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Abstract
Modeling of hetero-agglomeration processes is invaluable for a variety of applications in particle technology. Traditionally, 
population balance equations (PBE) are employed; however, calculation of kinetic rates is challenging due to heterogene-
ous surface properties and insufficient material data. This study investigates how the integration of machine learning (ML) 
techniques—resulting in so-called hybrid models (HM)—can help to integrate experimental data and close this gap. A 
variety of ML algorithms can either be used to estimate kinetic rates for the PBE (serial HM) or to correct the PBE’s output 
(parallel HM). As the optimal choice of the HM architecture is highly problem-dependent, we propose a general and objec-
tive framework for model selection and arrangement. A repeated nested cross-validation with integrated hyper-parameter 
optimization ensures a fair and meaningful comparison between different HMs. This framework was subsequently applied 
to experimental data of magnetic seeded filtration, where prediction errors of the pure PBE were reduced by applying the 
hybrid modeling approach. The framework helped to identify that for the given data set, serial outperforms parallel arrange-
ment and that more advanced ML algorithms provide better interpolation ability. Additionally, it enables to draw inferences 
to general properties of the underlying PBE model and a statistical investigation of hyper-parameter optimization that paves 
the way for further improvements.

Keywords Hetero-agglomeration · Population balance equations · Machine learning · Hybrid modeling · Hyper-parameter 
optimization · Repeated nested cross-validation

1 Introduction

Agglomeration refers to the assembly of particles into 
larger clusters (the agglomerates). It is a unit operation of 
mechanical process engineering and thus relevant for almost 
all processes in particle technology. Homo-agglomeration of 
a single particle system is well understood and mainly used 
to either formulate products from powders (tablets) or to 
improve separation properties in suspensions (flocculation). 
Hetero-agglomeration refers to agglomeration processes 

between different materials and results in multi-substance 
compounds. These hetero-agglomerates often combine 
desired properties of the individual materials and therefore 
exhibit a wide range of applications: In cathode materials 
for lithium-ion batteries, carbon black is agglomerated with 
the active material to enhance conductivity. The hetero-
agglomeration process further defines the micro-structure 
of these cathode materials and significantly impacts the 
final product properties [44]. Throughout this work, mag-
netic seeded filtration (MSF) [62–64] is used as application 
example, where the separation behavior of suspensions is 
drastically changed by hetero-agglomeration: Non-magnetic 
target particles are selectively agglomerated with magnetic 
seed particles and the formed hetero-agglomerates are sub-
sequently magnetically separated due to their newly gained 
magnetic properties.

On an experimental level, a “simple” measurement of 
the agglomerate size is often not sufficient, since many 
product properties only arise from the micro-structure of 
the hetero-agglomerates. Meanwhile, only limited analytical 
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capabilities exist to determine sought-after properties, such 
as the material-specific agglomerate composition, most of 
which are laborious and offline. This motivates the search 
for models that provide insight into the micro-processes 
and kinetics. Usually, population balance equations (PBE) 
with different numerical solution techniques are employed; 
however, calculations are challenging, because all interac-
tions between all components must be taken into account 
and formed hetero-agglomerates have locally heterogene-
ous surface properties. Generally, the accurate calculation 
of agglomeration rates or so-called kernels pose the limit-
ing factor. Mechanistic equations exist, which, however, are 
subject to specific assumptions. Furthermore, the quality and 
quantity of underlying material and process data is unsatis-
factory: literature values of Hamaker constants are off by 
orders of magnitude due to surface roughness, and experi-
mentally determined zeta potentials are by definition only a 
makeshift for the sought surface potentials. This multitude 
of uncertainties makes a predictive and reliable calculation 
of hetero-agglomeration processes highly challenging [55].

Machine learning (ML) methods are a promising path-
way for introducing experimental data into the calculations. 
They have gained significant traction over the last decade 
and are becoming a standard modeling technique in chemi-
cal engineering [86]. ML methods generally map any given 
input space on a desired output space and are referred to as 
black-box models (BBM) throughout this work due to being 
empirical in nature. This already poses the major limitation 
for a direct application in hetero-agglomeration processes: 
As the name suggests, they do not give any insights into 
the physical micro-processes and generally possess poor 
extrapolation qualities. A promising solution are the so-
called hybrid models (HM) that employ a mechanistic or 
white-box model (WBM), as e.g., the PBE mentioned above 
and utilize BBMs to perform certain sub-tasks [87]. HMs 
can be arranged in various ways: BBM and WBM may be 
operated in parallel, where the BBM corrects the output of 
the WBM, or in serial, where typically the BBM calculates 
and passes necessary kinetic parameters to the WBM [87]. 
Furthermore, there is a variety of ML algorithms that can 
be used to realize the BBM, resulting in a wide range of 
resulting HM structures.

Early examples for the application of HM in chemical 
engineering date back to the 1990 s [56, 78], while cur-
rent applications are summarized in von Stosch et al. [87], 
Sansana et al. [65], Sharma and Liu [72], Mowbray et al. 
[49], McBride et al. [45]; Zendehboudi et al. [93], and Thon 
et al. [79] and include general process modeling [2, 35, 58], 
process control [22, 66, 91], process optimization [5, 54, 
94], the development of soft sensors [24, 31, 90], and scale-
up [46, 47, 73]. HMs have also been used in combination 
with PBE to model agglomeration processes: Georgieva 
et al. [21] employed a series connection of ANN and PBE 

to model batch crystallization. Similarly, Hornik et al. [27] 
modeled batch crystallization of cobalt oxalate with a paral-
lel arrangement. Recently, Dosta and Chan [15] combined 
micro-scale DEM simulations for retrieving mechanical 
properties with a hybrid ANN/PBE model, ultimately real-
izing a multi-scale technique. Nazemzadeh et al. [50] and 
Nielsen et al. [51] applied an HM for modeling a flocculation 
process and the development of a soft sensor.

The generalization and extrapolation capabilities of a 
HM are directly linked to its structure. This encompasses 
both the used ML algorithm as well as the arrangement 
of BBM and WBM in serial or parallel [87]. Several stud-
ies are concerned with a comparison between the general 
model structure, without varying the ML algorithm: They 
compare serial to parallel arrangement [6, 13, 40], multiple 
more elaborate arrangements [7, 43], or different HMs to 
both the pure WBM and BBM [83]. Other studies focus 
on the comparison of different ML algorithms in either a 
pure BBM [60], a parallel [41], or serial [34, 48, 89] hybrid 
arrangement. There are only very few studies that focus on a 
combined investigation of ML algorithm and HM structure. 
Chen and Ierapetritou [11] investigate the pure WBM, pure 
BBM, and HMs in serial and parallel while varying the ML 
algorithm between an artificial neural network (ANN) and a 
support vector machine (SVM). As the optimal combination 
is generally problem-dependent, there is no best or one size 
fits all HM model [87], which at first glance makes compar-
ing different HM structures redundant. However, this empha-
sizes the necessity for a general framework that enables a 
problem-specific comparison, optimization, and selection.

The aforementioned points give rise to three distinct goals 
that we address in this study: 

1. Present a general approach for hybrid modeling of het-
ero-agglomeration processes with PBE.

2. Present a general framework that allows for a fair and 
problem-specific comparison of various HMs that 
includes both the HM structure (serial or parallel) and 
the used ML algorithm.

3. Apply this framework to magnetic seeded filtration and 
discuss how it can be generalized to enhance hybrid 
model performance in a variety of chemical engineer-
ing problems.

2  Models

2.1  White‑box model: discrete 2‑D population 
balance

Population balance equations (PBE) are the standard tech-
nique for calculating the time-dependent number concen-
trations n(x, y, t) of agglomerates with properties x and y 
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(2-D case). As this work is focused on MSF as application 
example, x vividly describes the partial volume of the non-
magnetic component (NM) and y the partial volume of the 
magnetic component (M), so that every conceivable hetero-
agglomerate build from these materials can be fully charac-
terized with a pair of values (x, y). It should be emphasized 
that the presented framework can readily be generalized to 
higher dimensional problems and that the 2-D case is merely 
a working example. By defining x and y as volumes, the 
additivity is directly given by mass conservation and the 
general form of the continuous PBE is given by Ramkrishna 
[57]

Note that Eq. 1 neglects both breakage and convective trans-
port effects. Term (A) describes the formation rate of (x, y) 
from agglomeration processes of smaller classes. Since the 
internal coordinates (volumes) are additive, (x, y) results 
from the agglomeration of any class (x�, y�) (with x′ < x 
and y′ < y ) and its associated partner (x − x�, y − y�) . The 
kinetic rates or agglomeration kernels k are elaborated in 
Eqs. 4 and 5. Term (B) has a negative sign and describes 
the loss of (x, y) due to further agglomeration. Since (x, y) 
is in principle capable of agglomerating with all possible 
classes (x�, y�) , integration is performed over the entire range 
of values.

