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Abstract
Recent results obtained from leading cosmic ray experiments indicate that simulationsusingLHC-tuned
hadronic interactionmodels underestimate thenumberofmuons in extensive air showers compared to
experimental data. This is the so-calledmuondeficit problem.Determinationof themuoncomponent in
the air shower is crucial for inferring themass of the primaryparticle,which is a key ingredient in the efforts
topinpoint the sources of ultra-high energy cosmic rays. In this paper,wepresent anewmethod toderive
themuon signal indetectors,whichuses the differencebetween the total reconstructed (‘data’) and
simulated signals, and is in turn related to themuonsignalwhich is roughly independent of the zenith
angle, but depends on themass of theprimary cosmic ray. Such amethodoffers anopportunitynot only to
test/calibrate thehadronic interactionmodels, but also toderive theβ exponent,whichdescribes an
increase of thenumberofmuons in a shower as a functionof the energy andmass of theprimary cosmic
ray.Detailed simulations showadependenceof theβ exponent onhadronic interactionproperties, thus
the determinationof this parameter is important forunderstanding themuondeficit problem.Wevalidate
themethodbyusingMonte-Carlo simulations for theEPOS-LHCandQGSJetII-04hadronic interaction
models, and show that thismethodallowsus to recover the ratio of themuon signal betweenEPOS-LHC
andQGSJetII-04 and the averageβ exponent for the studied system,within less than a fewpercent. This is a
consequence of the good recovery of themuon signal for eachprimary included in the analysis.

1. Introduction

Discovered at the beginning of the 20th century byVictor F Hess, cosmic rays are protons and atomic nuclei that
constantly bombard Earth’s atmosphere. Before arriving to the surface of Earth theyfirst interact with the nuclei
of the atmosphere to produce cascades of secondary particles thatmay develop all theway to the ground. This
physical phenomenon, also called extensive air shower (EAS), can be detected viamultiple channels of
observations, e.g. Cherenkov and fluorescence light, or radio emission, which canmeasure different physical
quantities that can be used to determine the nature of the primary cosmic ray, its arrival direction, and its energy.

In the initial phase of the cascading process, the number of particles increases while the energy per particle
drops and distinct components emerge, namely the hadronic, electromagnetic, andmuonic components. Such
growth carries on until amaximum is reached, at a traversed depth usually referred to as Xmax, as particles below
a certain energy threshold are no longer capable of producing additional particles but decay instead as
atmospheric absorption processes start taking over. Asmany as 106 to 109 secondary particlesmay reach the
ground over an area that can extend up to several square kilometers.

In order to describe howEAS are formed in the atmosphere, simple toymodels, such as the one described by
Heitler andMatthews [1], have been developed and are capable of providing accurate predictions of some of the
main quantities that characterize air showerswithout the need for high-performance computing. Although
simplistic, theHeitler-Matthewsmodel is powerful enough to allow the discrimination of EAS produced by
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protons/nuclei and photons. The number ofmuons mNA in EAS initiated by a nucleus withmass numberA can
be related to the number ofmuons mNp produced in a shower initiated by a protonwith the same energy through

=m m
b-N N AA p 1 , where 1− β; 0.1.Muons in EAS have also large decay lengths and small radiative energy losses

and are produced at different stages of the shower development. Therefore,muons can reach surface and
underground detector arrayswhile keeping relevant information about the hadronic cascade.

In recent years, our understanding of the nature of cosmic rays has significantly improved thanks to
experiments spread out all over theworld and using differentmethods of detections such as gamma-ray
telescopes (H.E.S.S. [2],MAGIC [3],VERITAS [4], HAWC [5], and others) and cosmic-ray observatories
(Telescope Array [6], Pierre AugerObservatory [7]). As of today, the energy spectrumof cosmic rays has been
measured from a fewGeV (giga electron-Volts, 109eV) up to 100 EeV (100 exa electron-Volts, 1020 eV), well
beyond the energy accessible in terrestrial particle accelerators, and falls rapidly as the energy increases. The
general consensus is that cosmic rays below 1017 to 1018 eV are ofGalactic origin,most likely from supernovae,
while particles above this energy range have their origin in extra-galactic sources, with active galactic nuclei and
starburst galaxies being themost plausible candidates.

