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ABSTRACT
Since their breakthrough, complexity of Deep Neural Networks
(DNNs) is rising steadily. As a result, accelerators for DNNs are
now used in many domains. However, designing and configuring
an accelerator that meets the requirements of a given application
perfectly is a challenging task. In this paper, we therefore present
our approach to support the accelerator design process. With an
analytical model of a systolic array we can estimate performance,
energy consumption and area for each design option. To determine
these metrics, usually a cycle accurate simulation is performed,
which is a time-consuming task. Hence, the design space has to
be restricted heavily. Analytical modelling, however, allows for
fast evaluation of a design using a mathematical abstraction of the
accelerator. For DNNs, this works especially well since the dataflow
and memory accesses have high regularity. To show the correctness
of our model, we perform an exemplary realization with the state-
of-the-art systolic array generator Gemmini and compare it with
a cycle accurate simulation and state-of-the-art modelling tools,
showing less than 1% deviation. We also conducted a design space
exploration, showing the analytical model’s capabilities to support
an accelerator design. In a case study on ResNet-34, we can demon-
strate that our model and DSE tool reduces the time to find the
best-fitting solution by four or two orders of magnitude compared
to a cycle-accurate simulation or state-of-the-art modelling tools,
respectively.
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1 INTRODUCTION
Deep Neural Networks (DNNs) entered more and more domains
and areas over the last decade due to their higher prediction perfor-
mance compared to traditional algorithms. In image recognition,
for example, face recognition is used in assistive robotics to support
the elderly [12] or in particle physics they support the compression
of large datastreams [2]. While DNNs already show great perfor-
mance in many tasks, over time their computational complexity
and memory requirements grew rapidly to fulfill even more sophis-
ticated tasks. Especially considering yet unsolved problems such
as autonomous driving, the complexity is foreseen to grow even
further. This trend poses a challenge to the underlying hardware
architecture, which executes the DNN. Since the computation of
DNNs is a highly dataflow driven and memory bound task, tradi-
tional computing devices like CPUs or GPUs cannot keep pace with
the fast rising demands. To address this challenge, dedicated DNN
accelerator architectures, like systolic arrays, are currently state of
the art. Those DNN accelerators can compute operations in parallel
and reuse data to achieve a high performance and efficiency. In
addition, accelerators can incorporate optimization techniques like
pruning or quantization [6].

While DNN accelerators can support fast and efficient inference,
the design parameters of such an accelerator have to be evaluated
carefully. The level of exploited parallelism or the number of pro-
cessing elements and the size of memories and their interfaces, have
a strong impact on various design metrics like throughput, latency,
power consumption or area. Besides the architecture parameters,
the DNN workload itself has a strong dependency with the perfor-
mance, since proper mapping of the workload is also important.
All these parameters open a large design space from which one
solution has to carefully picked to reach high performance and
efficiency. However, due to the complexity of DNN accelerators,
determining the hyperparameters and specifications for a given
accelerator configuration is costly, since each configuration has to
be elaborated individually. Highly accurate results can be achieved
though cycle-accurate simulation of the whole workload [8, 10],
which takes a long time for each iteration. Considering the large de-
sign space, cycle-accurate simulation is not feasible for an extensive
design space evaluation.

In this paper, we therefore present our analytical model of sys-
tolic arrays, which are a very common type of DNN accelerator. The
analytical model is the centerpiece of our evaluation tool, shown
in Figure 1. Our analytical model estimates performance, area, and
energy consumption for a given design configuration and DNN
workload in a fast and accurate way. Therefore, our approach uses
the well-established roofline model for performance estimation and
bottleneck identification. During the design process, constraints,
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Figure 1: Overview of our DNN accelerator analysis tool with
our analytical model of a systolic array at its center

for example, an upper area or power limit, can be defined. This
allows us to find a solution, which meets all design requirements.
With our analytical model, we are able to evaluate a design in up to
12000x less time compared to a cycle-accurate simulation. We ver-
ify found solutions by comparing them against the cycle-accurate
simulation, showing less than 1% deviation using a 16 × 16 systolic
array. In a case study on ResNet-34, we use our evaluation tool for
a design space exploration (DSE), to show its capabilities in finding
an optimal DNN accelerator for this workload.