Equation 1 is an integro-differential equation and can only 
be solved analytically for simplified cases, which is why a 
numerical consideration of the problem is necessary. One 
way of doing so, is to transfer the problem from the continu-
ous space (x, y) to the discrete space (i, j), which transforms 
Eq. 1 into a set of ODEs. This work employs the so-called 
geometric discretization scheme, where the agglomerate vol-
ume along a coordinate increases by a constant factor s and 
which is schematically shown in Fig. 1 for s = 2 . Starting 
from primary particles (i, j) = (1, 0) for NM and (i, j) = (0, 1) 
for M, all conceivable agglomerate combinations up to a 
critical agglomerate size defined by the lattice parameter NS 
are defined according to

(1)

�n(x, y, t)
�t

= 1
2 ∫

x

0 ∫

y

0
k(x − x′, y − y′, x′, y′)n(x − x′, y − y′, t)n(x′, y′, t)dx′dy′

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(A)

− ∫

∞

0 ∫

∞

0
k(x, y, x′, y′)n(x, y, t)n(x′, y′, t)dx′dy′

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(B)

.

(2)V(i, j) =VNM(i, j) + VM(i, j)

(3)VNM(i, j) =s
i−1V(1, 0) | VM(i, j) = sj−1V(0, 1).

This type of discretization makes calculations manageable 
for poly-disperse particle systems which would require 
orders of magnitude more grid points in equidistant grids. 
However, since the spatial discretization is based on a factor 
s, not all formed agglomerates fall on exactly one grid point. 
As a consequence, agglomerate birth [Term (A) in Eq. 1] 
cannot always be accounted for directly, but must first be 
distributed in some way among the surrounding grid points. 
Figure 1 illustrates this effect for the agglomerate of (1, 2) 
with (2, 1). Kumar et al. [38] developed the cell average 
technique, which performs said distribution while ensuring 
mass conservation in the system. Due to their lengthy and 
engineer-deterring form, the modified birth term and result-
ing ODEs are given in Appendix 1.

The agglomeration kernels k are required between each 
of the investigated agglomerate classes. They are defined as 
the product of collision frequency � and collision efficiency 
� ( k = �� ) and are calculated depending on the applied 
model assumptions which are reviewed, e.g., by Jeldres et al. 
[32], Taboada-Serrano et al. [76] or Elimelech [16]. In the 
orthokinetic (flow-controlled) case, the collision frequency 
is calculated according to Eq. 4 and is proportional to the 
agglomerate volume (radius r3 ) and mean shear rate Ḡ [12, 
16]

Defining the probability of agglomeration upon collision, the 
collision efficiency generally requires an analysis of particle 

(4)𝛽12 =
4

3

(
r1 + r2

)3
Ḡ.

Fig. 1  Discretization with geometric grid. NS = 3 and s = 2 . The 
agglomerate of (1, 2) and (2, 1) has to be distributed between neigh-
boring grid points
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trajectories in the orthokinetic case. However, Selomulya 
et al. [68] presented an empirical factor that corrects the 
perikinetic �∗-values obtained by the modified Fuchs 
approach [20, 26]. This integrates size effects into the PBE 
while drastically reducing computational effort. The defini-
tion and incorporation of this factor is shown in Eq. 12. The 
perikinetic collision efficiency is calculated according to

with u being the dimensionless form of surface-to-surface 
distance h according to

The collision efficiency is governed by the interplay between 
attractive and repulsive particle–particle interactions. This 
work is only concerned with electrostatic and van der Waals 
(DLVO) interactions, while other applications might require 
the integration of, e.g., hydrophobic interaction energies. 
The electrostatic interaction energy Eel,12 is defined as [23]

with reciprocal Debye length � , permittivity � , electron 
charge e, and ionic strength I. The van der Waals interac-
tion energy EvdW,12 is given by [25]

Calculating the interaction energies in Eqs. 7 and 9 requires 
knowledge of material-specific surface properties in form 
of the zeta potential � and the Hamaker constant AH . This 
poses a problem in the case of hetero-agglomerates: How 
is the integral property of a heterogeneous surface defined? 
A previous publication solved this issue by introducing the 
so-called collision case model [61] that is briefly elabo-
rated in the following. Figure 2 shows the collision of two 
hetero-agglomerates (i, j) and (l, m). Depending on the sur-
face property with which each agglomerate collides, four 

(5)

�∗
12

=

⎡⎢⎢⎣
2

∞

∫
0

6u2 + 13u + 2

6u2 + 4u
exp

�
Eel,12 + EvdW,12

kBT

�
du

(u + 2)2

⎤⎥⎥⎦

−1

,

(6)u(h) =
2h

r1 + r2
.

(7)Eel,12(h) =
128�r1r2NAkBT(

r1 + r2
)
�2

�1�2 exp(−�h)

(8)�−1 =

√
�kBT

2e2INA

||| �i = tanh

(
e�i

4kBT

)

(9)

EvdW,12(h) = −
AH,12

6

[
2r1r1

h2 + 2r1h + 2r2h

+
2r1r2

h2 + 2r1h + 2r2h + 4r1r2

+ ln

(
h2 + 2r1h + 2r2h

h2 + 2r1h + 2r2h + 4r1r2

)]
.

collision cases A) to D) can be differentiated. Vividly, in 
case A), (i, j) collides with its magnetic and (l, m) collides 
with its non-magnetic side. Since the material properties in 
the collision plane are defined, a collision efficiency �∗

A−D
 

can be calculated according to Eq. 5 for each case. Subse-
quently, the probabilities of each case are required. They are 
defined as the product of the individual probabilities of the 
agglomerates colliding with the respective material. The lat-
ter are estimated according to Eq. 10 under the assumption 
that the partial volumes are perfectly distributed and that no 
preferred orientation is present

It is apparent that the required probabilities are merely a 
function of the agglomerate volume composition, which 
is pre-defined by the implemented discretization scheme. 
Combining all cases, the collision efficiency of the overall 
collision is calculated according to

Note that all probabilities add up to one, viz., 1 ⋅ P = 1 . Fur-
ther, Eq. 11 assumes that the effect of surface properties 

(10)Pij,M = 1 − Pij,NM = XM(i, j) =

⎧⎪⎨⎪⎩

sj−1V(0, 1)

V(i, j)
j > 0

0 j = 0.

(11)

�∗(i, j, l,m) =

⎛⎜⎜⎜⎝

�∗
A

�∗
B

�∗
C

�∗
D

⎞⎟⎟⎟⎠
⋅

⎛⎜⎜⎜⎝

PA

PB

PC

PD

⎞⎟⎟⎟⎠
≈

⎛⎜⎜⎜⎝

�∗(0, 1, 1, 0)

�∗(0, 1, 0, 1)

�∗(1, 0, 1, 0)

�∗(0, 1, 1, 0)

⎞⎟⎟⎟⎠
⋅

⎛⎜⎜⎜⎝

Pij,MPlm,NM

Pij,MPlm,M

Pij,NMPlm,NM

Pij,NMPlm,M

⎞⎟⎟⎟⎠
= �p ⋅ P.

Fig. 2  Definition of possible collision cases A–D between two hetero-
agglomerates (i, j) and (l, m)
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outweighs the effect of agglomerate size and that, therefore, 
the collision efficiencies of primary particles �p are suffi-
cient. This simplification is supported by theoretical and 
experimental studies [42] and reduces computational effort, 
as the numerical integration of Eq. 5 is not required for all 
class combinations. Furthermore, this allows for a promising 
integration of the PBE into a hybrid model as discussed in 
Sect. 2.3. Further justification arises from the fact that the 
resulting collision efficiencies are corrected by the afore-
mentioned empirical factor given by Selomulya et al. [68] 
as shown in the following:

with model parameters xS and yS . The key take-away and 
main benefit of the collision case model is that every colli-
sion efficiency between any two given agglomerates is read-
ily calculated based on the known agglomerate volume com-
position and the un-corrected collision efficiencies between 
primary particles �p , as discussed in [55, 61]. With this, all 
required equations are given to solve the PBE and to obtain 
the discrete, time-dependent agglomerate composition dis-
tribution n(i, j, t).