Simulations of EAS using current hadronic interactionmodels predict fewermuons than observed in real
events, which is known as themuon deficit problem [8]. As an example, data from the Pierre AugerObservatory
indicate that themuonnumber predicted by the LHC-tunedmodels, such as EPOS-LHC [9] andQGSJetII-04
[10], is 30% to 60% lower thanwhat is observed in showerswith an energy of 1019eV [11]. Themuon excess over
predictions seen by the Pierre Auger Collaboration is/was also seen in several other experiments likeHiRes/
MIA [12], NEVOD-DECOR [13], SUGAR array [14], TelescopeArray [15]. However, experiments like
KASCADE-Grande [16] and EAS-MSU [17] reported no discrepancy in themuonnumber around 1017eV. In
[18], after cross-calibration of the energy scales, the observedmuon densities were scaled by using the so-called
z-scale and compared to expectations fromdifferent hadronicmodels, also for data from IceCube [19] and
AMIGA [20].While such densities were found to be consistent with simulations up to 1016eV, at higher energies
themuondeficit increases in several experiments [18]. Since data interpretation relies on simulations, themuon
deficit problemhas deep implications: the data suggest amuch heavier composition of cosmic rays based on
muons only than the composition derived from Xmax measurements [21].

To study themuon-number problem, a top-down (TD) reconstructionmethodwas proposed by the Pierre
Auger Collaboration [11] for the so-called hybrid events (events seen simultaneously by the array of particle
detectors (SD) and by thefluorescence detector (FD)). Themain aimof the TD reconstruction is to predict
signals in the FD and SDon a simulation basis. In the TDmethod, onefinds a simulated shower, which has a
distribution of electromagnetic component along the shower axis (longitudinal profile, reconstructed LP)most
similar to the observed longitudinal profile of the shower (i.e. reference profile (trueMCLP)—see left panel of
figure 1). The reference longitudinal profile is linked to the electromagnetic component of the shower, so the
method relies on the fact that this component is accurately simulated.

As an output, the TDmethod provides a reconstructed event, inwhich the signal in the SD is determined
usingMonte-Carlo (MC) simulations. The simulated SD signals in the output shower, which depend on the
interactionmodel,may then be comparedwith the data/initial shower. The SD signal includes the contribution

Figure 1.Example of TD—simulated event. Left: Themeasured longitudinal profile (LP) of an illustrative air showerwith the
matching simulated showers, usingQGSJetII-04 for protonwith the energy 1019 eV. The longitudinal profile for true simulated event
(trueMCLP) and reconstructed LP are also shown.Right: The simulated ground signals for the same event. The signal at 1000 m
(S1000) inVEM is also shown. 1 VEMcorresponds to themost-likely signal deposited by amuon that traverses vertically the center of
the SD station.
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ofmuons, which are tracers of properties of the hadronic interactions. A comparison of the simulated SD signal
with the corresponding signal in the data shower provides an opportunity to check the correctness of the lateral
distribution of the simulated showers (see right panel offigure 1). Since the lateral distribution is sensitive to the
hadronic interactionmodels used, an analysis of this distribution provides an opportunity to investigate
indirectly the interactionmodels at energiesmuch above themaximumenergies provided by terrestrial
accelerators. It is therefore expected that the TDmethod should allowus to calibrate the interactionmodels, and
to reduce the discrepancy between the data and simulations.

The TD analysis performed in this work is similar to the one presented in [22, 23] and is based on the analysis
found in [11]. In this work the TD chain includes a simulation of the SD response for theCORSIKA [24]
simulated event3—the reference shower. The Pierre AugerObservatory response for the reference shower is
simulated in the hybridmode—the event is seen by SD and FD—using theOffline software [25]which provides
10 detector simulations for comparison of the station signals with the referenceMCevent.

