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A B S T R A C T

An efficient hybrid model has been developed for prediction of magnetohydrodynamic pressure drop in
electrically couple manifolds of liquid metal blankets and flow partitioning in breeder units. The tool combines
global mass conservation and pressure drop correlations with detailed 3D simulations. When applied to a TBM-
like geometry, the model reveals strong electromagnetic coupling with increased flow in BUs is near both ends
of the module, while weak coupling with almost no flow is found in BUs in the middle of the module. The
method is very efficient and it applies for a large number of BUs as foreseen in a DEMO design. It will be
applied in future to determine the optimum position of the baffle plates in manifolds that guarantees uniform
flow partitioning in all breeder units.
1. Introduction

In the water-cooled lead lithium (WCLL) blanket currently under
investigation in Europe as reference liquid metal concept (see Fig. 1),
liquid lead lithium (PbLi) functions as tritium breeder, neutron multi-
plier and heat carrier. The heat is removed by cooling tubes immersed
in the liquid metal that is confined in a large number of breeding
units (BUs). For purification and extraction of tritium it is required to
circulate the liquid metal slowly to ancillary facilities. The movement
of the electrically conducting alloy across the strong plasma-confining
magnetic field induces electric currents which are responsible for elec-
tromagnetic Lorentz forces that modify the flow pattern and give rise
to magnetohydrodynamic pressure drop. For a reasonable performance
of the blanket system it is required that each BU receives sufficient
fresh PbLi from the manifolds to avoid local accumulation of tritium.
Therefore a good understanding of the flow partitioning in BUs and
pressure drop in blanket system is required.

Previous analyses and experiments for a helium-cooled lead lithium
(HCLL) test blanket module (TBM) for ITER revealed that the major
fraction of pressure drop originates from the manifolds, where liquid
metal velocities are high and where feeding and draining sections are
electrically coupled via leakage currents across electrically conducting
common walls [1]. Moreover, it has been found that the manifolds play
a decisive role for flow partitioning among BUs [2]. A major result
from those investigations is that non-uniform flow distribution is to be
expected with considerably higher flow rates in BUs at both ends of the
module and reduced flow in central units if manifolds are not designed

∗ Corresponding author.
E-mail address: leo.buehler@kit.edu (L. Bühler).

in a proper way. Since the current design of WCLL manifolds is quite
similar to the one foreseen for HCLL blanket modules, flow partitioning
will be a major issue as well and has to be investigated in sufficient
detail.

While the design of the WCLL TBM for ITER consists of only 8 BUs
per column, the current concept for a DEMO reactor foresees a much
larger number of BUs stacked along the poloidal 𝑥 direction around
the fusion plasma (Fig. 1). A full numerical description of the entire
blanket segment with the large number 𝑁 of BUs is not possible with
available computational resources. For that reason, the present work
aims at defining a physical model that allows determining efficiently
flow distribution and pressure drop in the entire blanket module. The
model described in the following is based on a number of selected
3D numerical simulations for determining pressure drop correlations
in typical blanket elements (single BUs and fractions of manifolds). The
results are then assembled in a global model that determines the overall
behavior of the full blanket segment. Since details of the manifold are
still not completely defined in the DEMO design concept shown in
Fig. 1, it was decided to start modeling geometric details according to
the more advanced design available for the ITER TBM (see Fig. 2).

2. Mathematical manifold model

For determination of pressure distributions along feeding and drain-
ing poloidal manifolds of WCLL blankets, a simple model has been
derived that couples the flow in manifolds and BUs, and allows calculat-
ing flow partitioning among BUs. For unique notation, in the following,
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Fig. 1. Design concept of a DEMO blanket segment with a large number 𝑁 of BUs. A
system of manifolds distributes fractions of flow rate 𝑑𝑞𝑖 to the breeder units 1 ≤ 𝑖 ≤ 𝑁 .

Fig. 2. Design concept of a WCLL blanket module for an ITER TBM with 8 breeder
units BUs arranged along the poloidal direction. View into the system of manifolds and
sketch defining details of the theoretical model.

subscripts 𝑓 , 𝑑, and 𝐵𝑈 denote feeding and draining manifolds, and
breeder units. The sketch in Fig. 2 shows model definitions for the ITER
TBM, but the model is quite flexible and applies for general geometries
with a large number of BUs.

