine rmin and rmax for the slight and the extreme case for anomaly type
3 and 4 using DBSCAN (Ester et al. 1996). For both anomaly types, we calculate the
random value r for all labeled anomalies of this type in the power time series Pi with

r “
pi

p
, (3.11)

where pi is the considered anomaly and p is the corresponding local average.4 For the
local average p, we arbitrarily choose a sufficiently small range of 10, i. e.,

p “

ři`5
t“i´5 pt ´ pi

10 , (3.12)

where pt ‰ pi, @t ‰ i. We cluster the result into two classes. For both types, we
assume that the class with the majority of the considered anomalies represents the
slight power spike case and the other the extreme spike case. For anomaly type 3,
we thus select the smallest and the largest value in the majority class as rmin and
rmax. For anomaly type 4, we select the smallest and the largest value from each
class as rmin and rmax for the corresponding case.

Using this calculation, we aim to reproduce the anomalies contained in the original power
time series Pi with the parameters reported in Table A.3 in Appendix A to examine whether
the synthetic anomalies in the power time series P̂i resemble the anomalies identified in
the real-world power time series Pi. To evaluate the benefit of synthetic anomalies for
training supervised anomaly detection methods, we additionally increase the number of
anomalies compared to the original power time series Pi and by doubling the number
of anomalies to obtain the power time series P̆i that contains more synthetic anomalies
than anomalies identified in the original data (see Table A.4 in Appendix A). Note that,
for both evaluations, we define valid intervals for the minimum and maximum lengths of
anomaly types 1 and 2 to consider the imbalanced distributions of these lengths. We limit
the minimum length to the interval r3, 92s and the maximum length to the interval r3, 96s

3 If an energy time series Ei is not available, one could sum the power over a year of data and multiply
it by the presumed number of years the smart meter has been in service.

4 Given the energy time series Ei, one could analogously calculate r “
ei´1 ´ ei

ei´1 ´ ei´2
for anomalies of

type 3 and r “
ei ´ ei´1

ei´1 ´ ei´2
for anomalies of type 4.
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for type 1 and the minimum length to the interval r2, 44s and the maximum length to
r2, 48s for type 2. Additionally, we insert only anomalies of the extreme case of anomaly
types 3 and 4 as soon as one exists in the corresponding labeled power time series.

3.3.3 Applied Methods

In the evaluation, we apply four different methods, which we describe in the following.

To examine whether the synthetic anomalies resemble the identified anomalies, we apply
a statistical visualization and a discriminator method. As visualization method, we use
the t-distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten and Hinton
2008). The t-SNE visualizes high-dimensional data in a two-dimensional map such that
similar data points are likely to appear close together and dissimilar data points far
apart. As discriminator method, we implement a simple three-layered fully-connected
Neural Network (NN) with ten neurons in the hidden layer and ReLU as activation
function. In this NN, all neurons are interconnected across the layers and the neuron in
the output layer indicates with a binary encoding whether the input data is an identified
real anomaly (0) or a synthetic anomaly (1). For training the NN, we use the binary
cross-entropy as loss and RMSprop (Hinton et al. 2012) as optimizer.

To evaluate the benefit of synthetic anomalies for their training, we apply two supervised
anomaly detection methods. More precisely, we select a k-Nearest Neighbor (kNN)
classifier and a decision tree classifier. The kNN classifier uses a proximity measure to
classify a test sample based on the similarity of training instances (Cover and Hart 1967).
In comparison, as a non-parametric method, the decision tree learns simple decision
rules inferred from data features (Breiman et al. 1984).

3.3.4 Metrics

The evaluation is based on the two following metrics.

For the discriminator method, we use the discriminative score. It is defined as

Discriminative Score “ | Accuracy ´0.5|, (3.13)

where Accuracy is the result from the applied discriminator method.

For the supervised anomaly detection methods, we apply the commonly used F1-Score.
It is the harmonic mean between precision and recall and is defined as

F1-Score “
TP

TP `1
2 ¨ pFP ` FNq

, (3.14)

where TP are the true positives, FP the false positives, and FN the false
negatives in the considered classification.
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3.3.5 Hardware and Software

Throughout the evaluation, we apply a standard computer with a four-core i7 CPU
and 16 GB of RAM. Moreover, all applied methods are implemented in Python. The
t-SNE, the decision tree, and the kNN are implemented with scikit-learn5 (Pedregosa
et al. 2011) and the fully-connected NN with Keras6 (Chollet et al. 2015). The evaluation
is automated with pyWATTS7 (Heidrich et al. 2021) using these implementations.

3.4 Results

To evaluate the modeled anomalies, we perform a twofold evaluation. First, we ex-
amine whether generated synthetic anomalies resemble the anomalies identified in
real-world data. Second, we evaluate the benefit of synthetic anomalies for training
standard supervised anomaly detection methods.

3.4.1 Comparing Identified and Synthetic Anomalies

For the synthetic anomalies to be useful, they must resemble the identified real-world
anomalies and ideally be indistinguishable from them. In this section, we first qualitatively
compare identified and synthetic anomalies with the help of t-SNE visualizations, before
quantitatively comparing them with the discriminator method.

Firstly, we examine the t-SNE visualizations of an identical number of samples containing
identified and synthetic anomalies from three exemplary one-year time series. For this,
we use the power time series Pi with identified anomalies and the power time series
P̂i with synthetic anomalies reproducing the identified anomalies.

As shown in Figure 3.4, we observe that, for all three time series, the samples
with identified anomalies and the samples with inserted synthetic anomalies
overlap in most cases. The overlap indicates that the synthetic anomalies exhibit
properties similar to the identified anomalies.

Secondly, we consider the discriminative score of the discriminator method in detecting
the difference between samples of identified anomalies and samples of inserted syn-
thetic anomalies from all 50 considered one-year time series. For this, we again use
the power time series Pi with identified anomalies and the power time series P̂i with
synthetic anomalies reproducing the identified anomalies. We combine their samples
containing anomalies into a single data set, before we use the first 66 % for training
the discriminator method and remaining 34 % for testing.

5 https://scikit-learn.org/
6 https://keras.io/
7 https://github.com/KIT-IAI/pyWATTS
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Figure 3.4 A t-SNE visualization of an identical number of samples contain-
ing identified anomalies and synthetic anomalies from three exemplary one-
year time series.

A histogram of the resulting discriminative score is shown in Figure 3.5. The discriminative
score, that is rounded to one decimal digit and whose maximum is 0.5, is plotted on the
x-axis to provide bins for the histogram and the number of occurrences in each bin is
shown on the y-axis. We observe that the discriminative score is 0.25 or smaller for a large
majority of the samples and higher for only few samples. This result indicates that the
discriminator is mostly unable to differentiate between identified and synthetic anomalies.
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Figure 3.5 A histogram of the discriminative score of all samples containing
identified or synthetic anomalies from the 50 considered one-year time series.
The x-axis shows the histogram bins for the discriminative score in steps of
0.125, whereas the number of occurrences in each bin is plotted on the y-axis.

3.4.2 Benefit of Synthetic Anomalies for Anomaly Detection

To evaluate whether synthetic anomalies exhibiting real-world characteristics are beneficial,
we exemplarily analyze this benefit for training standard supervised anomaly detection
methods. As an initial analysis of this, we compare the detection performance of two
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different training strategies based on the F1-Score. The first strategy is Train Real Test
Real (TRTR), where we use the original power time series Pi with identified anomalies
for both training and testing. The second strategy is Train Synthetic Test Real (TSTR)8,
where we train the anomaly detection method on the power time series P̆i containing
more synthetic anomalies than anomalies identified in the original data and test its
performance on the original power time series Pi with identified anomalies.

Figure 3.6 shows a comparison of the detection performance of these two strategies for the
kNN and the decision tree. This comparison comprises the number of wins for each strategy,
whereby a strategy is considered to win whenever its detection performance is better than
that of the other strategy. If both strategies provide an identical detection performance,
they are considered to be equal. Independent of the considered detection method, power
time series P̆i containing more synthetic anomalies than anomalies identified in the
original data win far more often than power time series Pi only containing identified
anomalies. For the kNN, power time series P̆i containing more synthetic anomalies than
anomalies identified in the original data win 21 times. Power time series Pi with identified
anomalies only win eight times; in 21 cases, both strategies perform equally. For the
decision tree, power time series P̆i containing more synthetic anomalies than anomalies
identified in the original data win 25 times, whereas power time series Pi with identified
anomalies only win 20 times. In 5 cases, the strategies perform equally.
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Figure 3.6 A comparison of the detection performance of the two training
strategies Train Real Test Real (TRTR) and Train Synthetic Test Real (TSTR)
based on the F1-Score for the two selected supervised detection methods. A
strategy wins, if the resulting detection performs better than that of the other
strategy and is considered equal if it performs equally.

8 Note that synthetic in this context refers to the synthetic anomalies and not the underlying data.
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3.5 Discussion

This section discusses the results, the modeled anomalies, and the proposed method
for modeling and generating synthetic anomalies.

In the results, the t-SNE visualizations of identified and synthetic anomalies illustrate
that the generated synthetic anomalies mostly overlap with the identified anomalies.
Similarly, the histogram of the discriminative scores shows that identified and synthetic
anomalies are difficult to distinguish with the discriminator method. Both results confirm
that our synthetic anomalies accurately replicate the identified anomalies. From this
observation, we conclude that the proposed method is capable of generating synthetic
anomalies with real-world properties. Furthermore, since the TSTR strategy performs
better or as well as TRTR in most cases, considering these synthetic anomalies in the
training of a standard supervised anomaly detection method is beneficial for its detection
performance. Given this observation, the proposed anomaly generation method can be
used to improve anomaly detection methods in the future.

Despite these promising initial results, we note that our experiments are limited to the
considered data, the associated production and consumption, and the anomalies identified
in this data. Specifically for the extreme cases of anomaly types 3 and 4, the number of
occurrences in our data set are small. Therefore, the parameters selected for the synthetic
anomalies are based on a small sample size and we expect that more accurate results
could be achieved with more data. Moreover, we model the identified anomaly types
and develop the generation method with great care and on the basis of the available
data. However, despite our evaluation, we cannot completely rule out the possibility
that generated synthetic anomalies are easier to detect in other real-world data based
on, for example, the transitions to the real data. Furthermore, the identified anomaly
types are likely to be the result of technical failures in the metering infrastructure that
cause unusual values such as extreme positive or negative spikes or a series of zeros.
These types of anomalies have clearly defined, often extreme characteristics and are
therefore relatively easy to detect. We expect that anomalies characterized by typical
patterns at uncommon levels – such as unusual consumption – are more difficult to
detect and, therefore, synthetic anomalies that reflect these characteristics could further
improve to-be-developed anomaly detection methods.

We also note that our method currently inserts synthetic anomalies for energy time
series E and power time series P separately. Since most applications only consider either
energy time series E or power time series P , we believe this limitation to be not critical.
However, due to the physical relationship between energy and power, simultaneously
inserting multivariate synthetic anomalies for both energy time series E and power
time series P could be beneficial in some cases.

32



3.6 Contribution and Future Work

3.6 Contribution and Future Work

The present chapter investigates how anomalies in energy time series can be modeled and
generated to improve anomaly detection, thus answering research question [RQ1]. For this,
we firstly analyze real-world energy time series E and power time series P to identify four
commonly occurring anomaly types. Given these identified anomaly types, we formally
model each type and prepare a generation method to insert a chosen number of synthetic
anomalies of each type into an arbitrary energy time series E or a power time series P .

With this approach, the present chapter provides the following contributions:

‚ We introduce a method for generating four types of synthetic anomalies derived
from real-world anomalies that can be inserted into arbitrary energy time series E

or power time series P .

‚ We demonstrate that the introduced method is capable of generating realistic
synthetic anomalies.

‚ We also show that the inserted artificial anomalies are beneficial for training
supervised anomaly detection methods.

Based on the introduced generation method, there are several follow-up questions for
future work. For example, future work could consider further time series, especially those
that contain anomalies characterized by unusual consumption. Furthermore, to model
the physical relationship between energy and power, future work should consider the
simultaneous multivariate generation of synthetic anomalies for energy time series E

and power time series P . Lastly, future work could include fuzziness into the generation
to increase the variation of the generated synthetic anomalies.
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4 Detecting Anomalies in Energy
Time Series

As described in the introduction, anomaly management requires anomaly detection
methods that perform well in identifying the relevant anomalies contained in an energy
time series. Due to its importance for various applications such as load analysis, load
forecasting, and load management, detecting anomalies in recorded energy time series is
in general an important recent issue in energy systems (Himeur et al. 2021). To detect
anomalies of various types, a large variety of methods, often categorized as supervised or
unsupervised methods, are employed (Himeur et al. 2021; Schmidl et al. 2022). These
methods are typically applied directly or after scaling to the data containing anomalies.

However, for other tasks, machine learning methods recently demonstrated promising
performance when directly applied to the so-called latent space representation of the
data. This latent space is an abstract multi-dimensional space containing a meaningful
representation of features that is often not directly interpretable. Such latent space
data representations have been successfully applied in forecasting (Kim and Cho 2021;
Nguyen and Quanz 2021), offline reinforcement learning (Rafailov et al. 2021), photo
upsampling (Menon et al. 2020), path planning (Hung et al. 2022), and trajectory
adjustment (Kutsuzawa et al. 2019). Furthermore, with regards to anomaly detection,
there is evidence from a medical application that the latent space better separates the
representation of anomalies and non-anomalous data (Pereira and Silveira 2019).

In order to separate anomalous and non-anomalous data in energy time series, a latent
space that follows a known and traceable latent space distribution could be particularly
useful. If this distribution has clearly defined mathematical properties, as is the case
with the Gaussian distribution, these properties will help to define how anomalies are

Parts of this chapter are reproduced from
M. Turowski, B. Heidrich, K. Phipps, K. Schmieder, O. Neumann, R. Mikut, and V. Hagen-
meyer (2022a). “Enhancing Anomaly Detection Methods for Energy Time Series Using La-
tent Space Data Representations”. In: The Thirteenth ACM International Conference on Fu-
ture Energy Systems (e-Energy ’22). ACM, pp. 208–227. doi: 10.1145/3538637.3538851.
cb
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represented. Given these considerations, we can then use the representation of data
in the latent space to enhance anomaly detection.

The present chapter, therefore, proposes a novel approach to generally enhance anomaly
detection methods for energy time series by taking advantage of their latent space
representation. For this approach, we first train a generative method to learn a mapping
from the original data to the latent space. Given the learned mapping, the generative
model is used to create the latent space representation of an input time series containing
anomalies. The resulting latent space data representation serves then as an input for
an arbitrary existing supervised or unsupervised anomaly detection method.

To evaluate the proposed approach, we firstly qualitatively examine its benefit by visualiz-
ing how latent space data representations and common data representations separate
anomalies and non-anomalous data. Secondly, we quantitatively evaluate how the proposed
approach improves the detection performance. For this purpose, we apply a selection of
existing supervised and unsupervised detection methods to real-world load data, where we
insert synthetic anomalies of two groups. Anomalies of the first group represent technical
faults derived from real-world data that violate the underlying distribution corresponding
to normal behavior and can be easily recognized by a human. Anomalies of the second
group comprise unusual consumption that remains in the underlying distribution and are
hard to recognize. We additionally apply the considered supervised and unsupervised
detection methods to real-world data with labeled technical faults.

With the proposed approach, we answer research question [RQ2] described in Sec-
tion 1.1 that addresses how anomaly detection methods for energy time series can
be enhanced. By answering research question [RQ2], the proposed approach detects
anomalies with a high accuracy and thus provides a solid basis for compensating
the detected anomalies within the subsequent anomaly compensation in the pipeline
for managing anomalies (see Figure 4.1).

Anomaly
compensation

method
Time series

with compen-
sated anomalies

Time series
with detected

anomalies

Anomaly
detection
method

Time series
containing
anomalies

Forecast
method

Forecast of
the time
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[RQ2]

Figure 4.1 By answering research question [RQ2], the proposed approach
for enhancing anomaly detection methods for energy time series by tak-
ing advantage of their latent space representation detects anomalies with
a high accuracy and thus provides a solid basis for compensating the detected
anomalies within the subsequent anomaly compensation in the pipeline for
managing anomalies.

The remainder of the present chapter is organized as follows. Section 4.1 introduces
the proposed approach to enhance anomaly detection method by directly using the
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latent space data representation created with a generative model. In Section 4.2, we
describe the experimental setting of the performed evaluation. In Section 4.3, we then
report the evaluation results. Finally, we discuss the results and proposed approach
in Section 4.4 and conclude the chapter in Section 4.5.

4.1 Anomaly Detection Using Latent Space Data
Representations

This section explains how latent space data representations can be used to enhance
anomaly detection methods.1 First, we describe how latent space data representations
of time series can be created with a generative method and how this method is trained
in both supervised and unsupervised anomaly detection settings. We then present how
the trained generative method is applied to detect anomalies contained in a time se-
ries using an arbitrary anomaly detection method.

4.1.1 Create Latent Space Data Representations With a Generative
Method

To create a latent space representation of a time series z P Z, we need to realize a
mapping f : X Ñ Z from the original realization space X to the latent space Z. To
ensure this mapping represents a known and tractable latent space distribution PZ in
the latent space, it can be realized with a Variational Autoencoder (VAE) (Kingma and
Welling 2014) or an Invertible Neural Network (INN) (Kingma and Dhariwal 2018). Both
methods can be extended with a conditioning mechanism to a conditional Variational
Autoencoder (cVAE) (Sohn et al. 2015) or a conditional Invertible Neural Network
(cINN) (Ardizzone et al. 2019), allowing them to process conditional inputs. With
calendar and statistical information as conditional inputs, these methods can consider
typical properties of energy time series, i. e., daily, weekly, and seasonal patterns. While
both methods realize the mapping f , they differ in their structure. CVAEs consist
of a jointly trained encoder and decoder with the encoder realizing the mapping f

and the decoder reconstructing the original representation of the time series, i. e., the
mapping g : Z Ñ X. In contrast, cINNs only comprise a single bijective mapping
f´1 “ g that realizes both the encoding and decoding.2

1 A Python implementation of the proposed approach is publicly available at https://github.com/
KIT-IAI/EnhancingAnomalyDetectionMethods.

2 Note that a standard Generative Adversarial Network (GAN) (Goodfellow et al. 2014) comprising
a generator and a discriminator cannot be used. The generator realizes the mapping g but the
discriminator only distinguishes real from synthetic data and thus does not realize the mapping f .
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However, since we are only interested in the latent space representation and not the
reconstructed representation, we only focus on learning the mapping f . To this means,
we use a cVAE or cINN to create this latent space representation using the mapping

f : X Ñ Z, x ÞÑ fpx; d, s, θq “ z, (4.1)

where x P X is the time series with arbitrary but fixed length L, d is calendar in-
formation of length L, s is statistical information of arbitrary but fixed length, and
θ is the set of all trainable parameters.

4.1.2 Training of the Generative Method

As shown in Figure 4.2, the training of the selected generative method is based
on samples of an input time series as well as calendar and statistical informa-
tion. The training process itself differs for supervised and unsupervised anomaly
detection, which we detail in the following.

Input
time series
for training

Calendar and
statistical

information

Sampler

Samples of
input time

series

Generative method

Figure 4.2 The proposed approach uses samples of an input time series as
well as calendar and statistical information to train the generative method.

Supervised Anomaly Detection For supervised anomaly detection, we take advan-
tage of the labeled anomalies and train the selected generative method with fixed-
length samples of an anomaly-free time series, where we assume that all contained
anomalies are labeled. For each fixed-length sample, we calculate the loss Li, which
varies depending on the generative method selected. For a cINN, we use a maximum
likelihood optimization based on the change of variable formula. This results in the
maximum likelihood loss for a sample xi defined as

Li “
∥ fpxi; di, si, θq ∥2

2
2 ´ log | Ji |, (4.2)
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where Ji “ detpBf{Bx|xi
q is the determinant of the Jacobian evaluated for the i-

th sample (Ardizzone et al. 2019). For a cVAE, we use a reconstruction loss with
regularization, resulting in the loss for a sample xi

Li “ E
“

px̂i ´ xiq
2‰

` KL pxi,PZq , (4.3)

where x̂i is the reconstructed time series sample from the cVAE, and KL is the Kullback-
Leibler divergence (Kullback and Leibler 1951). This loss function Li ensures that the
generative methods learn a standard normal distribution of a non-anomalous time series
as latent space distribution PZ . Therefore, when we apply the generative method to a
time series containing anomalies, the contained anomalies are likely to be mapped to the
outer regions of the latent space distribution and thus are more easy to be detected.

Unsupervised Anomaly Detection For unsupervised anomaly detection, the training
process of the selected generative method has to cope with non-existent anomaly labels
for the data points. This is realized on the fair assumption that the minority of the
used training data is anomalous and that the training errors are higher for anomalous
data points than for non-anomalous data points.

We take advantage of these expected higher errors for anomalies by defining a contami-
nation parameter c for the training process. The contamination c represents the assumed
share of anomalous data points in the considered time series and is used to calculate the
threshold quantile Qc for the training errors of each sample of a batch in the training
process. Each sample with a training error above this threshold quantile Qc is excluded
from the loss function Li. The resulting adapted loss for a sample xi is

L1
i “

#

Li, Li ă Qc

0, else,
(4.4)

where Li is the loss from Equation (4.2) or Equation (4.3), depending on the gener-
ative method used. Using this loss ensures that the selected generative model is also
capable of learning an anomaly-free latent space data representation with the latent
space distribution PZ in an unsupervised manner.

4.1.3 Detecting Anomalies in Time Series Using the Latent Space Data
Representation

Given the trained generative method, anomalies contained in a time series are detected
as shown in Figure 4.3. Firstly, from an input time series containing anomalies, a
sampler draws samples which serve as input for the trained generative method. As
additional inputs, the trained generative method uses calendar and statistical information
associated with this time series. Secondly, given these inputs, the trained generative
method creates a latent space representation of the input time series’ samples. Thirdly,
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an arbitrary anomaly detection method is directly applied to the created latent space
data representation to detect the samples that contain anomalies.
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Figure 4.3 In the proposed approach, the previously trained generative
method uses samples of an input time series containing anomalies as well
as calendar and statistical information as inputs. Based on these inputs, the
trained generative method provides the latent space representation of the
samples. Using this latent space data representation, an arbitrary anomaly de-
tection method detects the samples of the considered time series that contain
anomalies.

This approach differs for supervised and unsupervised anomaly detection methods. For
a supervised anomaly detection method, two steps are involved: Firstly, it is trained on
the created latent space data representation using a training set with labeled anomalies.
Secondly, it classifies the samples from a test set. An unsupervised anomaly detection
methods, however, is applied to a complete data set without labeled anomalies.
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4.2 Experimental Setting

In this section, we present how we evaluate the proposed approach. After describing the
data set and the inserted synthetic anomalies, we introduce the used generative methods,
the compared data representations, and the applied anomaly detection methods. Finally,
we describe the evaluation criteria and the used hard- and software.

4.2.1 Data Sets With Anomalies

For the evaluation, we use two data sets. Both contain real-world data but differ
in the observed anomalies. While we insert synthetic anomalies into the first, the
second already contains labeled anomalies.

Data With Synthetic Anomalies As the first data set, we choose the publicly available
“ElectricityLoadDiagrams20112014 Data Set”3 from the UCI Machine Learning Repository
(Dua and Graff 2019). This data set has a quarter-hourly temporal resolution and contains
electrical power time series of 370 clients with different consumption behaviors (Rodrigues
and Trindade 2018), which are mostly available for the period from the beginning of 2011
until the end of 2014. To cover the complete period of four years, to consider the electrical
load of a typical client, and to use comparatively anomaly-free time series, we select the
time series containing power measurements MT_200 for the evaluation (see Figure 4.4a).

Since the selected time series does not contain labeled anomalies, we insert synthetic
anomalies into it (see e. g., Figure 4.4b). For the insertion, we use anomalies of two
common groups (see e.g., Wang et al. 2020), namely technical faults in the meter-
ing infrastructure and unusual consumption. In the following, we briefly introduce the
anomaly types of each group and describe the relevant parameters and the correspond-
ing manipulation for an anomaly p̂j,i of type j with start index i in a given power
time series P “ p1, p2, ...pN with length N .

As synthetic anomalies of the first group, we select the previously introduced four
types of anomalies that are identified in real-world power time series in Turowski et
al. (2022b) and that violate the underlying distribution corresponding to normal be-
havior (see Figure 4.5). While the values of anomaly types 1 and 3 are not in the
valid range, anomaly types 2 and 4 comprise values from the valid range that are
not part of typical patterns in power time series.

‚ Anomaly type 1 refers to a negative power spike followed by zero power values and
a positive spike (see Figure 4.5a). This characteristic can be based on a power time

3 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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(a) Without inserted synthetic anomalies.
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(b) With 20 inserted synthetic anomalies of each of the four types from the group of
technical faults. The anomalies are plotted in red.

Figure 4.4 Overview of the selected data from the first data set without in-
serted synthetic anomalies and with inserted synthetic anomalies of all four
types from the group of technical faults.

series whose values are derived from an energy time series containing missing values
due to a communication error. For the insertion, we model anomalies of this type as

p̂1,i`n “

$

’

&

’

%

´1 ¨ meanpP q ` rs ¨ stdpP q, n “ 0
0, 0 ă n ă l ´ 1
ři`l´1

t“1 pt, n “ l ´ 1,

(4.5)

where the length l „ Ur5,24s and the random scaling factor rs “ 2 ` r ¨ 3 with
r „ Ur0,1s.

‚ Anomaly type 2 comprises several zero power values followed by a positive spike (see
Figure 4.5b). This characteristic can be a result of an interruption in the transmission
of power values from smart meters. For the insertion, we model anomalies of this
type as

p̂2,i`n “

#

0, 0 ď n ă l ´ 1
ři`l´1

t“i pt, n “ l ´ 1,
(4.6)

where the length l „ Ur5,24s.
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(a) Anomaly type 1: negative power spike
followed by zero values and positive spike.
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(b) Anomaly type 2: zero power values
followed by a positive spike.
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(c) Anomaly type 3: negative power spike.
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(d) Anomaly type 4: positive power spike.

Figure 4.5 Examples of the anomaly types 1 to 4 from the technical faults
that we insert as synthetic anomalies into the selected first data set. The
anomalies are plotted in red. Note that the anomalies of types 3 and 4 actu-
ally have a length of one but are marked together with their previous value
to be recognizable.

‚ Anomaly type 3 is a negative power spike (see Figure 4.5c). It could be caused by
external recalibration of a smart meter reading so that, together with the readings
of other smart meters, the meter reading matches a certain amount of load. For
the insertion, we model anomalies of this type as

p̂3,i “ ´rs ¨ meanpP q, (4.7)

where the random scaling factor rs “ 0.01 ` r ¨ 3.99 with r „ Ur0,1s.

