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Abstract: Mass is usually introduced as a measure of the inertia of a body. But what do we mean by 
inertia anyway? We introduce a measure of inertia. It turns out that for high, relativistic velocities neither 
the rest mass nor the relativistic mass fulfills the requirements for a meaningfully defined measure of 
inertia. But how are we going to talk about inertia in the physics lesson? How can we use students' 
everyday language and still arrive at a clear conceptualization? We will try to give an answer to these 
questions.


Any physical quantity is a measure of a property of a physical system. So, temperature tells us 
whether a body is hot or cold, pressure is a measure of the tendency to expand, momentum 
measures the drive or the impetus of a body, velocity tells us how fast an object is moving. If we 
know the property which is measured by a physical quantity, we usually have a good and intuitive 
understanding of the equations or formulas in which the quantity appears.

In the following we are concerned with the property inertia. It is known to be measured by the 
physical quantity mass. A body with a large mass is very inert, a body with a small mass is not. 
Since we are aware of this, mass appears to us to be a vivid and descriptive quantity. 

However, the theory of relativity seems to question this vividness. When the velocity of a body 
becomes high, i.e. when we no longer have ∣v∣≪ c, the mass becomes velocity-dependent and it 
is called relativistic mass. Does this mean that the inertia is velocity-dependent as well? The 
answer ist yes. So, is the (relativistic) mass a measure of inertia also in this case? Now, the answer 
is no. We will see that we have to revise some of our ideas about the relation between mass and 
inertia. 

In order to do so, we must first explain what we mean by inertia. In fact, this is easier than giving a 
definition of mass. In the following, we propose such a definition.

For those readers who are interested in the issues of energy-mass-equivalence and in the 
different ways of using the terms mass, rest mass, relativistic mass, longitudinal and transverse 
mass, we recommend the article by Sandin1, which gives a comprehensive and easy to 
understand overview. Roche2 gives a survey of the historical development of the concept of mass. 
The question of what is meant by mass was also discussed in detail, for example by Hecht3,4, 
Cuelho5 and Schwarz6.

 
Definition of a measure for inertia 
Our definition should cover what we would call inertia in everyday life in the context of a moving 
object. 

That is why we define: 

	 T := dp/dv	 	 	 	 	 (1) 
This quantity tells us whether one has to supply much or little momentum dp to a body in order to 
change its velocity by dv. If we need much momentum for a desired change of the velocity, the 
body is very inert; if we need little, it is less inert.* We restrict ourselves to those momentum 
changes whose direction is the same as that of the momentum which the body under 
consideration already had before the change.

Let us first consider a simple case: a body moving with non-relativistic velocity. Here, we have:

	 p =  m · v 	 	 	 	 	 (2)

and equation (1) tell us that: 

	 T = dp/dv =  m	 	 	 	 (3)

The inertia is equal to the mass – a result that we are not surprised by. 

We can also read the inertia from a diagram showing the relationship between momentum and 
velocity. There are two options for drawing such a diagram: either we plot p as a function of v, or v 



as a function of p. We prefer v over p, so that p appears as the independent variable. In fact, we 
have a more direct influence on the momentum than on the velocity. This becomes especially 
clear when we later consider relativistic motions.

Figure 1 shows v(p) for the non-relativistic case. The triangles tell us how much momentum dp is 
needed to change the velocity by dv. For the greater mass m2 more momentum is needed than for 
m1. We also see that for a given body, T is independent of the momentum or of the velocity.




Fig. 1. The velocity is proportional to the momentum; the inertia of a body is the same for every velocity.


What is different at high velocities? – Inertia is defined by a characteristic curve 
At high velocities, there is a significant change: the mass in equation (2) becomes velocity 
dependent:

	 p = m(v) ·  v	 	 	 	 	 (4)

with


	 	 	 	 	 (5)


m(v) is called “relativistic mass”. m0 is the mass of the body when it is at rest, its “rest mass”. 
Equation (4) can then be written as:


	 	 	 	 	 (6)


Solving for the velocity, we get


	 	 	 	 	 (7)


Figure 2 shows the velocity as a function of momentum for three different values of the rest mass.