Experimental studies on MSF, however, do not yield such 
detailed information but only offer integral knowledge about 
the amount of totally separated non-magnetic material. Thus, 
to close the gap between PBE and experiment, the magnetic 
separation step needs to be modeled. Note that this is spe-
cific to the investigated MSF-process and is not required 
in the general case of hetero-agglomerating systems. The 
class-specific separation efficiency is calculated according to

and is generally dependent on the cross-sectional area of an 
agglomerate and its magnetic volume fraction. Both C1 and 
C2 are empirical parameters. Applying Eq. 13 to the entire 
distribution before and after agglomeration yields the overall 
separation efficiency of non-magnetic particles

The separation efficiency states what proportion of the 
originally present non-magnetic particles are separated. 
ANM = 1 means that all of the material was separated, while 
for ANM = 0 , no separation took place. A more in-depth look 
and derivation of Eq. 13 are given in the supplementary 
information (SI.1).

(12)�12 = �∗
12

exp
(
−xS

(
1 −

r1

r2

))
(
r1r2

)yS

(13)T(i, j) =
[
1 + exp

(
−C1

(
r2(i, j)XM(i, j) − C2

))]−1
,

(14)

ANM =

∑NS

i=0

∑NS

j=0
n(i, j, end)V(i, j)

�
1 − XM(i, j)

�
T(i, j)

∑NS

i=0

∑NS

j=0
n(i, j, 0)V(i, j)

�
1 − XM(i, j)

� .

2.2  Black‑box models

BBMs are universal non-linear function approximators [27] 
and map any given input space on a desired output space. 
In the scope of this work, various ML algorithms are used 
as BBM, all of which belong to the group of supervised 
learning algorithms. In supervised learning, the available 
data set is commonly split into a train and a test sub-set. 
The train set is used to build the ML model by learning 
a relationship between its input and target variables. The 
model quality is then evaluated by comparing its predictions 
with the test data. All investigated algorithms are briefly 
described below in terms of their structure, application to 
regression problems, and relevant hyper-parameters (HP). 
An overview of the relevant HPs is given in Table 2 and an 
optimization framework is discussed in Sect. 2.4. All algo-
rithms were implemented using the Pyhton library Scikit-
learn [53] (KNeighborsRegressor, DecisionTreeRegressor, 
RandomForestRegressor, MLPRegressor, and SVR). It is 
important to note that an ever-increasing number of other 
ML algorithms exists in the literature and practice that may 
be better suited for any given dataset. The presented models 
should, therefore, be seen as an exemplary selection and 
other ML algorithms can readily be implemented in the pre-
sented framework.

2.2.1  k‑Nearest neighbor algorithm

Applied to regression problems, the k-nearest neighbor algo-
rithm (kNN) calculates the target value of a test sample by 
averaging the corresponding target value of the k-nearest 
train samples in feature space, which are determined by dif-
ferent distance metrics (norms). Distance weighting can be 
applied to emphasize the influence of neighbors closer to 
the test set sample. For a more time-efficient search for the 
k-nearest neighbors, a pre-organization of the data, e.g., by 
means of tree-based methods, can be useful for larger data 
sets.

2.2.2  Tree‑based methods

Tree-based ML methods include the Classification and 
Regression Tree (CART) algorithm and its extension, the 
Random Forest (RF) algorithm. The CART algorithm builds 
a binary decision tree that divides the feature space of the 
train set into J distinct segments (leaves) based on certain 
decision criteria (nodes) while minimizing a particular error 
function such as the mean squared error. This decision tree 
assigns the objects or samples of the train set to the different 
segments. To prevent an overly complex tree and thus over-
fitting, the maximum complexity of the tree can be defined 
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before training by certain criteria (pre-pruning), such as 
specifying the maximum tree depth, the minimum number 
of samples required to be in a segment or leaf, and/or the 
minimum number of samples required to split a node. The 
principle of the RF algorithm is to generate multiple deci-
sion trees on the same train set and then average the predic-
tions of each tree on the test set. Bootstrap aggregating (bag-
ging) and randomly selecting a certain number of candidates 
from all possible features to be considered when splitting a 
node generate different decision trees on the same train set.

2.2.3  Artificial neural networks

Artificial neural networks (ANN) with their most commonly 
used class, the multilayer perceptron (MLP), mimic the neu-
ral structures of living organisms. An MLP consists of at 
least three different layers, an input, an output, and one or 
more hidden layers. The input variables of the data set form 
the input layer, which is connected to the target variables in 
the output layer via a certain number of artificial neurons. 
The output signal of each neuron results from the sum of its 
weighted input signals and subsequent conversion by a so-
called activation function. Backpropagation is used to opti-
mize the weights (i.e., train the model) while minimizing an 
error function composed of model deviation and complexity, 
thus creating an optimal functional relationship. This opti-
mization is iterated multiple times, while the step size with 
which the weights are adjusted is determined by the learning 
rate. During training, high model complexity is punished via 
a regularization term. In the scope of this work, only a single 
hidden layer was used due to the small data set.

2.2.4  Support vector machines

Support vector machines are a statistical machine learning 
algorithm, and referred to as Support Vector Regression 
(SVR), when applied to regression tasks. In �-SVR [84], 
an �-insensitive region, the so-called �-tube, is introduced 
symmetrically around the target function to be approxi-
mated, whereby the width of the �-tube is determined by � . 
This region, and thus the objective function, is optimized 
to contain as much training data as possible within the �
-tube (small prediction error) while being as flat as possible 
(prevention of overfitting). In this optimization problem, the 
regularization parameter C controls the trade-off between 
the flatness of the objective function and the amount up to 
which training data outside the �-tube, the so-called Sup-
port Vectors (SV), are punished [74]. To approximate non-
linear functions, various so-called kernels are used. These 
transform the feature space into a higher dimensional kernel 
space and are composed of different kernel-internal param-
eters ( � , p, c) depending on the kernel type.

2.3  Hybrid models

Hybrid models (HM) represent a combination of purely 
mechanistic models (WBM) and purely data-driven mod-
els (BBM). The hybrid approach makes it possible to com-
bine the advantages as well as attenuate the disadvantages 
of its components, allowing, e.g., more accurate predic-
tions on unseen data, improved extrapolation properties, 
more efficient model development, and increased transpar-
ency [87]. The WBM and BBM can be arranged in parallel 
or serial mode within the HM, while the serial arrange-
ment possesses two sub-categories: (A) BBM → WBM or 
(B) WBM → BBM. Each arrangement has its individual 
benefits and drawbacks as well as preferred application 
areas. The parallel arrangement is mainly used when a 
WBM is available, but its accuracy is limited, e.g., due 
to un-modeled effects, non-linearity, or dynamic behavior 
[87]. In this case, the BBM compensates for the WBM’s 
inaccuracy by correcting its predictions. There are mul-
tiple ways of combining both sub-models, but the most 
frequently used is pure superposition, i.e., summation of 
the models outputs. Arranging the HM in serial structure 
(B) can be applied as an alternative to the parallel arrange-
ment, but is scarcely used in chemical and biochemical 
engineering [87] and therefore neglected in all further con-
siderations. Serial arrangement (A) (further referred to as 
just serial arrangement), on the other hand, is frequently 
applied, especially in cases, where the WBM is based on 
conservation laws such as mass (e.g., PBE), energy, or 
momentum balances [87] and is therefore inherently cor-
rect. Here, the BBM represents the parts of the equations 
for which no reliable model exists (e.g., kinetic rates) or 
which is generally extracted from experimental data (e.g., 
material parameters).

Figure 3 shows both HM structures as well as a pure 
BBM applied to MSF (viz., our working example for het-
ero-agglomeration processes). For the case of a pure BBM, 
the process parameters, which will be discussed more 
thoroughly in Sect. 3, serve as input and the BBM directly 
estimates the separation efficiency ANM,mod . For parallel 
arrangement, the BBM estimates a correction term ΔANM 
that is added to the output of the WBM to yield the final 
result. In serial arrangement, the purpose of the BBM is 
to estimate the collision efficiency vector between primary 
particles �p (see Eq. 11) that is further processed by the 
WBM to calculate ANM,mod . When generalizing to other het-
ero-agglomeration processes, it is important to remember 
that any data-driven model, i.e., any hybrid model, requires 
data to be trained on. As trivial as this might seem, it has 
crucial implications on the achievable information con-
tent: A pure BBM, as shown in Fig. 3 (a), will never be 
able to predict anything that is not directly measurable, as, 
e.g., the time-dependent agglomerate size and composition 
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distribution n. A serial HM, on the other hand, is able to 
estimate non-measurable variables thanks to the integrated 
WBM. However, any form of measurable variable (as in this 
case separation efficiency) is required to infer information 
on kinetic rates and ultimately the agglomerate population. 
The achievable information content of all presented models 
is further discussed in Sect. 3.7.