2 RELATEDWORK
Over the last decade, various DNN accelerators were presented and
have established themselves. One very prominent accelerator is
Eyeriss by Chen et al. [4]. It implements a 12 × 14 array of com-
pute elements, each equipped with a small memory to buffer inputs
and weights. Their row-stationary dataflow allows for an efficient
inference by minimizing the data movement to the main memory.
However, Eyeriss has a fixed architecture and cannot be scaled for
different performance requirements. SIMBA [11] is a chiplet accel-
erator made from multiple processing elements (PEs). In contrast
to Eyriss, the architecture can be scaled and configured towards
the different performance requirements of the DNN. However, both
Eyriss and SIMBA are standalone chips and cannot be integrated
into a System-on-Chip (SoC) for full flexibility. The systolic array
generator Gemmini by Genc et al. [5] allows generating a fully flex-
ible DNN accelerator design, which can be integrated into a SoC
design. Within the Chipyard [1] project, Gemmini can be coupled
with a RISC-V processor. Besides the flexible hardware architecture,
Gemmini also offers a rich software stack and is compatible with
common DNN frameworks.

As stated before, the choice of design parameters for complex
DNN accelerators is a yet unsolved challenge. Therefore, some
research on modelling these accelerators has been carried out.
Timeloop [9] is a flexible tool, capable of performing analytical
simulation for a wide range of architectures, which can be mod-
elled through a set of primitives. Additionally, it allows defining
the mapspace, i.e., how workloads can be mapped to the accel-
erator, and supports finding optimal mappings. To estimate per-
formance and energy, Timeloop exploits the regularity of DNN
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Figure 2: Roofline model showing peak computational and
memory performance [13]

workloads to analytically calculate action counts of the various sys-
tem components. However, Timeloop limits itself to convolutional
and fully-connected layers while neglecting other operations, like
activations and pooling layers. Further, describing the mapspace
requires prior knowledge of the dataflow the targeted accelerator
uses, and hence it is difficult to generalize it for all systolic arrays.
In contrast, ScaleSim [10] reduces the complexity by limiting itself
to the simulation of only systolic arrays. The memory hierarchy in-
side ScaleSim consists of two input memories for input and weight
data, and a separate memory to store results. All common dataflows
for systolic arrays, weight stationary, output stationary and input
stationary are supported. Mapping of complex problems onto the
compute array is determined automatically. However, ScaleSim
performs a cycle accurate simulation, which leads to a very high
simulation time. In addition, ScaleSim lacks support for pooling
operations and batched data. To get a very accurate simulation,
Chen et al. [3] propose a custom simulation model that reflects the
underlying hardware directly. Their model includes various aspects
of the accelerator, such as the number of PEs, their arrangement in
the array, mapping and available bandwidth. When all influences
of these parameters are understood, it is possible to analytically
determine the performance of the system. The downside of this
approach, is that such models will only work for the specific accel-
erator they are designed for. The benefit of these models, however,
is their close relation to the used hardware. Unlike the previously
mentioned simulators, no additional modelling of the accelerator
is necessary, as all relevant information can be extracted from the
software layer.