Here we also try to reproduce as accurately as possible the real data from the Pierre AugerObservatory by
creating amock data set ofmixed composition fromMC simulations obtainedwith the EPOS-LHChadronic
model, at 1019 eV.MC simulations at the same energy produced using theQGSJETII-04model are then used to
try to recover themuon signal from thismock data set, by calculating themuon scaling factors (relative to EPOS-
LHC) for the primaries considered in this dataset.

In this paper, we present a validation test of themethod for determiningmuon scaling factors by analysing
reconstructions of a simulated hybrid shower, wheremock-data showers are used as reference events. This
method is based on the z-variable, which is the difference between the initially simulated and the reconstructed
total signal at the detectors, 1000meters away from the shower axis, andwhich is related to themuon signal. This
variable is approximately independent of the zenith angle, but depends on themass of the primary cosmic ray.
We show that we can recover the ratio of themuon signal between EPOS-LHC andQGSJetII-04, on average,
within less than 6%, and the averageβ exponent which governs the number ofmuons in simulated air showers
[1], within less than 1%,which is a consequence of the good recovery of themuon signal for each primary.

2. Preparation of themock dataset andQGSJetII-04Monte-Carlo simulations

Themock data set of EPOS-LHC is built based on simulatedCORSIKA events. CORSIKA simulations are
performed for four potential primaries: proton, helium, nitrogen, and iron. If we restrict ourselves to shower
energies 1018.8< E< 1019.2 eV to zenith angles θ below 60°, we get 68 reference events (typical number of high-
energy, high-quality events observed over several years by the Pierre AugerObservatory in a narrow energy
interval). The total signal S1000 for each reference event as a function of qsec is shown infigure 2. As expected,
due to the attenuation of EAS in the atmosphere, we see that the signal depends on the zenith angle.

To calculate themuon signal for eachMCevent, we use the universal parametrization ofmuon fraction in
the signal gμ,i(θ) presented in [23, 26]. This parametrization gives themuon signal for a primary i and a zenith
angle θ such that q q q=m m( ) ( ) ( )S g Si i i,

mock
, 1000,

mock .
In order to create themock dataset ofmixed composition, we consider the fractions of primaries fi for

proton, helium, nitrogen, and iron asmeasured by the Pierre AugerObservatory at 1019 eV fromEPOS-LHC, as
presented in [27]. These fractions are roughly estimated to be around 15%, 38%, 46%, and 1% for proton,

Figure 2.Total signal S1000 of themock dataset shownwith the proportion of primaries discussed in the text.

3
Weuse one of the latest version of CORSIKA, i.e. version 7560.
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helium, nitrogen, and iron, respectively. In this work 68 reference CORSIKA events were selected fromEPOS-
LHC simulations, taking into account these primary fractions, which roughly translates to 10 proton events, 26
helium events, 31 nitrogen events, and 1 iron event. The averagemuon signal for themock dataset is
17.30± 0.25, 19.03± 0.30, 21.12± 0.38, and (23.42± 0.25)VEM for proton, helium, nitrogen, and iron
primaries, respectively.

In this TD analysis, we consider air shower simulations obtainedwithQGSJetII-04model as ourMC sample.
It is used to reconstruct themuon signal found in themock dataset described in the previous section. 10MC
showers are associated to each shower from themock dataset with a given zenith angle, for each primary. As an
example, the distributions of S ij1000,

MC and q=m m ( )S g Sij i ij,
MC

, 1000,
MC as a function of qsec forQGSJetII-04 simulations

of proton is shown infigure 3 (left) andfigure 3 (right), respectively. In this case, the averagemuon signal for
each primary is 15.57± 0.17, 17.25± 0.19, 19.37± 0.20, and (21.62± 0.23)VEM.One can observe that the
averagemuon signal for each primary is larger for EPOS-LHC simulations than forQGSJetII-04. Thus themean
ratio averaged over the four primaries studied = áá ñ á ññm mr S Strue

MC EPOS QGS is approximately equal to 1.10± 0.04.
It is worth noting that in this way, i.e. using EPOS-LHC asmock data set andMC simulation fromQGSJetII-04,
we alsomimic themuon problem seen in the real data.