The geometry under investigation consists of 𝑁 BUs of poloidal
length 𝑑𝑥. For simplifying the analysis we introduce the global nondi-
mensional coordinate 𝜉 = 𝑥∕𝐿, i.e. we measure poloidal position 𝑥 in
fractions of the poloidal length 𝐿,

𝑥 = 𝐿𝜉, 𝑑𝑥 = 𝐿𝑑𝜉, 0 < 𝑥 < 𝐿, 0 < 𝜉 < 1. (1)

Cross sections of feeding and draining manifolds 𝐴𝑓 and 𝐴𝑑 are mea-
sured as fractions 𝛽𝑓 and 𝛽𝑑 of the entire manifold cross section 𝐴𝑀 =
𝐴𝑓 +𝐴𝑑 . Cross sections 𝐴𝐵𝑈 of breeder units are measured as multiples
𝛽𝐵𝑈 of the same reference area 𝐴𝑀 .

𝐴𝑓 = 𝐴𝑀𝛽𝑓 , 𝐴𝑑 = 𝐴𝑀𝛽𝑑 , 𝐴𝐵𝑈 = 𝐴𝑀𝛽𝐵𝑈 , (2)

where 𝛽𝑓 + 𝛽𝑑 = 1 and 𝛽𝐵𝑈 = 𝐴𝐵𝑈∕𝐴𝑀 .
The breeder unit 𝑖 at poloidal position 𝑥𝑖 exchanges a part 𝑑𝑞𝑖 =

𝑞0 𝑑𝛼𝑖 of the total volume flux 𝑞0 between feeding and draining mani-
folds. After passing position 𝑥𝑖 the nondimensional flow rate fractions
𝛼 = 𝑞∕𝑞0 in manifolds become

𝛼𝑓,𝑖+1 = 𝛼𝑓,𝑖 − 𝑑𝛼𝑖, (3)

𝛼 = 𝛼 + 𝑑𝛼 , (4)
2

𝑑,𝑖+1 𝑑,𝑖 𝑖
where mass conservation requires

𝛼𝑓,𝑖 + 𝛼𝑑,𝑖 = 1,
𝑁
∑

𝑖=1
𝑑𝛼𝑖 = 1. (5)

The local pressure drop in feeding and draining manifolds between
position 𝑖 and 𝑖 + 1 can be described as

𝑝𝑓,𝑖+1 − 𝑝𝑓,𝑖 = − 𝜎𝐵2 𝑞0
𝐴𝑀

𝑎 𝛥𝑝𝑓,𝑖, (6)

𝑝𝑑,𝑖+1 − 𝑝𝑑,𝑖 = − 𝜎𝐵2 𝑞0
𝐴𝑀

𝑎 𝛥𝑝𝑑,𝑖, (7)

where 𝛥𝑝𝑓 and 𝛥𝑝𝑑 stand for the magnitudes of nondimensional pres-
sure drops, as functions of 𝛼𝑓,𝑖 and 𝛼𝑑,𝑖, in feeding and draining sections
of poloidal length 𝑑𝑥. The characteristic Hartmann length 𝑎 is the
average value of feeding and draining ducts, it is constant along the
poloidal direction for the current TBM design and the mean velocity in
manifolds 𝑢𝑀 = 𝑞0∕𝐴𝑀 . The pressure drop in breeder units is

𝑝𝑓,𝑖 − 𝑝𝑑,𝑖 = 𝜎𝐵2 𝑞0
𝐴𝑀

𝑑𝛼𝑖
𝛽𝐵𝑈

𝑎𝐵𝑈 𝛥𝑝𝐵𝑈 . (8)

Here, 𝑞0 𝑑𝛼𝑖∕𝐴𝑀𝛽𝐵𝑈 represents the average velocity in a BU, 𝑎𝐵𝑈 is
the Hartmann length of breeder units as available from the design of
the TBM mock-up. It is the typical length that is used when the nondi-
mensional pressure drop 𝛥𝑝𝐵𝑈 is determined. For complex electrically
coupled manifold geometries, 𝛥𝑝𝑓 and 𝛥𝑝𝑑 have to be determined by
3D analyses. An example is described in Section 3.