‚ Anomaly type 4 is a positive power spike (see Figure 4.5d). It may be due to, for
example, the change from daylight saving time to standard time, where power values
of five time steps are recorded as the value of one time step. For the insertion, we
model anomalies of this type as

p̂4,i “ r ¨ meanpP q, (4.8)

where the random scaling factor rs “ 3 ` r ¨ 5 with r „ Ur0,1s.
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As synthetic anomalies of the second group, we insert four types of anomalies rep-
resenting unusual behavior: Anomaly types 5 and 7 represent unusually low power
consumption, while anomaly types 6 and 8 illustrate unusually high power consump-
tion (see Figure 4.6). These four anomaly types comprise values from the valid range
and represent in themselves typical patterns.
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(a) Anomaly type 5: abrupt small tempo-
rary reduction in the power values.
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(b) Anomaly type 6: abrupt small tempo-
rary increase in the power values.
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(c) Anomaly type 7: small temporary re-
duction in the power values with a grad-
ual start and end.
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(d) Anomaly type 8: small temporary in-
crease in the power values with a gradual
start and end.

Figure 4.6 Examples of the anomaly types 5 to 8 from the unusual consump-
tion that we insert as synthetic anomalies into the selected first data set. The
anomalies are plotted in red.

‚ Anomaly type 5 is an abrupt small temporary reduction in the power values (see
Figure 4.6a). This characteristic can be caused by a large device temporarily shutting
down, resulting directly in lower consumption. For the insertion, we model anomalies
of this type as

p̂5,i`n “ pi ´ r ¨ pmin, 0 ă n ă l ´ 1, (4.9)

where the length l „ Ur48,144s, the random scaling factor r „ Ur0.3,0.8s, and the
minimum power value pmin “ mintpi,pi`1, . . . , pi`l´1u.

‚ Anomaly type 6 is an abrupt small temporary increase in the power values (see
Figure 4.6b). This characteristic can be the result of switching on a rarely used
large device for a short period of time. For the insertion, we model anomalies of
this type as

p̂6,i`n “ pi ` r ¨ pmin, 0 ă n ă l ´ 1, (4.10)
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where the length l „ Ur48,144s, the random scaling factor r „ Ur0.5,1s, and the
minimum power value pmin “ mintpi,pi`1, . . . , pi`l´1u.

‚ Anomaly type 7 is also a period of temporary reduction in the power values, however
with a gradual start and end (see Figure 4.6c). It could be caused by a large
device in an unusual operating mode gradually requiring less power for a period of
time, before slowly returning to its usual performance. For the insertion, we model
anomalies of this type as

p̂7,i “

$

’

&

’

%

pi ´ r ¨ pmin ¨ l
10 ¨ i, 0 ă n ă l

10

pi ´ r ¨ pmin, l
10 ď n ď 1 ´ l

10

pi ´ r ¨ pmin ¨ l
10 ¨ p1 ´ iq, 1 ´ l

10 ă n ă l ´ 1,

(4.11)

where the length l „ Ur48,144s, the random scaling factor r „ Ur0.3,0.8s, and the
minimum power value pmin “ mintpi,pi`1, . . . , pi`l´1u.

‚ Anomaly type 8 is an again small temporary increase in the power values, however
with a gradual start and end (see Figure 4.6d). Similar to anomaly type 7, it may
be due to a device in an unusual operating mode that gradually requires more
power, before slowly returning to its usual performance. For the insertion, we model
anomalies of this type as

p̂8,i “

$

’

&

’

%

pi ` r ¨ pmin ¨ l
10 ¨ i, 0 ă n ă l

10

pi ` r ¨ pmin, l
10 ď n ď 1 ´ l

10

pi ` r ¨ pmin ¨ l
10 ¨ p1 ´ iq, 1 ´ l

10 ă n ă l ´ 1,

(4.12)

where the length l „ Ur48,144s, the random scaling factor r „ Ur0.5,1s, and the
minimum power value pmin “ mintpi,pi`1, . . . , pi`l´1u.

For the evaluation, we insert 10, 20, 30, 40, and 50 anomalies of each anomaly type into
the selected time series. This corresponds to 3, 5, 8, 10, and 12 % of the data for the
technical faults and 6, 11, 16, 21, and 26 % of the data for the unusual consumption.

Data With Labeled Anomalies As the second data set, we consider the electrical
data collected on the Campus North of the Karlsruhe Institute of Technology (KIT),
which we also use in Chapter 3 and in Turowski et al. (2022b) respectively to identify
and model real-world anomalies. More precisely, we choose one of the 50 one-year
power time series in which anomalies of the four identified anomaly types from the
group of technical faults are labeled (see Section 3.1). The selected time series contains
power consumption measurements from a typical mid-campus office building in 2016,
is comparatively anomaly free and is shown in Figure 4.7a.

The selected time series contains 19 labeled anomalies of all four anomaly types from
the group of technical faults that are described in Chapter 3. The 19 labeled anomalies
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(a) With labeled anomalies of the four identified anomaly types from the group of techni-
cal faults. The labeled anomalies are plotted in red. Note that the labeled anomalies with
a short length are not recognizable due to their length and that the y-axis is truncated for
better graphical clarity.
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(b) With anomalies compensated by imputation using the Copy-Paste Imputation (CPI)
method (Weber et al. 2021).

Figure 4.7 Overview of the selected one-year power time series P from the
second data set with labeled anomalies and with compensated anomalies.

correspond to a 6 % share of the data. Table 4.1 lists all anomalies labeled in that time
time series and Figure 4.8 shows an exemplary labeled anomaly of all four types.

Since the selected time series already contains anomalies and the proposed approach re-
quires anomaly-free training data for applying supervised anomaly detection methods, we
perform the same procedure as in Section 3.3. To obtain the anomaly-free power time series
P , we use the corresponding manually labeled one-year energy time series E. In this time
series, we mark the labeled anomalies as missing values and apply the Copy-Paste Imputa-
tion (CPI) method (Weber et al. 2021), that imputes missing values with realistic patterns
while preserving the amount of energy associated with the missing values. The CPI method
directly provides the anomaly-free power time series P , which is shown in Figure 4.7b.
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Table 4.1 Overview of the anomalies labeled in the selected time series from
the electrical data collected at the Campus North of the KIT.

Number Begin End Labeled anomaly type

1 18.01.2016 08:30 20.01.2016 12:15 Type 1
2 21.01.2016 11:45 21.01.2016 12:30 Type 1
3 21.01.2016 15:30 21.01.2016 15:45 Type 1
4 14.03.2016 12:45 14.03.2016 15:45 Type 2
5 14.03.2016 15:30 14.03.2016 15:45 Type 1
6 15.03.2016 11:00 15.03.2016 12:00 Type 2
7 18.03.2016 09:15 18.03.2016 10:15 Type 1
8 18.03.2016 12:00 18.03.2016 13:45 Type 2
9 24.03.2016 10:00 24.03.2016 10:30 Type 2
10 27.03.2016 02:00 27.03.2016 03:00 Type 1
11 12.04.2016 15:00 13.04.2016 01:30 Type 2
12 25.04.2016 07:15 25.04.2016 07:45 Type 2
13 15.08.2016 11:00 15.08.2016 11:15 Type 2
14 17.09.2016 12:30 20.09.2016 07:45 Type 2
15 27.09.2016 10:00 27.09.2016 10:15 Type 1
16 06.10.2016 09:30 06.10.2016 10:00 Type 2
17 20.10.2016 14:15 20.10.2016 14:15 Type 3
18 30.10.2016 03:00 30.10.2016 03:00 Type 4
19 07.11.2016 11:45 07.11.2016 12:00 Type 1
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(a) Anomaly of type 1 on 27.09.2016.
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(b) Anomaly of type 2 on 15.03.2016.
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(c) Anomaly of type 3 on 20.10.2016.
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(d) Anomaly of type 4 on 30.10.2016.

Figure 4.8 Examples of the labeled anomalies of types 1 to 4 from the tech-
nical faults in the selected power time series with labeled anomalies P . The
anomalies are plotted in red. Note that the power time series of type 1 is in
the MW scale and that the anomalies of types 3 and 4 actually have a length
of one but are marked together with their previous value to be recognizable.
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4.2.2 cINN and cVAE as Used Generative Methods

Since cINNs and cVAEs can be used as generative method in the proposed latent space-
based approach, we perform the evaluation with a representative implementation from
both generative methods. After introducing the selected implementations of the cINN
and the cVAE, we describe the input data used for both generative methods.

cINN The selected cINN consists of 10 GLOW coupling layers (Kingma and Dhariwal
2018) that implement a type of generative flow. Each of them is followed by a random per-
mutation and contains a subnetwork that allows the coupling layer to learn. We use a fully
connected network as subnetwork. To account for conditional information, we use a condi-
tioning network as proposed by Ardizzone et al. (2019). The conditioning network processes
the conditional information and is also a fully connected network as proposed in Heidrich
et al. (2023) (for details, see Table 4.2). For the training of the cINN, we apply a batch
size of 512, the Adam optimizer (Kingma and Ba 2015), and a maximum of 50 epochs.

Table 4.2 Implementation details of the subnetwork and the conditioning
network q in the used cINN.

(a) Subnetwork

Layer Description

Input [Output of previous coupling layer, conditional information]
1 Dense 32 neurons; activation: tanh
2 Dense horizon neurons; activation: linear

(b) Conditioning network

Layer Description

Input [Calendar information, statistical information]
1 Dense 8 neurons; activation: tanh
2 Dense 4 neurons; activation: linear

cVAE The selected cVAE comprises an encoder and a decoder. Both are fully connected
networks (for details, see Table 4.4). For the training of the cVAE, we use a batch size of
512, the Adam optimizer (Kingma and Ba 2015), and a maximum of 100 epochs.

Input Data To train both generative methods for supervised anomaly detection, we
use the first 15,000 data points of the selected time series of a data set. For unsupervised
anomaly detection with both generative methods, we choose an appropriate contamination
value, which we specify accordingly. Regardless of the supervised or unsupervised anomaly
detection, both generative methods get standardized data points of the selected time
series of a data set as samples with a size of 96. They also use the information contained
in the time stamps of the considered time series as calendar information. It comprises
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the hour of the day, the month of the year, and the weekday. As statistical information,
the generative methods get the mean of the considered time series sample.

Table 4.4 Implementation details of the encoder and decoder of the used
cVAE.

(a) Encoder

Layer Description

Input [Normal data, conditional information]
1 Dense 64 neurons; activation: tanh
2 Dense 32 neurons; activation: tanh
3 µ: dense latent dimension; activation: linear
4 σ: dense latent dimension; activation: linear

(b) Decoder

Layer Description

Input [Latent data, conditional information]
1 Dense 32 neurons; activation: tanh
2 Dense 64 neurons; activation: tanh
3 Dense horizon neurons; activation: linear

4.2.3 Data Representations for Comparison

We consider different data representations in our experiments to compare the proposed
approach of applying anomaly detection methods directly to the latent space representation
to the common approach of applying anomaly detection methods directly or after scaling
to the data containing anomalies (see Figure 4.9). More precisely, we use the selected
time series of each data set to create four data representations. Two data representations
are latent space representations of the considered data generated by the cINN and the
cVAE as proposed in our approach. The other two data representations are the scaled
and unscaled data representations that correspond to the common approach of applying
anomaly detection methods directly or after scaling to the given data. These latter two
data representations serve as benchmark data representations.

The first latent space data representation is from the cINN. For this, we standardize
the selected time series and create overlapping samples with a size of 96 beginning
every hour. These samples serve as an input for the trained cINN that generates the
resulting latent space data representation. The second latent space data representation
is from the cVAE. It is created in the same way as for the cINN.

For the first benchmark data representation, we standardize the selected time series
to obtain a scaled data representation, before creating overlapping samples with a size
of 96 beginning every hour. For the second benchmark data representation, we use
the unaltered time series as an unscaled data representation, from which we create
overlapping samples with a size of 96 beginning every hour.
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(a) A trained cINN creates the cINN latent space data representation of an input time
series containing anomalies. Following the proposed approach, the cINN latent space
data representation then serves as input to an anomaly detection method.
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(b) A trained cVAE creates the cVAE latent space data representation of an input time
series containing anomalies. Following the proposed approach, the cVAE latent space
data representation then serves as input to an anomaly detection method.
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(c) The unscaled data representation corresponds to the common approach of directly
applying an anomaly detection method to an input time series containing anomalies.
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(d) The scaled data representation corresponds to the common approach of applying an
anomaly detection method to an input time series containing anomalies after scaling.

Figure 4.9 The four considered data representations to compare the pro-
posed approach of applying anomaly detection methods directly to the latent
space to the common approach of applying these methods directly or after
scaling to the data containing anomalies. These data representations include
the latent space data representations created by the cINN and the cVAE as
well as the scaled and unscaled benchmark data representations.
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4.2.4 Applied Anomaly Detection Methods

For the evaluation of our approach, we select existing anomaly detection methods
and apply them to the four described data representations to detect anomalous and
non-anomalous data. To consider different learning assumptions, i. e., inductive biases
(Mitchell 1997), we select seven supervised and four unsupervised anomaly detection
methods, which we briefly present below including their application.

Supervised Methods The selected supervised methods consider anomaly de-
tection as a binary classification problem, where each data point is assigned
the label anomaly or non-anomalous data.

As the first supervised detection method, we choose the k-Nearest Neighbor (kNN)
method. It uses a proximity measure to classify a test sample based on the similarity
of training instances (Cover and Hart 1967). As second method, we select the Logistic
Regression (LogR). In the LogR for binary outcomes, the posterior probabilities of the
outcomes are modeled with a logistic function (Hastie et al. 2009). We select the
Multi-Layer Perceptron (MLP) as the third method. As an Artificial Neural Network,
it approximates an arbitrary function through multiple hidden layers of interconnected
nodes and applying activation functions between the layers (e.g., Werbos 1974; Mitchell
1997). The fourth method we choose is the Gaussian Naïve Bayes (NB). The NB
estimates a conditional probability by assuming the conditional independence of the
input features, given the prior probability of the output variable (Tan et al. 2019). As
fifth method, we select the Random Forest (RF). The RF uses bagging to reduce the
variance of an estimated prediction by combining the predictions of multiple decision
trees (Breiman 2001; Hastie et al. 2009; Tan et al. 2019). As sixth method, we choose a
Support Vector Machine for Classification (SVC) that maximizes the hyperplane between
the binary classes to classify test samples (Vapnik 2000). We select XGBoost as the
seventh method. It is a gradient boosting machine and optimizes a regularized objective
function using gradient decent (Chen and Guestrin 2016).

Unsupervised Methods The selected unsupervised methods analyze the
data to uncover the underlying normal behavior and then identify anomalous
data points that violate this behavior.

As first unsupervised detection method, we select an Autoencoder (AE). It learns a
mapping to the latent representation of the data and a mapping back to the reconstruction
of the input (Rumelhart et al. 1986). The AE identifies samples as anomalous if their
reconstruction error is above a threshold that we set to the quantile resulting from the
contamination of the cINN or cVAE used. The second method is the Isolation Forest
(iForest). It is an ensemble of isolation trees that randomly partitions samples in randomly
selected features. The averaging path length of samples in different isolation trees serves
as the indicator for anomalous data (Liu et al. 2008). As third method, we select the
Local Outlier Factor (LOF). The LOF measures the distances of a sample to its k-nearest
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neighbors to estimate the local density. By comparing the local density to the local
densities of its neighborhood, the LOF is able to identify samples as non-anomalous or
anomalous (Breunig et al. 2000). The fourth method is a Variational Autoencoder (VAE).
It learns the probability distribution of the data in the latent space to reconstruct its
input (Kingma and Welling 2014). The VAE also compares the reconstruction error to
a threshold that we set to the quantile resulting from the contamination of the used
cINN or cVAE to identify samples as non-anomalous or anomalous.

Application To apply the unsupervised detection methods, we use the complete
selected time series of each data set. To apply the supervised detection methods,
however, we split the selected time series of each data set to obtain a training and
a test set. We use the first 5,000 data points as training set. As test set, we use
all data points except the first 15,000 data points because these 15,000 data points
are used for the training of the generative methods.

To both sets, we apply the selected supervised detection methods with default hyper-
parameters, i. e., the hyperparameters set as default in the available implementation,
and with the best-performing hyperparameters. To determine the best-performing hy-
perparameters, we choose hyperparameters and select corresponding values for each
method (see Table B.1 in Appendix B). Over the resulting hyperparameter grid, we
perform a cross-validated grid search on the training set. We choose the parameters
that yield the best F1-Score (Equation (4.13)) for a data representation and group of
anomalies as best-performing hyperparameters for this data representation and group of
anomalies (see Tables B.2 to B.13 for the data with synthetic anomalies and Tables B.14
to B.19 for the data with labeled anomalies in Appendix B).

4.2.5 Evaluation Criteria

To quantitatively evaluate the selected anomaly detection methods on the four data
representations, we use three evaluation criteria.

The first evaluation criterion is the detection performance of the methods. For this
criterion, we choose the commonly used F1-Score as metric, which is the harmonic mean
of precision and recall. It is calculated on the samples and defined as

F1-Score “
TP

TP `1
2 ¨ pFP ` FNq

, (4.13)

where TP are the true positives, FP the false positives, and FN the false negatives
in relation to the inserted synthetic or labeled anomalies. In the calculation of the
F1-Score, a sample is considered as an anomaly as soon as one of its data points
is an inserted synthetic or labeled anomaly.
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The second evaluation criterion is the robustness of the methods’ detection
performance. To assess the detection robustness, we calculate the F1-Score for
different shares of inserted synthetic anomalies.

The third evaluation criterion is the computational cost of the detection. To assess the
computational cost, we measure run-times. For the supervised anomaly detection methods,
we measure the run-times for training the supervised cINN and cVAE, finding the methods’
best hyperparameters, and for training them given the best-performing hyperparameters.
Similarly, for the unsupervised anomaly detection methods, we determine the run-times
for training the unsupervised cINN and cVAE and fitting the methods.

4.2.6 Hard- and Software

For a better comparability of the results, we use the same hardware throughout the
evaluation, namely a 48 core system with 256 GB RAM, where each core has 2.1 GHz. Fur-
thermore, all selected detection methods are implemented in Python. More specifically, for
XGBoost, we use its available implementation4 (Chen and Guestrin 2016) and Keras5 (Chol-
let et al. 2015) for the AE and VAE; for all other anomaly detection methods, scikit-learn6

(Pedregosa et al. 2011). The cINN is implemented with FrEIA7 and PyTorch8 (Paszke
et al. 2019) and the cVAE with PyTorch (Paszke et al. 2019). To automate the evaluation
with these implementations, we additionally use pyWATTS9 (Heidrich et al. 2021).

4.3 Results

To qualitatively evaluate the benefit of using the latent space data representation
in anomaly detection, we first visualize how the four data representations separate
anomalies and non-anomalous data. Second, we report the quantitative evaluation
criteria when applying supervised and unsupervised anomaly detection methods to the
data representations containing inserted synthetic anomalies. For the supervised and
unsupervised anomaly detection methods, we also present the results for the data
containing labeled anomalies. Since the scaled and unscaled data representations perform
similarly, we focus on the scaled data representation in the following.

4 https://xgboost.ai/
5 https://keras.io/
6 https://scikit-learn.org/
7 https://github.com/VLL-HD/FrEIA
8 https://pytorch.org/
9 https://github.com/KIT-IAI/pyWATTS
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4.3.1 Visualization of Anomalies in Data Representations

To analyze how the four data representations separate anomalies and non-anomalous data,
we randomly choose 300 samples without anomalies and 300 samples with anomalies
from the supervised detection methods’ test set of the data with inserted synthetic
anomalies. We visualize the cINN latent space, cVAE latent space, scaled, and unscaled
data representations of the chosen samples with a t-distributed Stochastic Neighbor
Embedding (t-SNE) (van der Maaten and Hinton 2008) using two dimensions. For an
optimal anomaly detection, samples with anomalies and samples without anomalies
should be clearly separated without overlapping.

Figures 4.10 and 4.11 show the resulting t-SNE visualizations of samples with anomalies
of technical faults and unusual consumption and samples without anomalies for the four
data representations. For both groups of anomalies, the t-SNE visualizes less overlap
between samples with anomalies and samples without anomalies for the cINN latent
space data representation than for the scaled data representation. Furthermore, for
the cINN latent space data representation, the samples with anomalies are grouped
around the main cluster of samples without anomalies.
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(a) cINN latent space data representation.
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(b) cVAE latent space data representation.

´60 ´40 ´20 0 20 40

´50

0

50

x-t-SNE

y-
t-

SN
E

(c) Scaled data representation.

´5,000 0 5,000

0

5,000

x-t-SNE

(d) Unscaled data representation.

Figure 4.10 t-SNE visualizations of 300 random samples without anomalies
and 300 random samples with synthetic anomalies in the cINN latent space,
the cVAE latent space, the scaled, and the unscaled data representations with
20 inserted synthetic anomalies of technical faults.
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Figure 4.11 t-SNE visualizations of 300 random samples without anomalies
and 300 random samples with synthetic anomalies in the cINN latent space,
the cVAE latent space, the scaled, and the unscaled data representations with
20 inserted synthetic anomalies of unusual consumption.

4.3.2 Data Representations in Supervised Anomaly Detection

We first report the three evaluation criteria for the data with inserted synthetic anomalies,
before showing the results for the data with labeled anomalies.

Detection Performance We evaluate the detection performance of the supervised
anomaly detection methods with both default and best-performing hyperparameters for
technical faults and unusual consumption. For both groups of anomalies, we insert 20
anomalies of each type belonging to this group. Figure 4.12a and Figure 4.12b show the
resulting F1-Scores for the technical faults and Figure 4.13a and Figure 4.13b for the
unusual consumption. For each supervised method, the bars indicate the average F1-Score
for the cINN latent space, cVAE latent space, scaled, and unscaled data representations.
The error bars show the best and the worst observed F1-Scores in multiple runs using
varying random initialization for the cINN, cVAE, and the detection methods.

With default hyperparameters, all evaluated methods yield the best F1-Scores for both
groups of anomalies when using a latent space data representation. Compared to the scaled
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(a) Technical faults with default hyperparameters.
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(b) Technical faults with the best performing hyperparameters.

Figure 4.12 The F1-Scores of the seven supervised detection methods ap-
plied to the data with 20 synthetic anomalies of each type from the technical
faults. For each method, the bars indicate the average F1-Score for the cINN
latent space, cVAE latent space, scaled, and unscaled data representations.
The error bars show the best and the worst observed F1-Scores.

data representation, the F1-Scores of the cINN latent space representation are 21 % better
on average, ranging from 1 % for the MLP to 52 % for the RF. The F1-Scores of the cVAE
latent space representation are 23 % better on average, ranging from 1 % for the MLP
to 55 % for the RF. Note that, despite the general improvement through using a latent
space data representation, the F1-Scores strongly vary between the evaluated methods.
For example, considering the cINN latent space data representation and the technical
faults, the LogR yields a F1-Score of 0.69, while the NB achieves a F1-Score of 0.97.

With the best-performing hyperparameters, all evaluated methods also perform best
using the latent space data representation for both groups of anomalies. Compared to
the scaled data representation, the F1-Scores of the cINN latent space representation
for the technical faults are 21 % better on average, ranging from 6 % for the MLP to
52 % for the RF. The F1-Scores of the cVAE latent space representation are 34 % better
on average, ranging from 4 % for the MLP to 92 % for the LogR. Note that we again
observe highly varying F1-Scores across all evaluated methods.
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(a) Unusual consumption with default hyperparameters.
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(b) Unusual consumption with the best performing hyperparameters.

Figure 4.13 The F1-Scores of the seven supervised detection methods ap-
plied to the data with 20 synthetic anomalies of each type from the unusual
consumption. For each method, the bars indicate the average F1-Score for
the cINN latent space, cVAE latent space, scaled, and unscaled data represen-
tations. The error bars show the best and the worst observed F1-Scores.

Detection Robustness Regarding different shares of anomalies, we examine the kNN,
MLP, and NB as the three best methods when using best-performing hyperparameters
determined for 20 anomalies of each type from technical faults and unusual consumption
respectively. For the sake of brevity, we only consider the cINN latent space and the
scaled data representations. The average F1-Scores for different shares of anomalies
is shown in Figure 4.14a for the technical faults and in Figure 4.14b for the unusual
consumption (for all other methods, see Figure B.1 in Appendix B).

For the technical faults, the F1-Scores based on the cINN latent space data representation
are consistently higher than those for the scaled data representation across all shares
of anomalies. Furthermore, all anomaly detection methods perform more consistently
when using the cINN latent space data representation, showing less variation than the
scaled data representations. For unusual consumption, the F1-Scores when using the
cINN latent space data representation are noticeably better for the MLP when compared
to the scaled data representation, and similar for the kNN and NB.
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Figure 4.14 The F1-Scores of the three best-performing supervised detection
methods applied to the data with different shares of synthetic anomalies
from technical faults and unusual consumption using the best-performing
hyperparameters. For each method, one line each indicates the resulting F1-
Score for the cINN latent space and scaled data representations.

Computational Cost Concerning the computational cost reported in Table 4.6, we
first compare the run-times required to train the supervised cINN and cVAE with
the run-times to find the best-performing hyperparameters and to train the super-
vised methods given selected hyperparameters. Afterward, we compare the run-times
of the hyperparameter optimization and of the training of the supervised methods
with respect to the four data representations.

The supervised training of the used cINN and cVAE takes considerably less time than
the hyperparameter optimization of the MLP, SVC, and XGBoost, about the same
as the hyperparameter optimization of the kNN, and more time than the hyperpa-
rameter optimization of the LogR and RF. Compared to the training of the meth-
ods on all data representations, the supervised training of the cINN and cVAE, how-
ever, generally requires some more time.
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Table 4.6 The required run-times in seconds to train the supervised cINN and
cVAE, to find the best-performing hyperparameters of the supervised detec-
tion methods, and to train them given the best-performing hyperparameters
for the four data representations.

cINN cVAE Scaled Unscaled

Supervised training 60.77 22.24 0 0

kNN 44.43 10.46 42.56 41.25
LogR 6.29 2.55 6.35 12.61
MLP 2694.54 9116.88 9286.41 3125.75
RF 6.04 3.71 5.20 5.00
SVC 5906.27 4.86 899.70 11863.58

Detection method’s
hyperparameter
optimization

XGBoost 1912.33 1048.95 1631.59 1631.59

kNN 0.00 0.00 0.00 0.00
LogR 0.66 0.91 0.66 0.84
MLP 3.24 7.37 7.58 1.64
RF 0.83 0.48 0.86 0.86
SVC 0.11 0.13 0.29 0.30

Detection method’s
training

XGBoost 1.48 1.10 1.47 1.70

The hyperparameter optimization itself requires different amounts of time depending
on the data representation. On the cINN latent space data representation and com-
pared to the scaled data representation, the optimization takes noticeably less time
for the MLP, about the same for the kNN, LogR, and RF, and more time for the
SVC and XGBoost. On the cVAE latent space data representation, the optimization
takes less time for the kNN, SVC, and XGBoost, about the same time for the LogR
and RF, and longer for the MLP. Note, however, that the run-time required for the
hyperparameter optimization varies greatly across the methods.