3 CONCEPT OF OUR ANALYTICAL MODEL
Our analytical model enables fast and systematic exploration of
a systolic array to find the best-fitting solution in the vast design
space. As stated before, crucial design parameters like buffer sizes,
the number of PEs or the interface bandwidths can have a very
strong impact on the performance, energy efficiency and chip area
consumption of the DNN accelerator. Hence, our model has to
deliver fast and accurate estimates of the accelerator characteris-
tics. Therefore, we base our model on the well-established roofline
model introduced by Williams et al. [13] and use Accelergy [14]
for area and energy estimation. Those tools allow us to design a
highly abstracted model of the underlying hardware architecture.
In general, the roofline model as shown in Figure 2 can be applied to
all computational tasks. With the roofline model, we can calculate
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Figure 3: Overview of our analytical model

peak operational performance (𝑐𝑜𝑚𝑝𝑝𝑒𝑎𝑘 ) and peak memory per-
formance (𝑜𝑝𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ·𝑏𝑤𝑝𝑒𝑎𝑘 ), as well as the operational intensity.
The horizontal roof gives themaximum computational performance,
while the diagonal line gives the peak memory performance.

3.1 Analytical Modelling of a Systolic Array
The components and computation steps of our proposed analytical
model are shown in Figure 3. To compute cycle and actions counts
of a DNN inference, our model takes two inputs: A DNN work-
load description, that holds the layer shapes, and an architecture
description that features, e.g., the array and memory sizes. Those
inputs are evaluated in the Operation Unroll Engine, which splits
large matrix operations into smaller tiles that match the underlying
systolic array size. Based on the tiles, the Action Count Calculation
module generates action counts for Accelergy’s energy estimation.
They represent how often an action is performed by a component,
e.g., the number of memory accesses.

The Computation and Data Movement module takes the same
outputs from theOperation Unroll Engine and estimates the number
of MAC operations performed and the amount of data moved over
the bus. MAC operations account for all compute cycles. Their
number can be derived from amatrix-matrixmultiplication between
an 𝑙 × 𝑚 input matrix A and the 𝑚 × 𝑛 weight matrix B in the
systolic array. In total, this accounts for 𝑙 ·𝑚 · 𝑛 MAC operations.
However, we cannot map an arbitrary matrix onto a systolic array
directly, but we have to account for mapping fragmentation effects
as already defined by Chen et al. [3]. For example, spatial mapping
fragmentation occurs, when the dimensions of the matrices A or B
are smaller than the size of the systolic array. In this case, we have
to pad the matrix such that it fits the array size. This is done through
the scaling factor [. For example, a 10×10 matrix multiplication on a
16×16 array gives [ = 16/10 = 1.6. Temporal mapping fragmentation
can occur, when one input matrix is larger than the array. For
example, a 24×16 matrix computed the same 16×16 array, leaves
after one full iteration eight columns. Thus, in the second pass
the array is only 50% utilized, resulting in an overall utilization of

75%. To consider this effect, which we use a scaling factor 𝛿 . In the
example 𝛿 =

⌈24/16⌉ ·16
24 = 4

3 . We can then describe the number of
scaled MAC operations in each computation with Equation 1.

𝑚𝑎𝑐𝑠𝑠𝑐𝑎𝑙𝑒 = 𝑙 ·𝑚 · 𝑛 · [ · 𝛿 (1)
For an accurate modelling of the performance, it is also important

to consider the data movement, as DNN inference is a very memory
intense task. It is strongly dependent on the bus bandwidth. In gen-
eral, data movement occurs in the form of block transfers between
external and on-chip memories. We can view these data blocks as
matrices of size 𝑟𝑜𝑤 × 𝑐𝑜𝑙 which are transferred row-wise. Similar
to the systolic array matrices, we have to pad bus transfers. For
example, even if only 1 B is transferred over a bus, it still effectively
blocks the full bus-width. As such, we scale every single transfer to
match the maximum bus-width 𝑏𝑤𝑝𝑒𝑎𝑘 . Individual rows of the data
blocks are split up into multiple transfers if they are larger than
the bus-width. Additionally, we have to account for idle periods
on the bus when data movement and computations do not overlap.
This leads to additional overhead, which we account for through
a scaling factor 𝛼 . The calculation of the number of bus transfers
𝑁𝑏𝑤 and the scaled data moved are given in Equation 2.