3.Muon scaling factor

The observed SD signal of ultra-high energy air showers is significantly larger than predicted by hadronicmodels
tuned tofit the accelerator data [11]. Such a disagreement can be corrected for by introducing linear scaling
factors, for the electromagnetic part,REM, and the hadronic/muonic part,Rμ. Following this approach for a
single shower j, the simulated ground signal at 1000 m fromQGSJetII-04MCand themock dataset can be
written as

º + m ( )S S S , 1j j j1000,
MC

EM,
MC

,
MC

º + = +m m m
a

m( ) ( )S R R S S R S R R S, . 2j j j j j j1000,
mock

EM EM,
mock

,
mock

EM EM,
MC

, EM ,
MC

In above equation (2)wehave used the fact that some of the electromagnetic particles produced bymuons in
decay or radiation processes, as well as by low-energyπ0s, can be attributed to the electromagnetic signal by
introducing an additional factor aR ;EM but themuons that result fromphotoproduction are assigned to the
electromagnetic signal, SEM. As shown in [11], no rescaling is needed for the electromagnetic part, where the
most likely solution isREM= 1. Furthermore, in the TDmethod the reference longitudinal profile is related to
the electromagnetic component of the shower, so themethod ensures that this part is accurately simulated.
Hence the assumptionREM= 1 used in this analysis.

In this work, we use the difference between themock dataset and theMCground signal as themain
observable, i.e. º -z S Sj j j1000,

mock
1000,
MC , because this variable is a natural indicator of the discrepancy between data

andMC.Moreover, the discrepancy should ideally be zero. Another interesting feature arises from equations (1)
and (2). ForREM= 1, by simple subtractionwe obtain

=
-m

m
( )S

z

R 1
, 3ij

ij

ij
,

MC

,

Figure 3. Left: Total signal S1000 in events simulatedwithQGSJetII-04 for proton primary. The average total signal for proton is
(29.66 ± 0.41)VEM for the studied range of zenith angle, i.e. less than 60°.Right:Muon signal in events simulatedwithQGSJetII-04
for proton primary. The averagemuon signal for proton is (15.45 ± 0.17)VEM.
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for a primary i and an event j. This is the key equation for themethod presented in this paper. The formula shows
that themuonMC signal is proportional to the difference between data andMC signal, i.e. variable zij, where a
proportionality coefficient depends on themuon scaling factorRμ,ij.

Equation (3) can also be rewritten as

q q
= + = +

-
m

m m( ) ( )
( )R

z

g S

S S

g S
1 1 . 4ij

ij

i ij

j ij

i ij
,

, 1000,
MC

1000,
mock

1000,
MC

, 1000,
MC

Using themock data set previously built and theQGSJetII-04MC simulations, the zij distributions are obtained
and shown infigure 4.

The total averagemuon signal of themock data set á ñmS ,tot
mock can be expressed as

ååá ñ =m m ( )S
N

S
1

, 5
i j

N

ij,tot
mock

tot
,

mock
i

by summing over all primaries i ä {p,He, N, Fe} andwhereNp= 10,NHe= 26,NN= 31, andNFe= 1 are the
number of proton, helium, nitrogen, and iron events, respectively, that have been used to create themock data
set, andNtot=Np+NHe+NN+NFe. Equation (5) can be expressed as

åá ñ = á ñm m ( )S
N

N S
1

, 6
i

i i,tot
mock

tot
,

mock

where á ñ = åm mS Si N j
N

ij,
mock 1

,
mock

i

i is the average overNi events. SinceNi/Ntot is simply the fraction fi, á ñmS ,tot
mock can be

rewritten as

åá ñ = á ñm m ( )S f S . 7
i

i i,tot
mock

,
mock

Using the values of á ñmS i,
mock given in section 2, we obtain á ñ = m ( )S 19.78 0.22,tot