The performance of a HM is strongly dependent on the 
WBM’s structure and accuracy: When the WBM does not 
include all effects (structural mismatch), parallel HMs can 
compensate for that and perform better. In turn, a serial 
connection is not expected to perform well in this case 
[6, 40, 87]. If the underlying WBM is accurate, however, 
serial arrangement is expected to perform better and further 
improve extrapolation properties [6, 13, 14, 82, 83, 87].

Besides the performance of the HM, the way its param-
eters are determined also depends on the choice of model 
arrangement. For the parallel model structure, parameter 
identification, also known as training, can be performed 
via direct approach. Here, priority is given to the identifi-
cation of the WBM’s parameters [65]. Once determined, 
the BBM’s parameters are identified by a straightforward 
training with the known deviations from the experimen-
tal values (supervised learning). Training is more diffi-
cult in serial arrangement, as the necessary training data, 
namely the kinetic rates, are not directly measurable [52, 

87]. Determination of the kinetic rates, e.g., via optimiza-
tion of the WBM and subsequent parameter extraction, 
makes training via the direct approach possible. In this 
work, WBM optimization is necessary for comparing its 
performance to the hybrid structures, hence allowing for 
extraction of the kinetic rates ( �p ) and application of the 
direct approach. Other examples for the application of this 
approach are found in Tholudur and Ramirez [77], Schu-
bert et al. [67]. Parameter identification can also be per-
formed via incremental approach, where the identification 
problem is decomposed into smaller parts that are solved 
sequentially [33]. Alternatively, the indirect or sensitiv-
ity approach adapts the backpropagation technique to the 
entire hybrid model. Here, the gradient of the HM’s output 
is estimated with respect to the BBM’s output and is used 
as error signal for parameter identification of the BBM [1, 
21, 39, 52, 56]. However, this approach is often limited by 
the complexity of the WBM with regard to computation 
time in practice [1].

2.4  Hybrid model optimization framework: 
realizing a meaningful comparison

The optimal arrangement of the HM (serial or parallel) as 
well as the optimal ML algorithm used as BBM is highly 
problem-dependent and relies, e.g., on the WBM’s struc-
ture, the quantity and quality of the data and the applica-
tion area it will be used for. Consequently, one cannot 
know a priori which HM combination is best for a given 
problem. Therefore, it is necessary to develop a general 
framework that compares different ML algorithms in 
different HM arrangements. However, there are several 
requirements that have to be met to realize a meaning-
ful and reliable comparison. Said requirements are sum-
marized in Table  1 together with individual solution 
strategies. Combining all these strategies into one single 
framework results in a powerful tool that allows a sys-
tematic model comparison independently of application 
area and data quantity and quality. Note that integration is 
incremental in the sense that, e.g., repeated nested cross-
validation (requirement 5) extends the idea of a nested 
cross-validation (requirement 4).

1. Supervised learning requires a split of the data set 
into training and test data. This is problematic, as model 
performance (i.e., the basis of comparison) is therefore 
only evaluated on a sub-set of the data. To evaluate a 
model on the entire data set, a k-fold cross-validation 
(CV) is used. Here, the data set containing n samples is 
divided into k different train and test sets (with n − n∕k 
and n/k samples, respectively), whereby each sample is 
exactly once part of the test set. Each train set is used to 
train a model that is validated with the corresponding test 

Fig. 3  Pure BBM (a), parallel HM (b), and serial HM (c) applied to 
MSF with corresponding input, intermediate, and output variables
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set, thus leading to k different prediction errors. The root-
mean-square error (RMSE) between experimental and cal-
culated separation efficiency is used as measure for accu-
racy and defined for Ntest = n∕k test samples according to

The averaged prediction error of the cross-validation

allows for an evaluation of model quality on the entire data 
set.

2. To meaningfully compare HMs with respect to model 
structure and ML algorithm, all models have to be opti-
mized. Otherwise, simpler HMs (with less HP) have an 
advantage in the sense that more complex HMs are less 
likely to be in an optimal state. Using the direct approach 
for HM training, optimization of the entire model means 
optimizing the HP of its BBM, as the WBM and its param-
eters are fixed. HP are, in contrast to model parameters (e.g., 
weights of the ANN), defined before training. As, again, 
the ideal choice of HP is problem-specific, an automated 
HP optimization (HPO) is required before the actual train-
ing. Depending on the model structure, training of the BBM 
is performed on different input and output variables (see 
Fig. 3). Furthermore, different ML algorithms vary in the 
number and type of HPs (continuous, discrete, categorical, 
and conditional) and hence in complexity. This results in 
varying optimization environments depending on the model 
structure and ML algorithm.

Widely used HP optimization algorithms include grid 
search, where the HP search space is uniformly sampled 
and evaluated or random search, where the HP search space 
is explored (semi-) randomly until a pre-defined “fitness” is 
reached [3, 29]. Bayesian optimization (BO) is an example 

(15)RMSE =

√√√√ 1

Ntest

Ntest∑
i=1

(
ANM,exp(i) − ANM,mod(i)

)2
.

(16)RMSECV =
1

k

k∑
i=1

RMSE(i)

for a more sophisticated method, one of the most efficient 
optimization methods in terms of required iterations [8] and 
therefore well suited for expensive objective functions as is 
the case in the present study. Broadly speaking, it initially 
evaluates a fixed amount of randomly chosen HP combina-
tions and builds a surrogate model based on these data that 
estimate the objective function. Subsequently, the BO selects 
the next HP combination for evaluation based on an acqui-
sition function (e.g., the optimum of the surrogate model), 
essentially considering all previously acquired knowledge 
of the optimization problem. A commonly used surrogate 
model is Gaussian processes (GP) as they are easy to com-
pute and deliver uncertainty estimates. However, GP scale 
poorly in higher dimensions and are unable to handle cat-
egorical and conditional HP spaces well [29]. Random for-
ests (RF) are an alternative to GP: They allow searching over 
any kind of HP space (categorical, discrete, continuous, and 
conditional) [69, 92] and exhibit shorter computation times 
compared to GP, especially in higher dimensional problems 
[29, 69]. BO-RF does not provide an uncertainty estimate 
per se, although empirical methods have been shown to work 
well in practice [28]. Furthermore, BO-RF possesses poor 
extrapolation abilities and requires additional work when 
maximizing the acquisition function [69]. Nevertheless, 
BO-RF was applied in this study, as the efficiency and uni-
versal applicability of BO-RF allows for the optimization 
of any ML algorithm in any HM arrangement in a wide HP 
search space. It should be noted though that the applied sur-
rogate model of the BO or optimization algorithm in general 
may easily be altered in the HPO framework to account for 
individual properties of the investigated data and models. 
The HP considered in this work with respective value ranges 
are shown in Table 2 for each ML algorithm. Note that the 
HP search spaces are data-set-specific and were pre-selected 
for the given problem. However, as shown in Sect. 3.8, the 
proposed framework allows to re-evaluate the search space 
at a later time. Due to the compatibility to the methods 
from Scikit-learn the implementation of the BO was done 

Table 1  Requirements for a meaningful and reliable model comparison and corresponding solution strategies

No Requirement Solution

1 Evaluation of model performance on the entire data set k-fold cross-validation
2 Comparing optimized HMs of varying complexity depending on 

model structure and ML algorithm
Hyper-parameter optimization of BBM with appropriate method 

(Bayesian optimization) and search space (Table 2)
3 Preventing overfitting of BBM Test set prediction error ( RMSECV ) as optimization criterion for 

hyper-parameter optimization
4 Preventing overfitting due to dual use of the data set for model optimi-

zation and model evaluation
Nested cross-validation

5 Independence of (random) divisions of the data set into train and test 
sets

Repeated nested cross-validation
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with the BayesSearchCV method from the Python library 
Scikit-Optimize.

3. An ML model is considered overfit, when it achieves 
high accuracy on train data, but low accuracy on (unseen) 
test data, i.e., low extrapolation ability. On the other hand, a 
model is underfit, when no sufficient accuracy is achieved at 
all. Overfitting should generally be avoided and is especially 
dangerous when comparing different HMs, as some structures 
may be more or less prone to it. Overfitting can be reduced 
through HPO on an appropriate search space (e.g., integration 
of regularization terms in ANN and SVR or maximum tree 
depth in CART) and by employing an appropriate optimization 
criterion. Here, the prediction error on the test set is suitable, 
since it indicates both over- and underfitting. To identify an 
optimal HP combination representative for the entire data set, 
HPO was based on k-fold CV. Therefore, the cross-validation 
error RMSECV (see Eq. 16) is used as optimization criterion.