The run-times for training the supervised methods also depend on the data representation.
Using the latent space data representations for the training requires less or about the
same time as using the scaled data representation for most supervised methods.

Data With Labeled Anomalies For the data with labeled anomalies, we focus on
the detection performance since the considered data already contains real-world technical
faults. For this data, we also evaluate the detection performance of the supervised
anomaly detection methods with both default and best-performing hyperparameters.
Figure 4.15 shows the resulting F1-Scores for the data with labeled anomalies which are
all technical faults. For each supervised method, the bars indicate the average F1-Score
for the cINN latent space, cVAE latent space, scaled, and unscaled data representations.
The error bars show the best and the worst observed F1-Scores.

All evaluated methods achieve F1-Scores with default hyperparameters using a latent
space data representation that are at least as good as those obtained with the scaled
data representation. Compared to the scaled data representation, the F1-Scores of the
cINN latent space representation are 4 % better on average, ranging from −4 % for the
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(a) Technical faults with default hyperparameters.
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(b) Technical faults with the best performing hyperparameters.

Figure 4.15 The F1-Scores of the seven supervised detection methods ap-
plied to the data with labeled technical faults. For each method, the bars
indicate the average F1-Score for the cINN latent space, cVAE latent space,
scaled, and unscaled data representations. The error bars show the best and
the worst observed F1-Scores.

kNN to 9 % for the LogR and RF. The F1-Scores of the cVAE latent space representation
are 16 % better on average, ranging from 3 % for the MLP to 32 % for the NB.

Similarly, all evaluated methods also obtain F1-Score with the best-performing hyperparam-
eters using a latent space data representation that are at least as good as those obtained
with the scaled data representation. Compared to the scaled data representation, the
F1-Scores of the cINN latent space representation are 6 % better on average, ranging from
0 % for the NB to 22 % for the LogR. The F1-Scores of the cVAE latent space representa-
tion are 19 % better on average, ranging from −11 % for the SVC to 64 % for the LogR.
Note that we also observe for this data varying F1-Scores across all evaluated methods.
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4.3.3 Data Representations in Unsupervised Anomaly Detection

For the unsupervised anomaly detection methods, we again first report the three eval-
uation criteria for the data with inserted synthetic anomalies, before presenting the
results for the data with labeled anomalies.

Detection Performance To evaluate the detection performance of the unsupervised
anomaly detection methods, we first use latent space data representations from an
unsupervised cINN and cVAE trained with a contamination of 0.05 for the technical
faults and 0.1 for the unusual consumption. Afterwards, we examine the effect of different
contamination values for both groups of anomalies.

For the unsupervised cINN and cVAE using data with 20 inserted anomalies of each
type from an anomaly group, Figure 4.16 presents the F1-Scores of the unsupervised
detection methods. For each method, the bars indicate the average F1-Score for the
cINN latent space, cVAE latent space, scaled, and unscaled data representations. The
error bars show the best and the worst observed F1-Scores.

We observe that unsupervised detection methods perform differently when using the cINN
and cVAE latent space data representations. Compared to the scaled data representation,
the F1-Scores for the technical faults and the cINN latent space data representation show
an improvement for the iForest, a similar performance for the AE and VAE, and a worse
performance for the LOF. Furthermore, for the unusual consumption, the cINN and cVAE
latent space data representations results in similar or lower F1-Scores than those from
unsupervised anomaly detection methods using the scaled data representation.

For a contamination of 0.05, 0.1, 0.15, 0.2, and 0.25, Figures 4.17a and 4.17b show the
average F1-Scores of the unsupervised detection methods on the cINN and cVAE latent
space data representations for the technical faults and unusual consumption respectively.

For technical faults, the detection methods achieve varying F1-Scores across the different
contamination values, with the best F1-Scores for all methods, except for the LOF,
occurring with a contamination of 0.05. The performance for unusual consumption
varies more, with the best F1-Scores being achieved with a contamination of 0.05,
0.1, or 0.15, depending on the considered method.

Detection Robustness Regarding the analysis of different shares of anomalies from
technical faults and unusual consumption, we again only consider the cINN latent
space and the scaled data representations. Figure 4.18 shows the average F1-Scores of
the detection methods for these data representations. For each share of anomalies, a
corresponding contamination is used for the training of the cINN.

Compared to the scaled data representation, the F1-Scores of the cINN latent space
data representation for technical faults are higher for the iForest, similar for the AE and
VAE, and lower for the LOF. When considering unusual consumption, the latent space
data representation results in lower F1-Scores across all shares of anomalies.
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Figure 4.16 The F1-Scores of the four unsupervised detection methods ap-
plied to the data with 20 synthetic anomalies of each type from technical
faults and unusual consumption. For each method, the bars indicate the
average F1-Score for the cINN latent space, cVAE latent space, scaled, and
unscaled data representations. The error bars show the best and the worst
F1-Scores.

Computational Cost Regarding the four data representations, the run-times
required to train the unsupervised cINN and cVAE and to fit the unsupervised
methods are reported in Table 4.7.

The unsupervised training of the cINN and cVAE requires considerably more time
than the fitting of most of the unsupervised methods. Additionally, fitting the AE
and VAE is quicker, the iForest is similar, and the LOF is slower on the latent space
compared to the scaled data representation.

Data With Labeled Anomalies For the data with labeled anomalies, we again
focus on the detection performance because it already contains real-world technical
faults. For this data, we first also evaluate the detection performance of the unsu-
pervised anomaly detection methods using latent space data representations from an
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Figure 4.17 The F1-Scores of the four unsupervised detection methods ap-
plied to the latent space data representations created by an unsupervised
cINN and cVAE with different contamination values. The data contains 20
synthetic anomalies of each type from technical faults and unusual consump-
tion, which corresponds to 5 % of the data for technical faults and 11 % for
unusual consumption.

Table 4.7 The required run-times in seconds to train the unsupervised cINN
and cVAE and to fit the unsupervised detection methods regarding the four
data representations.

cINN cVAE Scaled Unscaled

Unsupervised training 632.96 510.22 0 0

AE 443.71 99.76 579.79 320.27
iForest 16.21 3.84 29.53 23.33
LOF 370.23 269.11 207.98 206.81

Detection method’s
fitting

VAE 856.12 76.00 4555.05 416.99
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Figure 4.18 The F1-Scores of the four unsupervised detection methods ap-
plied to the data with different shares of synthetic anomalies from technical
faults and unusual consumption. For each method, one line each indicates
the resulting F1-Score for the cINN latent space, scaled, and unscaled data
representations. For the latent space data representation, the unsupervised
cINN is trained with a contamination corresponding to the share of anoma-
lies in the data.

unsupervised cINN and cVAE trained with a contamination of 0.05. We then also
examine the effect of different contamination values.

For the unsupervised cINN and cVAE, Figure 4.19 shows the F1-Scores of the unsu-
pervised detection methods for the data with labeled anomalies which are all technical
faults. For each method, the bars indicate the average F1-Score for the cINN latent
space, cVAE latent space, scaled, and unscaled data representations. The error bars
show the best and the worst observed F1-Scores.

All unsupervised detection methods except the LOF perform better compared to the scaled
data representation when using a latent space data representation. The LOF using the
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Figure 4.19 The F1-Scores of the four unsupervised detection methods ap-
plied to the data with labeled technical faults. For each method, the bars
indicate the average F1-Score for the cINN latent space, cVAE latent space,
scaled, and unscaled data representations. The error bars show the best and
the worst F1-Scores.

cINN latent space data representation shows a similar performance as with the scaled data
representation but a worse performance for the cVAE latent space data representation.

For a contamination of 0.025, 0.05, 0.1, 0.2, and 0.25, Figure 4.20 shows the average
F1-Scores of the unsupervised detection methods on the cINN and cVAE latent space data
representations. The detection methods achieve different F1-Scores across the considered
contamination values, with the best F1-Scores for all methods, except for the VAE and
the cVAE latent space data representation, obtained at a contamination of 0.05.
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Figure 4.20 The F1-Scores of the four unsupervised detection methods ap-
plied to the latent space data representations created by an unsupervised
cINN and cVAE with different contamination values. The data contains la-
beled technical faults, which corresponds to 5 % of the data.
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4.4 Discussion

In this section, we discuss the reported results and the benefits of the proposed approach
to enhance anomaly detection methods. First, we focus on the visualization of anomalies
in different data representations, before considering the three evaluation criteria for the
supervised and unsupervised anomaly detection methods and the data with inserted
synthetic anomalies as well as the detection performance on the data with labeled
anomalies. Finally, we discuss limitations and the overall benefits of the proposed approach.

From the initial t-SNE visualization of synthetic anomalies in different data representations
in Figures 4.10 and 4.11, we conclude that the latent space data representation helps to
better separate anomalies and non-anomalous data. This separation is clearer for technical
faults, but still noticeable for unusual consumption. The visualization thus confirms that
using the latent space data representation as in the proposed approach is beneficial.

The detection performance and robustness of the selected supervised and unsupervised
detection methods also support this observation. For the evaluated detection methods and
the data with inserted synthetic anomalies, the results show that directly using a latent
space data representation improves supervised anomaly detection methods for both techni-
cal faults and unusual consumption, and partly improves unsupervised anomaly detection
methods when considering technical faults. For the supervised methods, this improvement
occurs even without performing hyperparameter optimization and is independent of the
share of inserted synthetic anomalies. For unsupervised methods, the improvement is only
partly noticeable for technical faults, with unusual consumption performing similarly or
worse. However, since the used anomalies of unusual consumption are similarly shaped and
difficult to detect even for a human, a better detection performance for such anomalies
might only be possible if they are labeled beforehand. Furthermore, the LOF performs
worse on the latent space data representation for both technical faults and unusual
consumption. This suggests that the latent space data representation may not be suited
for density-based anomaly detection methods and this phenomenon should be investigated
further in future work. For the evaluated detection methods and the data containing
labeled technical faults, however, using a cINN or cVAE latent space data representation
generally improves the detection performance of all considered supervised and unsuper-
vised anomaly detection methods. Nevertheless, the one year of considered data containing
labeled technical faults is limited, since the limited number of 19 labeled anomalies is
rather unevenly distributed over time. Therefore, future work should investigate whether
our observations can be verified by further, more evenly distributed data.

With regards to computational time, for some supervised detection methods, the pro-
posed anomaly detection method reduces the time required for hyperparameter opti-
mization and the methods’ training. At the same time, for the unsupervised detec-
tion methods, the proposed anomaly detection method does not reduce the fitting
time. Therefore, the proposed approach can also be beneficial for the hyperparame-
ter optimization and the methods’ training.
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Nevertheless, these improvements in the detection performance come with limitations.
One limitation is the computational cost for the required trained cINN or cVAE. For the
supervised cINN or cVAE, the required training time is considerably smaller than the
time needed for hyperparameter optimization for some supervised detection methods;
for the others, the time needed is in the same order of magnitude. For the unsupervised
cINN or cVAE, the training takes noticeably longer than the fitting of the evaluated
unsupervised detection methods, possibly due to the calculation of the quantile and the
filtering of the errors for each batch. Additionally, unlike the supervised cINN and cVAE,
the unsupervised cINN and cVAE are trained on all available data. Furthermore, since all
available data are used, we must choose a suitable contamination to enable the cINN and
cVAE to provide a beneficial data representation for unsupervised detection methods.

Considering the mentioned aspects, applying supervised detection methods without hy-
perparameter optimization directly on the latent space data representation as proposed is
advantageous. For these methods, the training time of the cINN or cVAE is often consider-
ably shorter than the time required to optimize their hyperparameters. At the same time,
their detection performance remains high, even without hyperparameter optimization.

Another limitation of the proposed approach is the use of samples. By using samples, the
proposed approach can only determine whether a sample contains an anomaly or not;
it is not able to locate the exact position and length of an anomaly. If the amount of
available data is sufficient, samples containing anomalies can be excluded for down-stream
applications. For the case of limited data, future work should explore how the proposed
approach can be extended to precisely locate anomalies in a sample.

A further limitation of the proposed approach is the assumption used in the training of
the generative method. For the supervised anomaly detection, the proposed approach
assumes that all anomalies contained in the used data are labeled. However, the used
data may still include anomalies that have not been identified during labeling. For this
reason, a thorough labeling process has to be performed, ideally by domain experts, to
identify all contained anomalies. For the unsupervised anomaly detection, the proposed
approach assumes that the minority of the used training data is anomalous and that the
training errors are higher for anomalous data points than for non-anomalous data points.
While this assumption is true for distinct anomalies such as the used technical faults, it
is not necessarily true for anomalies that comprise typical patterns at uncommon levels,
such as the considered unusual consumption. As a result, the used generative method
could learn a mapping that is unfavorable for the subsequently applied unsupervised
anomaly detection method, which could explain the comparatively worse performance of
the proposed approach for unsupervised methods and unusual consumption. Therefore,
future work could investigate how the proposed approach could be adapted to improve
the detection of unusual consumption with unsupervised anomaly detection methods.

Overall, the proposed approach provides several benefits. The most important one is
that it generally considerably enhances the detection performance of supervised and
unsupervised detection methods. This way, the latent space data representation created by
a cINN or cVAE can serve as a beneficial input for any existing detection method at only
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moderate computational cost. This performance improvement is particularly noticeable
for synthetic and labeled technical faults in both supervised and unsupervised anomaly
detection methods; for unusual consumption only in supervised methods. However, the
considered technical faults are assumed to have more impact on down-stream applications
and thus should be prioritized. Therefore, the high performance for technical faults and
improved supervised performance for unusual consumption imply that our approach
is suitable to enhance anomaly detection methods.

4.5 Contribution and Future Work

In the present chapter, we examine how anomaly detection methods for energy time series
can be enhanced. To answer the related research question [RQ2], we qualitatively examine
the latent space data representations created with a cINN and cVAE by visualizing
the separation of synthetic anomalies and non-anomalous data. We also quantitatively
evaluate the anomaly detection performance using this latent space data representation by
applying selected supervised and unsupervised anomaly detection methods to real-world
electrical power time series containing inserted synthetic anomalies of two groups, namely
technical faults and unusual consumption. We additionally apply the selected detection
methods to real-world data containing labeled technical faults.

Based on this approach, the present chapter provides the following contributions:

‚ We propose an approach for directly using the latent space data representation to
enhance anomaly detection methods.

‚ We show that the latent space data representation enhances anomaly detection,
since it results in a clearer separation between time series samples with synthetic
anomalies and samples without anomalies.

‚ We demonstrate that the proposed approach generally improves the detection
performance of the selected supervised detection methods for synthetic and labeled
technical faults as well as unusual consumption with only moderate additional
computational cost. We also show that this benefit is mostly observable regardless
of the share of anomalies in the considered time series.

‚ For unsupervised anomaly detection methods, we demonstrate that the proposed
approach improves anomaly detection methods for labeled technical faults and
partially for synthetic technical faults, but has difficulties with unusual consumption.

Given the proposed approach for enhancing anomaly detection methods, future work could
address several follow-up questions. One follow-up question could, for example, address
how the proposed approach performs with multivariate time series. Moreover, it could be
interesting to integrate the creation of the latent space data representation with the train-
ing of the detection methods, and systematically evaluate hyperparameter optimization in
the latent space. Furthermore, future work could extend the proposed approach to precisely
detect anomalies in a sample that contains an anomaly or focus on improving unsupervised
methods for detecting unusual consumption in the latent space data representation.
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Time Series

As established in the introduction, anomaly management aims to compensate anomalies
once they are detected in an energy time series to obtain a time series with compensated
anomalies that better reflects the actual normal behavior. As a first step, the detected
anomalies are often labeled as missing values (Akouemo and Povinelli 2017; Alquthami
et al. 2020). Although some applications are able to handle data with missing values
(e.g., Taylor and Letham 2018), most applications such as load analysis, load forecasting,
and load management require that these missing values be further handled.

A common method to handle missing values is imputation. Imputation replaces missing
values with values that should resemble the actual data (Moritz and Bartz-Beielstein 2017).
Since missing values are a common problem in real-world data sets, many imputation meth-
ods exist for time series in general: These methods range from very basic methods such as
linear interpolation and the last observation carried forward (Moritz and Bartz-Beielstein
2017) over time series analysis-based methods (Akouemo and Povinelli 2014; Akouemo
and Povinelli 2017) to learning-based methods (Bokde et al. 2018; Cao et al. 2018).

To further improve the imputation, it is a common approach to focus on time series from
a particular domain and to consider their characteristics as additional information. In the
context of smart meters in the smart grid, the recorded energy time series are typically
influenced by factors such as weather, human routines, social norms (e. g., weekends
or holidays) and many others (González Ordiano et al. 2018; Peppanen et al. 2016).
These factors often lead to the commonly known characteristic of daily, weekly, and
seasonal patterns, which can be used by imputation methods. For example, daily and
weekly patterns are exploited in Friese et al. (2013). The pattern frequency of a power
time series P is estimated with the auto-correlation function and the mean values of the
estimated pattern frequency are used to impute missing values. Another example is the
use of the similarity between days to fill larger gaps in a power time series P with the

Parts of this chapter are reproduced from
M. Weber, M. Turowski, H. K. Çakmak, R. Mikut, U. Kühnapfel, and V. Hagenmeyer (2021).
“Data-Driven Copy-Paste Imputation for Energy Time Series”. In: IEEE Transactions on
Smart Grid, Vol. 12, No. 6, pp. 5409–5419. doi: 10.1109/TSG.2021.3101831. cb
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average values of validated reference days in Matheson et al. (2004). Very short gaps
with a length of two hours or less are imputed by linear interpolation, as this often fits the
very short-term characteristics of smart meter time series. Lastly, the optimally weighted
average approach in Peppanen et al. (2016) also uses daily and weekly patterns as well
as seasonality to select appropriate historical values. With these values, the historical
averages of a power time series P are calculated, before they are combined with linear
interpolation for smooth transitions between actual and imputed values.

Other methods use even more additional data or information to impute missing values
in energy time series. An example is the method for imputation, de-noising, and outlier
removal based on principal component pursuit in Mateos and Giannakis (2013). It
uses the spatial correlations in the power load profiles of adjacent substations. In Ang
et al. (2020), the energy time series measured by smart meters in a factory are used
to impute missing values in other energy time series from smart meters located in
the same factory with clustering and k-nearest neighbors. In Borges et al. (2020), the
imputation of substation data is formulated as a forecasting problem. The forecast
uses the collected power data of nearby substations as well as weather data, which
often has an impact on power consumption and generation.

While all of these imputation approaches are specifically designed for energy time series,
all of them except Ang et al. (2020) are limited to the imputation of a power time series
P and none of the approaches uses the inherent properties of an energy time series E.
Every entry et in an energy time series E contains the energy that has been consumed
or generated up to time step t. Therefore, – unlike in a power time series P – if, for
example, the entries et to et`3 are missing in an energy time series E, the next existing
entry et`4 still contains the information about the total energy, which was consumed or
produced between the time steps t ´ 1 and t ` 4. As a consequence, a power time series
P can be derived from an energy time series E with missing values but not vice versa.

Thus, in the present chapter, we propose the novel Copy-Paste Imputation (CPI) method
for univariate energy time series. It uses an energy time series E as input and copies
blocks of data with similar characteristics into existing gaps. By copying blocks of
matching data, the inherent patterns of the time series are preserved, even in time
series with pattern changes. The CPI method also uses the information about the total
energy of each gap that an energy time series E contains in contrast to a power time
series P , which guarantees that the total recorded energy remains unchanged during
the imputation. To the best of our knowledge, the CPI method is the first method
using this property of an energy time series E for imputation. Its realistic imputation
that considers the total energy results in a complete power time series P , which also
allows calculating a complete energy time series E.

To evaluate the proposed CPI method, we compare its performance with benchmark
methods. The comparison comprises the use of matching patterns, the conservation of
energy, the computational cost and its decomposition, and the relation of the use of
matching patterns and the computational cost. Lastly, we present exemplary imputations
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5.1 Anomaly Compensation Using the Copy-Paste Imputation Method

to visually illustrate the evaluation result and show an example of how the CPI method
imputes data with detected anomalies considered as missing values.

With the proposed CPI method, we answer research question [RQ3] presented in Sec-
tion 1.1 that addresses how anomalies detected in energy time series be compen-
sated. By answering research question [RQ3], the proposed CPI method realistically
compensates detected anomalies by imputation, and the resulting imputed time se-
ries serves as a solid foundation for the subsequent forecast method in the pipeline
for managing anomalies (see Figure 5.1).

Anomaly
compensation

method
Time series

with compen-
sated anomalies

Time series
with detected

anomalies

Anomaly
detection
method

Time series
containing
anomalies

Forecast
method

Forecast of
the time

series

[RQ3]

Figure 5.1 By answering research question [RQ3], the proposed CPI method
realistically compensates detected anomalies by imputation, and the resulting
imputed time series serves as a solid foundation for the subsequent forecast
method in the pipeline for managing anomalies.

The remainder of the present chapter is structured as follows. Section 5.1 introduces
the proposed CPI method in detail before Section 5.2 describes the experimental set-
ting of the performed evaluation. Section 5.3 presents the results of the evaluation
of the CPI method against three benchmark methods on real-world data sets and its
exemplary imputations. Section 5.4 discusses the results and the proposed method
before Section 5.5 gives concluding remarks.

5.1 Anomaly Compensation Using the Copy-Paste Imputation
Method

In this section, we present the proposed CPI method to compensate detected anomalies.1
For the compensation, the detected anomalies are regarded as missing values, so the
application of an imputation method is reasonable. As shown in Figure 5.2, the CPI
method comprises several steps. It uses an energy time series E with gaps, i. e., one
or multiple consecutive missing values, as input and first imputes single missing values
using a linear interpolation. The resulting energy time series with imputed single values
E serves as the basis for estimating the energy consumption per day.2 Next, a list of

1 A Python implementation of the CPI method is publicly available at https://github.com/
KIT-IAI/CopyPasteImputation.

2 Although we refer to consumption data only, the same principles apply to generation data.
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Input energy time
series with gaps E

Linear interpolation

Input energy time
series with imputed

single values E

Energy consumption estimation

Estimated energy
consumption

per day

Complete days compilation

Identified available
complete days

Dissimilarity calculation

4 1 2 2 19D

Dissimilarity of
complete days

to gaps

Copy & paste matching days

Power time series
with imputed gaps P

Figure 5.2 The CPI method uses an energy time series E with gaps as in-
put. After imputing single missing values with a linear interpolation, it esti-
mates the energy consumption per day and compiles the available complete
days. For these days, the CPI method then calculates their dissimilarity to the
days with gaps. Given the dissimilarity of the complete days, it finally copies
matching days and pastes them into days with gaps in the power time series
P that is derived from the input energy time series with imputed single val-
ues E. The CPI method finally provides an imputed power time series P .

the available complete days is compiled, before the dissimilarity between these days and
the days with gaps is determined. Based on the dissimilarity, the CPI method finally
imputes the missing values of the days with gaps. For this, it fills the days with gaps
with the best matching days of the same time series in the power time series P that is
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derived from the input energy time series with imputed single values E. The result is
an imputed power time series P . In the following, we describe each of these step of the
CPI method in detail and reference the corresponding lines in Algorithm 5.1.

Algorithm 5.1 Copy-Paste Imputation (CPI)
Input: energy time series E with missing values (i. e., NaNs)
Result: energy time series E without missing values, optionally power time series without

missing values P

1 E Ð single_value_linear_interpolation(E)
2 energy_per_day Ð calculate_energy_per_day(E)
3 non_complete_days Ð determine_days_with_missing_values(E)

// each entry in this list describes whether a day of E has missing
values

4 weekly_pattern Ð

estimate_weekly_pattern_with_prophet(energy_per_day, non_complete_days)
// only considers the daily energy consumption of the days without

missing values

5 missing_energy_per_day Ð estimate_missing_energy_per_day(E, weekly_pattern)
6 estimated_energy_per_day Ð energy_per_day ` missing_energy_per_day
7 complete_days Ð

compile_list_of_complete_days(E.time, energy_per_day, non_complete_days)
8 P Ð derive_power_time_series_from_energy_time_series(E)
9 foreach day with missing values do

10 best_matching_day Ð find_day_with_min_dissimilarity(day, complete_days)
11 P rdays Ð P rbest_matching_days

12 end
13 foreach gap in E do
14 scaling_factor Ð actual_energy_of_gap { imputed_energy_of_gap
15 P rgaps Ð P rgaps ¨ scaling_factor

16 end
17 E Ð calculate_energy_time_series_from_power_time_series(P )

5.1.1 Linear Interpolation of Single Missing Values

In the first step of the CPI method, single missing values, i. e., individual meter readings,
are imputed in the given energy time series E (see Line 1 in Algorithm 5.1). For this
imputation, we use a linear interpolation because it provides sufficiently correct estimates
for individual missing values. We consider only single missing values in this step to limit
the number of consecutively linearly interpolated values and thus potentially unrealistic
imputations, while still benefiting from these easily imputable values. Indeed, the resulting
imputed values are considered as correct in the subsequent steps to increase the number
of days without missing values that are available for copying.
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5.1.2 Energy Consumption Estimation

In the second step, the CPI method estimates the energy consumption for days with gaps
(see Lines 2 to 6 in Algorithm 5.1). The total energy consumption during gaps can be
determined because the CPI method uses an energy time series as input. In energy time
series, the first entry after a gap still contains the information about the total energy
consumed during the gap. For this reason, to obtain the total energy consumption Ej of
the gap j from time step t to time step t ` k, we calculate the energy difference, i. e.,

Ej “ et`k`1 ´ et´1, (5.1)

where et`k`1 and et´1 are the energy consumption at the time steps t ` k ` 1
and t ´ 1 respectively. This energy difference is the basis for the estimation of
the missing energy in Line 5 in Algorithm 5.1.