𝑁𝑏𝑤 =

⌈
𝑐𝑜𝑙

𝑏𝑤𝑝𝑒𝑎𝑘

⌉
· 𝑟𝑜𝑤

𝑑𝑎𝑡𝑎𝑠𝑐𝑎𝑙𝑒 = 𝑁𝑏𝑤 · 𝑏𝑤 · 𝛼
(2)

Based on the adjusted data movements and MAC operations, we
can apply the roofline model to determine the cycle count for a
given DNNworkload on the systolic array. This evaluation happens
in the Roofline Evaluationmodel by applying Equation 3. Besides the
data movements andMAC operations, we also need to take architec-
tural constraints into account. This is done through 𝑐𝑜𝑚𝑝𝑝𝑒𝑎𝑘 and
𝑏𝑤𝑝𝑒𝑎𝑘 . They represent the number of MAC units in the systolic
array and the available bandwidth. With all these four variables,
we can compute the performance, from which we can calculate the
cycle count.

𝑜𝑝𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑚𝑎𝑐𝑠𝑠𝑐𝑎𝑙𝑒

𝑑𝑎𝑡𝑎𝑠𝑐𝑎𝑙𝑒

𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = min
(
𝑜𝑝𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 · 𝑏𝑤𝑝𝑒𝑎𝑘 , 𝑐𝑜𝑚𝑝𝑝𝑒𝑎𝑘

)
𝑐𝑦𝑐𝑙𝑒𝑠 =

𝑚𝑎𝑐𝑠𝑠𝑐𝑎𝑙𝑒

𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒

(3)

3.2 Estimation of Energy and Area
To estimate the energy and area of the systolic array, we need action
counts derived from our model. Action counts include information
about which module has performed which operation and how often.
The collected action counts are evaluated by Accelergy [14] to
estimate the energy consumption and area. Accelergy provides a
set of primitives, e.g., MAC units and memories, from which more
complex architectures can be modelled. In general, a systolic array
can be modelled as a 𝐷𝐼𝑀 ×𝐷𝐼𝑀 array of MAC units and registers.
The on-chip memory can be modelled as banked SRAM.

To get the number of performed MAC operations, we look at
Equation 1. For the number of memory accesses, we have to take
the memory organization into account. As such, this can differ
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between different architectures. We will discuss the calculation of
their number for an example architecture in section 4.

3.3 Design Space Exploration
The main objective of our model is to speed up the design process.
To enable automatic exploration of valid designs, we first have to
put all possible design parameters options in the architecture de-
scription. Some parameters might be fixed like the layout of the
on-chip memories, the number of memory banks and rows per
bank. The user can limit the valid design space through a set of
Design Space Constraints, for example, a maximum size of the sys-
tolic array and maximum sizes of the on-chip memories can be
specified. Based on these inputs, our array configuration generator
will automatically construct the design space and generate valid
architecture descriptions that adhere to all constraints of the ac-
celerator. Our analytical model then evaluates each architecture
description for the given DNN workload layer-by-layer and emits
action and cycle counts. Based on the action counts, we can es-
timate energy consumption and area using Accelergy. After the
DNN workload has been evaluated on all generated architectures,
we can post-process and analyze the results. The first step checks
found solutions for constraint violations, like a too large area, and
removes them. Next, the Pareto front and the global optimum are de-
termined. The Pareto front is evaluated with regard to area, power,
and performance, while the global optimum depends on a user-
given target function, that for example minimizes energy. Finally,
all results are visualized and stored. Results can also be imported
for later evaluation with a different set of constraints.