4. If both HPO and model evaluation are performed on the 
basis of k-fold CV, dual use of the data set can lead to overop-
timistic model performances (overfitting) [85]. The extent of 
overfitting is greater the smaller the data set [80]. In Shaikhina 
and Khovanova [70], a data set with fewer than ten samples per 

feature is referred to as small. Moreover, this type of overfitting 
depends on the number of HP considered in the HPO [10] and 
thus on the ML algorithm. Since the data set used in this work 
is small (see Sect. 3.2) and the number of HP varies depending 
on the ML algorithm used (see Table 2), this type of overfit-
ting has to be addressed. This is done using a procedure called 
double or nested CV. Here, the (inner) k-fold CV of the HPO 
is embedded into the (outer) k-fold CV of the model evalua-
tion. HPO thus only operates on the train data of the respective 
fold. The concept of nested CV dates back on an early study 
of Stone [75] and is also described in more recent works, as, 
e.g., by Rendall and Reis [60].

5. Since the test/train split during k-fold CV is a stochastic 
process, both HPO and model evaluation will exhibit variance 
for repeated calculations. This variance is stronger in smaller 
data sets [71]. To minimize these deviations, each k-fold CV 
(both for HPO and model evaluation) is repeated multiple 
times, with different train and test sets selected in each repeti-
tion, which is referred to as repeated nested CV [18, 36].

The final framework of repeated nested CV is given in 
Algorithm 1 and contains all aspects described above. It there-
fore allows for a meaningful and fair model comparison.

Table 2  Considered HPs with 
corresponding search ranges for 
HPO of all implemented ML 
algorithms

HP types are: continuous (co), discrete (d), categorical (ca), and conditional (cd). HP that are not explicitly 
given or defined elsewhere are left constant on their respective default value of the used method from the 
Scikit-learn package. Different pre-processing methods for scaling the input parameters (features) to the 
value range [0, 1] were also considered in HPO

ML algorithm Hyper-parameter Range

kNN1 k (d) ℕ ∈ [1, 10]

Norm (ca) {Manhatten, Euclidean}
Weighting (ca) {Uniform, distance}

CART 2 , RF∗,2 Max. tree depth (d) ℕ ∈ [2, 9]

Min. samples per split (d) ℕ ∈ [2, 8]

Min. samples per leave (d) ℕ ∈ [1, 8]

Number of trees∗ (d) ℕ ∈ [2, 70]

ANN1 Number of neurons (d) ℕ ∈ [3, 70]

Activation function (ca) {Linear, sigmoidal, tanh, ReLU}
Learning rate (co) ℝ

+ ∈ [10−5, 10−1] , log10-scale
Regularization term (co) ℝ

+ ∈ [10−7, 10−1] , log10-scale
Number of iterations (d) ℕ ∈ [102, 105]

SVM1 Kernel (ca) {Linear, polynomial, sigmoidal, RBF}
� (co) ℝ

+ ∈ [10−4, 10−1] , log10-scale
C (co) ℝ

+ ∈ [10−6, 106] , log10-scale
� (co), (cd) ℝ

+ ∈ [10−6, 102] , log10-scale
p (d), (cd) ℕ ∈ [1, 5]

c (co), (cd) ℝ
+ ∈ [0, 1]

1,2Pre-processing Process parameter Method

NM {Ordinal encoding, one-hot encoding}1,2

I {None, log10 + min–max normalization}1

pH, tA , cv,M,0 , cv,NM,0 Min–max normalization1
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Algorithm 1 Hybrid model optimization framework with repeated nested
cross validation and integrated HP optimization.
Require: arr ∈ [serial, parallel, pureBBM]
Require: algo ∈ [kNN,CART,RF,ANN, SVM]
1: data = ReadData(arr)
2: InitializeParameters(arr, algo)
3: for o ≤ outer repetitions do
4: for k ≤ outer k-folds do
5: train, test = SplitTrainTest(data, k)
6: HPopt = BO(train)
7: BBM(o, k) = TrainModel(train,HPopt)
8: HM = CombineModels(BBM(o, k),WBM, arr)
9: RMSE(k) = EvaluateModel(HM, test)

10: end for
11: RMSECV(o) = Mean(RMSE)
12: end for
13: RMSEHM = Mean(RMSECV)
14:

15: function BO(data)
16: HP = HPinit
17: for n ≤ iterations BO do
18: for i ≤ inner repetitions do
19: for k ≤ inner k-folds do
20: train, test = SplitTrainTest(data, k)
21: BBM = TrainModel(train,HP)
22: RMSE(k) = EvaluateModel(BBM, test)
23: end for
24: RMSECV(i) = Mean(RMSE)
25: end for
26: cost = Mean(RMSECV)
27: HP = UpdateHP(cost)
28: end for
29: return HP
30: end function

3  Case study: magnetic seeded filtration

3.1  Experimental procedure and parameters

This study uses data from MSF experiments that are 

performed similarly to Rhein et  al. [63] and are shown 
schematically in Fig. 4 together with the relevant variables. 
Two individual studies (A and B) were performed with their 
respective parameters given in Table 3. A mono-disperse 
silica–magnetite composite ( SiO2-MAG) was used as seed 

Fig. 4  Schematic representa-
tion of the MSF experiment and 
relevant variables
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material, while the non-magnetic particle system was varied 
between a poly-disperse SiO2 and poly-disperse ZnO pow-
der. More information on these particle systems is given in 
Appendix 2. Stock suspensions of the dry particle systems 
were prepared by sonification with the Digital Sonifier 450 
from Branson Ultrasonics Co. (conditioning). A sample of 
the stock suspension P0 was taken and its actual concen-
tration determined, taking deviations in preparation into 
account. Subsequently, the respective volumes of the stock 
suspensions to achieve the desired volume concentrations 
cv,i were transferred into a snap-on lid vial. The suspension 
parameters ionic strength I and pH were adjusted by addi-
tion of 2M NaCl solution, and 0.5M HCl or NaOH solution, 
respectively. Finally, the experimental volume was filled to 
VL = 30mL with ultrapure water. The suspension was agi-
tated for the agglomeration time tA in the laboratory shaker 
Vortex Genius 3 from IKA GmbH. After agglomeration, a 
ferromagnetic separation matrix was immersed in the sus-
pension and the vial was positioned next to a permanent 
magnet. Magnetic separation was performed for tS = 2min . 
A representative sample PE was taken from the non-sep-
arated suspension and sonified again achieve comparable 

levels of dispersity. Samples P0 and PE were analyzed via 
UV–Vis spectroscopy and the volume concentrations were 
determined through previously performed, substance- and 
system-specific calibrations. Separation success is quantified 
via the separation efficiency of the non-magnetic component

3.2  Experimental results and data analysis

Figure 5 shows the experimentally determined separation 
efficiencies for SiO2 (left) and ZnO (right) for various val-
ues of pH and ionic strength I. The experimental separation 
efficiency data is published here https:// doi. org/ 10. 5445/ IR/ 
10001 54994. Regarding the separation of SiO2 , a decrease 
in pH results in an increase in ANM . This is explained by 
the zeta potentials shown in Fig. 12: At pH = 12, both SiO2 
and SiO2-MAG have a high, negative charge that results in 
a strong electrostatic repulsion, low hetero-agglomeration, 
and ultimately low separation efficiency. The zeta potential 
decreases with decreasing pH and both particle systems are 
even oppositely charged at pH = 3, resulting in high separa-
tion efficiencies. Generally, ZnO is separated more efficiently 
than SiO2 for any given pH. Again, this is retraced to lower 
surface charge of ZnO (see Fig. 12) and therefore lower elec-
trostatic repulsion. An increase in ionic strength leads to an 
increased separation efficiency for equally charged particles. 
This is due to a decreased Debye length (see Eq. 8), leading 
to a shorter range in the repulsive electrostatic interactions, 
enhanced agglomeration, and separation.

(17)ANM = 1 −
cv,NM,E

cv,NM,0

.

Table 3  Varied experimental parameters

All other parameters are either given explicitly or kept constant 
throughout the study

Data set M NM cv,M(vol%) cv,NM(vol%) tA(min)

A SiO2-MAG SiO2 2.80 × 10−3 3.75 × 10−3 10
A SiO2-MAG ZnO 2.80 × 10−3 3.75 × 10−3 10
B SiO2-MAG SiO2 1.40 × 10−3 1.50 × 10−2 5
B SiO2-MAG ZnO 1.40 × 10−3 7.14 × 10−3 5

Fig. 5  Results of the MSF experiments. Left: experiments with SiO2 ; right: experiments with ZnO. Two different studies (A and B, see Table 3) 
were performed which is indicated through coloring. The variation of the pH value is indicated by different markers

https://doi.org/10.5445/IR/1000154994
https://doi.org/10.5445/IR/1000154994
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When comparing results from both studies, the separation 
efficiencies of A are generally slightly above the correspond-
ing results of B. This is explained by a lower relative concen-
tration of magnetic to non-magnetic particles in study B (see 
Table 3). However, the experimental datapoint for ZnO at 
pH = 12 and I = 0.01M in study A is noteworthy: No sepa-
ration was achieved, although the corresponding datapoint 
in study B showed high separation in the range of 40–60%. 
This is clearly an inconsistency that might be retraced to 
experimental error. Said datapoint is marked in Fig. 5 and 
henceforth referred to as outlier, as it will again be important 
for comparing model prediction ability in Sect. 3.5.