However, for gaps longer than one day, the calculated energy consumption must be
allocated to the respective days appropriately. For this purpose, the calculated energy
consumption of the gap is first distributed to the respective days according to their share
of missing values. Second, we consider a weekly pattern in the daily energy consumption.
For this pattern, we use the weekly pattern of the input energy time series estimated by
the Prophet method (Taylor and Letham 2018). It models the weekly pattern such that
the values of all weekdays add up to zero. If some of these values are positive, others need
to be negative. When estimating these values, the Prophet method only considers the daily
energy consumption of the days without missing values, i. e., one value per day. Lastly, the
estimated weekly pattern is added to all days of the gap. When adding the weekly pattern,
the added energy is also summed up. The sum of the added energy is then divided by the
number of days in the gap to obtain the average added energy. This average is subtracted
from each day of the gap to preserve the total energy consumption of the gap.

5.1.3 Compilation of Available Complete Days

In the third step, the CPI method compiles a list of the available complete days, i. e.,
days without missing values (see Line 7 in Algorithm 5.1). Assuming daily, weekly, and
seasonal patterns in the energy consumption, each day is listed with the following three
characteristics: its total energy consumption (de), its weekday (dw P t1, 2, . . . , 7u), and
its seasonal position (ds). Under the assumption of a yearly seasonality, i. e., 365 days
or 366 days for leap years, it follows that ds is in t1, 2, . . . , 366u.

5.1.4 Calculation of Dissimilarity Between Days

In the fourth step, the CPI method calculates a dissimilarity criterion between each day
with gaps and all complete days (see Line 10 in Algorithm 5.1), which is used to select
the best matching days for filling gaps in the next step. For the dissimilarity criterion,
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the CPI method uses the three previously introduced characteristics of days, namely
the total energy, the weekday, and the seasonal position. Since these characteristics
are already computed for all complete days, they only have to be determined for the
days with missing values in this step. More precisely, the three distance measures De,
Dw, and Ds are calculated for each day with gaps di and each available complete day
dj. We introduce each distance measure in the following.

The first distance measure De describes the distance between the total energy consumption
of a day with gaps di and a complete day dj . The total energy consumption can serve as
a distance measure because the CPI method uses an energy time series as input and thus
can calculate the energy consumed during a gap. The distance measure De is defined as

Depdi, djq “
|di,e ´ dj,e|

emax ´ emin

, (5.2)

where emax and emin are the maximum and minimum energy consumption of a day
in the time series and di,e and dj,e are the total energy consumption of the days
di and dj. For the day with gaps di, the energy consumption estimated in the sec-
ond step is used. To ensure that the distance measure De is in r0, 1s, it is divided
by the difference between emax and emin.

The second distance measure Dw is based on the assumption of a weekly pattern in
the time series and describes the distance between the weekday of a day with gaps
di and a complete day dj. It is defined as

Dwpdi, djq “

$

’

’

&

’

’

%

0.0, if di,w “ dj,w

0.5, if di,w P t1, . . . ,5u ^ dj,w P t1, . . . ,5u

_di,w P t6, 7u ^ dj,w P t6, 7u

1.0, else,

(5.3)

where di,w and dj,w are integer representations of the weekday of the days di and dj . The
integers 1 to 5 represent the workdays Monday to Friday, whereas 6 and 7 represent the
weekend days Saturday and Sunday. This distance measure Dw assigns smaller distances
to days of the same weekday or days of the same class (i. e., workday or weekend)
and higher distances to days of different weekdays or classes.

The third distance measure Ds captures the underlying seasonal pattern and
describes the distance between the seasonal position of a day with gaps di

and a complete day dj. It is defined as

Dspdi, djq “

$

&

%

|di,s´dj,s|

t s
2 u

, if |di,y ´ dj,y| ď t s
2u

s´|di,s´dj,s|

t s
2 u

, else,
(5.4)

where s is the length of the seasonal cycle and di,s and dj,s are the positions of the
days di and dj in this cycle. For a yearly seasonality, s can be set to 365 or 366 to
reflect the number of days in a year. This distance measure ensures that two days
from the same season are considered as more similar than two days from different
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seasons. For example, January 1 and December 31 of the same year are almost one
year apart but have a minimal distance Ds. In contrast, January 1 and July 1 are
only half a year apart and have a maximal distance Ds.

To determine the dissimilarity between a day with gaps di and a complete day dj, the
three individual distance measures De, Dw, and Ds are combined as a weighted sum
into a single dissimilarity criterion D. It is defined as

D “ weDe ` wwDw ` wsDs, (5.5)

where we, ww, and ws are the weights and De, Dw, and Ds are the normalized distance
measures. The individual distance measures are normalized to the interval [0,1] for an easier
interpretation of the used weights. It is necessary to specify these weights once before ap-
plying the CPI method. To find suitable weights, one possible approach is to perform a grid
search on a representative set of time series (see Section 5.2 for an exemplary grid search).

5.1.5 Copy and Paste of Matching Days

In the last step, the CPI method copies the best matching days, pastes them into the
gaps (see Line 11 in Algorithm 5.1) of the derived power time series P (see Line 8
in Algorithm 5.1), and scales the imputed values to preserve the energy of the re-
spective gaps (see Lines 13 to 16 in Algorithm 5.1).

To determine the best matching days, the CPI method uses the previously generated
list of complete days. For a day with gaps di, it selects the day dj with the smallest
dissimilarity Dpdi, djq. Since the entire list of complete days is used in this step, days
from the future of the day with gaps are also considered.

Given the selected best matching days, the CPI method performs the actual copying and
pasting of the best matching days into the gaps. For this, the power time series P serves
as a basis. As described in Section 2.1, it can be derived from the input energy time
series E by calculating the average power pt between the time steps t ´ 1 and t, i. e.,

pt “
et ´ et´1

∆t
, (5.6)

where ∆t is the time between the two time steps, et and pt are the energy and power
at time step t, and et´1 is the energy at time step t ´ 1. In the derived power time
series P , the CPI method replaces every missing value in each day with gaps by the
corresponding value of the previously determined best matching complete day.

Finally, the CPI method scales the imputed power values to preserve the actual energy of
each gap. The scaling is based on the actual energy and the imputed energy. Both can be
determined because the CPI method uses energy time series as input and thus can calculate
the energy consumed during a gap. The actual energy Ej of the gap j is calculated
according to Equation (5.1). The imputed energy E 1

j is calculated by accumulating the
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imputed power values. To preserve the energy, the imputed power values of gap j are
multiplied with the ratio of the actual energy and the imputed energy of gap j, i. e.,

p̂t “ p̂1
t ¨

Ej

E 1
j

, (5.7)

where p̂1
t is the power value calculated by the CPI method and p̂t is the scaled power value.

After this scaling, one can use the imputed power time series P to calculate the en-
ergy values et of the corresponding imputed energy time series E. As described in
Section 2.1, solving Equation (5.6) for et yields

et “ ∆t ¨

t
ÿ

i“1
pi ` k, (5.8)

where k is a constant representing the offset of the energy time series E. With the
calculated energy values, the CPI method finally returns a complete energy time se-
ries E whose initially missing values are completely imputed and for which the to-
tal energy of each gap remains unchanged.

5.2 Experimental Setting

In this section, we present how we evaluate the proposed CPI method. After describ-
ing the used data, we introduce the selected benchmark methods and the applied
evaluation criteria. Finally, we determine the weights used in the CPI dissimilarity
criterion and present the used hard- and software.

5.2.1 Data Sets With Missing Values

For the evaluation, we use two data sets. Both comprise real-world data but differ
in the observed missing values. While we insert missing values – that can represent
previously detected anomalies – into the first, the second already contains labeled
anomalies that we regard as missing values in the evaluation.

Data With Inserted Missing Values The first used data set is the “ElectricityLoad-
Diagrams20112014 Data Set”3 from the UCI Machine Learning Repository (Dua and
Graff 2019) that we also use in Chapter 4. The data set consists of electrical power
time series from 370 clients with different consumption behaviors over a period of up
to four years (Rodrigues and Trindade 2018) The time series contain quarter-hourly
average power values in kW, resulting in 35,040 values per year. From these 370 time

3 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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series, we select 50 time series as a representative sample (see Table C.1 in Appendix C)
and use their 2012 values for the evaluation. The selected time series vary greatly
in terms of seasonal, weekly, and daily patterns as illustrated in Figure 5.3. For the
evaluation of the CPI method, the selected power time series Pi, that do not contain
any missing values, are converted to energy time series Ei by integrating the power
values in a time-discrete manner using Equation (5.8).
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(a) Power time series MT_001.
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(b) Power time series MT_005.
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(c) Power time series MT_013.

Figure 5.3 Three exemplary power time series P in 2012 from the first se-
lected data set with different daily, weekly, and seasonal patterns.

Due to their completeness, we insert missing values in the calculated energy time series
Ei by replacing values with NaNs. To decide which values are replaced, we perform the
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following four steps. First, we determine the longest sequence of the energy time series Ei

without missing values Tc. Second, we define the number of consecutive energy values to
be replaced in this sequence Tc by choosing uniformly between two and the minimum of
the specified maximum number of consecutive missing values, the length of Tc, and the
remaining number of values to be replaced. Third, we randomly select a starting index for
the determined number of consecutive energy values to be replaced such that all values to
be replaced are contained in Tc. Lastly, we replace each selected energy value with NaN .
We repeat these four steps until we reach the total number of values to be replaced.

For the evaluation, we consider the number of values to be replaced in the form of shares
of missing values. In the evaluation, we use six shares of missing values between 1 %
and 30 %, namely 1, 2, 5, 10, 20, and 30 %. To consider both larger gaps and single
missing values, 5 % of each share of missing values are single missing values. We randomly
determine the indices for the single missing values after creating the larger gaps.

Data With Detected Anomalies Considered as Missing Values The second used
data set is the electrical data collected on the Campus North of the Karlsruhe Institute of
Technology (KIT), which we also use in Chapters 3 and 4 and in Turowski et al. (2022b).
From this data, we consider the smart meter of a typical mid-campus office building. More
precisely, we choose that smart meter whose power time series P from 2016 is used for
the evaluation in Chapter 4. Thanks to its availability, we use the related one-year energy
time series E (see Figure 5.4). It contains 19 labeled anomalies of the four identified
anomaly types from the group of technical faults described in Chapter 3. The contained
anomalies correspond to a 6 % share of the data. Figure 5.5 shows an exemplary labeled
anomaly of all four types. For more details on the contained anomalies, a plot of the entire
related power time series P , and a plot of the shown exemplary anomalies in the related
power time series P , we refer to Table 4.1 and Figures 4.7a and 4.8 in Section 4.2.1.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

0

2,000

4,000

6,000

8,000

Time

E
le
c
tr
ic
a
l
e
n
e
rg

y
in

k
W

h

Figure 5.4 The chosen energy time series E from the second selected data
set. It contains 19 labeled anomalies of the four anomaly types from the
group of technical faults that are considered as missing values. The labeled
anomalies are plotted in red. Note that the labeled anomalies with a short
length are not recognizable due to their length.
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(a) Anomaly of type 1 on 27.09.2016.
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(b) Anomaly of type 2 on 15.03.2016.
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(c) Anomaly of type 3 on 20.10.2016.
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(d) Anomaly of type 4 on 30.10.2016.

Figure 5.5 Examples of the labeled anomalies of types 1 to 4 from the tech-
nical faults in the selected energy time series with labeled anomalies E. The
anomalies are plotted in red. Note that the anomalies of types 3 and 4 actu-
ally have a length of one but are marked together with the following value to
be recognizable.

We consider the labeled anomalies in the selected energy time series E as missing
values in order to apply the CPI method to the selected time series for the evalua-
tion.4 This procedure corresponds to the use case where detected anomalies should
be replaced by typical patterns and values.

5.2.2 Benchmark Methods

To compare the performance of the proposed CPI method, we apply benchmark methods to
the data set. As suitable benchmark methods, we generally consider all imputation methods
for an energy time series E that use the time series and its characteristics only. Due to the
lack of imputation methods for energy time series E – to the best of our knowledge –, we
include imputation methods for power time series P and time series in general although
they have the disadvantage of not using energy data. Methods requiring additional data
or information such as weather data (Akouemo and Povinelli 2014; Akouemo and Povinelli

4 Note that, as with the first selected data set, one could alternatively use the related power time
series P as the starting point.
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2017) or validated reference days (Matheson et al. 2004) and methods designed for
multivariate time series only (Borges et al. 2020; Cao et al. 2018; Mateos and Giannakis
2013) are discarded due to lack of comparability. Furthermore, during the evaluation, the
method described in Bokde et al. (2018) is excluded due to its excessive run-time.

As a result, we use three methods as benchmarks in view of comparison complexity and
fairness. We derive these methods from literature (Friese et al. 2013; Moritz and Bartz-
Beielstein 2017; Peppanen et al. 2016; Taylor and Letham 2018) and adapt them where nec-
essary. To establish a fair comparison, the evaluated benchmark methods receive their data
input in the same way as the CPI method. The methods sequentially get the 50 time series
and can use each individual time series completely, but independently from the others.

The first benchmark method is the commonly applied Linear Interpolation (Moritz and
Bartz-Beielstein 2017; Peppanen et al. 2016). This method represents a lower baseline and
should be outperformed in any case. It imputes missing values p̂t by linearly interpolating
the last known power value before a gap and the first known power value after the gap, i. e.,

p̂t “
t ´ t1

t2 ´ t1
¨ ppt2 ´ pt1q ` pt1 , (5.9)

where t1 and t2 are the time steps before and after the gap. The Linear Interpolation
is thus the only evaluated method that uses two values for imputing a gap.

The second benchmark method is the Optimally Weighted Average (OWA) (Peppanen
et al. 2016). Assuming a weekly pattern, this method calculates a historical average

p̂HA
t “

1
|H|

ÿ

iPH

pi, (5.10)

where H contains all values of the hour before and after t as well as of the same
two hours of the previous and of the next week. As long as H is empty, the con-
sidered weeks are iteratively extended by one in each direction to include additional
values from the same two hours in further weeks. To ensure smooth transitions be-
tween actual and imputed values, this average is combined with the linear interpo-
lation p̂LI

t (see 5.9). The combination results in

p̂t “ wtp̂
LI
t ` p1 ´ wtqp̂

HA
t , (5.11)

where wt weighs the influence of the two imputation methods. The weight wt is designed
to decrease with increasing distance to the actual values, i. e.,

wt “ e´αdt , (5.12)

where dt describes the distance from t to the nearest actual value in the time steps
and α determines the rate of decay for wt. Since α has a negligible influence on the
imputation results in the present evaluation, we use a global α “ 0.1387 for the
evaluation as determined in Peppanen et al. (2016).
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The third benchmark method is based on the Prophet method for time series
forecasting (Taylor and Letham 2018). The Prophet method uses a modular
regression model that can be described as

yptq “ gptq ` sptq ` hptq ` ϵt, (5.13)

where g is a model for the trend, s for the seasonality, h for holidays, and ϵt for changes
that are not represented in the model. The imputation method based on this model
exploits Prophet’s capability to estimate a time series model on irregularly spaced data
(Taylor and Letham 2018) and imputes missing values with the corresponding values
of the model. The model is learned on all values available in the energy time series E

to be imputed. In contrast to its application in the CPI method, the Prophet-based
benchmark imputation method gets, like all other benchmark methods, the aforementioned
quarter-hourly values as input, i. e., 96 values per day.

5.2.3 Evaluation Criteria

To evaluate the imputation in a power time series P using the CPI method and the
benchmark methods, we use three evaluation criteria.

The first evaluation criterion is the use of matching patterns to fill the gaps. More precisely,
we determine how well imputed patterns match the actual patterns. For this purpose, we
measure the deviation between every single actual power value and the corresponding
imputed power value using the Mean Absolute Percentage Error (MAPE). It is defined as

MAPE “
1

|Tm|

ÿ

tPTm

ˇ

ˇ

ˇ

ˇ

p̂t ´ pt

pt

ˇ

ˇ

ˇ

ˇ

, (5.14)

where pt and p̂t are the actual and imputed power values at time step t and Tm is
the set of time steps with missing values.

The second evaluation criterion is the conservation of the total energy in the gaps. For
this, we measure the difference between the actual and imputed energy while ignoring
the fine granular patterns that are used for the imputation. We determine this difference
using the Weighted Absolute Percentage Error (WAPE), which is defined as

WAPE “

řN
i“1 |Êi ´ Ei|
řN

i“1 Ei

, (5.15)

where Ei and Êi are the actual and imputed energy of gap i in a power time series P

with N gaps. In contrast to the MAPE, the weighting of the individual absolute errors
is necessary in the WAPE to account for gaps of different sizes.

The third evaluation criterion is the computational cost of the imputation.
For this, we measure the run-time of the evaluated methods and decompose
it into model estimation and imputation.
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5.2.4 Used Weights in the CPI Dissimilarity Criterion

Before copying and pasting matching days, the CPI method calculates the dissimi-
larity criterion between two days using Equation (5.5). For this calculation, the CPI
method requires that the weights of the three distance measures regarding the to-
tal energy consumption, the weekday, and the seasonal position be determined in
advance. For the CPI method used in the evaluation, we determine these weights
using a grid search before the actual evaluation.

This grid search is performed on a separate data set that is used only for calibration.
To compile the calibration data set, we consider the remaining 320 time series of the
selected data set in which we insert missing values. Based on a visual inspection, we
choose five time series for the calibration data set (see Table C.2 in Appendix C) and
use their 2012 values for the calibration. The chosen time series differ from each other
but have similar characteristics as the 50 time series selected for the evaluation. Each of
the five time series from the calibration data set is evaluated with six different shares of
missing values, ranging from 1 % to 30 %, which results in 30 time series in total.

Using this calibration data set, we test 1,000 combinations of the three weights w “

pwe, ww, wsq with each weight in the range r1, 2, . . . , 10s. Each combination of weights
is evaluated using the two previously introduced evaluation criteria concerning the use
of matching patterns and the conservation of the total energy. We calculate the related
error measures MAPE and WAPE for all time series of the calibration data set. Based
on the results, we also determine the overall minimum and maximum of these two error
measures and use them to min-max normalize the values of these two error measures.
The min-max normalized MAPE is calculated with

MAPEnpw, iq “
MAPEpw, iq ´ min MAPE
max MAPE ´ min MAPE , (5.16)

where w is the tested weight combination and i is the identifier of the time series
from the calibration data set. The min-max normalized WAPE is determined analo-
gously to Equation (5.16). To obtain the average sum of these two normalized error
measures TE, we first add the normalized results of both error measures for each
time series from the calibration data set. Afterward, we add this sum of all time series
and divide it by the number of time series, i. e.,

TEpwq “

řn
i MAPEnpw, iq ` WAPEnpw, iq

n
, (5.17)

where n is the number of time series in the calibration data set. Finally, we determine
the weights with the minimum average sum of both normalized error measures, i. e.,

wopt “ arg min
w

TEpwq. (5.18)

We refer to these weights wopt in the following as best mean weights.
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To evaluate the aforementioned 1,000 weight combinations, the grid search requires 91
minutes and uses a total system memory of approximately 3.5 GB. Figure 5.6 shows the
resulting MAPE and WAPE for the tested time series from the calibration data set. For
each time series and each share of missing values, a green bar depicts the result with
the best weights, an orange bar the results with the worst weights, and a light yellow
bar the result with the determined best mean weights wopt “ p10, 1, 5q.
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Figure 5.6 The MAPE and WAPE of the best, worst, and overall best weights
for the five time series from the calibration data set used in the grid search to
determine the weights in the CPI dissimilarity criterion for the evaluation. Ev-
ery time series is evaluated with six different shares of missing values ranging
from 1 % to 30 %, resulting in a total of 30 time series used.

The results show that every time series has its own optimal weight combination. Neverthe-
less, the difference between the results with the best and the worst weights is often very
small. Similarly, the difference between the results with the best weights and the best mean
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weights wopt is often negligible. Therefore, wopt is used in the evaluation for all 50 time
series from the data, where we insert missing values. We additionally use these weights
for the data with detected anomalies that we consider as missing values for simplicity.

5.2.5 Hard- and Software

In the evaluation of the CPI and the benchmark methods, we ensure the comparability
of the results by implementing all methods in Python and evaluating them on the
same hardware. The evaluation hardware is a desktop PC running Ubuntu 20.04 with
an AMD Ryzen 5 3600 processor and 16 GB of memory.

5.3 Results

To evaluate the imputation using the CPI method and the benchmark methods, we first
examine the use of matching patterns and the conservation of energy, quantified by
the MAPE and the WAPE respectively. We report the truncated means of these two
evaluation criteria for the 50 evaluated time series and omit the two best and worst
values to obtain less outlier-sensitive results. Afterward, we present the computational
cost of the CPI method and the benchmark methods and show its decomposition before
we put the use of matching patterns and the computational cost in relation to each
other. We then present exemplary imputations to visually illustrate the evaluation results
and how the CPI method copies matching days. While all the previous results are based
on the data where we insert missing values, we lastly show an example of how the CPI
method imputes data with detected anomalies considered as missing values.

5.3.1 Use of Matching Patterns

We evaluate the use of matching patterns by the evaluated methods using the MAPE
defined in Equation (5.14). For the six different shares of inserted missing values, Fig-
ure 5.7 shows the MAPE of all evaluated methods.

For most of the shares of missing values, we observe that the CPI method performs
better than the OWA method as the best benchmark method. Both methods perform
overall about 10 to 12 % better than the Prophet-based method. The Linear Interpolation
performs by far the worst for all shares of missing values. All methods tend to higher
errors with higher shares of missing values. This trend is most distinct for the Linear
Interpolation. With regard to the errors of individual time series, the benchmark methods
are more prone to extreme errors with a maximum MAPE of 5.88 and above while
the CPI method has a maximum MAPE of 2.37.
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Figure 5.7 The MAPE of the CPI method and the three benchmark methods
applied to the data with six different shares of inserted missing values. Since
the scaling of imputed values does not noticeably affect the results of the CPI
method, it is omitted in this figure.

5.3.2 Conservation of Energy

To evaluate the conservation of energy in the gaps, we use the WAPE as defined in Equa-
tion (5.15). Figure 5.8 shows the WAPE of all evaluated methods for the six different shares
of inserted missing values. For a better comparability with the benchmark methods that all
do not use scaling, the dashed line indicates the WAPE for the CPI method without scaling.
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Figure 5.8 The WAPE of the CPI method and the three benchmark methods
applied to the data with six different shares of inserted missing values. For
better comparability with the benchmark methods that all do not use scaling,
the dashed line indicates the WAPE of the CPI method that does not scale the
imputed values to preserve the energy of a gap.

We observe that the CPI method performs best regardless of the share of missing values.
The CPI method without scaling is the second best method and performs on average
4.4 % better than the OWA method. The Prophet-based method and the OWA method
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perform very similarly, with the OWA method performing better by 1.6 % on average.
The Linear Interpolation again performs worst for all shares of missing values.

5.3.3 Computational Cost

Regarding the computational cost, we first evaluate the run-times required by
the evaluated methods, before we examine how the number of input values
influences the run-time of the CPI method.

To evaluate the run-times, we apply the evaluated methods to the 50 selected one-year time
series with 35,040 values each. Figure 5.9 shows the resulting average run-times required
for the imputation of these 50 time series with different shares of inserted missing values.
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Figure 5.9 The average run-times required by the CPI method and the three
benchmark methods for the imputation of the 50 selected one-year time
series. Note that the logarithmic time scale visually compresses the run-time
decrease of the Prophet-based method by 5.8 seconds from 1 % to 30 % of
missing values.

The Linear Interpolation is by far the fastest method. The OWA method is similarly fast
for small shares of missing values but increases more drastically in run-time than the
other methods for increasing shares of missing values. The CPI method requires about
10 to 20 times more run-time than the Linear Interpolation but is faster than the OWA
method for 20 % and 30 % of missing values. The Prophet-based method requires much
more time than all other methods and is 9 to 10 times slower than the CPI method.

To examine how the number of input values influences the run-time of the CPI method,
we additionally measure the run-time required to impute time series with different lengths.
Figure 5.10 shows the run-time required by the CPI method for imputing time series with
five different lengths from three months with 8,832 values to three years with 105,120
values. The CPI method scales approximately linearly with the number of input values
and has an average run-time of 5.56 seconds for time series with 105,120 values.
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Figure 5.10 The average run-times of the CPI method for time series with
five different lengths from three months with 8,832 values to three years
with 105,120 values.

5.3.4 Computational Cost Decomposition

To examine the measured run-times in more detail, we first decompose the run-time into
the model estimation and the imputation. Afterward, we additionally further differentiate
the run-time of the CPI method with respect to its steps.

In Figure 5.11, the run-times of the evaluated methods are decomposed into model estima-
tion and imputation for 1 % and 30 % of missing values. The model estimation including
training and fitting is depicted in blue and the actual imputation is depicted in orange.
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Figure 5.11 Run-time decomposition of the CPI method and the three bench-
mark methods into model estimation including training and fitting as well as
imputation for 1 % and 30 % of missing values.

We observe that the model estimation is the dominant part of the run-time of the CPI
method. Similarly, the model estimation also dominates the run-time of the Prophet-
based method but decreases with a larger share of missing values. In contrast, the Linear
Interpolation and the OWA method do not comprise any model estimation. Their run-times
thus entirely consist of the imputation itself. For the Linear Interpolation and the OWA
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method, the run-time required for the imputation increases considerably with a larger
share of missing values. For the CPI method and the Prophet-based method, the run-time
needed for the imputation also increases slightly with a larger share of missing values.

To further differentiate the run-time of the CPI method with respect to its steps, we
divide the model estimation into the Linear Interpolation of single missing values, the
energy consumption estimation, and the compilation of available complete days. We
accordingly split the imputation into the matching of the most similar days, pasting the
values into the gaps, scaling the imputed values, and calculating the completed energy
time series. For 1 % and 30 % of inserted missing values, Figure 5.12 shows the run-times
of these steps from bottom to top, where the steps related to the model estimation are
depicted in blue to green and the steps related to the imputation in yellow to red.
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Figure 5.12 Detailed run-time decomposition of the CPI method with regard
to its steps for 1 % and 30 % of inserted missing values.

We observe that the steps of the CPI method need different run-times. The energy
consumption estimation for gaps, that relies on the Prophet method, requires the largest
run-time, whereas all other steps need much less time. Nevertheless, the run-time of
the energy consumption estimation slightly decreases with an increased share of missing
values. All other steps except for the compilation of available complete days and the
scaling, however, require more run-time with an increased share of missing values.

5.3.5 Use of Matching Patterns vs. Computational Cost

To examine the imputation of the evaluated methods, we also relate the use of matching
patterns to the computational cost using the previous results from imputation of the
50 considered one-year time series. Figure 5.13 shows the measured average required
run-times on the x-axis and the obtained MAPE on the y-axis. A decreasing distance
to the origin indicates a better performance of an imputation method.