In nondimensional representation using a pressure scale 𝑝0 = 𝐿𝜎𝐵2

𝑞0∕𝐴𝑀 and nondimensional pressure 𝜋 = 𝑝∕𝑝0 we find

𝜋𝑓,𝑖+1 = 𝜋𝑓,𝑖 −
𝑎
𝐿

𝛥𝑝𝑓,𝑖, (9)

𝜋𝑑,𝑖+1 = 𝜋𝑑,𝑖 −
𝑎
𝐿

𝛥𝑝𝑑,𝑖, (10)

𝜋𝑓,𝑖 − 𝜋𝑑,𝑖 =
𝑑𝛼𝑖
𝛽𝐵𝑈

𝑎𝐵𝑈
𝐿

𝛥𝑝𝐵𝑈 , (11)

where the latter equation is used to determine nondimensional flow
rates 𝑑𝛼𝑖 in breeder units

𝑑𝛼𝑖 =
(

𝜋𝑓,𝑖 − 𝜋𝑑,𝑖
)

(

𝛥𝑝𝐵𝑈
𝛽𝐵𝑈

𝑎𝐵𝑈
𝐿

)−1
. (12)

The simulation starts with an initial guess of 𝑑𝛼𝑖 satisfying the
mass balance (5). Then the pressure distributions in manifolds are
determined using (9) and (10), where 𝛥𝑝𝑓,𝑖 and 𝛥𝑝𝑑,𝑖 depend on 𝛼𝑓,𝑖
and 𝛼𝑑,𝑖, respectively. As entrance conditions we assume a reference
pressure 𝜋𝑓,0 = 0 and the yet unknown value 𝜋𝑑,0 is determined by an
iterative procedure, where all variables are repeatedly updated under
the constraint (5).

3. One example: TBM-like manifold geometry

In the following, the model is applied to a geometry that is similar
to the WCLL TBM foreseen for ITER (see Fig. 3). One should keep in
mind that the present MHD mock-up consists only of a single column of
breeder units instead of two as foreseen in ITER and that the coupling
with the second column is not taken into account in this study. For
the analysis, the manifold is split in a number of unit elements of
length 𝑑𝑥 for which electrically coupled 3D simulations are performed
to determine the respective 𝛥𝑝 depending on the fraction 𝛼 of flow
rate carried in individual parts. For these simulations a local coordinate
system is centered in the middle of the stiffening plates that reduce the
manifold cross sections. Although same notation (𝑥) is used here as local
poloidal coordinate, one should not be confused with the previously
introduced global poloidal coordinate.

Along the poloidal direction, manifold cross sections are constant
with periodical constrictions originating from stiffening plates that pen-
etrate the manifold region (see Fig. 3b). The manifolds are separated
from each other by a common wall along which both channels are
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𝑢

electrically coupled. Leakage currents may be exchanged across this
wall between feeding and draining ducts. A representative manifold
element used in scaled mock-up experiments performed in the MEKKA
facility at KIT has dimensions of 𝑑𝑥 (82 mm) × 4𝑎 (78 mm) × 2𝑑 (24 mm).
Details are shown in Fig. 3b. In the present design [3], the separation
wall or so-called baffle plate is shifted by a distance 𝑒 in 𝑦-direction
with respect to the middle plane 𝑦 = 0.

To study the influence of electromagnetic coupling by leakage
currents at the common wall, the present analysis assumes symmetry
with respect to 𝑦 = 0 for simplicity, i.e. we take the baffle plate at
𝑒 = 0. The analysis is performed analogous to [4] using asymptotic
methods. This approach applies for strong magnetic fields and neglects
inertia effects. This is justified for very strong magnetic fields, i.e. when
electromagnetic forces are much larger than inertia forces. The core
flow is considered inviscid with viscous corrections in boundary layers.
Under these assumptions, the governing equations can be integrated
analytically along magnetic field lines and the remaining equations
may be solved efficiently in 2D for pressure 𝑝 and potential 𝜙 on
the fluid–wall interface. The full 3D solution can be reconstructed by
analytical relations after 𝑝 and 𝜙 are known on the interface. This
procedure, initially proposed by Kulikovskii [5], has been implemented
in a numerical code using boundary fitted coordinates [6]. The ap-
proach has been validated, as described in the latter reference, against
analytical solutions for flows in rectangular ducts with aligned and
inclined magnetic fields, for circular pipes, and for 3D flows in a
sharp backward elbow using experimental data. Further validations
have been performed for many other applications such as for instance
MHD flows in a sudden expansion [7], where results compare well with
full numerical simulations and experiments, even for finite interaction
parameters.