4 USING GEMMINI AS AN EXEMPLARY
SYSTOLIC ARRAY

To demonstrate and evaluate our proposed analytical model, we
selected Gemmini [5], which is an open-source systolic array gener-
ator. Gemmini offers a high degree of freedom in its design param-
eters and supports a wide range of DNN workloads. It is integrated
into the Chipyard framework [1]. The architecture consists of a
scratchpad to store operands, an accumulator memory in which re-
sults are stored and the systolic array performing the computations.
To integrate Gemmini into our systolic array analytical model, we
have to adjust the operation unroll engine to match Gemmini’s
tiling and account for Max-Pooling, which is performed during
write-backs to the main memory. While Gemmini is very flexible,
there are, however, some architecture constraints we have to con-
sider. Most important, due to the address generation, the size of the
systolic array and the number of rows in each memory has to be a
power of two. In the following, we denote Gemmini’s systolic array
size as 𝐷𝐼𝑀 × 𝐷𝐼𝑀 . Additionally, the available bandwidth is fixed
to 128 bit per transfer. Hence, we define 𝑝𝑒𝑎𝑘𝑐𝑜𝑚𝑝 = 𝐷𝐼𝑀 · 𝐷𝐼𝑀
and 𝑏𝑤𝑝𝑒𝑎𝑘 = 128𝑏𝑖𝑡 . To model energy, we added models of the
scratchpad, accumulator and the systolic array to Accelergy.

To calculate the number of MAC operations and data movements,
we analyze all individual instructions that Gemmini can execute.
This enables us to model the performance of the DNN inference.
Taking each instruction into account, we can also derive action
counts of each component, which allows us to estimate the energy
consumption.

For the number of MAC operations, we evaluate the two com-
pute instructions: compute_preload and compute_accumulate.
The number of MAC operations follows the considerations from
Equation 1. To account for spatial fragmentation, we define the
scaling factor [ for𝑚 and 𝑛 so that they match the according array
dimension 𝐷𝐼𝑀 . This way, we can model each of these instructions
blocking the full systolic array. For temporal fragmentation, in the
compute_accumulate instruction, the scaling factor is set to one
as this effect does not occur. For compute_preload, we have to
scale 𝑙 to match 𝐷𝐼𝑀 as no more calculations are performed after 𝑙
cycles, but the next computation cannot begin. To analyze the data
movement, we can utilize Equation 2 to get Equation 4.

[ =
𝐷𝐼𝑀

𝑚
· 𝐷𝐼𝑀

𝑛

𝛿𝑝𝑟𝑒𝑙𝑜𝑎𝑑 =
𝐷𝐼𝑀

𝑙

𝛿𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 = 1
𝑚𝑎𝑐𝑠𝑠𝑐𝑎𝑙𝑒,𝑝𝑟𝑒𝑙𝑜𝑎𝑑 = 𝑙 ·𝑚 · 𝑛 · [ · 𝛿𝑝𝑟𝑒𝑙𝑜𝑎𝑑

𝑚𝑎𝑐𝑠𝑠𝑐𝑎𝑙𝑒,𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 = 𝑙 ·𝑚 · 𝑛 · [ · 𝛿𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒

(4)

Besides the performance metrics, we also want to estimate the
energy consumption and thus need action counts. For the number
of MAC operations, we can apply Equation 1 as it was discussed
previously. To determine the number of memory accesses requires
knowledge of the memory organization. For the transfer of a 𝑟𝑜𝑤 ×
𝑐𝑜𝑙 block of data, a total of ⌈ 𝑐𝑜𝑙

𝐷𝐼𝑀
⌉ · 𝑟𝑜𝑤 memory accesses are

performed. To match the behavior of Gemmini, we integrate these
formulas into the roofline evaluationmodel of our analytical model.