We observe that the Linear Interpolation provides fast and inaccurate results, whereas
the CPI method and the OWA method provide the most accurate results with a reason-
able run-time. The Prophet-based method yields medium results while taking much
longer to calculate than the other methods.
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Figure 5.13 Comparison of the use of matching patterns and the computa-
tional cost needed by the CPI method and the three benchmark methods for
the imputation of 50 one-year time series. The x-axis shows the required av-
erage run-times on a logarithmic scale and the y-axis the MAPE.

5.3.6 Exemplary Imputations

To visually illustrate the evaluation results, we first present the imputations of all
evaluated methods for one gap, before we show an example of how the CPI method
copies and pastes matching days into gaps.

To demonstrate an imputation of all evaluated methods, we choose one of the 50 one-year
time series from the first data set with 20 % of inserted missing values, resulting in large
gaps. When applying all evaluated methods to the selected time series, we obtain the
following results of the CPI method and the best respective benchmark method for the
three evaluation criteria: The CPI method has a MAPE of 0.194 and the OWA method one
of 0.211. The CPI method achieves a WAPE of 0.003 and the OWA method one of 0.065.
The CPI method requires 2.89 s for the imputation and the Linear Interpolation 0.35 s. To
illustrate this performance, Figure 5.14 shows the actual values and the imputations of all
evaluated methods for a nine-days gap from November 2012 of the selected time series.

We observe that the imputation of the Linear Interpolation fails to capture the patterns
of the time series to be imputed. The imputations by the OWA method and the Prophet-
based method capture the essential patterns but lack details. The imputation by the
CPI method mostly fits the actual values but it shifts and increases some peaks. Despite
not explicitly addressing the transitions between existing and imputed values, the CPI
method also generally provides smooth transitions on both ends of gaps. Therefore, the
imputation by the CPI method comes closest to the actual values compared to the three
benchmark methods, which confirms the previously reported MAPE and WAPE.

To show how the CPI method copies and pastes matching days into gaps, we select
another time series from the set of 50 one-year time series. Figure 5.15 shows 14 days
from January 2012 of the selected time series where the contained one and a half days
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Figure 5.14 The actual values and the imputations by the CPI method and
the three benchmark methods for a nine-days gap in November 2012 of an
exemplary one-year time series with 20 % of missing values.

gap is imputed using the CPI method. To illustrate the imputation, arrows show which
parts of days the CPI method copies and pastes into the gap.
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Figure 5.15 A 14-days segment from January 2012 of an exemplary time se-
ries whose gap is imputed using the CPI method. To illustrate the imputation,
arrows show which parts of which days the CPI method copies and pastes
into the gap.

We observe that the gap covers half a Friday and almost all of the following Saturday.
The applied CPI method imputes this gap by copying a part of the matching Friday
one week later and a part of the matching Sunday following the gap.

5.3.7 Exemplary Imputation of Data With Detected Anomalies

To present an example of how the CPI method imputes data with detected anomalies that
are considered as missing values, we apply the CPI method to the previously introduced
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energy time series E from the second data set. The time series contains 19 labeled
anomalies of the four anomaly types from the group of technical faults. We first show
the resulting imputed energy time series E, before presenting the related imputed power
time series P and imputed exemplary anomalies contained therein.

Figure 5.16 shows the selected energy time series E with the imputations using the
CPI method. We find that the CPI method replaces all zero and constant values of the
labeled anomalies, resulting an monotonously increasing energy time series E.
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Figure 5.16 The chosen energy time series E from the second selected data
set. It contains 19 labeled anomalies of the four anomaly types from the
group of technical faults that are considered as missing values when applying
the CPI method.

To also examine the patterns used for the imputation, we furthermore consider the
power time series P that the CPI provides when imputing the energy time series E

selected from the second data set. Figure 5.17 shows this entire power time series
P with the imputations by the CPI method.
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Figure 5.17 The imputed power time series P related to the chosen energy
time series E containing 19 labeled anomalies from the second selected data
set. The contained anomalies are considered as missing values and imputed
using the CPI method.

With respect to the related power time series P , we note that the CPI method imputes
the labeled anomalies in such a way that the labeled positive and negative peaks as well
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as the labeled zero values are all replaced by typical values. Thereby, the values of the
imputed time series lie within the usual range of values of the considered time series.

For a closer look at imputed anomalies in the power time series P , we select an exemplary
labeled anomaly of all four types. More specifically, we choose the same four anomalies
as considered for anomaly detection and as presented in Figure 4.8 in Section 4.2.1
for consistency. Figure 5.18 shows the imputation of the selected exemplary labeled
anomalies of types 1 to 4 from the group of technical faults that are considered as
missing values and imputed using the CPI method.
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(a) Imputed anomaly of type 1 on
27.09.2016.
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(b) Imputed anomaly of type 2 on
15.03.2016.
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(c) Imputed anomaly of type 3 on
20.10.2016.
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(d) Imputed anomaly of type 4 on
30.10.2016.

Figure 5.18 Examples of the labeled anomalies of types 1 to 4 from the tech-
nical faults that are considered as missing values and imputed using the CPI
method. Note that the anomalies of types 3 and 4 actually have a length of
one but are marked together with the previous value to be recognizable.

In general, for all four exemplary anomalies, the CPI method removes the labeled
anomalies with their peaks and zero values and replaces them with patterns in the usual
value range of the time series. However, despite the selection of generally matched
patterns, the level of the patterns used for imputation is lower or higher than that
of the adjacent values for the exemplary anomalies of types 3 and 4. Moreover, if
we look more closely at the imputed anomalies of all types and compare them with
the labeled anomalies, we find that the imputation by the CPI method always also
affects the last data point before each labeled anomaly.
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5.4 Discussion

In this section, we discuss the reported results and the benefits of the proposed CPI
method for imputing energy time series.

In the evaluation presented in Section 5.3, the CPI method obtains a lower MAPE for
most shares of inserted missing values and a lower WAPE for all shares of missing values
with respect to the benchmarks. From these results and the exemplary imputations in
the data with inserted missing values, we infer that the CPI method selects matching
blocks of data for the imputation and ensures that the overall energy per gap remains
unchanged while imputing the missing values. We assume that the comparatively low
WAPE is closely related to the use of energy as a distance measure, which is possible
thanks to the use of energy time series as input. The scaling performed by the CPI
method even reduces the WAPE to nearly zero for all shares of missing values, so the
CPI method performs even better. In view of the already good results without scaling,
the contribution of scaling is, however, relatively small.

Furthermore, we consider the computational cost of the CPI method to be comparatively
moderate because it requires more run-time than the Linear Interpolation, more or less
run-time than the OWA method depending on the share of missing values, and less
run-time than the Prophet-based method. The run-time of the CPI method additionally
scales well with increasing shares of missing values and the length of the input time
series. One reason for the observed run-times of the CPI method could be the required
model estimation observed in the run-time decomposition. Nevertheless, when relating
the computational cost to the use of matching patterns, the CPI method, like the OWA
method, provides accurate results with a reasonable run-time. Interestingly, we also
observe that the Prophet-based method has a longer run-time than the CPI method,
which also uses the Prophet method in one step. We assume that this observation is
caused by a more time-consuming training of the Prophet-based method due to its larger
input. When applied as benchmark method, the Prophet-based method receives 96 values
per day as input as opposed to only one value per day when used in the CPI method.

When applying the CPI method to an exemplary real-world energy time series E with
labeled anomalies that are considered as missing values, the resulting imputation leads to a
monotonously increasing energy time series E as desired. Considering the related imputed
power time series P , the CPI method generally imputes the labeled peaks and zero values
with matching patterns in the typical value range of the considered time series. The shown
imputations of the exemplary anomalies of the types 1 to 4 from the group of technical
faults generally confirm this observation. However, the imputations of the anomalies of
types 3 and 4 are on a lower or higher level than the values adjacent to the imputed
values. The reason for the inappropriate levels could be that anomalies of types 3 and 4
have a length of one and that the CPI method thus linearly interpolates the corresponding
missing value in the energy time series E. As a result, the sum of the consumed or
produced energy during the gap and its previous value is just split between these two
values in the linear interpolation. While this procedure is generally correct, anomalies of
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types 3 and 4 violate the underlying assumption that the amount of energy consumed or
produced during a gap is the same as that of the imputed values. For this reason, future
work could adapt the CPI method such that it linearly interpolates anomalies of types 3
and 4 in the related power time series P . However, this adaptation would also require the
CPI method to update the related energy time series E because of the changed amount of
energy. Furthermore, we observe in the imputed exemplary anomalies that the imputations
of the anomalies of types 1 and 2 by the CPI method start also one data point before
the actually labeled anomalies. We suppose that this is caused by the CPI method’s
derivation of the power time series P from the energy time series E that always affects
two values. Therefore, future work could investigate whether this derivation causes the
longer imputations and could adapt the respective imputations in the power time series P .

Overall, the proposed CPI method provides several benefits. The main benefit is that the
CPI method generally provides a realistic imputation for energy time series, even for large
gaps with several weeks of consecutively missing values. In contrast to almost all other
methods in the literature, the CPI method uses the often provided energy time series Ei,
i. e., the actual meter readings, instead of power time series Pi, i. e., the average power per
interval. Using an energy time series E allows including the information on the total energy
consumed or produced during gaps. Using this information enables a robust selection of
matching blocks of data and ensures that the overall energy per gap remains unchanged
while imputing the missing values with realistic patterns. Through imputing missing
values, the CPI methods increases the completeness of collected energy time series Ei and
of the derivable power time series Pi, which are then available to smart grid applications
relying on complete input data. For the imputation itself, the CPI method does not need
any additional information such as weather data or consumption data from spatially close
smart meters. It only requires three parameters in the dissimilarity measure, however their
choice usually does not strongly influence the performance of the CPI method.

5.5 Contribution and Future Work

In the present chapter, we investigate how anomalies detected in energy time series can
be compensated, thus answering research question [RQ3]. For this, we compare the
performance of the proposed CPI method with benchmark methods on two real-world
data sets, one with inserted missing values and one with detected anomalies considered as
missing values. The comparison includes the use of matching patterns, the conservation
of energy, the computational cost and its decomposition, and the relation of the use of
matching patterns and the computational cost. Lastly, we present exemplary imputations
to visually illustrate the evaluation result and show an example of how the CPI method
imputes data with detected anomalies considered as missing values.
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Following this approach, the present chapter makes the following contributions:

‚ We propose the CPI method for univariate energy time series. Using an energy time
series E as input, it copies blocks of data with similar characteristics and pastes
them into gaps of the time series.

‚ We demonstrate that the proposed CPI method outperforms the selected benchmark
methods for six different shares of inserted missing values regarding the use of
matching patterns and the conservation of the overall energy of every imputed gap.

‚ We show that the CPI method also has only moderate computational cost compared
to the benchmark methods and that this cost scales well with increasing shares of
missing values and the length of the input time series. Additionally, we present that
the CPI method offers a good trade-off between the use of matching patterns and
the computational cost.

‚ We confirm in the presented exemplary imputations that the CPI method copies
matching patterns into gaps but has difficulties with anomalies comprising unrealistic
low or high amounts of energy.

Given the proposed CPI method, future work could follow different directions. The robust-
ness of the CPI method could be analyzed and improved regarding aperiodic events or
time series with other temporal resolutions and periodicities such as residential solar power
generation or fast charging of electrical vehicles. Similarly, time series containing both
power consumption and generation from renewable energy sources could be of interest
for further investigation. A robustness analysis could further include the selection of the
weights in the dissimilarity criterion – for example in dynamic environments – and the
compilation of the calibration data set used for determining the weights. Furthermore, im-
puting anomalies comprising unrealistic low or high amounts of energy and the transitions
between existing and imputed values on both ends of gaps could be further investigated.

Moreover, a trend analysis could enhance the CPI method’s selection of matching days
especially for longer gaps. Similarly, additional information such as voltage magnitude
and spatial temporal correlations could be used to improve the matching days selection.

Furthermore, the CPI method could be integrated in applications that rely on complete
input data such as grid simulation, load forecasting, and load management. Anomaly
or error detection functions could also be included in the CPI method itself to repair
implausible values. Moreover, a reporting and analysis tool could use the CPI method
to estimate the imputation quality based on inserted missing values.
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6 Managing Anomalies in Energy
Time Series Forecasting

As motivated in the introduction, anomaly management can aim to account for anomalies
in energy time series forecasting. In general, considering anomalies and their potential
impact has a long history in statistics (Box and Tiao 1975; Chang et al. 1988; Denby
and Martin 1979) and is still a challenge in various domains, including finance (Grané
and Veiga 2014; Nyitrai and Virág 2019), the process industry (Xie et al. 2016; Yin and
Wang 2013; Yin et al. 2014), and organizational science (Aguinis et al. 2013).

In the energy system, the potential influence of anomalies on applications such as billing
and forecasting is also generally known (Wang et al. 2019). When developing methods
for anomaly detection and compensation, some works use the resulting forecasting perfor-
mance as an evaluation metric (e.g., Akouemo and Povinelli 2016; Akouemo and Povinelli
2017; Quintana et al. 2022), thus implicitly expressing the importance of appropriately man-
aging anomalies. In energy time series forecasting, anomalies are, however, typically only
taken into account as a necessary but not elaborated step of the pre-processing, after the
used input data has been identified as limiting the forecast performance (e.g., Ben Taieb
and Hyndman 2014; Charlton and Singleton 2014; Ranjan et al. 2021; Xie and Hong 2016).

At the same time, the influence of the input data on important system functions and appli-
cations is increasingly recognized especially under the development of the energy system to
a cyber-physical system. As a result, investigating the robustness of forecasting methods
against anomalous data (e.g., Luo et al. 2018a; Zhang et al. 2020), strengthening existing
forecasting methods (e.g., Zhou et al. 2022), and developing forecasting methods resilient
to cyber attacks (e.g., Jiao et al. 2022; Luo et al. 2018b; Luo et al. 2023; Yue et al. 2019;
Zheng et al. 2020) gains growing attention in the literature and proves the importance of
anomaly management in energy time series forecasting. Also with a focus on the existing
limited data quality or decision optimization, energy forecasting methods are proposed that
explicitly correct the used data input by detecting anomalies and replacing the detected

Parts of this chapter are reproduced from
M. Turowski, O. Neumann, L. Mannsperger, K. Kraus, K. Layer, R. Mikut, and V.
Hagenmeyer (2023). Managing Anomalies in Energy Time Series for Automated Forecasting.
Submitted.
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6 Managing Anomalies in Energy Time Series Forecasting

anomalies with appropriate values (e.g., Chakhchoukh et al. 2011; Chen et al. 2014; Luo
et al. 2018c) or use the information on predicted anomalies to adapt energy production
(Teng et al. 2022). Despite these advances regarding specific forecasting methods and
the general consideration of anomalies, it is not known how best to deal with anomalies.
However, a proper anomaly management is essential, thus a rigorous comparison of
available strategies for managing anomalies in energy time series forecasting is lacking.

Therefore, the present chapter proposes and evaluates different general strategies for
managing anomalies in energy time series forecasting. For this purpose, we build on
the typically used strategies mentioned above and describe four different general strate-
gies, namely the raw, the robust, the detection, and the compensation strategy. While
the raw strategy uses the data input without any changes for the forecast, the robust
strategy applies robust forecasting methods to the data input. The detection strat-
egy provides information on anomalies detected in the input data to the forecasting
method and the compensation strategy detects and compensates anomalies in the
input data before applying a forecasting method.

To examine these strategies, we perform a four-step evaluation using a representative
selection of forecasting methods and two real-world data sets, namely data with inserted
synthetic anomalies derived from real-world data and data containing labeled anomalies.
In a first step, we compare the raw and robust strategies that use the same input data
but different forecasting methods to identify which of them performs better. Afterward,
we determine in a second step for the detection strategy and in a third step for the
compensation strategy whether the selected supervised or unsupervised anomaly detection
method provides the best basis for the respective strategy. Lastly, we compare all
proposed strategies considering the previous findings.

With the evaluated strategies, we answer research question [RQ4] presented in Sec-
tion 1.1 that addresses how an anomaly management can account for anomalies in
energy time series forecasting. By answering research question [RQ4], the proposed
strategies provide means to manage anomalies in energy time series forecasting us-
ing the pipeline for managing anomalies and considering the prior anomaly detec-
tion and compensation (see Figure 6.1).

Anomaly
compensation

method
Time series

with compen-
sated anomalies

Time series
with detected

anomalies

Anomaly
detection
method

Time series
containing
anomalies

Forecast
method

Forecast of
the time

series

[RQ4]

Figure 6.1 By answering research question [RQ4], the proposed strategies
provide means to manage anomalies in energy time series forecasting using
the pipeline for managing anomalies and considering the prior anomaly de-
tection and compensation.
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6.1 Strategies for Managing Anomalies in Energy Time Series Forecasting

The remainder of the present chapter is structured as follows. Section 6.1 presents
the strategies for managing anomalies in energy time series forecasting. In Section 6.2,
we describe the experimental setting of the performed evaluation. In Section 6.3, we
present the results of the evaluation. Finally, we discuss the results and the strategies
in Section 6.4 and conclude the chapter in Section 6.5.

6.1 Strategies for Managing Anomalies in Energy Time Series
Forecasting

In this section, we present four general strategies for managing anomalies in energy time
series forecasting. As shown in Figure 6.2, the strategies differ in the used steps and
input to the applied forecasting method. We thus describe the included steps, the used
input, and the underlying assumptions for each strategy in the following.

Raw Strategy The first strategy is the so-called raw strategy. It directly uses a power
time series containing anomalies P as input to a forecasting method. Based on this
input, the applied forecasting method provides a forecast of the power time series P .
The raw strategy assumes that the anomalies contained in the input time series do not
strongly influence the forecast from the applied forecasting method and that thus the
applied forecasting method still achieves an accurate forecast.

Robust Strategy The second strategy is the so-called robust strategy. In this strat-
egy, the power time series containing anomalies P also directly serves as input to a
forecasting method that provides the forecast of the power time series P . However,
the applied forecasting method is considered as robust against anomalies. This strat-
egy assumes that forecasting methods differ in their robustness against anomalies in
the input data and thus robust methods can provide accurate forecasts regardless
of anomalies present in the input data.

Detection Strategy The third strategy is the so-called detection strategy. This strategy
first applies a supervised or unsupervised anomaly detection method to the power time
series containing anomalies P . The resulting power time series with detected anomalies
P serves as input to the forecasting method that then provides the forecast of the power
time series P . The assumption of the detection strategy is that the applied forecasting
method can incorporate information about detected anomalies in its model so that the
consideration of detected anomalies leads to an accurate forecast.
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Compensation Strategy The fourth strategy is the so-called compensation strat-
egy. It also first applies a supervised or unsupervised anomaly detection method to
the power time series containing anomalies P . However, this strategy then uses the
power time series with detected anomalies P as input to an anomaly compensation
method that replaces the detected anomalies with realistic values. The resulting power
time series with compensated detected anomalies P serves as input for the forecast-
ing method that provides the forecast of the power time series P . The compensation
strategy assumes the anomalies have to be compensated in order to enable the applied
forecasting method to provide an accurate forecast.

Input power time
series contain-

ing anomalies P

Anomaly
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Power time series
with detected
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Anomaly
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Power time series
with compensated

detected anomalies P

Forecast

Forecast of power
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Forecast
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forecastForecast
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Figure 6.2 The four strategies for managing anomalies in energy time series
forecasting. The raw strategy directly uses the input power time series P to
provide a forecast. The robust strategy applies a robust forecasting method
directly to the input power time series P . The detection strategy first detects
anomalies in the input power time series P , before providing a forecast using
the information on the detected anomalies from the power time series with
detected anomalies P . The compensation strategy detects anomalies and ad-
ditionally compensates the detected anomalies before performing a forecast
based on the power time series with compensated detected anomalies P .
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6.2 Experimental Setting

In this section, we present how we evaluate the proposed strategies for managing anomalies
in energy time series forecasting. After describing the used data and the inserted synthetic
anomalies, we introduce the applied anomaly detection approach, the used anomaly
detection methods, the applied anomaly compensation method, and the used forecasting
methods. Finally, we describe the evaluation criterion and the used hard- and software.

6.2.1 Data Sets with Anomalies

For the evaluation, we use two real-world data sets that differ in the ob-
served anomalies. While we insert synthetic anomalies into the first, the
second one contains labeled anomalies.

Data with Synthetic Anomalies The first data set is the “ElectricityLoadDia-
grams20112014 Data Set”1 from the UCI Machine Learning Repository (Dua and Graff
2019), which we also use in Chapters 4 and 5 and in Turowski et al. (2022b) and Turowski
et al. (2022a). It includes electrical power time series from 370 clients with different
consumption patterns (Rodrigues and Trindade 2018). The 370 time series are available in
a quarter-hourly resolution for a period of up to four years, namely from the beginning of
2011 until the end of 2014. As in Section 4.2.1, we choose the power time series MT_200
for the evaluation to cover the entire four-year period, to account for the electrical load
of a typical client, and to consider a comparatively anomaly-free time series. For a plot
of the entire power time series P , we refer to Figure 4.4a in Section 4.2.1.

Since the chosen time series does not include labeled anomalies, we insert synthetic
anomalies into it in the same way as in Section 4.2.1 and in Turowski et al. (2022a):
We consider the two anomaly groups technical faults in the metering infrastructure
and unusual consumption. For the insertion, we use the defined anomaly types 1 to
4 from the technical faults and the defined anomaly types 5 to 8 from the unusual
consumption. Anomalies of types 1 to 4 are based on anomalies identified in real-world
power time series in Turowski et al. (2022b). These anomalies violate the underlying
distribution corresponding to normal behavior. Anomalies of types 5 to 8 represent unusual
behavior as described in Turowski et al. (2022a). These anomalies are characterized
by an unusually low or high power consumption. Figures 4.5 and 4.6 in Section 4.2.1
show exemplary anomalies of types 1 to 4 and types 5 to 8. For the evaluation, we
insert once 20 anomalies of types 1 to 4 each from the group of technical faults and
once 20 anomalies of types 5 to 8 each from the group of unusual consumption into
the selected time series. The inserted anomalies correspond to 5 % of the data for the
technical faults and 11 % of the data for the unusual consumption.

1 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

101

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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Data with Labeled Anomalies The second data set is the electrical data collected
on the Campus North of the Karlsruhe Institute of Technology (KIT), which we also use
in Chapters 3 to 5 and in Turowski et al. (2022b). From this data, we choose the smart
meter of the previously considered typical mid-campus office building: Its power time
series P from 2016 is used for the evaluation in Chapter 4 and its energy time series E

from 2016 for the evaluation in Chapter 5. For the present evaluation, we also choose its
power time series P from 2016 as it contains 19 labeled anomalies. The labeled anomalies
belong to the four identified anomaly types of the group of technical faults described
in Chapter 3 and correspond to 6 % of the data. For more details on the contained
anomalies, a plot of the selected power time series P , and a plot of exemplary contained
anomalies, we refer to Table 4.1 and Figures 4.7a and 4.8 in Section 4.2.1.

6.2.2 Applied Anomaly Detection Approach

Given the general performance improvement of the approach introduced in Chapter 4 and
in Turowski et al. (2022a) for enhancing the detection performance of supervised and un-
supervised anomaly detection methods using the latent space data representation, we also
apply this approach in the evaluation of the proposed strategies. Following this approach,
we apply selected anomaly detection methods to the latent space representation of the
used data created by a trained generative method (see Figure 6.3). We select a conditional
Invertible Neural Network (cINN) (Ardizzone et al. 2019) and a conditional Variational
Autoencoder (cVAE) (Sohn et al. 2015) as generative methods for creating the latent
space representations. For both, we use the implementations detailed in Section 4.2.2.
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of input
time series
containing
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Calendar and
statistical information
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Figure 6.3 According to the selected anomaly detection approach, a trained
generative method creates the latent space data representation of an input
time series containing anomalies. The latent space data representation then
serves as input to an anomaly detection method.

The training of the used conditional Invertible Neural Network (cINN) and conditional
Variational Autoencoder (cVAE) follows the training described in Section 4.2.2: We train
the supervised cINN and cVAE using a certain number of data points from the selected
data, namely the first 15,000 data points from the data with synthetic anomalies and
the first 8,735 data points from the data with labeled anomalies. The selected numbers
of data points correspond to about five months and three months of data respectively.
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We apply the unsupervised cINN and cVAE to the data with inserted synthetic anomalies
assuming 10 % of anomalous data and to the data with labeled anomalies assuming 5 %
of anomalous data by setting the contamination parameter of the unsupervised cINN
and cVAE to 0.1 and 0.05 respectively. Regardless of supervised or unsupervised anomaly
detection, both generative methods obtain standardized data points of the selected time
series of a data set as samples with a size of 96. Both generative methods also use the
mean of the considered time series sample as statistical information as well as the hour
of the day, the month of the year, and the weekday as calendar information.

6.2.3 Applied Anomaly Detection Methods

Since the evaluation of the selected anomaly detection approach in Section 4.3 and
in Turowski et al. (2022a) already assesses a variety of anomaly detection methods
on the selected data sets, we use these evaluation results to select anomaly detection
methods for the present evaluation. For each selected data set and group of anomalies,
we choose the best-performing latent space representation, supervised anomaly detection
method with best-performing hyperparameters, and unsupervised anomaly detection
method for the present evaluation of the proposed strategies (see Table 6.1). We briefly
describe each supervised and unsupervised anomaly detection method selected based
on the evaluation result and their application in the following.

Table 6.1 Overview of the supervised and unsupervised anomaly detection
methods and latent space representations applied to the selected data sets
and group of anomalies in the evaluation of the proposed strategies.

Data set Group of
anomalies

Type of detec-
tion method

Selected latent
space represen-
tation

Selected anomaly de-
tection method

Supervised cINN NBTechnical
faults Unsupervised cINN VAE

Supervised cINN XGBoost

Data with
synthetic
anomalies Unusual

consumption Unsupervised cVAE LOF

Supervised cINN SVCData with labeled
anomalies

Technical
faults Unsupervised cVAE iForest

Supervised Methods The first considered supervised anomaly detection method is the
Gaussian Naïve Bayes (NB). Based on the assumption that each pair of input features
is independent from each other, it estimates a conditional probability using the prior
probability of the output variable (Tan et al. 2019). The second considered supervised
method is the XGBoost. As a gradient boosting machine, it uses decision trees with
gradient decent to minimize a regularized objective function (Chen and Guestrin 2016).
The third considered supervised method is the Support Vector Machine for Classification
(SVC). It determines the hyperplane with the highest distance to the nearest data points
of the binary classes and uses this hyperplane to classify test samples (Vapnik 2000).
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Unsupervised Methods The first considered unsupervised anomaly detection method
is the Variational Autoencoder (VAE). It learns to map its input to its output using
the probability distribution of ideally anomaly-free data in the latent space, so it is
trained to only reconstruct non-anomalous data (Kingma and Welling 2014). The sec-
ond considered unsupervised method is the Local Outlier Factor (LOF). It estimates
the local density of a sample by the distance to its k-nearest neighbors and uses low
local densities compared to its neighbors to determine anomalies (Breunig et al. 2000).
The third considered unsupervised detection method is the Isolation Forest (iForest). It
creates an ensemble of isolation trees and uses short average path lengths in these
trees to determine anomalies (Liu et al. 2008).

