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Abstract
We present an extension of the Livens variational principle (sometimes also referred to as
Hamilton-Pontryagin principle) to mechanical systems subject to holonomic constraints.
The newly proposed principle embodies an index reduction in the spirit of the often-applied
GGL stabilization and thus may be termed “GGL principle”. The Euler-Lagrange equations
of the GGL principle assume the form of differential-algebraic equations (DAEs) with dif-
ferentiation index two. In contrast to the original GGL-DAEs, the present formulation fits
into the Hamiltonian framework of mechanics. Therefore, the GGL principle facilitates the
design of structure-preserving integrators. In particular, it offers the possibility to construct
variational integrators. This is illustrated with the development of a new first-order scheme
which is symplectic by design. The numerical properties of the newly devised scheme are
investigated for representative examples of constrained mechanical systems.

Keywords Livens principle · Constrained dynamics · Gear-Gupta-Leimkuhler
stabilization · Index reduction · Variational integrators

1 Introduction

Dynamical systems may be formulated in various ways. The well-known Lagrangian and
Hamiltonian formalisms both consider descriptive energetic scalars and deploy certain op-
erations on them to generate the system’s equations of motion. Another formulation, which
unifies both above-mentioned formalisms by means of independent position, velocity and
momentum quantities has been proposed by Livens [1]. This Livens principle has been re-
cently taken up by Bou-Rabee [2], Yoshimura & Marsden [3], and Holm [4] under the name
of Hamilton-Pontryagin principle due to its close relation to the Pontryagin principle from
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the field of optimal control [5]. Livens principle allows for an advantageous universal de-
scription due to its mixed character.

A large variety of dynamical systems are subject to constraints, which reduce the de-
grees of freedom of the system and impose some constraint function to be satisfied. When
describing the system with redundant coordinates, the equations of motion emerge as a set of
differential-algebraic equations (DAEs), which combine both differential equations and al-
gebraic constraint equations. It is to mention that the numerical treatment of DAEs requires
some additional effort compared to purely differential equations (cf. Kunkel & Mehrmann
[6]). As the constraints have to hold at every point in time (consistency condition), so-called
secondary constraints on velocity level are induced.

In a vast majority of dynamical problems, one cannot find an analytical solution. Thus,
in recent times, the focus of scientific research has become to derive numerical integra-
tion methods, which are capable of solving the equations of motion approximately. In this
connection, the class of structure-preserving integrators seeks to inherit the conservation
principles of dynamical systems in a discrete sense (cf. monographs such as Hairer et al.
[7] or Leimkuhler & Reich [8]). The first contributions can be traced back to symplectic
methods (see, e.g., de Vogelaere [9]). In the field of mechanics, structure-preserving inte-
gration schemes can be mainly divided into two different groups: variational integrators
and energy-momentum integrators (see the book [10] for a summary of important develop-
ments).

Variational integrators approximate the action integral and are typically able to conserve
the symplectic structure as well as the system’s momentum maps in a discrete sense (cf. Lew
& Mata [11]). These are consequences of the variational procedure of derivation (cf. Mars-
den & West [12]). The main idea to find discrete counterparts of the variational principles
goes back to Maeda [13]. Based on this concept, Marsden & West [12] provided a frame-
work of discrete Lagrangian and Hamiltonian mechanics. Until now, variational integrators
have been developed for various applications, e.g., for constrained dynamical systems (see,
e.g., Leyendecker et al. [14]).

Integration schemes for constrained dynamics typically only account for the constraints
on configuration level (primary constraints) but not for the secondary constraints and thus
have a differentiation index of 3. This may lead to numerical instabilities (cf. Yoshimura
[15]). By replacing the primary constraints on position level with the secondary velocity-
level constraints, DAEs with index 2 are obtained. Thus, the numerical problems can be
avoided but violations of the primary constraints induce the well-known drift phenomenon
(cf. Simeon [16]). However, this issue can be alleviated by extending the system of un-
knowns and coupling the secondary constraints into the equations. The most famous tech-
nique, the Gear-Gupta-Leimkuhler (GGL) stabilization, traces back to Gear et al. [17] in
1985 and is widely used until today (see, e.g., Brüls et al. [18] and Arnold et al. [19]).
This classical GGL formulation relies on the direct modification of the equations of motion.
Yet, this procedure leads to a destruction of the Hamiltonian structure such that most GGL
stabilized integration schemes are not symplectic.

To the best of the authors’ knowledge, numerical integration schemes for constrained
dynamics have been formulated either in a Hamiltonian or in a Lagrangian way. Moreover,
variational integration schemes have not been yet constructed such that primary and sec-
ondary constraints are considered at once. Thus, this work tries to fill both gaps by introduc-
ing a novel Livens-based variational framework for the integration of dynamical systems
accounting for both primary and secondary constraints. In particular, the new framework
makes it possible to justify the commonly used GGL formulation in a variational sense.
Contrary to the original version, the newly proposed formalism provides index 2 DAEs with
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a Hamiltonian structure. Moreover, the novel variational principle opens up the possibility
to develop new variational integration schemes with a GGL-type stabilization. A first step
in this direction is undertaken in the present work. In particular, a first-order scheme is pre-
sented which results from the direct discretization of the newly proposed GGL variational
principle.

2 Fundamentals

2.1 Livens principle

Consider a dynamical system with d degrees of freedom and positions q ∈R
d . From Hamil-

ton’s principle of least action, one can proceed by allowing the velocities to be independent
variables v ∈ R

d . Thus, the kinematic relation q̇ = v has to be enforced by means of a La-
grange multiplier p ∈R

d . The corresponding augmented functional reads

S̃(q,v,p) =
∫ T

0
[L(q,v) + p · (q̇ − v)] dt , (1)

where L(q,v) is the Lagrangian. The functional (1) was firstly termed Livens principle (cf.
Sect. 26.2 in Pars [20]) after G.H. Livens who proposed this functional for the first time
(cf. Livens [1]). More recently, Marsden and coworkers [2, 3] coined the name Hamilton-
Pontryagin principle for this functional due to its close relation to the classical Pontryagin
principle from the field of optimal control [5]. Due to its mixed character with three indepen-
dent fields (q,v,p), it resembles the Hu-Washizu principle from the area of elasticity theory
(cf. Washizu [21]). Livens principle unifies both Lagrangian and Hamiltonian viewpoints on
mechanics and automatically accounts for the Legendre transformation.