3.3  Performance and challenges white‑box model

As stated by Praetorius et al. [55], calculating the agglom-
eration efficiencies � ab initio remains very challenging, 
despite having theoretical descriptions given in Eqs. 5, 11, 
and 12. The main reason lies both in the availability and 
the accuracy of process and material-specific data. In the 
presented case, especially Ḡ , AH and � are prone to error 
and require adjustment to experimental data. Ḡ is adjusted 
directly, while correction factors are introduced that scale � 
and AH according to

As all zeta potentials are measured identically, the error is 
assumed to be independent of the particle system and C� is 
used globally. However, Hamaker constants depend drasti-
cally on the particle surface properties [81] and are therefore 
scaled with material-specific correction factors. This results 
in five model parameters that are optimized with algorithms 
of the Python toolkit SciPy with varying starting and bound-
ary conditions. The global optimizers basinhopping [88] 
and shgo [17] are used to identify temporary minima in a 
widely scattered search field, which are further improved 
with the local optimizer minimize [9]. The RMSE between 

(18)�∗
i
=C� �i

(19)A∗
H,ii

=CA,iAH,ii.

experimental and calculated separation efficiency, defined 
in Eq. 15, is used as minimization criterion. The discretiza-
tion scheme of the WBM was validated beforehand by com-
parison with analytical solutions, which is discussed in the 
supplementary information (SI.2). Furthermore, a prelimi-
nary grid study elaborated in the supplementary information 
(SI.3) ensured that the results are independent of chosen 
grid parameters for NS = 12 and s = 2.5 . Table 4 lists the 
number of experimental data points NE (each measured in 
triplicate), the optimal model parameters and the associated 
RMSE. Each material system of every data set is optimized 
individually, and additionally, all experimental data points 
are optimized together. The first procedure naturally yields 
the lowest RMSE and, therefore, best agreement between 
WBM and experiment. These results are used to extract the 
agglomeration efficiencies �p that are necessary for training 
the BBM in the serial HM arrangement (direct approach, see 
Fig. 3). Optimizing all data points at once is bound to yield 

Table 4  Results of the WBM 
parameter optimization with 
corresponding RMSE values

Each material system of every data set is optimized individually and additionally, all experimental data 
points are optimized together (A + B)

Data set NE Ḡ
(
s−1

)
C� CA,SiO2

CA,ZnO CA,MAG RMSE (%)

A, SiO2 12 0.49 0.11 2.4 × 10−3 – 5.3 × 10−3 9.6
A, ZnO 9 2.0 0.30 – 2.5 × 10−2 1.3 × 10−1 1.8
B, SiO2 4 0.51 0.10 6.4 × 10−3 – 1.4 × 10−2 2.7
B, ZnO 4 4.2 0.16 – 4.1 × 10−3 2.2 × 10−2 0.21
A + B 29 19.2 0.29 2.1 × 10−2 1.8 × 10−2 9.6 × 10−2 18.1

Fig. 6  Visual representation of all 16 compared model structures. 
Five different ML algorithms (kNN, CART, RF, ANN, and SVM) are 
used in two different HM arrangements (parallel and serial) and as 
pure BBMs. The results are further compared to the standalone WBM
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higher RMSE values due to the inconsistency of the underly-
ing data set (outlier) discussed in Sect. 3.2. However, as all 
other models also operate on the entire data set, these WBM 
results are considered more appropriate for comparison and 
subsequently used.

3.4  Study structure for model comparison

The framework from Sect. 2.4 was used to optimize and 
compare five different ML algorithms (kNN, CART, RF, 
ANN, and SVM) in two different HM arrangements (parallel 
and serial) and as pure BBMs. Furthermore, these models 
are compared to the pure WBM, optimized on the entire 
data set (see Sect. 3.3). This results in a comparison of 16 
different models, which are visualized in Fig. 6. A model-
structure-internal comparison (1) provides information 
about the influence of the ML algorithm on model perfor-
mance, whereas a ML-algorithm-internal comparison (2) 
allows conclusions about the influence of model structure. 
Comparing different HMs with the pure WBM (3) allows the 
quantification of a possible model improvement by applying 
hybrid modeling. It should be emphasized that the results 
of this study are case-specific in nature. It does not aim to 
draw universal conclusions on model performance, but to 
show the potential of the methodological framework to reli-
ably and comprehensively compare different models on any 
given data set.

For a comprehensive coverage of the models’ advantages 
and disadvantages, the comparison was carried out on the 
basis of several criteria: The prediction quality (a) refers 
to the accuracy of predicting the separation efficiencies 
ANM from the process parameters and is quantified by the 

RMSEHM , i.e., the mean RMSECV of the outer repetitions 
(see Algorithm 1). The ability of the model to interpolate 
between the existing data points is described by the inter-
polation quality (b), which provides information about the 
applicability of the model to new, unseen data and indicates 
overfitting. Finally, model transparency (c) is investigated 
and shows whether and how reliably the hetero-agglomera-
tion process is represented by the respective model.

Calculations were performed using kouter = 10 folds for 
the outer CV (model evaluation) and kinner = 5 folds for the 
inner CV (HPO) (see Algorithm 1). It is common to set 
kinner < kouter and this choice of k-values has been shown 
empirically to deliver a good balance between bias and 
variance (bias–variance trade-off) of the test set errors 
[30]. The number of used experimental datapoints for train-
ing each model in the outer k-folds is therefore given as 
Ntrain,k = (1 − k−1

outer
)NE = 26 (see Table 4). Each k-fold CV 

was repeated 10 times (repsinner = repsouter = 10 ) for further 
reduction of variance. Seeds were kept constant or chosen 
deterministically during repeated CV, to obtain reproduc-
ible results. A critical parameter is the number of iterations 
niter of the BO. The optimization was initially computed 
with niter = 50 and subsequently increased to niter = 100 . 
Since no significant improvement in prediction quality 
(i.e., RMSEHM ) was found between 50 and 100 iterations, 
regardless of the HM, the results for niter = 50 are given. 
To provide good starting conditions for BO, the number of 
randomly chosen HP-starting combinations was set to 20, 
which proved sufficient in preliminary studies.

Fig. 7  Mean RMSE of all implemented models: a including the outlier and b excluding the outlier in the final calculations of RMSE. All models 
were trained including the outlier. The models inside the gray-shaded area (ANN) are further investigated in Fig. 8
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3.5  Comparing prediction ability

This section compares the ability of the models to predict 
MSF separation efficiencies from corresponding process 
parameters using the RMSE as measure of accuracy. By 
means of this metric, it is possible to compare the prediction 
quality on the basis of one single value, which is advanta-
geous with regard to clarity and interpretability. Figure 7 
shows the averaged RMSE of all implemented models with 
corresponding standard deviations from the ten outer CV 
repetitions (see Eq. 16). As mentioned in Sect. 3.2, one 
experimental data-point is considered an outlier and drasti-
cally influences RMSE values. Although all models were 
trained including the outlier, Fig. 7 shows two graphs, one 
including (a) and one excluding (b) the experimental out-
lier in the final calculation of the RMSE. For comparison, 
the RMSE of the pure WBM is drawn as a horizontal line. 
Due to the extensive information content of this plot and the 
exemplary character of this study, only the most important 
aspects are discussed. As stated in Sect. 3.4, model com-
parison is performed both in a model-structure-internal and 
ML-algorithm-internal way.