Application We apply the selected supervised and unsupervised anomaly detection
methods in the same way as described in Section 4.2.4: The unsupervised detection
methods make use of the complete selected time series of each data set. The supervised
detection methods, however, use the first 5,000 data points for training and are then
applied to all data points except the first 15,000 or 8,735 data points respectively
used for the training of the generative methods.

6.2.4 Applied Anomaly Compensation Method

For the anomaly compensation in the evaluation of the proposed strategies, we consider
the results of the evaluation of imputation methods applied for compensation in Chapter 5
and in Weber et al. (2021). In that evaluation, the Copy-Paste Imputation (CPI) method
(Weber et al. 2021), that requires an energy time series E as input, outperforms all
other evaluated methods. However, given that the present evaluation uses power time
series P as data, we select the Prophet-based imputation method as the second best
method for the evaluation of the proposed strategies as it works with power time series
P . The Prophet-based imputation method is built on the forecasting method Prophet
which is capable to estimate a time series model on irregularly spaced data (Taylor and
Letham 2018). Prophet uses a modular regression model that considers trend, seasonality,
and holidays as key components. It can be described as

yptq “ gptq ` sptq ` hptq ` ϵt, (6.1)

where g models the trend, s the seasonality, h the holidays, and ϵt all other changes
not represented in the model. The Prophet-based imputation method trains the re-
gression model using all values available in the power time series P . Given the trained
regression model, the Prophet-based imputation method considers all anomalies in
the power time series P as missing values and imputes them with the correspond-
ing values from the trained regression model.
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6.2.5 Anomaly-Free Baseline Strategy

In the evaluation, we examine the proposed raw, robust, detection, and compensation
strategies all based on data containing inserted synthetic or labeled anomalies. For the data
in which we insert synthetic anomalies, we additionally provide an anomaly-free baseline
for the evaluation of these strategies. This baseline strategy comprises forecasts that are
calculated on that selected data but without any inserted anomalies (see Figure 6.4).

Input power time
series without inserted
synthetic anomalies P

Forecast

Forecast of power
time series P

Anomaly-free
baseline strategy

Figure 6.4 For the evaluation of the proposed strategies on the data with
inserted synthetic anomalies, we use the forecast calculated on the input
power time series without inserted anomalies P as an anomaly-free baseline
strategy.

6.2.6 Applied Forecasting Methods

For the evaluation of the proposed strategies, we consider an one-step 15 minutes-
ahead forecast for which we apply a representative selection of forecasting methods
to the selected data sets. We first present the applied forecasting methods and their
input data for the baseline, raw, and compensation strategies, before we describe them
for the detection strategy, the robust strategy, and the anomaly-free baseline strat-
egy. We lastly present the used train-test split.

Methods Applied in Raw and Compensation Strategies To examine the raw and
compensation strategies comprehensively, we consider methods with different learning
assumptions. We apply six forecasting methods, namely two naive and four advanced
methods, where the advanced methods comprise a simple statistical method, a simple
and a more complex machine learning method, and a statistical learning method.

The first naive method is the Last Value Forecast. It uses the previous value
for the value to be predicted, i. e.,

ŷt “ yt´1, (6.2)
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where ŷt is the forecast value of the electrical load at time t and yt´1 is
the electrical load at time t ´ 1.

The second naive method is the Last Week Forecast. It takes the corresponding value
of the last week as the forecast value, i. e.,

ŷt “ yt´672, (6.3)

where ŷt is the forecast value of the electrical load at time t and yt´672 is the elec-
trical load one week ago at time t ´ 672.

The first advanced method is the Linear Regression (LinR). As a statistical
method, it models the forecast value as linear relationship between the historic
load and calendar information and determines the corresponding parameters
using ordinary least squares. It is defined as

ŷ “ c `
ÿ

j

βj ¨ Lj `
ÿ

k

γk ¨ Ck ` ϵ, (6.4)

where c is a constant, Lj are the lagged load features, Ck are the calendar information, and
ϵ is the error. Note that we omit the time indices in the equation for the sake of simplicity.

The second advanced method is a commonly applied simple machine learning method,
namely a Neural Network (NN). It organizes a network of interconnected nodes in input,
hidden, and output layers to apply different functions to activate the corresponding nodes
to learn the relationship between input and output (e.g., Werbos 1974; Mitchell 1997).
The implementation of the used NN is detailed in Table 6.2. For its training, we use a batch
size of 64, the Adam optimizer (Kingma and Ba 2015), and a maximum of 50 epochs.

Table 6.2 Implementation details of the applied NN.

Layer Description

Input [Load data, encoded calendar information]
1 Dense 32 neurons; activation: relu
2 Dense 16 neurons; activation: relu
Output Dense 1 neuron; activation: linear

The third advanced method is the Profile Neural Network (PNN) (Heidrich et al. 2020)
as a state-of-the-art and more complex machine learning method. It combines statis-
tical information in form of standard load profiles with convolutional neural networks
(CNNs) to improve the forecasting accuracy. For this, it decomposes a power time
series P into a standard load profile module, a trend module, and a colorful noise
module, before aggregating their outputs to obtain the forecast (Heidrich et al. 2020).
For the training, the PNN uses a batch size of 512, the Adam optimizer (Kingma
and Ba 2015), and a maximum of 50 epochs.

The fourth advanced method is the Support Vector Regression (SVR). It represents a
statistical learning method that determines a regression plane with the smallest distance
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to all data points used for the training. The data points closest to the regression plane
on both sides are the so-called support vectors (Drucker et al. 1996). We apply the
SVR with a RBF kernel, C “ 1.0, and ε “ 0.0.

All introduced forecasting methods use the historical values of the selected power time
series P that contains inserted synthetic or labeled anomalies. The advanced methods
also consider calendar information as input. The calendar information comprises each
weekday encoded as a Boolean and the workdays (Monday to Friday) encoded as a
Boolean. It also includes the hour of the day encoded as the sine function sinp2 ¨ π ¨

hour{23q and the cosine function cosp2 ¨ π ¨ hour{23q, the day of the month encoded
as the sine function sinp2 ¨ π ¨ pday ´ 1q{days of the monthq and the cosine function
cosp2 ¨ π ¨ pday ´ 1q{days of the monthq, and the month of the year encoded as the sine
function sinp2 ¨ π ¨ month{11q and the cosine function cosp2 ¨ π ¨ month{11q. While the
naive methods directly use the power values, all other methods obtain the considered
calendar information and the lags 4, 96, 192, and 672 of the standardized power values.

Methods Applied in Detection Strategy For the detection strategy that can use
information on the detected anomalies for the forecast, we apply the forecasting methods
introduced for the raw and compensation strategies with exception of the Last Value
Forecast. This way, we also evaluate the detection method using forecasting methods with
different learning assumptions. However, we adapt the methods as follows: To further
consider a naive method, we modify the Last Week Forecast so that it uses the corre-
sponding value of the second to last week as the forecast value if the value to be predicted
is a detected anomaly. In accordance with the detection strategy, all methods obtain the
information on the detected anomalies with lags 4, 96, 192, and 672 as additional features.

Methods Applied in Robust Strategy To comprehensively evaluate the robust
strategy, we apply three forecasting methods with different learning assumptions that
are known to be robust against anomalies. For this, we choose one naive and two
advanced methods. The advanced methods comprise a statistical learning method
and a more complex machine learning method.

The naive method is the Median Weekday Forecast. It calculates the median values of
each weekday and uses the corresponding value as forecast value, i. e.,

ŷt “ ỹt, (6.5)

where ŷt is the forecast value of the electrical load at time t and ỹt is the median
value of the corresponding weekday at time t.
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The first advanced method is the Random Forest (RF) Regressor representing a statistical
learning method. It creates several randomly drawn regression trees and takes the mean
of each individual tree’s forecast as forecast (Breiman 2001), i. e.,

ŷt “
1
B

B
ÿ

b“1
tbpxq, (6.6)

where B is the number of bootstrap samples of the training set, tb is an individual fitted
tree, and x are the values from the test set. For the evaluation, we use B “ 100.

The second advanced method is the XGBoost Regressor, which represents a more complex
machine learning method. It iteratively creates regression trees and uses gradient descent
to minimize a regularized objective function (Chen and Guestrin 2016).

These forecasting methods also all use the historical values of the selected power time
series P that contains inserted synthetic or labeled anomalies. The advanced meth-
ods additionally obtain the above mentioned calendar information as input. While the
Median Weekday Forecast uses the historical load values directly, the RF Regressor
and the XGBoost Regressor use the considered calendar information and the lags 4,
96, 192, and 672 of the standardized power values.

Methods Applied in Anomaly-Free Baseline Strategy To calculate the anomaly-
free baseline strategy for the data containing synthetic anomalies, we apply all forecasting
methods described for the raw and compensation strategies as well as the robust strategy
to the same data but without inserted synthetic anomalies. These forecasting methods
obtain the inputs in the way as described for the raw, compensation, and robust strategies.

Train-Test Split Regardless of the considered strategy, we use the same train-test
split for all evaluated forecasting methods. However, the train-test split differs for the
considered data sets and applied anomaly detection:

‚ For the data set with inserted synthetic anomalies, each forecasting method is
trained on 80 % of the available data and tested on the remaining 20 %. For all
strategies applied to this data, the available data is the selected time series without
the first 15,096 data points in the case of supervised anomaly detection and without
the first 96 data points in the case of unsupervised anomaly detection. When
calculating the anomaly-free baseline strategy for this data set, we use the same
period of time as in the case of the unsupervised anomaly detection, i. e., all values
except the first 96 data points.

‚ For the data set with labeled anomalies, each forecasting method is trained on
about 66 % of the available data and tested on the remaining 34 % to account
for the shorter available data length. For all strategies applied to this data, the
available data is the selected time series without the first 8,831 data points in the
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case of supervised anomaly detection and without the first 96 data points in the
case of unsupervised anomaly detection.

6.2.7 Evaluation Criterion

To evaluate the proposed strategies for managing anomalies in energy time series fore-
casting, we use the accuracy of the obtained forecasts. We measure the accuracy with
the commonly used Root Mean Squared Error (RMSE). It is defined as

RMSE “

g

f

f

e

1
N

N
ÿ

t“1
pyt ´ ŷtq

2, (6.7)

where N is the number of data points to be predicted. We thus calculate the square
root of the squared difference between the value to be forecast and the forecast value
divided by the number of data points in the test set.

6.2.8 Hard- and Software

To obtain comparable results, we use the same hardware throughout the evaluation. The
used hardware is a 48 core system with 256 GB RAM, where each core has 2.1 GHz.
Moreover, we implement all evaluated strategies and used anomaly detection methods,
anomaly compensation method, and forecasting methods in Python.

For the anomaly detection using the latent space data representation created by the
selected cINN or cVAE, we apply the implementation and methods described in Chapter 4
and in Turowski et al. (2022a). It uses FrEIA2 and PyTorch3 (Paszke et al. 2019) for the
cINN, PyTorch (Paszke et al. 2019) for the cVAE, the available XGBoost implementation4

(Chen and Guestrin 2016), Keras5 (Chollet et al. 2015) for the Variational Autoencoder
(VAE), and scikit-learn6 for all other anomaly detection methods.

Regarding the anomaly compensation, we use the implementation of the Prophet-based
method described in Section 5.2 and in Weber et al. (2021) that is based on the available
Prophet implementation7 (Taylor and Letham 2018).

2 https://github.com/VLL-HD/FrEIA
3 https://pytorch.org/
4 https://xgboost.ai/
5 https://keras.io/
6 https://scikit-learn.org/
7 https://facebook.github.io/prophet/
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6 Managing Anomalies in Energy Time Series Forecasting

Regarding the forecasting methods, we use Keras8 (Chollet et al. 2015) for the NN
and scikit-learn for the LinR, SVR, and RF Regressor. Additionally, we apply the avail-
able implementation (Chen and Guestrin 2016) for the XGBoost Regressor, and adapt
the available implementation of the PNN9 (Heidrich et al. 2020) to work without
weather data. We finally use pyWATTS10 (Heidrich et al. 2021) to implement the
proposed strategies and to automate their evaluation.

6.3 Results

To examine the presented general strategies, we perform a four-step evaluation. In a first
step, we compare the raw and robust strategies that use the same input data but different
forecasting methods to identify which of them performs better. Afterward, we determine in
a second step for the detection strategy and in a third step for the compensation strategy
whether the selected supervised or unsupervised anomaly detection method provides the
best basis for the respective strategy. Finally, we compare all the proposed strategies,
taking into account the findings from the previous steps. In all steps, we present the
results for the data with inserted synthetic anomalies and the data with labeled anomalies.

6.3.1 Comparison of Raw and Robust Strategies

Since they use the same input data and only differ in the applied forecasting methods,
we compare the raw strategy and the robust strategy. For this comparison, we apply the
associated forecasting methods to the data available in the case of the unsupervised
anomaly detection. As a reference, we additionally report the anomaly-free baseline
strategy for the data with inserted synthetic anomalies.

Data With Synthetic Anomalies We evaluate the forecasting methods selected for
the raw and robust strategies on the data with inserted synthetic anomalies from both
anomaly groups, namely technical faults and unusual consumption. Figures 6.5a and 6.5b
present the resulting RMSE for the technical faults and unusual consumption. The bars
show the average RMSE for the raw or robust strategy and the anomaly-free baseline
strategy. The error bars indicate the best and the worst observed RMSE.

With regard to the technical faults, we observe that forecasting methods using the
raw strategy have a noticeably higher RMSE compared to the anomaly-free baseline
strategy as the forecasting methods using the robust strategy. The forecasting methods
using the robust strategy achieve RMSEs that are as low as the RMSE when using
the anomaly-free baseline strategy. When comparing the forecasting methods using the

8 https://keras.io/
9 https://github.com/benHeid/Profile-Neural-Network
10 https://github.com/KIT-IAI/pyWATTS
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Figure 6.5 The RMSE of the six forecasting methods using the raw strategy
and three forecasting methods using the robust strategy that are applied to
the data with 20 synthetic anomalies of each type from the technical faults
and unusual consumption. For each method, the bars indicate the average
RMSE for the raw or robust strategy and the anomaly-free baseline strategy.
The error bars show the best and the worst observed RMSE. Note that the
anomaly-free baseline strategy generally performs best because it uses data
that does not contain inserted synthetic anomalies.

raw and robust strategies regarding their actual accuracy, the LinR, the NN, and the
PNN using the raw strategy and the RF Regressor using the robust strategy obtain the
lowest RMSE. The SVR achieves the next best RMSE and is followed by the XGBoost
Regressor, the Last Value Forecast, the Median Weekday Forecast, and the Last Value
Forecast. The Last Week Forecast has the worst RMSE.

For the unusual consumption, the forecasting methods using the raw strategy show a
reduced higher RMSE compared to the anomaly-free baseline strategy. The forecast-
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ing methods using the robust strategy again have an RMSE that is very similar to
that of the anomaly-free baseline strategy. Regarding the actual accuracy of the fore-
casting methods using the raw and robust strategies, all forecasting methods except
the Last Week Forecast using the raw strategy and the Median Weekday Forecast us-
ing the robust strategy achieve similar RMSEs for both strategies. In comparison, the
RMSEs of the Last Week Forecast using the raw strategy and the Median Weekday
Forecast using the robust strategy are noticeably higher.

Data With Labeled Anomalies We also evaluate all forecasting methods selected
for the raw and robust strategies on the data with labeled anomalies. Figure 6.6a shows
the resulting RMSE of all forecasting methods and Figure 6.6b the resulting RMSE
of three best-performing forecasting method for the labeled technical faults. For each
forecasting method, the bars show the average RMSE for the raw or robust strategy.
The error bars present the best and the worst observed RMSE.

Applied to the data with labeled anomalies, the forecasting methods using the raw
or robust strategy perform differently. While the XGBoost Regressor, the RF Regres-
sor, the Last Value Forecast, and the Last Week Forecast attain very high RMSEs,
the LinR and the NN show high RMSEs and the PNN, the SVR, and the Median
Weekday Forecast comparatively low RMSEs. Considering the latter three forecasting
methods, we observe in Figure 6.6b that the SVR and the Median Weekday Forecast
achieve a considerably lower RMSE than the PNN.

6.3.2 Best Anomaly Detection for Detection Strategy

Since the detection strategy assumes that forecasting methods can incorporate information
about detected anomalies in their model and that this incorporation contributes to accurate
forecasts, we also examine the anomaly detection for this strategy. To determine the best
anomaly detection for the detection strategy, we apply this strategy to data analyzed
by the selected supervised anomaly detection method and data analyzed by the selected
unsupervised anomaly detection method. In the following, we refer to the detection
strategy using the best-performing supervised anomaly detection method as the detection
supervised strategy and to the detection strategy using the best-performing unsupervised
anomaly detection method as the detection unsupervised strategy. For comparison, we also
present the anomaly-free baseline strategy for the data with inserted synthetic anomalies.

Data With Synthetic Anomalies We evaluate the forecasting methods selected
for the detection strategy on the data with inserted synthetic anomalies from both
technical faults and unusual consumption. For both groups of anomalies, we insert
20 anomalies of each type belonging to this group. Figure 6.7a shows the resulting
RMSE for the technical faults and Figure 6.7b for the unusual consumption. For each
forecasting method, the bars indicate the average RMSE for the detection supervised
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Figure 6.6 The RMSE of the six forecasting methods using the raw strategy
and three forecasting methods using the robust strategy that are applied to
the data with labeled technical faults. For each method, the bars indicate the
average RMSE for the raw or robust strategy. The error bars show the best
and the worst observed RMSE.

strategy, the detection unsupervised strategy, and the anomaly-free baseline strategy.
The error bars show the best and the worst observed RMSE.

For the technical faults, the RMSE of the detection unsupervised strategy is similar
to that of the detection supervised strategy for all six considered forecasting methods.
The detection unsupervised strategy has only a slightly higher RMSE for the SVR but a
slightly lower RMSE for the Last Week Forecast and the NN. Compared to the anomaly-
free baseline strategy, the RMSE of all forecasting methods is also clearly greater for
both detection strategies. Moreover, considering the actual accuracy of the forecasting
methods using the detection strategies, the LinR, the NN, and the PNN achieve the
lowest RMSE, the Last Week Forecast and the SVR the highest RMSE.
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Figure 6.7 The RMSE of the five forecasting methods applied to the data
with 20 synthetic anomalies of each type from the technical faults and un-
usual consumption. For each method, the bars indicate the average RMSE for
the detection strategy using the best-performing supervised anomaly detec-
tion method, the detection strategy using the best-performing unsupervised
anomaly detection method, and the anomaly-free baseline strategy. The error
bars show the best and the worst observed RMSE. Note that the anomaly-free
baseline strategy generally performs best because it uses data that does not
contain inserted synthetic anomalies.

For the unusual consumption, we observe slightly stronger differences between the
detection supervised strategy and the detection unsupervised strategy. For all considered
forecasting methods, the RMSE of the detection unsupervised strategy is lower than that
of the detection supervised strategy. Moreover, the RMSEs of both detection strategies
are closer to the RMSE of the anomaly-free baseline strategy for all forecasting methods.
Furthermore, when comparing the actual accuracy of the forecasting methods using the
detection strategies, we observe that the LinR, the NN, the PNN, and the SVR obtain a
similarly low RMSE and the Last Week Forecast clearly has the highest RMSE.
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Data With Labeled Anomalies We also evaluate all forecasting methods selected for
the detection strategy on the data with labeled anomalies. Figure 6.8 shows the resulting
RMSE for the labeled technical faults. For each forecasting method, the bars show the
average RMSE for the detection supervised strategy and the detection unsupervised
strategy. The error bars present the best and the worst observed RMSE.
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Figure 6.8 The RMSE of the five forecasting methods applied to the data
with labeled technical faults. For each method, the bars indicate the av-
erage RMSE for the detection strategy using the best-performing super-
vised anomaly detection method, and the detection strategy using the best-
performing unsupervised anomaly detection method. The error bars show the
best and the worst observed RMSE.

We observe that the detection supervised strategy has a considerably higher RMSE than
the detection unsupervised strategy for the NN and vice versa for the LinR. For the
PNN, the detection unsupervised strategy also has a larger but more similar RMSE.
For the SVR, the RMSE of the detection unsupervised strategy is smaller than the
RMSE of the detection supervised strategy. For the Last Week Forecast, the RMSE of
both detection strategies is similarly small. Nevertheless, the obtained RMSE strongly
differs between the considered forecasting methods when using the detection strategies:
While the Last Week Forecast and the SVR have a comparatively very small RMSE for
both detection strategies, all other methods achieve a comparatively very high RMSE
with at least one of the two detection strategies.

6.3.3 Best Anomaly Detection for Compensation Strategy

To determine the best anomaly detection for the compensation strategy, we also apply
this strategy to data analyzed by the selected supervised anomaly detection method and
data analyzed by the selected unsupervised anomaly detection method. In the following,
we refer to the compensation strategy using the best-performing supervised anomaly
detection method as the compensation supervised strategy and to the compensation
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strategy using the best-performing unsupervised anomaly detection method as the
compensation unsupervised strategy. For comparison, we also present the anomaly-free
baseline strategy for the data with inserted synthetic anomalies.

Data With Synthetic Anomalies To examine the forecasting methods selected for
the compensation strategy, we consider the data with inserted synthetic anomalies from
technical faults and unusual consumption. For both groups of anomalies, we again insert
20 anomalies of each type belonging to this group. Figures 6.9a and 6.9b show the
resulting RMSE for the technical faults and for the unusual consumption. For each
forecasting method, the bars indicate the average RMSE for the compensation supervised
strategy, the compensation unsupervised strategy, and the anomaly-free baseline strategy.
The error bars show the best and the worst observed RMSE.

For the technical faults, all six considered forecasting methods achieve similar RMSEs
with the compensation supervised strategy and the compensation unsupervised strategy.
For the Last Week Forecast, the NN, and the PNN, the compensation unsupervised
strategy results in a slightly lower RMSE. In comparison to the anomaly-free baseline
strategy, all forecasting methods have, however, a recognizably higher RMSE for both
compensation strategies. Regarding the actual accuracy of the forecasting methods using
the compensation strategies, the LinR, the NN, and the PNN achieve the lowest RMSE,
followed by the SVR, the Last Value Forecast, and the Last Week Forecast.

Concerning the unusual consumption, the six forecasting methods obtain different RMSEs
with the compensation supervised strategy and the compensation unsupervised strategy.
The compensation supervised strategy is associated with a considerably higher RMSE
compared to the compensation unsupervised strategy for all evaluated forecasting methods.
While the compensation supervised strategy achieves a clearly higher RMSE with all
forecasting methods compared to the anomaly-free baseline strategy, the compensation
unsupervised strategy yields an RMSE that is close to the RMSE of the anomaly-free
baseline strategy. With regard to the actual accuracy of the forecasting methods using
the compensation strategies, we observe that all forecasting methods except the Last
Week Forecast have a similarly low RMSE with the compensation unsupervised strategy.
For the compensation supervised strategy, however, the PNN achieves the lowest RMSE,
followed by the similarly well performing LinR, NN, and SVR. The Last Value Forecast
and the Last Week Forecast have a higher RMSE.

Data With Labeled Anomalies We also examine the forecasting method selected for
the compensation strategy on the data with labeled anomalies. Figure 6.10 presents the re-
sulting RMSE for the labeled technical faults. For each evaluated forecasting method, the
bars show the average RMSE for the compensation supervised strategy and the compensa-
tion unsupervised strategy. The error bars present the best and the worst observed RMSE.

We observe that all forecasting methods except the PNN achieve a lower RMSE using
the compensation supervised strategy than using the compensation unsupervised strategy.
For the Last Value Forecast, the LinR, the NN, and the SVR, this difference is clearly
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Figure 6.9 The RMSE of the six forecasting methods applied to the data
with 20 synthetic anomalies of each type from the technical faults and un-
usual consumption. For each method, the bars indicate the average RMSE
for the compensation strategy using the best-performing supervised anomaly
detection method, the compensation strategy using the best-performing unsu-
pervised anomaly detection method, and the anomaly-free baseline strategy.
The error bars show the best and the worst observed RMSE. Note that the
anomaly-free baseline strategy generally performs best because it uses data
that does not contain inserted synthetic anomalies.

noticeable. The opposite difference is also recognizable for the PNN. The forecasting
methods also obtain different RMSEs using the compensation strategies. The Last
Value Forecast, the LinR, the NN, and the SVR have the lowest RMSE using the
compensation supervised strategy, followed by the PNN and the Last Week Forecast.
Using the compensation unsupervised strategy, the NN achieves the lowest RMSE,
followed by the similarly well performing Last Value Forecast, the LinR, the PNN, and
the SVR. The Last Week Forecast has a higher RMSE.
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Figure 6.10 The RMSE of the six forecasting methods applied to the data
with labeled technical faults. For each method, the bars indicate the average
RMSE for the compensation strategy using the best-performing supervised
anomaly detection method and the compensation strategy using the best-
performing unsupervised anomaly detection method. The error bars show the
best and the worst observed RMSE.

6.3.4 Comparison of all Strategies

We finally compare all proposed strategies considering the previous findings. We first
briefly describe the previous findings and their implication for the comparison of all
proposed strategies, before we present the results of this comparison.