By stating the stationary condition δS̃(q,v,p) = 0 and computing the variations with
respect to every independent variable, one obtains the equations of motion in the form

q̇ = v, (2a)

ṗ = D1L(q,v), (2b)

p = D2L(q,v), (2c)

where Dα(•) denotes the partial derivative with respect to the α’s argument. With regard
to (2c) the multiplier p can be identified as the conjugate momentum, which thus directly
emanates from the principle. Within the framework of Hamiltonian dynamics, momentum
variables have to be defined a priori or emerge from the Legendre transformation as a fiber
derivative of L(q, q̇). Note that after reinserting (2c) into (2b) and making use of (2a), Livens
principle traces back to the Lagrangian equations of the second kind.

Consider a mechanical system with constant mass matrix M ∈ R
d×d , such that the La-

grangian takes the form

L(q,v) = 1

2
v · Mv − V (q), (3)

where V (q) is a potential function. Now (2c) yields p = Mv, so that (2a) and (2b) can be
rewritten as

q̇ = M−1p, (4a)
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ṗ = −DV (q). (4b)

Note that D(•) represents the gradient operator. These equations correspond to the Hamil-
tonian form of the equations of motion. Making use of the phase space vector z = [qT,pT]T

and the symplectic structure matrix

J =
[

0d×d I d×d

−I d×d 0d×d

]
, (5)

where I d×d ∈R
d×d denotes the d × d identity matrix, the Hamiltonian equations of motion

read

ż = JDH(z) (6)

where the standard Hamiltonian function corresponding to (3) is given by

H = 1

2
p · M−1p + V (q). (7)

2.2 Symplectic structure of dynamics

Let us firstly introduce a bilinear and skew-symmetric function � : R2d × R
2d → R acting

on two elements ξ ,η ∈R
2d , which assume an ordering of components as in the phase space

vector such that, exemplarily,

ξ = [
ξ

(1)

1 ξ
(2)

1 . . . ξ
(d)

1 ξ
(1)

2 ξ
(2)

2 . . . ξ
(d)

2

]T
. (8)

Bilinearity refers to the fact that � is linear in both arguments. Skew-symmetry implies
that �(ξ ,η) = −�(η, ξ). The canonical structure matrix introduced in (5) gives rise to the
symplectic two-form

�(ξ ,η) = ξ · J−1η. (9)

A map � : R2d → R
2d is called symplectic if it leaves the symplectic two-form � invariant

in the sense that

�(D�(z)ξ ,D�(z)η) = �(ξ ,η), (10)

where the original two-form is equal to the two-form of the transports of ξ and η under
the linearization of � . Figure 1 displays the mapping of elements ξ and η by � and the
preservation of the symplectic two-form, representing the oriented area for d = 1. Making
use of the definition (9), the last equation leads to a symplecticness condition that reads

D�(z)T
J

−1D�(z) = J
−1. (11)

The wedge product of two differential one-forms da ∈ R
d and db ∈ R

d acting on any
two vectors ξ , η ∈R

2d is given by (cf. Leimkuhler & Reich [8])

(da ∧ db)(ξ ,η) =
d∑

i=1

(dai ∧ dbi) (ξ ,η) =
d∑

i=1

(dbi(ξ)dai(η) − dai(ξ)dbi(η)) . (12)
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Fig. 1 Symplectic area
preservation for d = 1 (inspired
by Hairer et al. [7])

Thus, the symplectic two form (9) can be rewritten in terms of the wedge product as

�(ξ ,η) =
d∑

i=1

dqi ∧ dpi (ξ ,η), (13)

where the differential one-forms dqi, dpi extract the ith coordinate or momentum compo-
nent, respectively, such that

dqi(ξ) = ξ
(i)

1 , dpi(ξ) = ξ
(i)

2 . (14a)

Omitting the arguments, the symplectic two-form can be rewritten more briefly in vector
notation as

� = dq ∧ dp. (15)

Note that this representation is only a briefer notation of (13) that still accounts for the sum-
mation of the wedge product of scalar one-forms. One can show that Hamiltonian flow maps
are symplectic. Thus, it is equivalent to say that the symplectic two-form (15) is conserved
along solutions of the Hamiltonian equations of motions (6), viz.

d

dt
� = d

dt
(dq ∧ dp) = 0. (16)

For differential one-forms, given in vector notation as da, db and dc ∈ R
d , any scalar valued

quantities α,β ∈ R, any matrix A ∈ R
d×d and any symmetric matrix B = BT ∈ R

d×d the
wedge product defined in (12) has the following properties (see, for example, Leimkuhler &
Reich [8]):

da ∧ db = −db ∧ da, (17a)

da ∧ (α db + β dc) = α da ∧ db + β da ∧ dc, (17b)

da ∧ (Adb) = (AT da) ∧ db, (17c)

da ∧ (B da) = 0. (17d)

2.3 GGL method for constrained mechanical systems

Assume that the coordinates q are redundant due to the presence of m independent scle-
ronomic, holonomic constraints gk : Rd → R (k = 1, . . . ,m). The constraints can be com-
prised in a column vector g ∈R

m such that

g(q) = 0. (18)
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Since all constraint functions shall be independent, the constraint Jacobian G(q) = Dg(q) is
of rank m. As (18) is true for any point in time, the time derivative has to vanish accordingly
(consistency condition). Thus, the constraints on velocity level or secondary constraints

d

dt
g(q) = G(q)q̇ = 0 (19)

are induced. It is well-known that the motion of the constrained mechanical systems un-
der consideration is governed by differential-algebraic equations (DAEs) which have dif-
ferentiation index ν = 3. These equations of motion can be derived with a variational
approach, which augments Livens principle (1). Accordingly, introducing Ŝ(q,v,p,λ) =
S̃(q,v,p) + ∫ T

0 λ · g(q)dt , stating the stationary condition δŜ(q,v,p,λ) = 0 and eliminat-
ing the velocities as above leads to an extension of the Hamiltonian equations (4a), (4b) for
constrained systems, such that the index-3 DAEs are obtained as

q̇ = M−1p, (20a)

