
Computational Mechanics
https://doi.org/10.1007/s00466-023-02316-9

ORIG INAL PAPER

Physically enhanced training for modeling rate-independent plasticity
with feedforward neural networks

Patrick Weber1 ·Werner Wagner1 · Steffen Freitag1

Received: 22 December 2022 / Accepted: 28 February 2023
© The Author(s) 2023

Abstract
In recent years, a lot of progress has been made in the field of material modeling with artificial neural networks (ANNs).
However, the following drawbacks persist to this day: ANNs need a large amount of data for the training process. This is not
realistic, if real world experiments are intended to be used as data basis. Additionally, the application of ANNmaterial models
in finite element (FE) calculations is challenging because local material instabilities can lead to divergence within the solution
algorithm. In this paper, we extend the approach of constrained neural network training from [28] to elasto-plastic material
behavior, modeled by an incrementally defined feedforward neural network. Purely stress and strain dependent equality and
inequality constraints are introduced, including material stability, stationarity, normalization, symmetry and the prevention
of energy production. In the Appendices, we provide a comprehensive framework on how to implement these constraints in
a gradient based optimization algorithm. We show, that ANN material models with training enhanced by physical constraints
leads to a broader capture of the material behavior that underlies the given training data. This is especially the case, if a limited
amount of data is available, which is important for a practical application. Furthermore, we show that these ANN models
are superior to classically trained ANNs in FE computations when it comes to convergence behavior, stability, and physical
interpretation of the results.

Keywords Neural networks · Plasticity · Physical constraints · FEM · Material modeling

1 Introduction

The correct description of material behavior is an important
part in structural analysis. For isothermal deformable solids,
phenomenological material models bridge the gap between
strains describing relative motion and the corresponding
stresses. Usually, a mathematical function is defined in
order to relate stresses or stress rates to the current strains,
their rates or other loading history dependent strain and
stress quantities. These functions contain material param-
eters, which can be fitted to experimental data. The approach

B Patrick Weber
patrick.weber@kit.edu

Werner Wagner
werner.wagner@kit.edu

Steffen Freitag
steffen.freitag@kit.edu

1 Institute for Structural Analysis, Karlsruhe Institute of
Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
https://www.ibs.kit.edu/english/13.php

of substituting these analytical material models with artificial
neural networks (ANN) is part of the research areas of solid
and computational mechanics for more than three decades.
This means, the analytical function is replaced with an ANN
and the training process fits its internal parameters, called
weights, to the given data. Since feedforward ANNs are uni-
versal function approximators [4], it is theoretically possible
to use them for any material behavior, as long as a corre-
sponding functional mapping can be defined. In 1991, the
cyclic behavior of concrete was modeled with an incremen-
tal approach in [7]. Thereupon, a lot of progress has been
made in the 1990s and early 2000s, for example, the imple-
mentation of anANNmaterial model into an FE code in [17],
the introduction of an analytical tangent in [11] and the appli-
cation of additional history variables for hysteretic behavior
in [34].

From the point of view of elasto-plastic material behavior,
these and other early works are mostly limited to the simu-
lation of loading paths similar to the ones that have been
trained, to monotonic loading without unloading or to two-
dimensional applications. This may be due to a lack of com-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-023-02316-9&domain=pdf
http://orcid.org/0000-0001-5809-4538
http://orcid.org/0000-0001-6760-7016

Computational Mechanics

putational resources, which could explain the gap of publica-
tions in the years that followed. However, in the very recent
years, material modeling with ANNs experienced a renais-
sance. The following subjective overview does not aim to be
exhaustive:A specific input vector definition containing plas-
tic dissipation is applied in [35]. Proper orthogonal decom-
position is used to transform the given data efficiently in [12].
Not a stress quantity, but the material tangent decomposition
are approximated with ANNs in [33] and compared to other
approaches. In [18], deepmaterial networkswhere developed
as an efficient surrogate model for numerical homoge-
nization, including plasticity. For path dependent material
behavior, recurrent neural networks are also gaining interest.
A comparison to feedforwardANNs can be found in [27] and
[9]. An approximation of the yield surface is done in [20].

Despite these successes, common ANN disadvantages
still remain a challenge until today. In order to achieve amore
or less generalized ANN material model for a huge range of
possible loading paths, the training process needs an enor-
mous amount of data. From our experience, this is especially
the case for recurrent neural networks. Furthermore, theANN
learns physical properties, e.g., objectivity or material stabil-
ity, only indirectly from the given data. This and the high
nonlinearity of the ANNmapping function lead to inevitable
numerical instabilities when it comes to the application in
FE simulations. This is especially the case when a limited
amount of data is available. The consideration of physical
properties in ANN material models is therefore very impor-
tant and has been done in several ways. In [1], so called hints
are introduced, to incorporate a priori known information in
the training process in order to learn an unknown function
reliably. Lagrange multipliers are investigated in [21]. The
authors in [6] enforced a symmetric material tangent by cre-
ating special network structures with dependent parameters
and setting specific weights to zero. Furthermore, the incor-
poration of physics in ANN material modeling has received
a lot of attention in the last years. For example, in [14], input
convex neural networks are used, leading to ANN material
models fulfilling the polyconvexity condition exactly. In [19],
thermodynamics-based ANNs are introduced by defining the
energy- and dissipation potentials as additional outputs and
calculating new stresses and history variable states as their
gradient.Also in [2] convex neural networks are used to fulfill
the stability condition, additionally to physically motivated
constraints for normalization,which are added to the data loss
function. The latter has also been done a bit earlier in [28],
where constraint optimization techniques were used to intro-
duce arbitrary physical information into the training process
in order to model hyperelastic materials with ANN. Based
on only 121 strain–stress data points extracted from exper-
iments, it was possible to train ANNs stable enough to be
applied in challenging three-dimensional FE simulations.