When comparing the raw and the robust strategies, we find that most forecasting methods
of the raw strategy provide a lower or at least similar RMSE as the forecasting methods of
the robust strategy. We thus consider the raw strategy in the final comparison and do not
consider the robust strategy any further. In the comparison of the detection supervised and
the detection unsupervised strategies, we observe that the detection unsupervised strategy
results in a similar or even slightly lower RMSE for all forecasting methods applied to the
data with synthetic anomalies and in a low RMSE for the methods that perform best on
the data with labeled anomalies. We, therefore, select the detection unsupervised strategy
for both data sets in the final comparison. In the comparison between compensation
supervised and compensation unsupervised strategies, the compensation unsupervised
strategy yields a lower RMSE for all forecasting methods when applied to the data with
synthetic anomalies. For the data with labeled anomalies, the compensation supervised
strategy provides a lower RMSE for almost all forecasting methods. Therefore, we choose
the compensation unsupervised strategy for the data with synthetic anomalies and the
compensation supervised strategy for the data with labeled anomalies in the final compari-
son. For the final comparison of the selected strategies, we generally consider all previously
used forecasting methods. However, since the Last Value Forecast is not available for the
detection strategy, we omit this forecasting method in the following comparison.
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Data With Synthetic Anomalies To compare all selected strategies except the robust
strategy for the reasons given above, we apply them to the data with synthetic anomalies
from technical faults and unusual consumption. For both groups of anomalies, we insert
20 anomalies of each type belonging to this group. Figure 6.11a shows the resulting
RMSE for the technical faults and Figure 6.11b for the unusual consumption. For each
considered forecasting method, the bars indicate the average RMSE for the raw strategy,
the detection strategy, the compensation strategy, and the anomaly-free baseline strategy.
The error bars depict the best and the worst observed RMSE.
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Figure 6.11 The RMSE of the five forecasting methods applied to the data
with 20 synthetic anomalies of each type from the technical faults and un-
usual consumption. For each method, the bars indicate the average RMSE for
the raw strategy, detection strategy, compensation strategy, and anomaly-free
baseline strategy. The error bars show the best and the worst observed RMSE.
Note that the anomaly-free baseline strategy generally performs best because
it uses data that does not contain inserted synthetic anomalies.

For the technical faults, all considered forecasting methods except the Last Week Forecast
and the NN have the lowest RMSE when using the compensation strategy. The Last Week
Forecast achieves its lowest RMSE using the detection strategy and the NN with the
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raw strategy. Moreover, the difference between the RMSE when using the compensation
strategy and the RMSE using the second best strategy is largest for the SVR and rather
small for the LinR and PNN. Furthermore, we see the largest difference between the
RMSEs in the use of the raw, detection, and compensation strategies for the Last Week
Forecast, followed by the SVR. Compared to the anomaly-free baseline strategy, the
RMSE of all forecasting methods, especially the SVR and the Last Week Forecast, is
also noticeably greater for all three strategies. Considering the actual accuracy, the
LinR, the NN, and the PNN form the group of forecasting methods that achieves the
lowest RMSE, followed by the SVR and the Last Week Forecast.

For the unusual consumption, all considered forecasting methods consistently achieve
the lowest RMSE using the compensation strategy. The difference in the RMSE between
using the compensation strategy and using the second best strategy is big for the
SVR, LinR, and NN and small for the PNN and Last Week Forecast. Moreover, we
observe the largest differences between the RMSEs for the use of the raw, detection,
and compensation strategies for the NN and the LinR whereas the difference is small
for the PNN and the Last Week Forecast. In comparison to the anomaly-free baseline
strategy, the RMSE of all forecasting methods except the LinR and the NN is only
slightly larger but more clearly larger for the LinR and the NN. With regard to their
actual accuracy, all forecasting methods achieve a similarly low RMSE except for the
Last Week Forecast that obtains the considerably highest RMSE.

Data With Labeled Anomalies For the comparison of all strategies, we also apply
them to the data with labeled anomalies. Figure 6.12 shows the resulting RMSE for
the labeled technical faults. For each evaluated forecasting method, the bars present
the average RMSE for the raw strategy, the detection strategy, and the compensation
strategy. The error bars indicate the best and the worst observed RMSE.

We observe that all considered forecasting methods consistently achieve the lowest RMSE
using the compensation strategy. However, all forecasting methods except the SVR
achieve highly different results using the raw, detection, and compensation strategies.
Using the raw strategy leads to an exceptionally high RMSE for the Last Week Forecast,
using the raw and detection strategies to very high RMSEs for the LinR, the NN, and
PNN. For this reason, the difference in the RMSE between using the compensation
strategy and using the second best strategy is very large for the LinR, the NN, and
PNN. Moreover, comparing the forecasting method regarding their actual accuracy,
the LinR, the NN, and the SVR achieve the lowest RMSEs using the compensation
strategy and the SVR low RMSEs across all three strategies.
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Figure 6.12 The RMSE of the five forecasting methods applied to the data
with labeled technical faults. For each method, the bars indicate the average
RMSE for the raw strategy, detection strategy, and compensation strategy.
The error bars show the best and the worst observed RMSE.

6.4 Discussion

In this section, we first discuss the results from the evaluation of the proposed strate-
gies for managing anomalies in energy time series forecasting, before reviewing the
evaluation regarding its limitations and insights.

When first comparing the raw and the robust strategies, we observe for the techni-
cal faults in the data with synthetic anomalies that the RMSEss of the forecasting
methods from the raw strategy deviate more from the RMSEs of the anomaly-free
baseline strategy than the RMSEs of the forecasting methods from the robust strategy.
We assume that the considered technical faults tend to have a large impact on the
forecast accuracy, which the forecasting methods from the robust strategy are better
able to handle, confirming their perception as robust. Nevertheless, only one forecasting
method from the robust strategy, namely the RF Regressor, achieves an RMSE that
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is comparable to the three best-performing forecasting methods from the raw strategy.
We make a similar observation for the unusual consumption although the RMSEs of
the forecasting methods from the raw strategy deviate less from the RMSEs of the
anomaly-free baseline strategy and two forecasting methods from the robust strategy
perform similarly well as the five best-performing methods from the raw strategy. In
contrast, the results are mixed for the data with labeled anomalies: We observe an
extraordinary high RMSE for several forecasting methods but a low RMSE for the SVR
and the Median Weekday Forecast. We again suppose that the small amount of data
and the contained technical faults may cause this observation. Moreover, we see that
selecting different or evaluating more robust forecasting methods could influence the
perception of this strategy. Given these observations, one could further investigate both
strategies with additional methods or data to verify our decision not to consider the
robust strategy further and focus on the raw strategy in the final comparison.

Considering the best anomaly detection for the detection strategy, the results show that
the detection strategy with supervised anomaly detection and the detection strategy with
unsupervised anomaly detection perform very similarly for the technical faults in the data
with synthetic anomalies. Moreover, for the unusual consumption, the detection strategy
using unsupervised anomaly detection results in a slightly better forecast accuracy. From
this observation, one could infer that the type of anomaly detection does not really
influence the detection strategy. However, the results for the data with labeled anomalies
show that the selected anomaly detection can strongly influence the forecast accuracy
because we observe noticeably high RMSEs for several applied forecasting methods. One
reason for this observation could be that the used data with labeled anomalies have
a small size that might interact with the contained labeled technical faults and their
distribution in the data. Although the forecasting methods that perform best on this
data tend to use the detection strategy with unsupervised anomaly detection, there is no
clear recommendation which anomaly detection is advantageous for this data. Therefore,
one should examine these data with additional detection methods or with the applied
methods other similar data to come to a clear recommendation. Given the resulting
recommendation, it could be reasonable to consider the detection strategy with supervised
anomaly detection for the data with labeled anomalies in the final comparison.

With regard to the best anomaly detection for the compensation strategy, the compen-
sation strategy with unsupervised anomaly detection performs slightly better for the
technical faults and noticeably better for the unusual consumption in the data with
synthetic anomalies compared to the compensation strategy with supervised anomaly
detection. However, for the data with labeled anomalies, it is the opposite because the
compensation strategy with supervised anomaly detection achieves a higher accuracy
for almost all considered forecasting methods. We suppose that the length and the
contained technical faults of the data with labeled anomalies might favor supervised
anomaly detection since it uses training data to learn the anomalies to be detected. In
any case, when comparing supervised and unsupervised anomaly detection, one has to
keep in mind that the related methods are applied to different sets of the considered
data because of a training set required by supervised anomaly detection methods.
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In the final comparison of the considered strategies, we observe that using the com-
pensation strategy yields the lowest RMSE or an RMSE similar to that of the best
strategy for most forecasting methods in the case of the technical faults or even for all
methods in the case of the unusual consumption in the data with synthetic anomalies.
For the data with labeled anomalies, using the compensation strategy yields also the
best RMSE for all forecasting methods. Nonetheless, we also observe that forecasts
using the compensation strategy deviate less from the forecasts using the anomaly-free
baseline strategy for the unusual consumption compared to the technical faults, prob-
ably due to their finer characteristics. Therefore, the advantage of selecting the best
strategy depends on the anomalies contained in the used data.

Nevertheless, we note that these results are associated with certain limitations. For the
evaluation, we apply forecasting methods with certain parameters and a mostly well-
performing but basic set of features. It may be interesting to investigate comprehensively
the influence of other parameters and additional features on the performance of the
different strategies. Similarly, the used forecasting methods could additionally get input
features based on exogenous data, such as weather data, that is known to improve
forecasts. Moreover, all reported results are based on the applied methods, the selected
evaluation criteria, and the used data. Therefore, future work could evaluate the proposed
strategies with further forecasting methods, evaluation criteria, and data. For the detection
strategy, the application and evaluation of other detection methods could additionally be
of interest. The compensation strategy in particular could also be evaluated with different
detection, compensation, and forecasting methods, which additionally implies a potential
investigation of the interaction of these methods. Regarding the evaluation criteria,
forecasting-independent criteria such as the carbon dioxide emissions associated with the
computations required for the different strategies could add a forecasting-independent
and environmentally sensitive criterion to the evaluation.

Overall, we conclude from the performed evaluation that the compensation strategy
is generally beneficial as it allows for better or at least similar forecasting results as
the other evaluated strategies when the input data contains anomalies. This accuracy
improvement is higher for unusual consumption than for technical faults. By favor-
ing accurate forecasts, the compensation strategy provides a means for appropriately
managing anomalies in energy time series forecasting.

6.5 Contribution and Future Work

In the present chapter, we investigate how an anomaly management can account for
anomalies in energy time series forecasting, thus answering research question [RQ4]. For
this, we evaluate the proposed general strategies for managing anomalies in energy time
series forecasting using a representative selection of forecasting methods, a real-world
data set containing inserted synthetic anomalies, and a real-world data set containing
labeled anomalies. The evaluation comprises four steps and starts by comparing the
proposed raw and robust strategies as they both use the same input data but different
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forecasting methods. It continues with determining the best anomaly detection for the
proposed detection strategy and then for the proposed compensation strategy. The
evaluation ends with all proposed strategies being compared.

With this approach, the present chapter provides the following contributions:

‚ We propose four general strategies for managing anomalies in energy time series
forecasting, namely the raw, robust, detection, and compensation strategy.

‚ We find that most forecasting methods of the raw strategy provide a lower or at
least similar accuracy as the forecasting methods of the robust strategy.

‚ We determine that the detection strategy achieves the highest accuracy using
unsupervised anomaly detection for both used data sets. Moreover, we find that
the compensation strategy obtains the highest accuracy using the unsupervised
anomaly detection for the data with synthetic anomalies and the supervised anomaly
detection for the data with labeled anomalies.

‚ We show that the proposed compensation strategy is generally beneficial as it allows
for better or at least similar prediction results as the other evaluated strategies
when the input data contains anomalies.

Given the proposed strategies for managing anomalies in energy time series, future work
could address several follow-up questions. For example, future work could verify the
results by applying other data, anomaly detection methods, and anomaly compensation
methods. Especially a further investigation of the exclusion of the robust strategy and
the best anomaly detection for the detection strategy and the labeled data could be
of interest. Similarly, future work could evaluate the proposed strategies with further
forecasting methods, which also includes the opportunity to examine their suitability
for the different proposed strategies and to compare them with methods applied in
other strategies. Furthermore, future work could integrate the proposed strategies into
existing approaches for automated machine learning to include them in the optimization
problem of finding the best forecast for a given data set.
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7 Discussion

In addition to the aspects covered in the discussion of the proposed methods for
modeling, detecting, compensating, and managing anomalies in Sections 3.5, 4.4, 5.4,
and 6.4, the present chapter discusses two common underlying assumptions and the
associated limitations, the proposed anomaly management, and the general evalua-
tion approach taken in the present thesis.

The present thesis bases the previously presented anomaly modeling, anomaly detection,
anomaly compensation, and anomaly management on a shared set of assumptions that
have implicit limitations and offer potential extensions. The first assumption relates
to the considered data. In the present thesis, we use two data sets for the performed
evaluations, namely a data set where we insert synthetic anomalies and a data set
where we label the contained anomalies. Except for the difference in the anomalies and
their length, both data sets include energy time series that exhibit the typical charac-
teristics of multi-seasonality, aggregation-level-dependent predictability, and exogenous
influence. However, these energy time series only cover the electrical consumption of
single clients or buildings and have a quarter-hourly resolution. For this reason, the
presented results are limited to consumption data at a low to medium aggregation level
of energy time series with respect to time and space. Therefore, one could validate the
results with energy time series representing production and energy time series of other
temporal or spatial aggregation levels such as electrical devices. Moreover, it could be
insightful to consider further energy time series from the used data sets, other data
sets comprising longer energy time series with labeled anomalies, or energy time series
containing other forms of energy such as natural gas or heat.

The second assumption refers to the examined anomalies. In the present thesis, we define
the associated basic perception of normality with the daily patterns as the smallest
element of multi-seasonality. We thereby assume that the anomalies contained therein
are very likely to manifest themselves in the larger weekly and seasonal patterns of
multi-seasonality. However, this assumption might not hold for all anomalies observed
in real-world energy time series so one should investigate observed anomalies in this
respect. Alternatively, or additionally, the perception of normality could be extended
to weekly and seasonal patterns to cover all patterns of multi-seasonality. Similarly, an
adapted perception of normality could also consider the so far disregarded characteristics
of energy time series, namely aggregation-level dependent predictability and exogenous
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7 Discussion

influence. Since the perception of normality used in this thesis leads to a focus on the
two anomaly groups technical faults and unusual consumption, a modified perception
of normality would likely change the actually examined anomalies. Nevertheless, when
keeping the initial perception of normality, it could also be possible to identify further
anomalies or groups of anomalies. Furthermore, physical hardware installed in real-world
laboratories of the energy system could be used to flexibly change the applied perception
of normality, to characterize new anomalies, to verify previously identified anomalies,
or to determine the likely cause of observed anomalies.

Regarding the anomaly management proposed in this thesis, we choose forecasting as an
exemplary subsequent application. In making this decision, we assume that forecasting
is a relevant and representative application of an anomaly management. While we
definitely find evidence for the relevance of forecasting, we do not thoroughly examine
whether it is representative for generally possible subsequent applications such as load
profiling or load management. These applications obviously could require other evaluation
criteria than the accuracy used for forecasting and additionally and implicitly have
different requirements for an anomaly management. For example, forecasting itself
already imposes other requirements if it is considered as online forecasting. In addition
to taking into account the relationship between the considered application and anomaly
management, it could be interesting to examine the interaction between the elements of
the proposed anomaly management and to possibly develop an integrated optimization
of all elements. In similar way, one could also investigate whether the proposed anomaly
management benefits from using generated synthetic energy time series or integrating
anomaly generation into synthetic time series generation.

Overall, we perform a comprehensive evaluation of the proposed data-driven methods for
managing anomalies. By using one data set for the empirical identification and modeling
of anomalies and another one for the evaluation of the proposed data-driven methods, we
separate the modeling of the anomalies from the experiments with those anomalies. Since
we also evaluate the proposed data-driven methods with the data used for the identification
and modeling of anomalies, we additionally implicitly evaluate the modeled anomalies in
the performed evaluations. As the results from both data sets are largely consistent in these
evaluations, we conclude that our observation and modeling of the anomalies contained in
the one data set are sufficiently accurate. On a more general level, the evaluation results
also show that the proposed data-driven methods perform well in the example of energy
time series forecasting, emphasizing the importance of anomaly management. Moreover,
the evaluation shows the practical suitability of the proposed anomaly management
by using real-world data and real-world anomalies. With the presented evaluations and
the proposed methods, the present dissertation additionally prepares a first step toward
managing anomalies in fully automated smart grid settings, where, for example, the best
general strategy for a particular situation should be selected in an automated manner.
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8 Summary and Outlook

With the progressing implementation of the smart grid, more and more smart meters record
power or energy consumption and generation as time series. The increasing availability
of these recorded energy time series enables the goal of the automated operation of
smart grid applications such as load analysis, load forecasting, and load management.
However, to perform well, these applications usually require clean data that describes
the typical behavior of the underlying system well. Unfortunately, recorded energy time
series are usually not clean but contain anomalies, i. e., patterns that deviate from what
is considered normal. Since anomalies thus potentially contain data points or patterns
that represent false or misleading information, they can be problematic for any analysis
of this data performed by smart grid applications. Therefore, the present thesis proposes
data-driven methods for managing anomalies in energy time series. It introduces an
anomaly management whose characteristics correspond to steps in a sequential pipeline,
namely anomaly detection, anomaly compensation, and a subsequent application. Using
forecasting as an exemplary subsequent application and real-world data with inserted
synthetic anomalies and labeled anomalies, this thesis answers four research questions
along that pipeline for managing anomalies in energy time series.

The first research question How can anomalies in energy time series be modeled and
generated to improve anomaly detection? is answered in Chapter 3. We introduce a
method that is capable of generating four types of synthetic anomalies derived from
real-world anomalies that can be inserted in arbitrary quantity and at random points of
time into an arbitrary energy and power time series. To develop this generation method,
we identify commonly occurring anomaly types in real-world energy and power time series
and use the resulting formal model of each type as basis for the generation method.
By being capable of generating realistic synthetic anomalies on request, the introduced
generation method assures the quality of to-be-developed anomaly detection methods.

The second research question How can anomaly detection methods for energy time series
be enhanced? is addressed in Chapter 4. We introduce a novel approach that generally
enhances anomaly detection methods for energy time series by taking advantage of their
latent space representation. According to this approach, a previously trained conditional
Invertible Neural Network or conditional Variational Autoencoder creates the latent
space representation of an input time series containing anomalies. The resulting latent
space data representation then serves as an input for an arbitrary existing supervised
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8 Summary and Outlook

or unsupervised anomaly detection method, which generally have a higher detection
performance using this latent space representation.

The third research question How can anomalies detected in energy time series be
compensated? is investigated in Chapter 5. We propose the Copy-Paste Imputation
(CPI) method for time series containing energy measurements that copies blocks of
data with similar characteristics into existing gaps. By copying blocks of matching
patterns, the CPI method realistically imputes detected anomalies that have been la-
beled as missing values. Moreover, the CPI method guarantees that the total recorded
energy remains unchanged during the imputation.

The fourth research question How can an anomaly management account for anomalies
in energy time series forecasting? is answered in Chapter 6. We propose four general
strategies for managing anomalies in energy time series forecasting that build on typically
used strategies. After describing these strategies, we evaluate them with a representative
selection of forecasting methods. For the strategies using anomaly detection, we find
that using an unsupervised anomaly detection tends to be advantageous. Based on a
comparison of all considered strategies, we determine that the compensation strategy,
which detects and compensates anomalies in the input data before applying a forecasting
method, is the most beneficial strategy when the input data contains anomalies.

Based on the answers to these four research questions, the anomaly management presented
in this thesis exhibits four characteristics. First, the presented anomaly management
is guided by well-defined anomalies derived from real-world energy time series. These
anomalies serve as a basis for generating synthetic anomalies in energy time series to
promote the development of powerful anomaly detection methods. Second, the presented
anomaly management applies an anomaly detection approach to energy time series that is
capable of providing a high anomaly detection performance. Third, the presented anomaly
management also compensates detected anomalies in energy time series realistically by
considering the characteristics of the respective data. Fourth, the proposed anomaly
management applies and evaluates general anomaly management strategies in view
of the subsequent forecasting that uses this data.

Given these characteristics of the presented anomaly management for energy time
series, there are several possible further research directions. In the following, we fo-
cus on three research directions that complement the specific remarks on future work
regarding the proposed methods for modeling, detecting, compensating, and manag-
ing anomalies in Sections 3.6, 4.5, 5.5, and 6.5.

The first research direction concerns the anomaly management itself. To detail the
proposed anomaly management with regard to the considered application, one could
comprehensively gather the requirements of possible applications and, if necessary, adapt
the anomaly management and the general strategies accordingly. Moreover, it could be
interesting to examine the interaction between anomaly modeling, anomaly detection,
anomaly compensation, and the different anomaly management strategies since it could
be useful to find a common optimum. Furthermore, synthetic energy time series could
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support the anomaly management by, for example, providing additional energy time series
or synthetic energy time series with already inserted synthetic anomalies.

The second research direction is about the influence of the used data on the anomaly
management. One could investigate how using further energy time series from the
selected data sets or longer labeled energy time series influence the performed evalu-
ations of the anomaly management. Similarly, production energy time series, energy
time series with low or high temporal and spatial aggregation levels, and energy time
series of other forms of energy such as natural gas or heat could be interesting to
analyze regarding the performed evaluations.

The third research direction considers the role of the considered anomalies. To verify the
results and one underlying assumption, one could investigate whether the used anomalies
in daily patterns affect the larger weekly and seasonal patterns. Moreover, it could be of
interest to extend the perception of normality and to include all characteristics of energy
time series, i. e., aggregation-level dependent predictability, exogenous influence, and all
patterns of multi-seasonality. Furthermore, physical hardware in real-world laboratories
of the energy system could be used to investigate anomalies and their role even more
comprehensively. The laboratory environment could, for example, allow to flexibly adapt
the applied perception of normality, to identify new anomalies, to verify the characteristics
of previously identified anomalies, and to find the probable cause of observed anomalies.
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A Modeling Anomalies in Energy Time Series

A.1 Statistics of Identified Anomalies

Table A.1 Overview of the 50 one-year time series from the selected smart
meters that are used to label the four identified types of anomalies. For each
time series, the overall average power and energy consumption as well as the
number, minimum length, maximum length, and average power and energy
consumption of the labeled anomalies of the types 1 and 2 are reported.

Time Overall Type 1 Type 2
series kW kWh # Min Max kW kWh # Min Max kW kWh

1 11.8 36136.4 8 2 208 16.9 9839.4 3 2 3 15.5 36334.9
2 28.6 6308.5 7 2 208 22.9 1590.8 3 2 3 36.8 5310.9
3 121.3 16508.4 8 2 208 144.3 3905.3 14 2 27 144.0 9231.7
4 35.7 51037.7 7 2 208 34.6 15653.9 3 2 3 36.9 50612.8
5 91.6 67761.1 9 2 208 -13389.9 18031.2 15 2 27 98.5 34858.4
6 1.7 58368.5 8 2 8931 0.9 12781.4 0 - - - -
7 301.7 28417.3 7 2 208 250.8 8649.4 3 2 3 345.5 27697.7
8 58.1 1247.5 9 2 208 11662.8 375.7 13 2 27 124.6 688.8
9 15.5 15227.5 7 2 208 12.3 4678.7 3 2 332 16.8 15105.7
10 4.4 65001.2 9 2 208 -2523.3 12794.6 7 2 27 0.8 22416.6
11 69.2 29795.1 7 2 208 64.4 9191.6 3 2 332 74.7 29882.1
12 11.9 49030.3 7 2 208 14.8 15179.6 3 2 332 9.0 49333.9
13 27.8 7366.5 8 2 208 63.3 2381.6 9 2 270 36.5 7133.5
14 12.0 25829.4 9 2 208 20.2 8235.4 5 3 270 11.3 25985.9
15 13.9 62656.2 7 2 208 16.5 19379.0 4 2 5 17.8 63026.7
16 0.7 6757.4 7 2 208 0.6 2091.7 4 2 6 0.7 6798.9
17 56.6 72354.2 7 2 208 66.3 22360.6 4 2 5 72.3 72769.3
18 19.6 39898.6 7 2 208 22.1 12328.3 2 3 16 23.1 40021.8
19 0.3 8018.0 7 2 208 0.4 2480.6 2 3 16 0.2 8058.0
20 2.3 34096.7 7 2 208 3.2 10546.5 2 3 16 2.2 34301.2
21 1.7 173336.8 7 2 208 1.1 53519.8 3 3 16 0.4 171582.1
22 34.0 24674.7 7 2 208 36.8 7574.9 2 3 16 44.0 24409.0
23 1.0 8222.8 7 2 208 1.3 2135.3 2 3 16 1.1 8763.0
24 1.1 79733.7 7 2 208 0.4 24468.9 0 - - - -
25 1.7 25918.2 7 2 208 1.7 7405.4 2 3 16 2.0 26573.7
26 25.3 47407.2 7 2 208 28.6 14622.6 2 3 16 30.3 47470.3
27 28.2 151172.1 12 2 6 28.8 85601.1 0 - - - -
28 7.1 58558.8 5 2 9 8.3 13350.9 2 10 17 6.1 58462.0
29 13.1 38328.4 5 2 9 18.6 8748.0 1 17 17 6.5 38388.1
30 0.7 570.7 18 2 9 0.5 219.4 1 17 17 0.7 575.1
31 0.2 183.4 16 2 9 0.3 67.0 1 17 17 0.2 183.6
32 83.3 91543.3 5 2 9 99.4 20869.8 1 17 17 113.4 91660.3
33 1.0 56481.2 5 2 9 0.9 12980.3 1 17 17 1.2 56629.4
34 1.1 163877.9 6 2 1363 1.9 32573.8 2 1731 6452 0.6 171591.2
35 2.0 170468.5 5 2 9 3.4 39103.9 2 17 3535 2.0 170194.1
36 54.6 455610.1 7 2 9 64.9 126438.8 2 17 4425 13.4 461428.7
37 0.4 224231.4 5 2 9 0.3 51062.6 3 17 2290 0.3 224305.7
38 1.1 52122.9 5 2 9 1.6 11861.1 2 10 17 1.9 52123.0
39 0.6 7139.3 5 2 9 0.6 1627.7 2 7 17 0.9 7086.7
40 3.1 11695.8 5 2 9 4.6 2685.1 2 10 17 1.9 11667.7
41 19.3 31659.7 6 2 386 36.1 6086.3 5 17 3516 12.4 32017.5
42 0.7 103539.5 6 2 452 0.7 19983.6 1 17 17 0.8 105146.9
43 4.6 19312.0 5 2 9 6.8 4425.2 2 2 17 5.6 19260.8
44 96.3 93851.6 5 2 9 90.1 21437.6 1 17 17 166.7 94007.3
45 85.4 45205.9 5 2 9 67.0 10358.4 1 17 17 193.9 45306.2
46 18.8 17973.7 6 2 488 33.1 3497.5 2 727 1957 33.6 18307.7
47 0.2 199217.2 5 2 9 0.1 45346.7 0 - - - -
48 1.6 43087.4 6 2 9 3.3 9424.6 4 8 17 2.4 40338.4
49 1.2 8411.2 7 2 9 1.2 2724.2 3 8 17 1.1 8273.2
50 56.4 28194.2 6 2 9 0.0 6050.3 5 8 14869 52.8 28081.2

134



A.1 Statistics of Identified Anomalies

Table A.2 Overview of the 50 one-year time series from the selected smart
meters that are used to label the four identified types of anomalies. For each
time series, the overall average power and energy consumption as well as the
number, minimum length, maximum length, and average power and energy
consumption of the labeled anomalies of the types 3 and 4 are reported. Note
that anomalies of types 3 and 4 always have a length of one and that these
types comprise two cases.