ṗ = −DV (q) − G(q)Tλ, (20b)

0 = g(q). (20c)

The classical GGL stabilization, which traces back to Gear et al. [17], represents an index
reduction technique by minimal extension (see Kunkel & Mehrmann [6]). The main idea of
the GGL stabilization is to couple the secondary constraints into the dynamics by making use
of additional variables γ ∈R

m, such that the system of equations of motion is extended and
the differentiation index drops to ν = 2. Correspondingly, the numerical ill-conditioning of
index-3 DAEs is alleviated without having the drawback of drift phenomena. The resulting
index-2 DAEs can be written in the form

q̇ = M−1p + G(q)Tγ , (21a)

ṗ = −DV (q) − G(q)Tλ, (21b)

0 = g(q), (21c)

0 = G(q)M−1p. (21d)

Ever since, the GGL stabilization has been widely used and is thus of great importance (see,
e.g., Brüls et al. [18]). Numerical methods can be constructed directly by discretizing the
DAEs (21a)–(21d). Note, however, that due to the GGL modification of the kinematic equa-
tion (21a), the system (21a)–(21d) loses its Hamiltonian structure. For the time-continuous
case, some algebra leads to γ = 0. Consequently, the GGL-DAEs boil down to the standard
formulation (20a)–(20c).

3 GGL principle

3.1 Governing equations

The newly proposed GGL principle relies on a generalization of Livens principle (1) by
considering Lagrange multipliers λ,γ ∈ R

m to enforce the primary constraints (18) and
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secondary constraints (19), respectively. Imposing stationary on a corresponding augmented
action integral

δSGGL(q,v,p,λ,γ ) = 0 (22)

with

SGGL =
∫ T

0

[
L(q,v) − λ · g(q) + p · (q̇ − v − M−1 G(q)T γ )

]
dt , (23)

yields the stationary conditions

∫ T

0
δp · (q̇ − v − M−1 G(q)T γ )

)
dt = 0, (24a)

∫ T

0

(
D1L(q,v) · δq − G(q)Tλ · δq + p · δq̇ − p · M−1δG(q)Tγ

)
dt = 0, (24b)

∫ T

0
δv · (D2L(q,v) − p) dt = 0, (24c)

∫ T

0
δλ · g(q)dt = 0, (24d)

∫ T

0
p · M−1 G(q)T δγ dt = 0. (24e)

As one can see, relation (24b) requires some more effort in order to achieve the final Euler-
Langrange equation. Therefore, δq̇ can be replaced through integration by parts such that

∫ T

0
p · δq̇ dt = −

∫ T

0
δq · ṗ dt + δq(T ) · p(T ) − δq(0) · p(0). (25)

The endpoint conditions on admissible variations δq(0) = δq(T ) = 0 make the latter two
terms vanish. Furthermore, the variation of the gradient of the constraint functions can be
executed as

δG(q) = DG(q)δq = D2g(q)δq. (26)

In order to avoid the third-order expression D2g(q), the stationary condition (24b) can be
written in terms of the individual constraint functions gk(q) for k = 1, . . . ,m. Thus, the
variation of the constraint gradients is given by

δ(Dgk(q)) = D2gk(q)δq, (27)

where the constraint Hessian D2gk(q) ∈ R
d×d . Consequently, the arbitrariness of the vari-

ations δq , δv, δp, δλ and δγ can be taken into account such that the governing DAEs are
deduced as

q̇ = v + M−1G(q)Tγ , (28a)

ṗ = D1L(q,v) − G(q)Tλ −
m∑

k=1

γkD2gk(q)M−1p, (28b)
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p = D2L(q,v), (28c)

0 = g(q), (28d)

0 = G(q)M−1p. (28e)

Thus equations in the fashion of the standard GGL stabilization (21a)–(21d) are obtained
with an additional term in the momentum equation. Note that (28c) represents the fiber
derivative of the newly proposed variational principle, such that the Lagrange multiplier p

denotes the conjugate momenta. By introducing the secondary constraints to the functional,
the resulting Euler-Lagrange equations are DAEs with index ν = 2, similarly to the GGL
stabilized equations of motion, whereas the standard DAEs of constrained dynamics have
index ν = 3. Thus, the newly established DAEs (28a)–(28e) can be regarded as an extension
to the classical GGL stabilization. Similar to the classical GGL stabilization, one obtains
γ = 0 for the time-continuous case. However, the third term on the right-hand side of (28b)
is of crucial importance as it maintains the Hamiltonian structure of the equations of motion,
in contrast to the classical GGL method.

3.2 Hamiltonian structure

The equations of motion induced by the GGL principle have Hamiltonian structure, viz.

q̇ = +D2HGGL(q,p,λ,γ ), (29a)

ṗ = −D1HGGL(q,p,λ,γ ), (29b)

0 = +D3HGGL(q,p,λ,γ ), (29c)

0 = +D4HGGL(q,p,λ,γ ), (29d)

with a corresponding augmented Hamiltonian

HGGL(q,p,λ,γ ) = 1

2
p · M−1p + V (q) + λ · g(q) + γ · G(q)M−1p. (30)

The above equations can be related to the Euler-Lagrange equations (28a)–(28e) of the GGL
functional after elimination of the velocities by employing the Legendre transformation
(28c). Next, we show that the equations of motion of the novel framework conserve the
Hamiltonian exactly. For that purpose, we compute the time derivative of the augmented
Hamiltonian (30) such that

d

dt
HGGL = D1HGGL · q̇ + D2HGGL · ṗ + D3HGGL · λ̇ + D4HGGL · γ̇

= D1HGGL · D2HGGL − D2HGGL · D1HGGL + 0 · λ̇ + 0 · γ̇ = 0, (31)

where the Hamiltonian equations of motion (29a)–(29d) have been considered. As the aug-
mented Hamiltonian (30) is conserved along solutions of the equations of motion, also the
Hamiltonian H itself is conserved since both constraints on configuration level and momen-
tum level are identically zero such that Ḣ = 0. In contrast to the original GGL formulation
(cf. Sect. 2.3), this conservation law holds regardless of the actual value of the Lagrange
multipliers γ .
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3.3 Symplectic structure