mock VEM.We can then rescale

theMCdata set to retrieve á ñmS ,tot
mock ,

á ñ º á ñ á ñm m m ( )S R S . 8i i,tot
mock

, ,
MC

where á ñ = åm mS Si N j
N

ij,
MC 1

,
MC

i

i and á ñ = åm mR Ri N j
N

ij,
1

,
i

i are the averages overNi events. In other words, the average

totalmuon signal inmock data corresponds to the averagemuon signal obtained fromMC simulations for a
given primary,multiplied by the averagemuon scaling factor obtained for that primary. The values obtained for
the right-hand side of equation (8) are also reported in table 1, alongwith a summary of the results presented
until now. The accuracywithwhich this equivalence is obtained can be calculated through the ratio

º
á ñ á ñ - å á ñ

å á ñ
m m m

m

( )k
R S f S

f S
. 9

i i i i i

i i i

, ,
MC

,
mock

,
mock

Values of k are reported in the last columnof table 1. Thismethod allows us to recover the averagemuon signal
of themock dataset within∼9%. The results shown in table 1 are also a validation of theMC simulation for each
primary, as we can recover the totalmuon signal for each primary.

4. Calculation of theβ exponent

The number ofmuons in an air shower is a powerful tracer of themass of the primary particle. Simulations and
measurements have confirmed that the numberNμ ofmuons produced rises almost linearly with the primary

Figure 4. zi distributions for proton (left) and iron primary (right) based onmock data (EPOS-LHC) andQGSJetII-04 simulations.
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energyE, and increases with a small power of the cosmic-raymassA. This behavior can be understood in terms
of theHeitler-Matthewsmodel of hadronic air showers [1], which predicts = =m

p b
m

b-( )N A E A N AA
c

p 1 , with
β; 0.92 4. Detailed simulations ofβ showmultiple dependencies on hadronic-interaction properties, like
multiplicity, charge ratio and baryon anti-baryon pair production [28]. Thus,measurements of theβ exponent
can effectively constrain the parameters governing hadronic interactions and improve the accuracy of hadronic
models. Assuming that the average reconstructedmuon signal á ñmS i,

rec (see below) is proportional toNμ and
calculating the average logarithmof themuonnumberNμ,i for primary i and iron (A= 56), we get the expression
ofβ given by

b = -
á ñ - á ñ

-
m m ( )

S S

A A
1

ln ln

ln ln
, 10i

i

i

,Fe
rec

,
rec

Fe

whereAi is themass number of all considered primaries i (except iron).
However, theβ exponent can also be calculated using the reconstructedmuon signal for each primary i, e.g.
º á ñm m mS r Si i i,

rec
, ,

MC . Ideally, we should have =m mS Si i,
rec

,
mock.Here, the definition of the rescaling factor rμ,i is slightly

different from the one discussed in the previous section as it rather corresponds to the weight needed to be applied to the
MCmuon signal of each primary in order to recover themuon signal from themock data set.Here mS i,

rec is by
definition the contribution of the signal for each primary i to the totalmuon signal. In this case, the exponentβi
can be given by

b = -
á ñ - á ñ

-
m m m m( ) ( )

( )
r S r S

A A
1

ln ln

ln ln
. 11i

i i

i

,Fe ,Fe
MC

, ,
MC

Fe

In the following, we showhow to compute theβi exponent for a set of hybrid events that consists of certain
fractions of events with different primaries. The total signal for themock and theMCdatasets can be expressed
as

å åá ñ = á ñ = á ñ + á ñm( ) ( )S f S f S S , 12
i

i i
i

i i i1000
mock

1000,
mock

EM,
mock

,
mock

å åá ñ = á ñ = á ñ + á ñm( ) ( )S f S f S S . 13
i

i i
i

i i i1000
MC

1000,
MC

EM,
MC

,
MC

Again, assuming that in TD-simulations, the electromagnetic component is correctly reproduced, i.e. the scaling
factor for electromagnetic part isREM,i= 1, we can define the overall zmix variable as