Time Overall Type 3 Type 4
series kW kWh # kW kWh # kW kWh

1 11.8 36136.4 0 - - 1 36779.9 27.1
2 28.6 6308.5 1 6740.1 14.0 1 6776.9 62.7
3 121.3 16508.4 2 6255.1 -10008059.8 4 10786.9 5006955.5
4 35.7 51037.7 1 53132.4 15.5 1 53290.0 80.7
5 91.6 67761.1 2 12797.3 -25481.8 3 8718.7 2740483.8
6 1.7 58368.5 0 - - 0 - -
7 301.7 28417.3 1 30783.5 178.1 1 30923.4 480.5
8 58.1 1247.5 2 490.4 -23582.7 2 331.9 456993.9
9 15.5 15227.5 1 16234.2 8.9 1 16311.2 37.1
10 4.4 65001.2 0 - - 0 - -
11 69.2 29795.1 1 30572.6 37.0 1 30622.0 144.9
12 11.9 49030.3 1 49416.9 4.6 2 49375.3 29.8
13 27.8 7366.5 1 8021.2 21.2 1 8077.8 50.2
14 12.0 25829.4 1 26075.4 5.2 1 26081.9 26.3
15 13.9 62656.2 1 63571.0 8.0 2 63322.9 25.0
16 0.7 6757.4 1 6822.1 0.3 2 6811.0 1.4
17 56.6 72354.2 1 73590.1 33.1 1 73651.3 102.7
18 19.6 39898.6 1 40593.7 8.7 2 40667.8 63.4
19 0.3 8018.0 1 8089.7 0.1 1 8091.9 0.5
20 2.3 34096.7 1 34398.8 1.2 1 34412.7 8.1
21 1.7 173336.8 1 178587.3 0.7 2 174707.7 3.9
22 34.0 24674.7 1 26082.4 21.5 1 26165.2 53.7
23 1.0 8222.8 1 9449.6 0.1 1 9474.5 0.3
24 1.1 79733.7 0 - - 1 83031.0 4.9
25 1.7 25918.2 1 28404.9 0.3 1 28593.6 2.4
26 25.3 47407.2 1 48514.9 13.6 1 48585.8 53.9
27 28.2 151172.1 0 - - 1 235908.3 41.3
28 7.1 58558.8 0 - - 3 58827.1 279.6
29 13.1 38328.4 0 - - 1 38717.3 22.4
30 0.7 570.7 0 - - 0 - -
31 0.2 183.4 0 - - 1 187.4 0.5
32 83.3 91543.3 0 - - 1 92873.7 127.0
33 1.0 56481.2 0 - - 1 59574.2 2.3
34 1.1 163877.9 0 - - 0 - -
35 2.0 170468.5 0 - - 2 176801.9 9.2
36 54.6 455610.1 0 - - 0 - -
37 0.4 224231.4 0 - - 1 225476.6 1.5
38 1.1 52122.9 0 - - 2 52182.2 3.2
39 0.6 7139.3 0 - - 2 7176.6 1.0
40 3.1 11695.8 0 - - 2 11754.8 165.1
41 19.3 31659.7 0 - - 0 - -
42 0.7 103539.5 0 - - 2 105784.1 195.0
43 4.6 19312.0 0 - - 1 19401.5 25.7
44 96.3 93851.6 0 - - 1 96294.1 188.9
45 85.4 45205.9 0 - - 1 47441.0 203.2
46 18.8 17973.7 0 - - 1 18924.6 19.9
47 0.2 199217.2 0 - - 1 199777.8 0.9
48 1.6 43087.4 0 - - 1 44925.4 5.2
49 1.2 8411.2 0 - - 1 8594.0 2.6
50 56.4 28194.2 0 - - 0 - -
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A.2 Used Parameters

Table A.3 Overview of the number, minimum length, maximum length, rmin,
rmax, and k used as parameters to generate synthetic anomalies for the evalu-
ated 50 one-year power time series from the selected smart meters using the
t-SNE and the discriminative method. Note that anomalies of types 3 and 4
always have a length of one and comprise two cases.

Time Type 1 Type 2 Type 3 Type 4
series k # Min Max # Min Max # rmin rmax # rmin rmax

1 35787 8 3 96 3 2 3 0 - - 1 1.15 8.1
2 5730 7 3 96 3 2 3 1 0.61 1.62 1 1.15 8.1
3 17649 8 3 96 14 2 27 2 - - 4 11.01 13
4 48127 7 3 96 3 2 3 1 0.61 1.62 1 1.15 8.1
5 68477 9 3 96 15 2 27 2 - - 3 11.01 13
6 80207 8 3 96 0 - - 0 - - 0 1.15 8.1
7 25239 7 3 96 3 2 3 1 0.61 1.62 1 1.15 8.1
8 731 9 3 96 13 2 27 2 - - 2 11.01 13
9 14104 7 3 96 3 2 48 1 0.61 1.62 1 1.15 8.1
10 49387 9 3 96 7 2 27 0 - - 0 - -
11 29056 7 3 96 3 2 48 1 0.61 1.62 1 1.15 8.1
12 49172 7 3 96 3 2 48 1 0.61 1.62 2 1.15 8.1
13 6393 8 3 96 9 2 48 1 0.61 1.62 1 1.15 8.1
14 25862 9 3 96 5 3 48 1 0.61 1.62 1 1.15 8.1
15 62272 7 3 96 4 2 5 1 0.61 1.62 2 1.15 8.1
16 6764 7 3 96 4 2 6 1 0.61 1.62 2 1.15 8.1
17 71565 7 3 96 4 2 5 1 0.61 1.62 1 1.15 8.1
18 39421 7 3 96 2 3 16 1 0.61 1.62 2 11.01 13
19 8020 7 3 96 2 3 16 1 - - 1 1.15 8.1
20 34042 7 3 96 2 3 16 1 - - 1 1.15 8.1
21 168614 7 3 96 3 3 16 1 - - 2 11.01 13
22 23011 7 3 96 2 3 16 1 0.61 1.62 1 1.15 8.1
23 2653 7 3 96 2 3 16 1 - - 1 11.01 13
24 75229 7 3 96 0 - - 0 - - 1 11.01 13
25 17937 7 3 96 2 3 16 1 - - 1 1.15 8.1
26 46301 7 3 96 2 3 16 1 0.61 1.62 1 1.15 8.1
27 28114 12 3 6 0 - - 0 - - 1 1.15 8.1
28 58016 5 3 9 2 10 17 0 - - 3 11.01 13
29 37605 5 3 9 1 17 17 0 - - 1 1.15 8.1
30 509 18 3 9 1 17 17 0 - - 0 - -
31 177 16 3 9 1 17 17 0 - - 1 1.15 8.1
32 89750 5 3 9 1 17 17 0 - - 1 1.15 8.1
33 51978 5 3 9 1 17 17 0 - - 1 1.15 8.1
34 165403 6 3 96 2 44 48 0 - - 0 - -
35 161244 5 3 9 2 17 48 0 - - 2 11.01 13
36 431796 7 3 9 2 17 48 0 - - 0 - -
37 222477 5 3 9 3 17 48 0 - - 1 1.15 8.1
38 52017 5 3 9 2 10 17 0 - - 2 11.01 13
39 7001 5 3 9 2 7 17 0 - - 2 1.15 8.1
40 11188 5 3 9 2 10 17 0 - - 2 11.01 13
41 31823 6 3 96 5 17 48 0 - - 0 - -
42 102079 6 3 96 1 17 17 0 - - 2 11.01 13
43 18806 5 3 9 2 2 17 0 - - 1 11.01 13
44 90338 5 3 9 1 17 17 0 - - 1 1.15 8.1
45 42124 5 3 9 1 17 17 0 - - 1 1.15 8.1
46 17234 6 3 96 2 44 48 0 - - 1 1.15 8.1
47 198393 5 3 9 0 - - 0 - - 1 11.01 13
48 32838 6 3 9 4 8 17 0 - - 1 11.01 13
49 8159 7 3 9 3 8 17 0 - - 1 1.15 8.1
50 26747 6 3 9 5 8 48 0 - - 0 - -
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Table A.4 Overview of the number, minimum length, maximum length, rmin,
rmax, and k used as parameters to generate synthetic anomalies for the evalu-
ated 50 one-year power time series from the selected smart meters regarding
the training of the evaluated supervised anomaly detection methods. Note
that anomalies of types 3 and 4 always have a length of one and comprise
two cases.

Time Type 1 Type 2 Type 3 Type 4
series k # Min Max # Min Max # rmin rmax # rmin rmax

1 0 16 3 96 6 2 3 0 - - 2 1.15 8.1
2 0 14 3 96 6 2 3 2 0.61 1.62 2 1.15 8.1
3 0 16 3 96 28 2 27 4 - - 8 11.01 13
4 0 14 3 96 6 2 3 2 0.61 1.62 2 1.15 8.1
5 0 18 3 96 30 2 27 4 - - 6 11.01 13
6 0 16 3 96 0 - - 0 - - 0 - -
7 0 14 3 96 6 2 3 2 0.61 1.62 2 1.15 8.1
8 0 18 3 96 26 2 27 4 - - 4 11.01 13
9 0 14 3 96 6 2 48 2 0.61 1.62 2 1.15 8.1
10 0 18 3 96 14 2 27 0 - - 0 - -
11 0 14 3 96 6 2 48 2 0.61 1.62 2 1.15 8.1
12 0 14 3 96 6 2 48 2 0.61 1.62 4 1.15 8.1
13 0 16 3 96 18 2 48 2 0.61 1.62 2 1.15 8.1
14 0 18 3 96 10 3 48 2 0.61 1.62 2 1.15 8.1
15 0 14 3 96 8 2 5 2 0.61 1.62 4 1.15 8.1
16 0 14 3 96 8 2 6 2 0.61 1.62 4 1.15 8.1
17 0 14 3 96 8 2 5 2 0.61 1.62 2 1.15 8.1
18 0 14 3 96 4 3 16 2 0.61 1.62 4 11.01 13
19 0 14 3 96 4 3 16 2 - - 2 1.15 8.1
20 0 14 3 96 4 3 16 2 - - 2 1.15 8.1
21 0 14 3 96 6 3 16 2 - - 4 11.01 13
22 0 14 3 96 4 3 16 2 0.61 1.62 2 1.15 8.1
23 0 14 3 96 4 3 16 2 - - 2 11.01 13
24 0 14 3 96 0 - - 0 - - 2 11.01 13
25 0 14 3 96 4 3 16 2 - - 2 1.15 8.1
26 0 14 3 96 4 3 16 2 0.61 1.62 2 1.15 8.1
27 0 24 3 6 0 - - 0 - - 2 1.15 8.1
28 0 10 3 9 4 10 17 0 - - 6 11.01 13
29 0 10 3 9 2 17 17 0 - - 2 1.15 8.1
30 0 36 3 9 2 17 17 0 - - 0 - -
31 0 32 3 9 2 17 17 0 - - 2 1.15 8.1
32 0 10 3 9 2 17 17 0 - - 2 1.15 8.1
33 0 10 3 9 2 17 17 0 - - 2 1.15 8.1
34 0 12 3 96 4 44 48 0 - - 0 1.15 8.1
35 0 10 3 9 4 17 48 0 - - 4 11.01 13
36 0 14 3 9 4 17 48 0 - - 0 - -
37 0 10 3 9 6 17 48 0 - - 2 1.15 8.1
38 0 10 3 9 4 10 17 0 - - 4 11.01 13
39 0 10 3 9 4 7 17 0 - - 4 1.15 8.1
40 0 10 3 9 4 10 17 0 - - 4 11.01 13
41 0 12 3 96 10 17 48 0 - - 0 - -
42 0 12 3 96 2 17 17 0 - - 4 11.01 13
43 0 10 3 9 4 2 17 0 - - 2 11.01 13
44 0 10 3 9 2 17 17 0 - - 2 1.15 8.1
45 0 10 3 9 2 17 17 0 - - 2 1.15 8.1
46 0 12 3 96 4 44 48 0 - - 2 1.15 8.1
47 0 10 3 9 0 - - 0 - - 2 11.01 13
48 0 12 3 9 8 8 17 0 - - 2 11.01 13
49 0 14 3 9 6 8 17 0 - - 2 1.15 8.1
50 0 12 3 9 10 8 48 0 - - 0 - -
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B.1 Default Hyperparameters

Table B.1 Overview of the hyperparameters, their default values, and the
evaluated values of all seven selected supervised anomaly detection methods.

Detection method Hyperparameter Default value Evaluated values

kNN
n_neighbors 5 1, 3, 5, 7, 10
p 2 1, 2, 3
weights uniform uniform, distance

LR C 1 0.01, 0.1, 1, 10, 100
penalty l2 l1, l2, elasticnet, none
solver lbfgs newton-cg, lbfgs, liblinear, sag, saga

MLP

activation relu logistic, tanh, relu
alpha 0.0001 0.00001, 0.0001, 0.001
batch_size auto 10, 11, 12, 13, 14, 15, 16, 32, 64, 128,

200
hidden_layer_size (100,) (25,), (50,), (75,), (100,), (125,),

(150,), (25, 25), (50, 50), (75, 75),
(100, 100), (125, 125), (150, 150),
(25, 25, 25), (50, 50, 50), (75, 75,
75), (100, 100, 100), (125, 125, 125),
(150, 150, 150)

NB no hyperparameters

RF criterion gini gini, entropy
max_features auto sqrt, log2

SVC
C 1 0.01, 0.1, 1, 10, 100
gamma scale scale, auto
kernel rbf linear, sigmoid, rbf

XGBoost
booster gbtree gbtree, gblinear, dart
importance_type gain gain, weight, cover, total_gain, to-

tal_cover
reg_lambda 1 0, 0.1, 0.5, 1, 2, 4
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B.2 Best-Performing Hyperparameters for Data With Synthetic
Anomalies

Table B.2 The best-performing hyperparameters of the k-Nearest Neighbor
(kNN) for all data representations for the data with synthetic technical faults.

Data representation n_neighbors p weights

Latent cINN

1 2 uniform
1 2 distance
1 3 uniform
1 3 distance

Latent cVAE 1 2 uniform
1 2 distance

Scaled

1 2 uniform
1 2 distance
1 3 uniform
1 3 distance
3 3 distance

Unscaled

1 2 uniform
1 2 distance
1 3 uniform
1 3 distance
3 3 distance

Table B.3 The best-performing hyperparameters of the kNN for all data repre-
sentations for the data with synthetic unusual consumption.

Data representation n_neighbors p weights

Latent cINN 1 1 uniform
1 1 distance

Latent cVAE 10 2 distance

Scaled 5 3 uniform
5 3 distance

Unscaled 5 3 uniform
5 3 distance
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Table B.4 The best-performing hyperparameters of the Logistic Regression
(LogR) for all data representations for the data with synthetic technical
faults.

Data representation C penalty solver

Latent cINN 10 none sag

Latent cVAE

0.01 none newton-cg
0.1 none newton-cg
1 none newton-cg
10 none newton-cg
100 none newton-cg

Scaled 0.1 l2 liblinear

Unscaled

0.01 none saga
1 l2 sag
10 none sag
100 l2 saga
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Table B.5 The best-performing hyperparameters of the LogR for all data
representations for the data with synthetic unusual consumption.

Data representation C penalty solver

Latent cINN 0.01 l2 liblinear

Latent cVAE 100 l1 liblinear

Scaled 0.01 l1 liblinear
0.01 l1 saga

Unscaled

0.01 l1 liblinear
0.01 l1 saga
0.01 l2 lbfgs
0.01 l2 liblinear
0.01 l2 sag
0.01 l2 saga
0.01 none lbfgs
0.01 none sag
0.01 none saga
0.1 l1 saga
0.1 l2 lbfgs
0.1 l2 liblinear
0.1 l2 sag
0.1 l2 saga
0.1 none lbfgs
0.1 none sag
0.1 none saga
1 l1 saga
1 l2 lbfgs
1 l2 liblinear
1 l2 sag
1 l2 saga
1 none lbfgs
1 none sag
1 none saga
10 l1 saga
10 l2 lbfgs
10 l2 liblinear
10 l2 sag
10 l2 saga
10 none lbfgs
10 none sag
10 none saga
100 l1 saga
100 l2 lbfgs
100 l2 liblinear
100 l2 sag
100 l2 saga
100 none lbfgs
100 none sag
100 none saga
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Table B.6 The best-performing hyperparameters of the Multi-Layer Percep-
tron (MLP) for all data representations for the data with synthetic technical
faults.

Data representation activation alpha batch_size hidden_layer_size

Latent cINN relu 0.001 15 (100,)

Latent cVAE relu 0.0001 14 (75,75)

Scaled
relu 0.0001 14 (125,125)
relu 0.001 12 (125,125,125)
relu 0.001 15 (125)

Unscaled relu 0.001 32 (125)

Table B.7 The best-performing hyperparameters of the MLP for all data repre-
sentations for the data with synthetic unusual consumption.

Data representation activation alpha batch_size hidden_layer_size

Latent cINN logistic 0.001 11 (150,)

Latent cVAE relu 0.00001 11 (75. 75)

Scaled relu 0.0001 12 (50,50)

Unscaled relu 0.00001 64 (100,100,100)

Table B.8 The best-performing hyperparameters of the Random Forest (RF)
for all data representations for the data with synthetic technical faults.

Data representation criterion max_features

Latent cINN gini sqrt

Latent cVAE entropy sqrt

Scaled gini sqrt

Unscaled gini sqrt

Table B.9 The best-performing hyperparameters of the RF for all data repre-
sentations for the data with synthetic unusual consumption.

Data representation criterion max_features

Latent cINN gini sqrt

Latent cVAE gini sqrt

Scaled entropy log2

Unscaled entropy log2
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Table B.10 The best-performing hyperparameters of the Support Vector Ma-
chine for Classification (SVC) for all data representations for the data with
synthetic technical faults.

Data representation C gamma kernel

Latent cINN 100 scale rbf

Latent cVAE 100 scale rbf

Scaled 0.1 scale rbf

Unscaled 0.1 scale rbf

Table B.11 The best-performing hyperparameters of the SVC for all data
representations for the data with synthetic unusual consumption.

Data representation C gamma kernel

Latent cINN 10 auto rbf
100 auto rbf

Latent cVAE 1 scale rbf

Scaled 10 scale rbf

Unscaled 10 scale rbf
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Table B.12 The best-performing hyperparameters of the XGBoost for all data
representations for the data with synthetic technical faults.

Data representation booster importance_type reg_lambda

Latent cINN

gbtree gain 0.1
gbtree weight 0.1
gbtree cover 0.1
gbtree total_gain 0.1
gbtree total_cover 0.1
dart gain 0.1
dart weight 0.1
dart cover 0.1
dart total_gain 0.1
dart total_cover 0.1

Latent cVAE

gbtree gain 1
gbtree weight 1
gbtree cover 1
gbtree total_gain 1
gbtree total_cover 1
dart gain 1
dart weight 1
dart cover 1
dart total_gain 1
dart total_cover 1

Scaled

gbtree gain 0
gbtree weight 0
gbtree cover 0
gbtree total_gain 0
gbtree total_cover 0
dart gain 0
dart weight 0
dart cover 0
dart total_gain 0
dart total_cover 0

Unscaled

gbtree gain 0
gbtree weight 0
gbtree cover 0
gbtree total_gain 0
gbtree total_cover 0
dart gain 0
dart weight 0
dart cover 0
dart total_gain 0
dart total_cover 0
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Table B.13 The best-performing hyperparameters of the XGBoost for all data
representations for the data with synthetic unusual consumption.

Data representation booster importance_type reg_lambda

Latent cINN

gbtree gain 1
gbtree weight 1
gbtree cover 1
gbtree total_gain 1
gbtree total_cover 1
dart gain 1
dart weight 1
dart cover 1
dart total_gain 1
dart total_cover 1

Latent cVAE

gblinear gain 0
gblinear weight 0
gblinear cover 0
gblinear total_gain 0
gblinear total_cover 0

Scaled

gbtree gain 0
gbtree weight 0
gbtree cover 0
gbtree total_gain 0
gbtree total_cover 0
dart gain 0
dart weight 0
dart cover 0
dart total_gain 0
dart total_cover 0

Unscaled

gbtree gain 0
gbtree weight 0
gbtree cover 0
gbtree total_gain 0
gbtree total_cover 0
dart gain 0
dart weight 0
dart cover 0
dart total_gain 0
dart total_cover 0
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B.3 Best-Performing Hyperparameters for Data With Labeled
Anomalies

Table B.14 The best-performing hyperparameters of the kNN for all data
representations for the data with labeled technical faults.

Data representation n_neighbors p weights

Latent cINN 1 3 uniform
1 3 distance

Latent cVAE 1 2 uniform
1 2 distance
1 3 uniform
1 3 distance

Scaled

1 2 uniform
1 2 distance
1 3 uniform
1 3 distance

Unscaled

1 2 uniform
1 2 distance
1 3 uniform
1 3 distance

Table B.15 The best-performing hyperparameters of the LogR for all data
representations for the data with labeled technical faults.

Data representation C penalty solver

Latent cINN 10 l2 liblinear

Latent cVAE

0.01 none lbfgs
0.1 none lbfgs
1 none lbfgs
10 none lbfgs
100 none lbfgs

Scaled 1 l2 liblinear

Unscaled 10 l2 liblinear
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Table B.16 The best-performing hyperparameters of the MLP for all data rep-
resentations for the data with labeled technical faults. Note that there are
167 hyperparameter combinations for the latent conditional Invertible Neural
Network (cINN), 513 for the scaled, and 486 for the unscaled data represen-
tations with rank one. Of these, only the 10 combinations that require the
least average fitting time are listed for graphical clarity.

Data representation activation alpha batch_size hidden_layer_size

Latent cINN

relu 0.0001 200 (50,50,50)
relu 0.001 128 (50,50,50)
relu 0.001 200 (50,50,50)
relu 0.0001 128 (75,75)
relu 0.0001 200 (25,25,25)
relu 0.00001 128 (50,50,50)
relu 0.0001 128 (25,25,25)
relu 0.00001 128 (50,50)
relu 0.001 128 (75,75)
relu 0.0001 64 (50,50,50)

Latent cVAE relu 0.0001 13 (125,125,125)

Scaled

relu 0.00001 128 (75,75,75)
relu 0.001 200 (50,50,50)
relu 0.001 200 (75,75,75)
relu 0.00001 200 (50,50,50)
relu 0.0001 128 (50,50,50)
relu 0.001 200 (100,100,100)
relu 0.00001 200 (50,50)
relu 0.0001 128 (75,75,75)
relu 0.001 200 (25,25,25)
relu 0.0001 128 (25,25,25)

Unscaled

relu 0.00001 128 (75,75,75)
relu 0.0001 200 (50,50)
relu 0.001 200 (75,75,75)
relu 0.001 200 (100,100,100)
relu 0.001 128 (50,50)
relu 0.00001 128 (50,50,50)
relu 0.001 128 (75,75,75)
relu 0.001 128 (100,100)
relu 0.001 200 (75,75)
relu 0.0001 200 (75,75)
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Table B.17 The best-performing hyperparameters of the RF for all data repre-
sentations for the data with labeled technical faults.

Data representation criterion max_features

Latent cINN gini log2

Latent cVAE gini sqrt
gini log2
entropy sqrt
entropy log2

Scaled gini log2

Unscaled gini sqrt

Table B.18 The best-performing hyperparameters of the SVC for all data
representations for the data with labeled technical faults.

Data representation C gamma kernel

Latent cINN
1 auto rbf
10 auto rbf
100 auto rbf

Latent cVAE
0.1 scale rbf
1 scale rbf
10 scale rbf
100 scale rbf

Scaled

0.1 auto rbf
1 auto rbf
10 auto rbf
100 auto rbf

Unscaled 1 auto sigmoid
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Table B.19 The best-performing hyperparameters of the XGBoost for all data
representations for the data with labeled technical faults.

Data representation booster importance_type reg_lambda

Latent cINN

gbtree gain 0.1
gbtree weight 0.1
gbtree cover 0.1
gbtree total_gain 0.1
gbtree total_cover 0.1
dart gain 0.1
dart weight 0.1
dart cover 0.1
dart total_gain 0.1
dart total_cover 0.1

Latent cVAE

gbtree gain 2
gbtree weight 2
gbtree cover 2
gbtree total_gain 2
gbtree total_cover 2
dart gain 2
dart weight 2
dart cover 2
dart total_gain 2
dart total_cover 2

Scaled

gbtree gain 0
gbtree weight 0
gbtree cover 0
gbtree total_gain 0
gbtree total_cover 0
dart gain 0
dart weight 0
dart cover 0
dart total_gain 0
dart total_cover 0

Unscaled

gbtree gain 0
gbtree weight 0
gbtree cover 0
gbtree total_gain 0
gbtree total_cover 0
dart gain 0
dart weight 0
dart cover 0
dart total_gain 0
dart total_cover 0
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B.4 Additional Results
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Figure B.1 The F1-Scores of the four remaining supervised detection meth-
ods applied to the data with different shares of synthetic anomalies from
technical faults and unusual consumption using the best-performing hyperpa-
rameters. For each method, one line each indicates the resulting F1-Score for
the cINN latent space and scaled data representations.

152



C Compensating Anomalies in Energy
Time Series

153



C Compensating Anomalies in Energy Time Series

Table C.1 Time series from the data set with inserted missing values used for
the evaluation.

Number Time series

1 MT_007
2 MT_008
3 MT_009
4 MT_010
5 MT_011
6 MT_013
7 MT_014
8 MT_016
9 MT_017
10 MT_018
11 MT_020
12 MT_021
13 MT_022
14 MT_023
15 MT_026
16 MT_029
17 MT_034
18 MT_035
19 MT_036
20 MT_037
21 MT_038
22 MT_040
23 MT_042
24 MT_045
25 MT_046
26 MT_050
27 MT_055
28 MT_057
29 MT_064
30 MT_067
31 MT_068
32 MT_077
33 MT_079
34 MT_084
35 MT_088
36 MT_090
37 MT_093
38 MT_094
39 MT_095
40 MT_096
41 MT_097
42 MT_098
43 MT_099
44 MT_118
45 MT_119
46 MT_123
47 MT_128
48 MT_140
49 MT_141
50 MT_249

Table C.2 Time series from the data set with inserted missing values used for
the calibration.

Number Time series

1 MT_001
2 MT_002
3 MT_004
4 MT_005
5 MT_006
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