We show that the GGL functional inherits the symplectic structure of Hamiltonian sys-
tems and thus the symplectic two-form is conserved along solutions of (28a)–(28e) or
(29a)–(29d), respectively. We begin by deriving the total differentials based on the equa-
tions of motion as

dq̇ = D2
21H(q,p)dq + D2

22H(q,p)dp + d
(
D2g

v(q,p)Tγ
)

, (32a)

dṗ = −D2
11H(q,p)dq − D2

12H(q,p)dp − d
(
Dgq(q)Tλ

) − d
(
D1g

v(q,p)Tγ
)

, (32b)

0 = Dgq(q)dq, (32c)

0 = D1g
v(q,p)dq + D2g

v(q,p)dp, (32d)

where we have introduced the distinct functions gq(q) = g(q) for the holonomic constraint
on configuration level and gv(q,p) = Dg(q)M−1p for the corresponding constraint on mo-
mentum level. It is straightforward to compute the temporal evolution of � by means of the
product rule such that

d

dt
� = dq̇ ∧ dp + dq ∧ dṗ, (33)

into which the above differential equations (32a) and (32b) can be inserted. One can consider
the symmetry of the Hessian of H and make use of the properties of the wedge product. Note
that D2

11H and D2
22H both are symmetric matrices such that

D2
22H(q,p)dp ∧ dp = 0, (34)

−dq ∧ D2
11H(q,p)dq = 0, (35)

due to property (17d). Moreover, the two terms with the off-diagonal entries of the Hessian
of H cancel each other out, because

D2
21H(q,p)dq ∧ dp = (D2

12H(q,p))T dq ∧ dp = dq ∧ D2
12H(q,p)dp, (36)

where in the last equation property (17c) has been used. The term stemming from the pri-
mary constraints can be written as

d
(
Dgq(q)Tλ

) ∧ dq = Dgq(q)T dλ ∧ dq +
m∑

k=1

λkD2gk(q)dq ∧ dq = dλ ∧ Dgq(q)dq = 0,

(37)

where again (17c) and (17d) have been used along with (32c). Therefore, all terms emerging
from the right-hand side of (33) cancel out except for those containing the constraint on
momentum level gv(q,p). We therefore obtain

d

dt
� = d

(
D2g

v(q,p)Tγ
) ∧ dp − dq ∧ d

(
D1g

v(q,p)Tγ
)

(38)

= D2g
vT dγ ∧ dp + D1g

vT dγ ∧ dq +
m∑

k=1

γkD2
12g

v
k dq ∧ dp +

m∑
k=1

γkD2
21g

v
k dp ∧ dq
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= dγ ∧ (
D1g

v(q,p)dq +D2g
v(q,p)dp

)+
m∑

k=1

γk

(
D2

12g
v
k − (D2

21g
v
k )

T
)

dq ∧ dp = 0,

where the first term vanishes in view of the total differential of the secondary constraint
(32d) and the second one cancels due to the symmetry of the Hessian of gv

k . Note that it has
been taken into account that terms including D2

11g
v
k and D2

22g
v
k , respectively, cancel due to

their symmetry. This proofs the symplecticness of the equations of motion emanating from
the GGL functional. Again this property does not depend on the Lagrange multiplier γ ,
which is an advantage over the original GGL method by Gear et al. [17], for which γ = 0 is
required in order to conserve �.

4 GGL variational integrator

We next illustrate how the GGL principle introduced in Sect. 3 can be employed to derive
a variational integrator. Subsequently, structure-preserving properties of the newly devised
variational integrator will be considered.

4.1 Governing equations

Let us construct a time-stepping scheme by means of a direct discretization of the GGL
functional (23). Enforcing the constraint on configuration level in the endpoint and the con-
straint on momentum level in an intermediate state and discretizing the velocity by means
of an explicit Euler method, we obtain the discrete action integral

Sd =
N−1∑
n=0

[
hL(qn,vn)−hλn+1 · g(qn+1)+pn+1 · (qn+1 −qn −hvn −hM−1G(q̄)Tγ n+1

) ]
,

(39)

where the configuration variable q̄ = qn + hvn has been introduced. Stationary conditions
can be applied directly to the discrete functional, yielding

N−1∑
n=0

δpn+1 · (qn+1 − qn − hvn − hM−1G(q̄)Tγ n+1
) = 0, (40a)

N−1∑
n=0

δqn ·
(

hD1L(qn,vn) − pn+1 − h

m∑
k=1

γ n+1
k D2gk(q̄)M−1pn+1

)
(40b)

+
N−1∑
n=0

δqn+1 · (−hG(qn+1)Tλn+1 + pn+1
) = 0,

N−1∑
n=0

δvn ·
(

hD2L(qn,vn) − hpn+1 − h2
m∑

k=1

γ n+1
k D2gk(q̄)M−1pn+1

)
= 0, (40c)

along with

N−1∑
n=0

δλn+1 · g(qn+1) = 0, (40d)
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N−1∑
n=0

δγ n+1 · G(q̄)M−1pn+1 = 0. (40e)

Applying an index shift in the second part of (40b) from n + 1 to n and taking into account
the arbitrariness of all variations, we obtain the discrete EL equations

qn+1 − qn = hvn + hM−1G(q̄)Tγ n+1, (41a)

pn+1 − pn = hD1L(qn,vn) − hG(qn)Tλn − h

m∑
k=1

γ n+1
k D2gk(q̄)M−1pn, (41b)

D2L(qn,vn) =
(

I d×d + h

m∑
k=1

γ n+1
k D2gk(q̄)M−1

)
pn+1, (41c)

g(qn+1) = 0, (41d)

G(q̄)M−1pn+1 = 0, (41e)

for n = 0, . . . ,N − 1. In total we have obtained a set of (3d + 2m) equations for the un-
knowns (qn+1,pn+1,vn,λn,γ n+1) in every time step. These are discrete counterparts of the
continuous EL equations given in (28a)–(28e). It is advantageous that, due to the enhance-
ment of the discrete action integral, the secondary constraints are now taken into account
as well (cf. relation (41e)). Note that relation (41c) can be interpreted as the discrete fiber
derivative of the Legendre transformation, which links velocity and momentum quantities.
It is worth mentioning that scheme (41a)–(41e) can be regarded as generalization to con-
strained mechanical systems of the symplectic Euler method (see Hairer et al. [7] and Euler-
B in Leimkuhler & Reich [8]).