For simulations for the mock-up experiments performed in the
MEKKA facility at KIT, thermophysical properties are used for the
model fluid NaK as 𝜌 = 863 kg∕m3, 𝜈 = 9.02 ⋅ 10−7 m2∕s, 𝜎 = 2.79 ⋅
106 1∕Ωm, [8] and 𝜎𝑤 = 1.24⋅106 1∕Ωm for the wall. In the present work
we are mainly interested in fundamental physics effects and therefore
we ignore minor details. We consider for instance all walls with the
same thickness (an average value) so that all parts have unique wall
conductance ratio 𝑐 = 0.274. Here 𝑐 = 𝑡𝑤𝜎𝑤∕𝑎𝜎 describes for thin walls,
𝑡𝑤 ≪ 𝑎, the ratio of conductance of the walls and fluid region. The
thickness of all walls is assumed 𝑡𝑤 = 12 mm, except for the thin baffle
plate where the major coupling occurs. The thickness of this wall is
only 2 mm and its conductance 𝑐 = 0.046.

For these 3D simulations, dimensions are scaled by the mean man-
ifold Hartmann length 𝑎 (see Fig. 3), and the reference velocity 𝑢0 =
𝑞0∕𝐴𝑚 corresponds to the average poloidal velocity in feeding plus
draining parts of the manifold, i.e. the mean nondimensional velocity is
̄ = 1. The nondimensional values 𝛥𝑝 denote pressure differences scaled
by 𝜎𝑢0𝑎𝐵2 and 𝜙 stands for electric potential scaled by 𝑢0𝑎𝐵.

The following results have been obtained for 𝐻𝑎 = 1000, where the
Hartmann number 𝐻𝑎 = 𝑎𝐵

√

𝜎∕𝜌𝜈 is a nondimensional measure for
the strength of the magnetic field. This moderate Hartmann number
has been chosen since it allows better visualization of side layer jets
in Figs. 4 and 5. For higher 𝐻𝑎, core velocity and pressure drop
are quite similar to the ones described for 𝐻𝑎 = 1000, but since
the viscous boundary layers become thinner with increasing 𝐻𝑎, flow
features in these regions are more difficult to visualize. Simulations
with same pressure differences 𝛥𝑝𝑓 = 𝛥𝑝𝑑 applied in both manifold
ducts, lead obviously to equal flow rates in both channels, i.e. 𝛼𝑓 =
𝛼𝑑 = 0.5. Results for poloidal velocity profiles are displayed in Fig. 4a
for a position in the middle (𝑥 = 0) and at the end of the manifold
part (𝑥 = −2.1). When mean velocities in both ducts are the same,
coupling is ineffective and the flows in both channels practically do
not interact since no leakage currents are exchanged. As a result, we
observe near entrance and exit the typical velocity profiles expected
for flows in electrically conducting rectangular ducts, which exhibit
uniform core velocity, high-velocity jets in side layers parallel to 𝑩
3

Fig. 3. 3D view of a TBM-like geometry with manifolds and breeder units used for
MHD model experiments in the MEKKA facility at KIT (a). Geometry, dimensions and
coordinate system in feeding and draining manifolds. Black notation is nondimensional
and scaled with 𝑎, and the blue one is dimensional and measured in mm (b).

Fig. 4. Results of a simulation with electromagnetic coupling, with same pressure
differences in both ducts, 𝛥𝑝𝑓 = 𝛥𝑝𝑑 . (a) Velocity profiles in the symmetry plane 𝑥 = 0
and near the entrance 𝑥 = −2.1, and (b) view on the distribution of nondimensional
electric potential on the fluid–wall interface in half of the geometry.

and thin Hartmann layers at walls perpendicular to the magnetic field.
When the cross sections become constricted near 𝑥 = 0, the mean
velocity increases and the core velocities are no longer constant along 𝑦.
Some deformation along 𝑧 is caused by 3D currents near the contraction
and expansion at the penetrating stiffening plate. Fig. 4b, shows electric
potential on the fluid–wall interface of half the ducts (𝑧 < 0). One can
see that highest values occur along the side walls, in regions where
the velocity reaches maximum values. In the other half of the ducts
(𝑧 > 0), not shown in the figure, the distribution is symmetric with
𝜙 (𝑧) = −𝜙 (−𝑧).