5 EVALUATION
Our analytical model is implemented in Python to allow for straight-
forward integration into common DNN frameworks like PyTorch.
As workload, for all experiments that we evaluate, we choose
ResNet [7], since it is a well-established CNN and features a wide
range of different kernel sizes. The network’s input size is 3×224×224,
and we set the batch size to one. The results of our model are com-
pared with a cycle accurate simulation, which is provided by the
Chipyard framework [1], and with the state-of-the-art CNN accel-
erator simulator ScaleSim [10]. Since we target energy and area
constrained applications like embedded systems, we picked 8×8,
16×16 and 32×32 as systolic array sizes. For area estimation, all com-
ponents for Accelergy are assumed to be implemented in a 40 nm
technology node. All experiments with our model are performed
on a single AMD EPYC 7702P core running Rocky Linux, multiple
cores can be used to run individual experiments in parallel.

5.1 Estimation Accuracy and Simulation Time
The results of the accuracy and runtime evaluation can be found in
Figure 4 and Table 1, respectively. The plot depicts the estimated
cycle count for the three different array sizes. For each size, the
first three ResNet layers, representing all kernel sizes occuring in a
ResNet, are shown. Each experiment is performed using our model
and ScaleSim. In addition, a cycle-accurate simulation of Gemmini
serves as a cycle count reference. The first layer with 7×7 convolu-
tions (𝐿1) has, in contrast to the others, a Max-Pooling operation.
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Figure 4: Evaluation of different layer configurations across different array sizes on a logarithmic scale. 𝐿1, 𝐿2 and 𝐿3 represent
7×7, 1×1 and 3×3 convolution operations, respectively

Table 1: Simulation time comparison of our work with cycle-
accurate simulation and ScaleSim on a 16 × 16 systolic array

Workload This Work ScaleSim [10] Cycle-Accurate

𝐿1 1.8 s 165 s (55x) 9179 s (5099x)
𝐿2 0.17 s 16 s (138x) 2201 s (12947x)
𝐿3 0.76 s 147 s (18x) 2667 s (3509x)
ResNet-34 28 s 1 h > 48 h

Especially here, the differences between the cycle-accurate simu-
lation and ScaleSim are significant. This can be explained by two
factors: First, ScaleSim does not model Max-Pooling operations at
all. Especially, in Gemmini, pooling and convolutions are fused into
one layer. In general, pooling has an impact on the performance
estimates. In our experiments, we have observed that 23% more cy-
cles are required for layers with pooling. For this reason, modelling
these effects is crucial to accurately model performance. Besides
pooling, the underlying mapping plays a role. ScaleSim assumes
a different mapping compared to Gemmini allowing for a higher
utilization and therefore a deviating cycle count. We are able to
take both of these effects in our model into account. Hence, our
model reflects the cycle count observed during the simulation more
accurately than ScaleSim. Similar trends can be observed over the
different array sizes. Looking at the 1×1 convolution operation (𝐿2),
ScaleSim is also unable to accurately reflect the correct cycle counts.
The calculated values are too low, since ScaleSim assumes a too
high bandwidth, leading to fewer stalls than are acutally present.
In case of a 3×3 convolution (𝐿3), all tools are able to give close
estimates.

Besides accuracy, the simulation time for one design evaluation
is another very important metric for design space exploration, since
faster evaluation aids faster design space exploration. Table 1 shows
the simulation time of our approach compared to ScaleSim and the
cycle-accurate simulation using the same array sizes and ResNet
layers. It has to be noted, that a cycle-accurate simulation of an
entire ResNet-34 takes multiple days, making it infeasible for design
space exploration. Depending on the workload, the table shows
that our approach provides a speed-up of up to 12947x and 138x
compared to cycle-accurate simulation and ScaleSim, respectively.
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Figure 5: ResNet-34 inference cycle count (in millions) for
different memory configurations on a 16×16 array