 

Fig. 2. Dependence of the velocity on the momentum for various rest masses. In all three cases, for increasing 
momentum, the velocity approaches the same limiting velocity.
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We see that the inertia T of a body is no longer constant; it depends on the velocity. To get a 
desired increase in velocity, we need little momentum at the beginning, and then gradually more 
and more, Figure 3. The inertia increases with increasing velocity.




Fig. 3. The red triangles tell us how inert the body is. As the body is “charged” with momentum, its inertia increases.


The absolute value of the velocity cannot exceed a certain value c, which we call terminal speed.

Let us now calculate the inertia T, as defined by equation (1). All we have to do is derive the 
momentum, equation (6), according to the velocity. We obtain


	 	 	 	 (8)


It is obvious that inertia is no longer a property that can be defined by a single numerical value; it 
depends not only on the rest mass m0 (which characterizes the body), but also on the velocity 
(which characterizes the body’s state of motion). Note that our inertia is neither equal to the rest 
mass nor to the relativistic mass, equation (5). 

This result seems somewhat disappointing if one was expecting that inertia is an invariable 
property of a body. However, we should not be too surprised, because there are numerous other 
similar situations in physics. Consider electrical resistance. We are used to speaking of the 
resistance of a certain electrical component, which we call a resistor, e.g. 1000 kΩ. This value can 
be read from the I-V characteristic. However, we also know that the relationship between voltage 
and current cannot generally be described by a single number. One must specify a characteristic 
curve, Figure 4.




Fig. 4. I-V characteristic of a resistor and a semiconductor diode. To characterize the resistor, a single number is 
sufficient. For the diode a function graph is needed.
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We can therefore say that Figures 2 and 3 represent the inertial characteristics of the bodies7.

But even within the context of relativistic physics, the interpretation of mass as a measure of 
inertia still has its justification. How can that be? Didn’t we just prove the opposite?

In our previous considerations, we had assumed structureless particles or bodies, without 
explicitly saying it, i.e. systems that could not be excited in any way, whose temperature or 
pressure could not be changed, etc.. We now want to abandon this restriction.

We consider a thought experiment. In a container there is a gas whose temperature is so high that 
its particles have relativistic velocities, see also Sandin1. With this container we now do classical 
experiments, i.e. experiments in which the velocity of the container remains in the classical range.

We first place the gas on a scale. We find that the weight, and thus the gravitational mass, is 
greater than the sum of the rest masses of the parts, and that it depends on temperature.

In addition, we carry out an acceleration experiment. However, we accelerate the gas in such a 
way that its (center-of-mass) velocity remains much smaller than c. In doing so, we find that the 
inertia is equal to the mass that we determined with the scale and that it is independent of the 
centre-of-mass velocity. The measured mass is therefore a measure of the inertia, although the 
particles of the gas move relativistically, and although they may have been photons, which have 
no rest mass at all. Thus, (relativistic) mass is a suitable measure of inertia as long as the centre-
of-mass velocity is small compared to the terminal velocity – no matter how high the velocities of 
the components of the system are, and no matter whether they are particles with or without rest 
mass. 

Conclusion 
We were concerned with the question of whether mass is a measure of the property inertia. 

For this purpose, we first settled what we want to understand by inertia, and we introduced a 
measure for it. 

As long as one considers movements with center-of-mass velocities much smaller than the 
terminal speed c, relativistic mass measures inertia. In general, however, it does not. 

If we allow for relativistic center-of-mass velocities, the mass loses this property. Neither the rest 
mass nor the relativistic mass is a measure of inertia. However, the inertial behavior can now be 
described by a characteristic curve.  

* Alternatively, we could have defined inertia by the force F that is needed to obtain a desired acceleration a. Thus, we 
would write: 

	 T := F/a .

Using F = dp/dt and a = dv/dt we come back to equation (1). Thus, the two definitions are equivalent. Note that F = m · 
a does not apply here because m is velocity dependent.
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7. In the literature, the expression on the right hand side of Eq. (8) is known to be the “longitudinal mass“. This name 

was given in order to distinguish the expression from another one, the “transverse mass”. The transverse mass is 
the inertia of a body that is accelerated transversely to its direction of motion. Since the velocity in the transverse 
direction is zero, it is simply equal to the (relativistic) mass. Thus, we can conclude that the inertia as defined in Ref. 
1 is a tensor quantity. 