Fig. 5 shows an example where the pressure difference 𝛥𝑝𝑑 along
the draining manifold is significantly smaller than in the feeding part
𝛥𝑝𝑑∕𝛥𝑝𝑓 = 0.125. As a result the fraction of flow in the draining channel
decreases and the one in the feeding part increases such that 𝛼𝑑 = 0.313
and 𝛼𝑓 = 0.687, i.e. 𝛼𝑑∕𝛼𝑓 = 0.456. We observe that the ratios of
pressure drops and flow rates are not comparable. The reason for this
behavior is the electromagnetic coupling where the faster flow in the
feeding part pulls the slower flow in the draining duct in the same
direction. This leads to increased pressure drop in the feeding channel
and reduced pressure drop in the draining one as shown in Fig. 6.
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Fig. 5. Results of a simulation with electromagnetic coupling, for pressure differences
𝛥𝑝𝑑 = 0.125𝛥𝑝𝑓 . (a) Velocity profiles in the symmetry plane 𝑥 = 0 and near the entrance
𝑥 = −2.1, and (b) view on the distribution of nondimensional electric potential on the
fluid–wall interface in half of the geometry.

Fig. 6. Pressure distribution in a periodic fraction of the coupled manifolds along
the scaled poloidal coordinate for pressure differences 𝛥𝑝𝑑 = 𝛥𝑝𝑓 (black) and 𝛥𝑝𝑑 =
0.125𝛥𝑝𝑓 (blue and red).

Pressure distributions in the center of feeding and draining ducts are
plotted in Fig. 6, where the reference pressure 𝑝 = 0 has been selected
in the center at 𝑥 = 0. We observe almost uniform pressure gradients in
both manifolds with locally increased pressure drop near constrictions
of cross sections (near the stiffening plate). When feeding and draining
manifolds carry same flow rates 𝛼𝑓 = 𝛼𝑑 = 0.5, the pressure differences
in both parts are equal (black line). However, when the pressure
difference in the draining duct is reduced to 𝛥𝑝𝑑 = 0.125𝛥𝑝𝑓 , solutions
in feeding and draining ducts differ from each other. Differences 𝛥𝑝𝑓
and 𝛥𝑝𝑑 between entrance an exit are a result of these simulations and
their values depending on 𝛼𝑓 and 𝛼𝑑 are required for the global solution
procedure (9)–(10).

For making use of these results in the manifold model described
above, it is required to determine 𝛥𝑝 depending on 𝛼. Results for a large
number of 3D simulations are summarized in Fig. 7. The good news is
that over a wide range of 𝛼 values, the pressure drops scale linearly
with this quantity. We find by linear fits (dashed lines in Fig. 7)

𝛥𝑝𝑓 = 0.544 + 2.263
(

𝛼𝑓 − 0.5
)

, (13)

𝛥𝑝𝑑 = 0.544 + 2.263
(

𝛼𝑑 − 0.5
)

, (14)

i.e. both pressure drops depend in the same way on their respective
fraction of flow rate. This results from the assumption that both parts of
the manifold have same toroidal dimension for the assumed symmetric
case with 𝑒 = 0.
4

Fig. 7. Variation of pressure drops 𝛥𝑝𝑓 and 𝛥𝑝𝑑 with flow rate fraction 𝛼𝑓 = 1−𝛼𝑑 . Data
displayed by symbols has been obtained by coupled 3D analyses of periodic manifold
fractions, dashed lines represent best linear fits.

Fig. 8. Distribution of flow rates among 8 BUs in a WCLL TBM mock-up; initial
condition and converged solution.