4.2 Conservation properties

It is clear that the primary constraints are correctly captured in every time step by design
(see relation (41d)). The secondary constraints are enforced in an intermediate sense (cf.
(41e)).

Moreover, we can show that the integrator governed by (41a)–(41e) is symplectic. In
order to demonstrate this, we calculate the differentials of (41a) to (41c). This yields

dqn+1 − dqn = h dvn + h d
(
D2g

v(q̄,pn+1)Tγ n+1
)

, (42a)

dpn+1 − dpn = hD2
11L(qn,vn)dqn − h d

(
G(qn)Tλn

) − h d
(
D1g

v(q̄,pn+1)Tγ n+1
)
,

(42b)

D2
22L(qn,vn)dvn = dpn+1 + h d

(
D1g

v(q̄,pn+1)Tγ n+1
)

. (42c)

where gv(q̄,pn+1) = G(q̄)M−1pn+1 has been introduced in analogy to the continuous case.
Moreover, D2

12L(qn,vn) = D2
21L(qn,vn)T = 0 as been taken into account which is valid for

Lagrangians of the form (3). The differential forms of the constraint equations (41d) and
(41e) read

dg(qn+1) = G(qn+1)dqn+1 = 0, (43a)

dgv(q̄,pn+1) = D1g
v(q̄,pn+1)dq̄ + D2g

v(q̄,pn+1)dpn+1 = 0. (43b)



222 P.L. Kinon et al.

Now, making use of the skew-symmetry of the wedge product, property (17a), one can
deduce that

dpn+1 ∧ (dqn+1 − dqn) + (dpn+1 − dpn) ∧ dqn = dqn ∧ dpn − dqn+1 ∧ dpn+1. (44)

Substituting from (42a) and (42b) into the last equation, we obtain

dqn ∧ dpn − dqn+1 ∧ dpn+1 = (45)

dpn+1 ∧ h dvn + h dpn+1 ∧ d
(
D2g

v(q̄,pn+1)Tγ n+1
) + hD2

11L(qn,vn)dqn ∧ dqn

− h d
(
G(qn)Tλn

) ∧ dqn − hd
( m∑

k=1

γ n+1
k D1g

v
k(q̄,pn+1)

) ∧ dqn.

We next insert dpn+1 from (42c) into the first term on the right-hand side of (45). Moreover,
the third term on the right-hand side of (45) vanishes due to property (17d) of the wedge
product. The fourth one vanishes in analogy to relation (37). Consequently, we obtain

dqn ∧ dpn − dqn+1 ∧ dpn+1 =
(

D2
22L(qnvn)dvn − hd

( m∑
k=1

γ n+1
k D1g

v
k(q̄,pn+1)

))∧h dvn

+ h dpn+1 ∧ d
(
D2g

v(q̄,pn+1)Tγ n+1
) − hd

( m∑
k=1

γ n+1
k D1g

v
k(q̄,pn+1)

) ∧ dqn (46)

The symmetric matrix multiplication property of the wedge product (17d) can be used once
more to cancel the first term on the right-hand side of (46). Moreover, it is possible to collect
the second and fourth term, yielding

dqn ∧ dpn − dqn+1 ∧ dpn+1 = (47)

− hd
( m∑

k=1

γ n+1
k D1g

v
k(q̄,pn+1)

) ∧ dq̄ + h dpn+1 ∧ d
(
D2g

v(q̄,pn+1)Tγ n+1
)

.

Executing the remaining differentials leads to the expression

dqn ∧ dpn − dqn+1 ∧ dpn+1 = (48)
(
D1g

v(q̄,pn+1)dq̄
) ∧ h dγ n+1 + (

D2g
v(q̄,pn+1)dpn+1

) ∧ h dγ n+1

− h

m∑
k=1

γ n+1
k D2

12g
v
k (q̄,pn+1)dpn+1 ∧ dq̄ + hdpn+1 ∧

m∑
k=1

γ n+1
k D2

21g
v
k (q̄,pn+1)dq̄.

In analogy to the proof given in Sect. 3.3, terms including D2
11g

v
k and D2

22g
v
k , respectively,

cancel due to their symmetry. It becomes obvious that the last two terms on the right-hand
side of (48) cancel each other out due to (17c) since (D2

12g
v
k )

T = D2
12g

v
k . The first two terms

on the right-hand side of (48) can be collected such that (43b) can be taken into account.
Eventually, the whole expression on the right-hand side of (48) vanishes and we obtain

dqn ∧ dpn = dqn+1 ∧ dpn+1, (49)

which shows that the present scheme is indeed symplectic.



The GGL variational principle for constrained mechanical systems 223

4.3 Extension to non-conservative systems

Considering dynamical systems being subject to (possibly configuration- and velocity-
dependent) non-conservative forces F nc(q,v) ∈ R

d , the motion is governed by the
Lagrange-d’Alembert principle (see, for example, [22]). It augments Hamilton’s principle
of least action by adding the virtual work of the non-conservative forces such that

δSGGL(q,v,p,λ,γ ) +
∫ T

0
F nc(q,v) · δq dt = 0. (50)

The corresponding equations of motion are obtained as

q̇ = v + M−1G(q)Tγ , (51a)

ṗ = D1L(q,v) − G(q)Tλ −
m∑

k=1

γkD2gk(q)M−1p + F nc(q,v), (51b)

p = D2L(q,v), (51c)

0 = g(q), (51d)

0 = G(q)M−1p. (51e)

Obviously, the Hamiltonian of such systems is not conserved. Following the procedure from
Sect. 3.2 in an analogously manner, we obtain the energy balance

dH

dt
= v · F nc(q,v). (52)

Thus, the change of total energy is related to the power of the non-conservative forces. In
the following we want to focus on velocity-dependent viscous forces of the form