åá ñ = á ñ - á ñ = á ñ - á ñm m( ) ( )z S S f S S , 14
i

i i i
mix

1000
mock

1000
MC

,
mock

,
MC

åá ñ = á ñ -m m( ) ( )z f S r 1 . 15
i

i i i
mix

,
MC

,

Therefore, for a single event, we can calculate the zmix variable defined as

åº - ( )z S f S . 16j j
i

i ij
mix

1000,
mock

1000,
MC

Weconsider the same primary fractions for theMCdataset as for the ones used to generate themock data set, i.e.
fp= 0.15, fHe= 0.38, fN= 0.46, and fFe= 0.01. The distribution of zmix variable is shown infigure 5 (left). The
zmix histogram can befittedwith aGaussian function described by

Table 1.Mean value of themuon rescaling parametersRμ,i for
different primaries i. Also, the correspondingmean values of the total
muon signal mSMC fromQGSJetII-4model (MC), reconstructedmuon
signal at 1000mexpected in themock data set á ñ á ñm mR Si i, ,

MC and the
ratio k are listed. The errors shown in the fourth column are the
maximumerror calculated from d dá ñ + á ñm m m mR S S Ri i,

MC MC
, , where

δRμ,i and d mSMC are the errors listed in the second and third column,
respectively.

i á ñmR i, á ñmS i,
MC á ñ á ñm mR Si i, ,

MC k

p 1.35 ± 0.02 15.57 ± 0.17 21.02 ± 0.54 6%

He 1.24 ± 0.01 17.25 ± 0.19 21.39 ± 0.41 8%

N 1.11 ± 0.01 19.37 ± 0.20 21.50 ± 0.41 9%

Fe 1.00 ± 0.01 21.62 ± 0.23 21.62 ± 0.44 9%

4
The mNp is the number ofmuons for proton shower and p

c is the critical energy at which pions decay intomuons.
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s
s

= -
- á ñ

m
m m( )

( ( ) ( ) )
( )P A A

z z
r

r r
, , exp

2
, 17

mix mix 2

2
⎡
⎣⎢

⎤
⎦⎥

where fitting parameters are the amplitudeA, the standard deviationσ and four rescaling parameters rμ= {rμ,p,
rμ,He, rμ,N, rμ,Fe}. Note that following equation (15), themean of the totalmuon signal will be proportional to the
á ñzmix , and the factor á ñm mr Si i, ,

MC is by definition the contribution of the primary i to the total muon signal. TheCERN
ROOT [29] routineMinuit [30] used tofit the histogram requires all these parameters to have initial valueswhen
using a user-defined functionwithmultiple parameters.Multiple fits are therefore performedwith rμ,i between 1
and 2with steps of 0.025. In this example, correct fits are selected based on physical conditions such as

á ñ < á ñ < á ñ < á ñm m m m m m m m ( )r S r S r S r S , 18,p ,p
MC

,He ,He
MC

,N ,N
MC

,Fe ,Fe
MC

which simply underlines the fact that the reconstructedmuon signal should be larger as the primary gets heavier,
and the linearity condition such that
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-
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-
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-
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ln ln

ln ln
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, 20
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N Fe



where ò= 0.10 is a tolerance of the non-linearity.
The conditions described by equations (18)–(20) are a consequence of theHeitler-Mathewsmodel, which

predicts the linear dependence of themuon signal as a function of the logarithmof the primarymass. Themean
values of á ñmr i, distributions, which are reported in table 2 fall within the uncertainties of themean true rescaling
value rtrue

MC calculated in section 2, i.e. 1.10± 0.04. The uncertainties of themean of proton and iron primaries are
suspected to stem from the fact that ourmock data set contains small numbers of proton and iron events,
therefore increasing the uncertainties on the fitting procedure. All the values are reported in table 2.With the
method proposed in this note, the reconstructedmuon signal is overestimated by less than 6% compared to the
muon signal from themock data set, for all primaries. Using values of á ñmS i,

rec given in table 2, we obtain the total
reconstructedmuon signal á ñ = m ( )S 20.84 0.24rec VEM,which differs by approximately+5% fromMC true

one, á ñ = m ( )S 19.78 0.22mock VEM.