5.2 Impact of Memory and Array Size
Providing sufficient on-chip memory is a major challenge while
designing a DNN accelerator. On-chip memory is very expensive,
hence, it is advisable to carefully choose thememory sizes to achieve
a high efficiency. To show how our tool can help to choose the mem-
ory size, we perform an exploration of a wide range of memory
sizes for a ResNet-34 workload, while keeping the array size fixed
to 16×16. For our evaluation we assume an off-chip memory with a
fixed latency, since Gemmini has an L2-cache in between the off-
chip DRAM and the local memories, making this memory hierarchy
difficult to model. However, looking at the local memories is still
very important, since they have a significant impact on the area.
The impact on the cycle-count of different memory sizes using our
analytical model is shown in Figure 5. In general, memory sizes af-
fect the tiling of data across the scratchpad and accumulator. Larger
memories tend to have a greater impact on area and energy than
on performance. A 16×16 array in which the memories are set to
the largest configuration (2048k and 1024k) results in 7x more area
(in total 11.1𝑚𝑚2) and only 7% more performance, in comparison
to the smallest configuration which only requires 1.5𝑚𝑚2. Due to
the significant increase in area, making the memory larger might
not always be the correct optimization choice. In comparison, an
increase of array size from 16×16 to 32×32 with fixed 256k scratch-
pad and 64k accumulator memories, adds 73% area and increases
performance by 217%. Hence, it should be considered that a larger
array can be a better choice than larger memories. Especially in
area constrained embedded designs, increasing the array size is the
preferable choice.
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configurations and the associated area and energy

5.3 Exemplary Design Space Evaluation of
ResNet-34

To showcase the insights our analytical model can generate, we
use our evaluation tool for design space exploration. We explore a
ResNet-34 as workload, which demonstrates good prediction accu-
racy on image processing tasks. For the case study, we assume an
inference use case on an embedded compute platform. Our objec-
tive is to minimize the energy consumption, while maintaining a
high performance. The clock frequency is assumed to be 700MHz.
The design space is limited by a set of architecture constraints.
We use the same array sizes as before, but apply less restrictive
constrains to the memories. Scratchpad memory size can be set
between 128 kB and 4MB and accumulator memory between 64 kB
and 2MB. Finally, we add a performance constraint that all archi-
tectures have to yield at least 30 FPS on ResNet-34 to be considered
valid.

With the given constraints, the full design space consists of 57
points and 13 Pareto optimal points. Figure 6 shows the Pareto
points with the associated area, energy consumption and cycle
count. The performance for the different design points ranges be-
tween 34 and 117 FPS. From the plot, we can see gaps in the per-
formance domain instead of a continuous trend. This is caused by
Gemmini’s architecture constraints. Since array sizes cannot be
defined arbitrarily, we have to move for example from a 16×16 array
directly to a 32×32, resulting in a large performance gap. It has to
be noted, that none of the 8×8 array configurations satisfies the
performance requirements. With the results, we determine that
the array size is the main indicator for performance. Considering
our envisaged use case, we found an energy efficiency to perfor-
mance sweet-spot with an array size of 32×32, scratchpad memory
of 256 kB and accumulator memory of 64 kB. This design configura-
tion is estimated by our tool to have 3.25𝑚𝑚2 area and consumes
14.17 J total energy per inference. The total performance settles at
59 FPS.

6 CONCLUSION
In this paper, we have introduced our analytical model for systolic
arrays. For an efficient and fast inference of a DNN, it is crucial
to design the right DNN accelerator for a given application. Since
the design space of DNN accelerators is very large and the com-
plexity of the workload is high, a cycle-accurate evaluation of all

design points is infeasible. Our model speeds up the evaluation of
a design configuration accurately. We verified our model with a
cycle-accurate evaluation of the same architecture, showing less
than 1% deviation on a 16×16 array, while the average deviation
over all array configurations amounts to 7%. Compared to state-of-
the-art systolic array simulators, we demonstrated an improvement
in cycle count estimation accuracy and were able to include more
instructions like Max-Pooling into our simulation. Moreover, we
coupled our analytical model with Accelergy to get estimates of
energy consumption and area, besides the raw cycle count, making
a design space exploration feasible. Exemplary, we performed this
on a case study with ResNet-34, revealing valuable insights on how
different design parameters influence energy consumption, area
and overall performance.
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