F nc(q,v) = −C(q)v, (53)

which can be derived from the Rayleigh dissipation function

G(q,v) = 1

2
v · C(q)v (54)

by differentiating with respect to the velocities such that F nc(q,v) = −D2G(q,v). In the
last equation, C(q) ∈ R

d×d denotes the positive semi-definite dissipation matrix. Corre-
spondingly, the rate of change of the Hamiltonian is strictly nonpositive

dH

dt
= −v · C(q)v = −Pv ≤ 0. (55)

and matches the dissipated power Pv = −2G.
We next show, how the variational integrator developed above can be extended to account

for non-conservative forces of the form (53). To this end, we consider the discrete version
of (50) given by

δSd + h

N−1∑
n=0

F nc
d · δqn = 0. (56)
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Here, the discrete action sum Sd is again given by (39) and F nc
d represents a discrete ap-

proximation of the non-conservative forces. Evaluating the viscous forces at tn such that
F nc

d = C(qn)vn, one arrives at an integration scheme, which extends the previously deduced
method (41a)–(41e) and obeys the discrete Euler-Lagrange equations:

qn+1 − qn = hvn + hM−1G(q̄)Tγ n+1, (57a)

pn+1 − pn = hD1L(qn,vn) − hG(qn)Tλn − h

m∑
k=1

γ n+1
k D2gk(q̄)M−1pn − hC(qn)vn,

(57b)

D2L(qn,vn) =
(

I d×d + h

m∑
k=1

γ n+1
k D2gk(q̄)M−1

)
pn+1, (57c)

g(qn+1) = 0, (57d)

G(q̄)M−1pn+1 = 0, (57e)

for n = 0, . . . ,N − 1 with q̄ = qn + hvn. For more details on variational integrators for
dissipative systems, we refer to the work by Kane et al. [23].

5 Numerical examples

The objective of this section is to analyze the behavior of the previously derived variational
integrator by means of representative numerical examples. Equations (41a)–(41e) are solved
for the respective systems be means of Newton’s method, where the tolerance has been set
to εtol = 10−9. The computation has been performed using the metis code, which is available
at [24].

5.1 Steady precession of a gyroscopic top

In this first example, we investigate the motion of a rigid body which is modeled by means of
a director formulation proposed by Betsch & Steinmann [25]. The director formulation can
be directly linked to natural coordinates [26], as shown in [27]. This formulation describes
rigidity using the orthonormality condition of three directors {d i} positioned in the center of
mass ϕ. Every point of the rigid body is uniquely defined by its material coordinates Xi with
respect to the director frame’s origin such that we are able to express the spatial placement
as a function of the material coordinates and time according to

x(X, t) = ϕ(t) + Xid i (t), (58)

where the summation convention applies. Eventually, it is possible to describe the motion
of the rigid body by n = 3 + 9 = 12 redundant coordinates accumulated in the coordinate
vector

q =

⎡
⎢⎢⎣

ϕ

d1

d2

d3

⎤
⎥⎥⎦ . (59)
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Fig. 2 Initial configuration of the
gyroscopic top

For simplicity, we assume that the directors {d i} coincide with the principal axes of the body.
This framework consequently allows for a representation of the system’s Lagrangian in the
standard fashion (3) with the constant and diagonal mass matrix

M =

⎡
⎢⎢⎣

mI 0 0 0
0 E1I 0 0
0 0 E2I 0
0 0 0 E3I

⎤
⎥⎥⎦ , (60)

where principal values of the Euler tensor can be computed with the principal moments of
inertia as Ei = 1/2

(
Jj + Jk − Ji

)
for even permutations of the indices (i, j, k). The primary

constraints enforce the directors to stay orthonormal for all times due to the rigidity of the
body, viz.

g(q) = g̃({d i}) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2 (d1 · d1 − 1)
1
2 (d2 · d2 − 1)
1
2 (d3 · d3 − 1)

d1 · d2

d1 · d3

d2 · d3

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0. (61)

Specifically in this example, a gyroscopic top, as depicted in Fig. 2, has been investigated
for a total simulation time of T = 2 s with a time step size of h = 0.002 s computed with the
symplectic variational integrator from Sect. 4.

The total mass of the top amounts to m = 0.7069 kg and the moments of inertia read
J1 = J2 = J3 = 5.3014 · 10−4 kg m2. This examplarily corresponds to a symmetric cone
with mass density ρ = 2700 kg/m3, height a = 0.1m, top radius r = a/2, and a location of
the center of mass along the symmetry axis l = 3/4a. In this case, the moments of inertia
can be computed via

J1 = J2 = 3

80
m(4r2 + a2), J3 = 3

10
mr2, (62a)

and the total mass is given by m = 1
3ρπr2a. Gravitation acts in the negative e3-direction

with b = [0 , 0 , −9.81m/s2]T such that the potential energy of the system only depends on
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the position of the center of mass ϕ, viz.

V (q) = V̂ (ϕ) = −mb · ϕ. (63)

It is crucially important that the top is subject to an additional constraint

gcm(q) = ϕ − ld3 = 0, (64)

which fixes the tip of the gyroscopic top to the origin of {ei} by enforcing that the center
of mass is located on the axis of symmetry with a distance of l to the origin. The initial
nutation angle is α0 = π/3 and the gyroscopic top is subject to an initial angular velocity
vector

ω0 = ωp e3 + ωs d3, (65)

where the initial precession rate is chosen as ωp = 10 s−1 and the initial spin rate for the
case of steady precession can be computed via the relation

ωs = mg l

J3 ωp
+ J1 + ml2 − J3

J3
ωp cos(α0) (66)

(cf. p. 221 in Goldstein [28]), which amounts to ωs = 135.6 s−1 for the present case. Note
that g = 9.81 m/s2 denotes the magnitude of gravitational acceleration here.

The transformation from the global ei coordinate system to the initially inclined system
can easily be done by the use of a rotation matrix R0 ∈ SO(3) with the well-known property
RT

0 = R−1
0 . For the present case, this reads

R0 =
⎡
⎣1 0 0

0 cos(α0) − sin(α0)

0 sin(α0) cos(α0)

⎤
⎦ , (67)

which prescribes a rotation about the e1-axis with the angle α0 as can be seen in Fig. 2.
Thus, the initial velocities of the center of mass and the directors can be computed by taking
the cross product with the initial configuration

ϕ̇(t = 0) = ω0 × ϕ(t = 0), (68a)

ḋ i (t = 0) = ω0 × d i (t = 0), (68b)

where ω0 can be transformed to the global coordinate system first with the aid of R0 to
simplify the computation.