4. Coupling of manifolds with breeder units

The simulation for the entire manifold starts with assumed uniform
initial distribution of flow rates in BUs where 𝑑𝛼𝑖 = 1∕𝑁 with 𝑁 = 8
for the present TBM-like example as shown in Fig. 8 by the dashed line.
Fig. 9 shows converged results of pressure drops in feeding and draining
manifolds according to Eqs. (9) and (10) with (12). It can be seen that
in the feeding manifold the pressure drop is the highest for small 𝜉
since here the flow rate is large. Moreover, due to electromagnetic
coupling, the flow in the feeding channel pulls fluid in the draining
duct where a pressure increase can be observed for the first unit
element. The situation is reversed close to the end of the module when
approaching 𝜉 = 1. Here we have the highest flux in the draining duct
with corresponding high pressure drop, while the pressure gradient in
the feeding channel is reversed due to coupling by leakage currents.
For simplicity, data points between two poloidal positions 𝜉𝑖 and 𝜉𝑖+1
are connected by straight lines. When resolving the detailed pressure
distribution along the poloidal direction one can observe of course the
steps caused by additional pressure drop at the local contractions of the
cross sections (see e.g. Fig. 4 for details).

Results shown in Fig. 9 correspond to those published in [9].
In the latter reference the distance between feeding and draining
pressure distributions (𝜋𝑑,0) remained undetermined, while now it is
prescribed under the constraint of mass conservation. Even if not
explicitly shown in Fig. 9, the additional pressure drops near the
contractions/expansions are included in the present analysis. In Fig. 9
it can be seen that the driving pressure heads for BUs 𝑖 = 3, 4, 5, 6
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Fig. 9. Pressure distribution in feeding and draining manifolds in a WCLL TBM
mock-up obtained eventually when iterative solutions fully converged. The related
distribution of flow rates in BUs corresponds to the solid blue line in Fig. 8.

become very small so that the flow rates in these elements practically
become insignificant. The latter fact can be observed in Fig. 8 (blue
solid line), where the highest flow rates in BUs occur near the ends
of the blanket module. Similar conclusions have been reached from
previous experimental and numerical analyses for MHD flows in a HCLL
blanket module [2].

5. Conclusions

The present work attempts at quantifying MHD pressure drop in
feeding and draining manifolds of a model geometry for a WCLL
TBM and to determine the flow partitioning in BUs. The manifold is
split along the poloidal direction into generic unit elements that are
considered in detailed 3D numerical analyses. In the latter simulations,
full electric coupling of neighboring feeding and draining channels is
taken into account as well as geometric constraints caused by stiffening
plates that penetrate the manifolds. Results of 3D simulations are used
as input to construct a global solution to the problem. The derived
model has been first applied to the case with 8 BUs, where feeding
and draining manifold ducts have equal cross sections, i.e. where
the dividing baffle plate is in the center of the geometry (𝑒 = 0).
This example has been used to develop an understanding of the main
physical effects and to verify if certain symmetries in the solution are
met in order to test the correct implementation of the model equations.

In future work, the position of the baffle plate will been taken in
an asymmetric way as foreseen in the WCLL TBM design [3], which
will then allow comparison with results obtained by a systems code
analysis [10]. Moreover, the model will be further applied in future
studies to optimize the position of the baffle plate such that flow
rates in all BUs become equal in order to give recommendations for
modifications to the WCLL TBM design team. The derived model is very
flexible and allows efficient and fast determination of the electrically
coupled MHD performance of given design concepts with large numbers
of BUs as foreseen in DEMO. The main computational effort lies here
in the determination of data for pressure drop correlations (as shown
e.g. in Fig. 7) by using electrically coupled 3D asymptotic analyses.
5

In order to determine 𝛥𝑝𝑓 and 𝛥𝑝𝑑 for a specific value of 𝛼, a typical
imulation run with 140 grid points in axial direction (the magnetic
ield direction is treated analytically, no numerical resolution) and 40
ransverse points in half of a cross section of each manifold requires
bout 8–9 min on a single CPU of a standard office PC. With some
f these simulations, the pressure drop correlations are known and
he iterative solution of Eqs. (9) and (10) is then obtained within
econds. Results for poloidal pressure distributions in TBM-like feeding
nd draining blanket manifolds for 𝑁 = 100 BUs are possible and will
e presented in future papers.
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