Figure 5. Left: zmix distribution as described by equation (16)with fp = 0.15, fHe = 0.38, fN = 0.46, and fFe = 0.01. The distribution is
fittedwith the function described by equation (17), with an example of a possible set of fitting parameters {A,σ, rμ}.Right:
Distribution of the averageβ parameter as described by equation (10). The histogram isfittedwith aGaussian functionwith amean
bá ñ and a standard deviationσβ represented by the solid purple line.

Table 2.Mean values of themuon rescaling factors obtainedwith the fitting procedure, and of
theMCmuon signal, the reconstructed and themock datasetmuon signals, for all primaries
considered andwith fp = 0.15, fHe = 0.38, fN = 0.46, and fFe = 0.01. The overestimation
d = á ñ - á ñ á ñm m m( )S S Si i i,

rec
,

mock
,

mock of the reconstructedmuon signal compared to the one from the
mock data set is also provided.

i á ñmr i, á ñmS VEMi,
MC á ñmS VEMi,

rec á ñmS VEMi,
mock

δ

p 1.142 ± 0.004 15.57 ± 0.17 17.78 ± 0.25 17.30 ± 0.25 2.7%

He 1.167 ± 0.001 17.25 ± 0.19 20.13 ± 0.24 19.03 ± 0.30 5.8%

N 1.153 ± 0.001 19.37 ± 0.20 22.33 ± 0.25 21.12 ± 0.38 5.7%

Fe 1.148 ± 0.004 21.62 ± 0.23 24.82 ± 0.35 23.42 ± 0.25 6.0%

7

Phys. Scr. 98 (2023) 045301 KACheminant et al



For eachfit fulfilling the conditions described above, we can calculate the averaged b b= åi i
1

3
. Theβ

distribution is shown infigure 5 (right). Themean of that distribution, 0.924± 0.002, is very close to the EPOS-
LHC true value of 0.927± 0.003 (within∼1%) [31], therefore supporting the effectiveness of themethod to
estimate theβ parameter governing the number ofmuons in hadronic showers.

5. Summary and conclusion

Themuon problem currently is one of the hot topics in cosmic ray physics, and for a few years some attempts
have beenmade to solve it, but up to now it has not been explained fully. This is because of the inaccessibility of
certain phase space regions, which are important for the typical energies of EAS, to accelerator experiments.
Exploiting ultra-high energy cosmic rays data, we reach center-of-mas energies up to 400 TeV i.e.more than 30
times of those attainable at the LargeHadronCollider (LHC) [32]. Thus, an extrapolation of hadronic
interaction properties to higher energies is necessary, contributing to systematic uncertainties of thefinal results.
On the other hand, even in the simpleMathews-Heitlermodel, increasing the hadronic energy fraction of
interactions by about 5%per generation, can lead to about 30% change in the number ofmuons after 6 cascade
generations. The formation of a Strange Fireball [33], String Percolation [34], Chiral Symmetry Restoration [35],
increasing the inelastic cross section [36], or for instance resorting to Lorentz Invariance Violation [37] could
also explain themuon excess seen in EAS.

Themethod described in this paper allows us to recover the averagemuon signal in a hybrid data set, but also
offers the possibility to calculate themuon signals for each primary in the considered sample of hybrid events.
We showhow to compute theβi exponent for a set of hybrid events that consists of a certain fractions of events
with different primaries. By using EPOS-LHC simulation asmock dataset andQGSJetII-04 simulations asMC
dataset, we can recover the averagemuon signal in themock dataset within∼9%, andwithin less than∼6% for
individual primaries. The averageβ value calculated from the reconstructedmuon signal agrees well with the
results shown in [31] for EPOS-LHC andQGSJetII-04. Themethod can be applied to real events to determine
themuon signal for each primary, as well as the scaling factor and theβ exponent. Thus,measurements of theβ
exponent can effectively constrain the parameters governing hadronic interactions, improve the accuracy of
hadronicmodels, and also show that ultra-high energy cosmic rays present a great opportunity to explore
particle physics beyond the reach of accelerators.
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