By ensuring the condition for a steady precession (66) the center of mass is rotating
on a constant height ϕ3 around the vertical axis since gravitational forces and restabilizing
effects due to the rotation are in an equilibrium. The horizontal coordinate of the center of
mass ϕ3 can thus be regarded as an analytical reference to the solutions. The results given by
the symplectic integration scheme oscillates around this analytical solution, as can be seen
in Fig. 10. The evolution of the energetic quantities T , V , and H is shown in Fig. 3. The
total energy of the system is not conserved identically along the solutions of this integration
scheme as it can be seen in Fig. 5 which displays the increments in H from one time step to
another. However, as it is typical for symplectic methods (cf. Fig. 16 in Lew & Mata [11]),
H(t) oscillates around its true value and the energy error remains stable. Furthermore, as
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Fig. 3 Energy quantities. (Color
figure online)

Fig. 4 Angular momentum.
(Color figure online)

Fig. 5 Hamiltonian difference

Fig. 6 Angular momentum
difference

the gyroscopic top is subject to external forces acting in the e3-direction, the symmetry
of the system reduces to a conservation of the angular momentum about the e3-axis such
that L3 = constant. This is correctly captured by the symplectic method and can be seen in
Fig. 4. Differences in L3 from one point in time to another are close to computer precision
(cf. Fig. 6).

By design, the constraints on configuration level g
q
k (t) corresponding to (41d) are iden-

tically fulfilled which can be observed in Fig. 7 (each line corresponds to one specific
k ∈ {1, . . . ,9}). In contrast to that, in each time step the secondary constraints gv

k (t) are
merely enforced in an intermediate configuration, corresponding to (41e). This leads to the
results depicted in Fig. 8. We can moreover analyze the h-convergence of the symplectic
variational integrator. Therefore we have investigated the relative error in the vertical coor-
dinate of the center of mass, which is supposed to remain constantly ϕ3,ana = 0.0375 m, after
a total simulation time of t = 0.001 s for various time step sizes. In Fig. 9 we display the
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Fig. 7 Constraints on
configuration level

Fig. 8 Constraints on velocity
level

Fig. 9 h-convergence

Fig. 10 Vertical coordinate of
center of mass

relative error

e = |ϕ3(t = 0.001 s) − ϕ3,ana|
ϕ3,ana

(69)

for different time step sizes h. It becomes visible that the present method is first-order accu-
rate.

5.2 Double four-bar linkage

In the second example, we consider a classical benchmark system for multibody dynamics,
the double four-bar linkage (cf. González et al. [29] and Bayo & Avello [30]). As depicted
in Fig. 11, the closed-chain structure at hand consists of five rigid bars with uniformly dis-
tributed mass m = 1 kg and length l = 1 m and seven joints interconnecting them. The lower
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Fig. 11 Double four-bar linkage

three bodies (B1 to B3) are connected to the ground by revolute support joints (P1 to P3),
whereas the upper two bodies (B4 and B5) are connected by four revolute joints in P4 to
P6. The multibody system is under the effect of gravity with b = −9.81 m

s2 e2. At t = 0 the
system is in an upright position (θ = π/2) and is subject to an initial velocity of v0 = 1 m

s
on the upper bodies in positive e1-direction. For consistency the initial velocity in the center
of mass of the lower three bars amounts to v0/2 in the same direction. The system has been
investigated for a total time of T = 10 s with h = 1 · 10−3 s.

The configuration of the system is described by the same director-based framework as in
the first example. Further details about the planar director formulation of rigid body dynam-
ics can be found in [31]. For each body, we make use of the position vector to the center
of mass ϕ(i) ∈ R

2 and two directors d(i)
α ∈ R

2 (α ∈ {1,2}) specifying the orientation of the
rigid body. Thus, we obtain six redundant coordinates

q(i) =
⎡
⎣

ϕ(i)

d
(i)

1

d
(i)

2

⎤
⎦ , (70)

along with the mass matrix

M (i) =
⎡
⎣

m(i)I 0 0
0 E

(i)

1 I 0
0 0 E

(i)

2 I

⎤
⎦ , (71)

for each rigid body, where E(i)
α = 1

2 J (i) and J (i) is the moment of inertia about the center of
mass. The system’s potential energy is given by

V =
5∑

i=1

V (i) =
5∑

i=1

−m(i)b · ϕ(i). (72)

To enforce rigidity each body is subject to three internal holonomic constraints

gint
i (q(i)) =

⎡
⎣

1
2 (d

(i)

1 · d(i)

1 − 1)
1
2 (d

(i)

2 · d(i)

2 − 1)

d
(i)

1 · d(i)

2

⎤
⎦ = 0. (73)

Moreover, there are seven external constraints due to the revolute joints. They are exemplar-
ily given by

gext
1 = ϕ(1) − l

2
d

(1)

1 = 0, (74a)
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Fig. 12 1-coordinate of P4

Fig. 13 1-velocity of P4

gext
4 = ϕ(1) + l

2
d

(1)

1 − (ϕ(4) − l

2
d

(4)

1 ) = 0 (74b)

for the joints P1 and P4, respectively. Eventually, for the double four-bar linkage, we have
a set of 5 · 6 = 30 redundant coordinates and 5 · 3 + 7 · 2 = 29 scalar-valued holonomic
constraints. Consequently, the system has one degree of freedom, e.g., the inclination angle
θ (cf. Fig. 11). According to González et al. [29], this benchmark problem can be used to test
the ability of numerical formulations to overcome singular states, which occur for horizontal
configurations of the linkage (e.g., for θ = 0).

With the present variational integrator there were no numerical problems throughout the
simulation. Correspondingly, one obtains smooth evolutions of the position and velocity
components. This is exemplarily shown for the 1-components of the position x4 and the
velocity v4 in point P4 in Figs. 12 and 13, respectively.