When looking at the model structure internally, it is 
striking that, independent of the used ML algorithm and 
whether outlier exclusion is performed or not, the paral-
lel HM and the pure WBM show very similar prediction 
errors. Hence, the parallel HM is not able to correct the 
predictions of the WBM, and may even worsen the results 
on average (CART and RF). Since no ML algorithm leads 
to a significant improvement, the cause for this probably 
lies in insufficient data quality and quantity. In essence, 
the experimental data do not appear to contain a physically 
based connection between process parameters and devia-
tion of the WBM [82]. Both the serial HM and pure BBM 
exhibit a strong dependence on outlier exclusion, which is 
apparent in the large decrease in RMSE for all ML algo-
rithms when moving from Fig. 7a to 7b. This emphasizes 
the importance of data analysis and outlier detection prior 
to applying HMs, to avoid misinterpretations of prediction 
ability. If no outlier exclusion is performed (a), both model 
structures, without exception, have higher RMSE values than 
the pure WBM. However, if the outlier is excluded (b), serial 
HMs show lower prediction errors as the pure WBM for 
nearly all ML algorithms and pure BBMs for the more com-
plex algorithms RF, ANN, and SVM. Extending the WBM 
by an appropriate BBM for taking over the error-prone part 
of determining the collision efficiencies, therefore, leads 
to a significant improvement in prediction accuracy. This 
can be considered a worst-case estimate, as exclusion of the 
outlier before training will naturally further enhance model 
performance. Additionally, the serial HM shows generally 
lower prediction errors for all ML algorithms compared to 
the parallel arrangement, which infers that the WBM does 

not have severe un-modeled effects or structural mismatch 
(see Sect. 2.3). Both points indicate that the calculation of 
kinetic rates is indeed the limiting factor for WBM accuracy 
and that an appropriate BBM can attenuate this effect.

While the choice of ML algorithm has no significant 
impact on RMSE in serial arrangement, it is crucial for pure 
BBMs: kNN and CART show significantly higher prediction 
errors compared to the other implemented algorithms. Both 
algorithms predict the target variables in a similar way, i.e., 
by averaging target variables of training samples with simi-
lar features to predict the test samples. The small size of the 
data set and the associated sparse distribution of samples in 
the feature space therefore limit the prediction quality. As 
mentioned in Sect. 2.2, other ML algorithms that are not 
tested in this study (as, e.g., multiple linear regression and 
it’s variations) might be able to further decrease prediction 
errors.

It is striking that although a variety of model architectures 
were trained multiple times, none was able to achieve near 
perfect prediction accuracy. All models (including the pure 
WBM) appear to be offset by a minimum RMSE of about 
0.1. Again, this may be attributed to inconsistencies and 
experimental errors in the underlying data set and empha-
sizes the robustness of the framework against overfitting.

As already mentioned, misinterpretations can occur when 
solely looking at the the single RMSE-value. This is due to 
the significant influence of outliers on this metric. To detect 
these outliers, it is helpful to plot the separation efficiencies 
predicted by the model ANM,mod against the experimentally 
determined values ANM,exp . This enables outlier detection via 
a data-point-specific evaluation of prediction accuracy. Fig-
ure 8 shows these plots for the pure WBM (a), the pure BBM 
(b), and both parallel (c) and serial (d) hybrid model using 
ANN as ML algorithm. For reference, the respective models 
are indicated by a gray-shaded rectangle in Fig. 7. These 
plots are exemplary and all 16 plots for the investigated 
model architectures are given in the supplementary infor-
mation (SI.4). These plots clearly show that the outlier is 
poorly predicted by both the serial HM and pure BBM (top 
left corner). This phenomenon is observable for all other 
ML algorithms and explains the large decrease in RMSE for 
these model structures when the outlier is excluded. Both 
the serial HM and pure BBM not being able to predict the 
outlier regardless of repeated calculations seems bizarre at 
first glance. However, this can be interpreted as proof for a 
well-functioning overfitting prevention of the methodologi-
cal framework. Figure 8 further shows that the pure WBM 
performs poorly in the intermediate range of separation effi-
ciency ( 0.2 < ANM < 0.8 ) and that the parallel HM is not 
able to compensate for this effect. Qualitatively, the perfor-
mance of the serial HM and the pure BBM is better in this 
area, again emphasizing why only looking at RMSE is insuf-
ficient for a holistic model evaluation. Figure 8 indicates the 
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range of physical results ( ANM ∈ [0, 1] ) by gray-shaded rec-
tangles. Both pure WBM and serial HM are strictly bound 
to this area, while the pure BBM an parallel HM produce 
non-physical results on both ends of the spectrum. For the 
pure BBM with ANN as ML algorithm, this might be rem-
edied by choosing a more appropriate activation function in 
the output layer. Nevertheless, this underlines the benefits of 
having a mechanistic and therefore physically based model 
produces the final results.

3.6  Comparing interpolation ability

This chapter investigates the models’ predictive performance 
on new, unseen data, in between the existing data points in 
feature space (interpolation) to identify potential overfitting. 

An overfitted model generally exhibits low training error 
paired with high prediction errors. Strong overfitting is espe-
cially apparent in cases where a monotonous function or 
relationship is mapped in a highly non-monotonous way. 
As can be seen in Fig. 5 and is explained in Sect. 2.1, the 
seperation efficiency is monotonically increasing with ionic 
strength and therefore a good test case for overfitting. Thus, 
a new input data set with varying ionic strength between 
0.01M and 1M (32 logarithmically spaced points) was gen-
erated and estimated with each previously—i.e., during the 
optimization procedure described in algorithm 1—trained 
model. All other input parameters were kept constant at 
their respective values from data set A ( SiO2 , pH = 7). It 
should be emphasized that this only represents a small part 
of feature space and the subsequently discussed statements 

Fig. 8  Predicted vs. experimentally determined separation efficiencies 
for a pure WBM, b pure BBM (ANN), c parallel HM (ANN), and 
d serial HM (ANN). The gray-shaded rectangle shows the range of 

physical results ( ANM ∈ [0, 1] ), while a linear regression visualizes 
performance. The outlier is framed and marked with an arrow
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should therefore not be generalized. The resulting 100 pre-
dictions ( kouter × repsouter ) are averaged and shown in Fig. 9 
for all model structures with kNN (a) and ANN (b) as ML 
algorithm. These two algorithms were chosen as examples, 
since ANN is a representative for a generalizing and kNN 
for a non-generalizing algorithm. The plots for all other ML 
algorithms are given in the supplementary material (SI.5).

As data set A ( SiO2 , pH = 7) is part of the above men-
tioned intermediate range in separation efficiency, Fig. 9 
illustrates once more that the pure WBM has difficulties 
describing the real process behavior. The experimental data-
points for I = 0.01M and I = 1M are not reproduced well 
by the WBM, although they were used during training and 
the WBM can therefore be considered underfit rather than 
overfit. As the underlying PBE and their implementation 
were validated beforehand (SI.2), the low performance of 
the WBM is either due to inaccuracy of the model equa-
tions (Eqs. 4, 5, 11, 12) or of the correction parameters (see 
Sect. 3.3) used for estimating the agglomeration kernels. 
Inaccurate model equations can be replaced or adjusted by 
resolved numerical simulation methods [19, 59], which, 
however, require additional material data and significantly 
increase the complexity and computation time of the PBE. 
Similarly, applying more detailed (viz. a larger number of) 
correction parameters for unknown material parameters may 
increase model accuracy but will also increase the complex-
ity of both the PBE and the optimization procedure. This 
emphasizes a major benefit of serial HMs: The uncertain-
ties regarding model equations and material parameters 
are all wrapped inside the BBM and therefore drastically 
reduce model complexity of the WBM, while simultane-
ously increase the overall prediction accuracy (see Sect. 3.5).

Similarly to the results discussed in Sect. 3.5, the par-
allel arrangement did not yield a significant improvement, 
neither for kNN nor ANN. Using kNN as ML algorithm 
(a), a correction of the separation efficiencies closer to the 
discrete experimental values is observed, but the represen-
tation of the dynamic behavior in between those reference 
points remains poor. A decrease of separation efficiency with 
increasing ionic strength represents non-physical behavior, 
which also occurs for pure BBM or serial HM with kNN as 
ML algorithm. Using ANN as ML algorithm (b), the inter-
polated curves appear smooth, which better represents the 
physical behavior. This smoothness is explained by the fact 
that generalizing ML algorithms, unlike kNN, CART, or RF, 
learn a functional relationship between process parameters 
and separation efficiency during model training.

Generally, pure BBM and serial HM are in better accord-
ance to the expected slowly and monotonically increasing 
dynamic compared to pure WBM and parallel HM, thus 
indicating better interpolation ability. This trend is appar-
ent for both ML algorithms, while the pure BBM is slightly 
closer to the experimental data points.