It is straightforward to compute the energetic quantities over time. The results can be
found in Fig. 14, where the energy transfer between potential and kinetic energy becomes
visible. Furthermore, it can be observed that the typical oscillations in the total energy of
symplectic schemes are present again. Increments in the Hamiltonian are of the order of
10−3 and remain stable (see Fig. 16). The angular momentum in two dimensions for the
given director formulation can be computed according to [31] as

L =
5∑

i=1

(
m(i)ϕ(i) · Kϕ̇(i) +

2∑
α=1

E(i)
α d(i)

α · Kḋ
(i)

α

)
(75)

with

K =
[

0 1
−1 0

]
. (76)

Due to the presence of gravity, the system’s Lagrangian does not have rotational symmetry
and thus the angular momentum varies over time (cf. Figs. 15 and 17).

Concerning the holonomic constraints several observations can be made. The constraints
on position level are identically fulfilled by the integration scheme in each time step. This
is depicted both for the internal constraints (cf. Fig. 18) and the external constraints (cf.
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Fig. 14 Energy quantities. (Color
figure online)

Fig. 15 Angular momentum

Fig. 16 Hamiltonian difference

Fig. 17 Angular momentum
difference

Fig. 18 Internal constraints for
first bar on configuration level.
(Color figure online)

Fig. 20). The internal constraints (73) in the first bar B1 and the external constraints (74b) in
the revolute joint P4 have been chosen as representative examples.

By design of the present method, the velocity level constraints are not satisfied at the
endpoints, but rather in an intermediate sense (cf. equation (41e)). Correspondingly, the in-
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Fig. 19 Internal constraints for
first bar on velocity level. (Color
figure online)

Fig. 20 External constraints in
revolute joint P1 on configuration
level. (Color figure online)

Fig. 21 External constraints in
revolute joint P1 on velocity
level. (Color figure online)

ternal constraints on velocity level exhibit slight deviations at the endpoints (see Fig. 19),
which are more pronounced in regions close to the singular configurations. Due to the lin-
earity of the external constraints (e.g., relation (74b)), the constraint Jacobian is constant,
such that the corresponding velocity constraints are exactly fulfilled at the endpoints as well
(cf. Fig. 21).

Eventually, we include physical damping in the system by applying the method devel-
oped in Sect. 4.3. To this end, we add two viscous damping elements to the double four-bar
linkage. Those elements with constants η1 = η2 = 0.5 Ns/m connect the points P1 and P5 as
well as P2 and P6. Defining the relative velocities between the respective points as vrel,1 and
vrel,2, respectively, the Rayleigh dissipation function (54) is given by

G =
2∑

i=1

1

2
ηi vrel,i · vrel,i . (77)

Since P1 and P2 are fixed to the ground, the relative velocities are given by

vrel,1 = ϕ̇(4) + l

2
ḋ

(4)

1 , (78a)

vrel,2 = ϕ̇(5) + l

2
ḋ

(5)

1 . (78b)
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Fig. 22 Energy quantities with
dissipation. (Color figure online)

Fig. 23 Dissipated energy
increments. (Color figure online)

Thus, the dissipation matrix introduced in (53) for the system at hand reads

C = diag(06×6,06×6,06×6,C1,C2), (79)

in which

Ci = ηi

⎡
⎣ −I 2×2 − l

2 I 2×2 02×2

02×2 02×2 02×2

− l
2I 2×2 − l2

4 I 2×2 02×2

⎤
⎦ (80)

for i ∈ {1,2}. As a result, the total energy H of the systems decays over time as it is dis-
sipated by the two viscous damping elements. This can be observed in the energy plot in
Fig. 22. In Fig. 23 it becomes visible that the lost amount of total energy in each time step
is due to the dissipated power P n

v of the damping elements.

6 Conclusion and outlook

In this work, a new variational principle for the analysis of constrained dynamics has been
proposed. The underlying functional takes account of both primary and secondary con-
straints. Due to its mixed character with independent position, velocity and momentum
quantities, it generalizes Livens principle [1] and thus unites Lagrangian and Hamiltonian
viewpoints. By coupling constraints on position and velocity level into the equations we
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have obtained a set of DAEs which can be regarded as an extension of the well-known GGL
stabilization [17]. Contrary to the original formulation, however, the emanating equations of
motion have Hamiltonian structure.

The novel GGL functional gives rise to DAEs with differentiation index 2 and thus cir-
cumvents the numerical problems of the standard index-3 DAEs pertaining to mechanical
systems subject to holonomic constraints. We could show, that the formulation is symplectic
and has Hamiltonian structure. The conservation principles of constrained dynamics can be
carried over to the novel augmented formulation. We have demonstrated that, in analogy
to the classical GGL formulation [17], in the time-continuous case the additional Lagrange
multipliers need to vanish. However, in contrast to the original GGL formulation, this prop-
erty is not required to retain the conservation of the Hamiltonian and the symplectic struc-
ture.

Based on the newly proposed variational principle, we have successfully derived a new
first-order variational integrator. This integrator satisfies the primary constraints and is capa-
ble to conserve the angular momentum of the system. The secondary constraints have been
taken into account in an intermediate sense. We could show that the method is symplectic,
which is a typical property of variational integrators (cf. Marsden & West [12]). Moreover,
due to an appropriate extension, a scheme which accounts for viscous damping has been
derived.

The numerical properties of the present method could be demonstrated in representative
examples of multibody dynamics, making use of a rotationless director-formulation.

The novel variational framework represents a promising basis for the construction of
structure-preserving integration schemes. The method which has been deduced throughout
this work can thus be seen as a starting point for further developments. In particular, due to
the close relationship of the GGL principle to optimal control, previously developed direct
methods based on the philosophy “first discretize then optimize” (see, for example, Betsch
& Becker [32]) can be used to obtain higher-order variational integrators for constrained
mechanical systems. These integrators are symplectic by design. Other approaches for the
design of higher-order methods (see, e.g., Wenger et al. [33] or Altmann & Herzog [34])
might be of interest for the discretization of the GGL principle as well. Furthermore, slight
modifications can be applied to obtain energy-momentum consistent integrators, which are
second-order accurate and represent another important class of structure-preserving time-
stepping schemes.

We eventually note that in the present work we have put the focus on constrained me-
chanical systems with nonsingular mass matrices. Since singular mass matrices present ad-
ditional challenges (see, for example, Udwadia & Phohomsiri [35] and García de Jalón &
Gutiérrez [36]), this case would also be of interest for future investigations.
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