3.7  Comparing transparency

The model comparison with regard to prediction and inter-
polation ability showed similar performances for the pure 
BBM and the serial HM, when one of the more profound 
ML algorithms (RF, ANN, or SVM) is employed. Therefore, 
the question arises if all the additional effort for realizing a 
WBM and combining it into HMs is even justified. An argu-
ment can be made that if one is solely interested in predicting 
separation efficiency from a given set of process parameters, 
pure BBMs perform best and are both easier and faster to 

Fig. 9  Averaged curves of predicted separation efficiencies over ionic strength for pure WBM, pure BBM, and each HM model structure for a 
kNN and b ANN as ML algorithm. The experimentally determined separation efficiencies (data set A: SiO2 , pH 7; see Fig. 5) are also shown
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set up, as they do not require any physical knowledge on the 
problem. However, only models with incorporated WBMs 
provide insights into the micro-processes, i.e., give informa-
tion on the time-dependent agglomerate distribution n. The 
pure BBM, being empirical in nature, does not provide any 
insights in this regard. Since the serial HM, generally exhib-
its lower prediction errors as the pure WBM as well as the 
parallel HM (with outlier exclusion), it can be stated that the 
hetero-agglomeration processes are most reliably described 
by this type of model structure. Even for well-performing 
parallel HM (e.g., on other data sets), this argument holds: 
As a parallel HM only provides a correction of the separa-
tion efficiency predicted by the WBM, its insight into the 
micro-processes, namely the calculation of the PBE, remains 
unchanged. This is a crucial aspect for various applications, 
as, e.g., model predictive control and process optimization, 
as one of the incentives for process modeling to begin with 
is to allow access to non or hard to measure phenomena.

3.8  A closer look on hyper‑parameter optimization

Besides providing the basis for a reliable and meaningful 
model comparison, the methodological framework pre-
sented in Sect. 2.4 also allows for a statistical evaluation 
of the optimal HP combinations. By applying repeated 
nested CV, 100 ( repsouter × kouter ) HPOs were performed on 
different parts of the data set. Figure 10 shows the exem-
plary histograms of the resulting, optimal HP combina-
tions for the serial HM with ANN as ML algorithm. Since 
it is impossible to a priori state which HP settings will 
provide an optimal adaption to the data set, a subsequent 
HP evaluation is even more decisive: This information can, 

e.g., be used to narrow down the HP search space after 
an initially broad definition. As a result, a more precisely 
defined search space is expected to both reduce the number 
of necessary iterations and—in some cases—even produce 
a better optimum value.

Figure 10 shows that the number of neurons was mostly 
distributed in the lower range of around 10–20, and there-
fore, the upper limit of HP search space could be limited 
to, e.g., 40. Furthermore, as the linear activation function 
was never considered optimal, it might be removed from 
the HP search space. The results further indicate that one-
hot encoding of the categorical input variable NM and no 
pre-processing of the ionic strength generally increased 
prediction accuracy.

4  Conclusions

Hybrid modeling is a promising technique for describing 
hetero-agglomeration processes as it is an elegant way of 
introducing experimental data into mechanistic models, while 
simultaneously attenuating major limitations of purely data-
driven approaches. The presented general framework allevi-
ates one major difficulty in applying hybrid models, namely 
that the optimal model architecture and ML algorithm cannot 
be know beforehand, as they are highly problem-dependent. 
By implementing a repeated nested cross validation with inte-
grated hyper-parameter optimization, any HM combination 
can be compared for any given data set in a fair and objective 
manner to select the best-suited architecture. Additionally, the 
framework allows for a statistical evaluation of the selected 
hyper-parameters, which paves the way for further enhance-
ment of model accuracy.

Fig. 10  Histograms of the resulting HPs for ANN in serial HM. Pre-processing of NM and I, the activation function, and number of neurons are 
considered
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The capabilities of this approach were portrayed by 
a case study on magnetic seeded filtration: 16 different 
model architectures—including the pure WBM as well as 
pure BBMs, serial and parallel HMs for different ML algo-
rithms—were compared with respect to multiple criteria. 
Both the serial HM and pure BBM were able to achieve a 
significant increase in prediction accuracy compared to the 
pure WBM. They also proved to enhance interpolation abil-
ity between experimental data points, especially when more 
elaborate ML algorithms like the ANN are used. However, 
as serial HMs further allow for a more accurate depiction 
of the ongoing micro-processes, while pure BBMs do not 
provide any insight, it is concluded that serial HMs are best-
suited for describing hetero-agglomeration during MSF.

Appendix 1: Geometric discretization 
scheme

The following section briefly summarizes the necessary 
equations to realize the 2-D geometric discretization 
scheme. For more in-depth explanations and derivations, 
it is referred to Kumar et al. [37, 38]. The general form of 
the ODE is given by

The death term Di,j describes the loss of (i, j) due to further 
agglomeration with (l, m) and is calculated according to

For easier notation, define Xi as partial volume of the non-
magnetic component and Yj as the partial volume of the mag-
netic component of agglomerate (i, j) according to

The unmodified birth term is given by

with

Note that the indices of �(i, j, l,m, a, b) are not written out to 
improve visibility. Further, the net flux of non-magnetic vol-
ume xi,j and magnetic volume yi,j into cell (i, j) are defined by

(20)
dn(i, j, t)

dt
= Bi,j + Di,j .

(21)Di,j = −

NS∑
l=0

NS∑
m=0

k(i, j, l,m)n(i, j, t)n(l,m, t) .

(22)
Xi = VNM(i, j) = si−1V(1, 0) | Yj = VM(i, j) = sj−1V(0, 1) .

(23)
B∗
i,j
=

i∑
l=1

i∑
a=1

j∑
m=1

j∑
b=1

Xi−1≤Xl+Xa<Xi+1

Yj−1≤Ym+Yb<Yj+1

1

2
𝛾k(l,m, a, b)n(l,m, t)n(a, b, t)

(24)� =

{
1 V(i, j) = V(l,m) + V(a, b)
1

2
V(i, j) ≠ V(l,m) + V(a, b)

.

The average properties of newly formed agglomerates in cell 
(i, j) are calculated as

and finally, the modified birth term is calculated as

with

and the Heaviside function H defined as

Appendix 2: Material data

Figure 11 shows the cumulative particle-size distribution 
of the used particle systems. For SiO2-MAG, the distribu-
tion was measured with an analytical disc centrifuge (CPS 
Instruments), while ZnO and SiO2 were measured by laser 

(25)

xi,j =

i∑
l=1

i∑
a=1

j∑
m=1

j∑
b=1

Xi−1≤Xl+Xa<Xi+1

Yj−1≤Ym+Yb<Yj+1

1

2
𝛾k(l,m, a, b)n(l,m, t)n(a, b, t)

(
Xl + Xa

)

(26)

yi,j =

i∑
l=1

i∑
a=1

j∑
m=1

j∑
b=1

Xi−1≤Xl+Xa<Xi+1

Yj−1≤Ym+Yb<Yj+1

1

2
𝛾k(l,m, a, b)n(l,m, t)n(a, b, t)

(
Ym + Yb

)
.

(27)X̄i,j =
xi,j

Bi,j

| Ȳi,j =
yi,j

Bi,j

,

(28)

Bij =

1∑
p=0

1∑
q=0

B∗
i−p,j−q

𝜆−,−
i,j

(
Xi−p, Yj−q

)

× H
[
(−1)p

(
Xi−p − X̄i−p,j−q

)]
H
[
(−1)q

(
Yj−q − Ȳi−p,j−q

)]

+

1∑
p=0

1∑
q=0

B∗
i−p,j+q

𝜆−,+
i,j

(
Xi−p, Yj+q

)

× H
[
(−1)p

(
Xi−p − X̄i−p,j+q

)]
H
[
(−1)q+1

(
Yj+q − Ȳi−p,j+q

)]

+

1∑
p=0

1∑
q=0

B∗
i+p,j−q

𝜆+,−
i,j

(
Xi+p, Yj−q

)

× H
[
(−1)p+1

(
Xi+p − X̄i+p,j−q

)]
H
[
(−1)q

(
Yj−q − Ȳi+p,j−q

)]

+

1∑
p=0

1∑
q=0

B∗
i+p,j+q

𝜆+,+
i,j

(
Xi+p, Yj+q

)

× H
[
(−1)p+1

(
Xi+p − X̄i+p,j+q

)]
H
[
(−1)q+1

(
Yj+q − Ȳi+p,j+q

)]

(29)�±,±
i,j

(X, Y) =

(
X − Xi±1

)(
Y − Yj±1

)
(
Xi − Xi±1

)(
Yj − Yj±1

) ,

(30)H(x) =

⎧⎪⎨⎪⎩

1 x > 0
1

2
x = 0

0 x < 0

.
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diffraction (Helos, Sympatec). The pH-dependent zeta 
potentials are shown in Fig. 12 and were fitted with a poly-
nomial function of degree three for continuous integration 
into the PBE. All zeta potentials were measured at con-
stant ionic strength I = 0.1M and constant particle concen-
tration cv = 3.75 × 10−3 vol% . Further information about 
the particle systems is given in Table 5. Zeta potential and 

size distribution data is published here https:// doi. org/ 10. 
5445/ IR/ 10001 54994.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00366- 023- 01809-8.
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