In this paper, the concept of constrained neural network
training from [28] is extended and applied to small-strain
plasticity. Equality and inequality constraints are introduced,
consideringmaterial stability, stationarity, normalization, the
prevention of energy production and symmetry. The disad-
vantages mentioned above, e.g., instabilities, are weakened
down to a point, where the ANNmaterial concept is feasible
to use. This is shown for the approximation of yield surfaces,
considering isotropic hardening behavior, andwithin FE sim-
ulations in plain stress and three-dimensional conditions. The
highlights can be summarized as follows:

• Enforcement of equality and inequality constraints dur-
ing ANN training,

• Introduction of a practical sampling strategy for the cor-
responding constraint samples,

• Definition of purely strain and stress based constraints
for small-strain plasticity,

• Studies with respect to the physical interpretation of the
ANN material model,

• Application to two- and three-dimensional FE simula-
tions,

• Overview on how to implement the constraints into gra-
dient based ANN training.

The paper is organized as follows. In Sect. 2 the incre-
mental plasticity model with feedforward neural networks
is recapped. Sect. 3 deals with the treatment of equality and
inequality constraints duringANN training and the definition
of specific physical constraints for small-strain plasticity. The
implementation of theANNmaterialmodel into anFE frame-
work, including the treatment of history variables, is shown
in Sect. 4. The method is applied to three numerical exam-
ples in Sect. 5. The Appendices A-F provide the equations
for an efficient implementation of the introduced constraints
within a gradient based training strategy.

2 ANNmodel for rate-independent plasticity

A feedforward neural network (ANN) is a function

z = fANN(x,w) (1)

with the ni - dimensional input vector x and the no- dimen-
sional output vector z. The free parameters, called weights,
are collected in the nw- dimensional vector w.

2.1 Overview of ANNmapping and training

All calculations in this paper are done with a fully connected
feedforward ANN or multilayer perceptron (MLP). Its map-
ping algorithm (1) is described in Appendix A. Due to its
differentiability, the Jacobian matrix

123

Computational Mechanics

J = dz(x)
dx

(2)

can be calculated analytically,which is shown inAppendixB.
The weights are tuned during the training process, based on
a set of P samples

T = {(x(k), t(k))}, k = 1, . . . , P, (3)

with input vectors x and target vectors t(x). The goal of the
training process is to determine a suitable set of weights ŵ,
such that the ANN provides a good approximation

z(k) = z(x(k), ŵ) ≈ t(k), ∀ k = 1, ..., P (4)

of their input and output behavior and also a good general-
ization when interpolating. By defining the error

E(w) = 1

2P

P∑

k=1

||z(k) − t(k)||2, (5)

considering deviation from the training data in amean square
sense, the determination of the weights ŵ can be defined as
the nonlinear optimization problem

wmin = arg min
w∈Rnw

E(w). (6)

There are lots of first and second order methods known for
solving (6) in the literature, see [8] for an overview. In our
studies, a Quasi Newton method with a Wolfe condition line
search strategy [30,31] is used. At the beginning of the train-
ing process, the weights are initialized as uniform random
numbers between -1 and 1. In each epoch, considering all
training samples, the weights are updated with the help of
the gradient of the error function

∇E = dE

dw
, (7)

which can be calculated via backpropagation [23,29]. This
is shown in Appendix C. The training process is terminated
after a fixed number of epochs or with an early stopping
strategy [8]. In practical applications, one is often satisfied
with a solution E(ŵ) > E(wmin), which leads to a sufficient
approximation. This depends on defined tolerances.

2.2 ANNmaterial formulation for plasticity

We limit the following sections to rate-independent small-
strain plasticity. The work-consistent Voigt notations of the
infinitesimal strain tensor ε and the Cauchy stress tensor σ

Fig. 1 One-dimensional incremental formulation for ANN: starting
from an equilibrium state and taking a finite step Δε to the next. No
explicit mapping σ(ε̄) is possible, which is shown on the right

are chosen as strain and stress measures. They are

ε =

⎡

⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
2ε12
2ε13
2ε23

⎤

⎥⎥⎥⎥⎥⎥⎦
and σ =

⎡

⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33
σ12
σ13
σ23

⎤

⎥⎥⎥⎥⎥⎥⎦
, (8)

in the three-dimensional case, with ns = 6 strain and stress
variables, respectively. They reduce to ns = 3 in a plain
stress condition and in one dimension ns is 1. To approximate
material behavior with feedforwardANNs, the input and out-
put vectors must be defined such that z(x) is a function. For
example: Cauchy elasticmaterials can be formulatedwith the
strains as the only input variables and the stresses as output
variables. However, in the case of plasticity, this is not pos-
sible, because the stress–strain behavior is path-dependent.
This issue is illustrated in Fig. 1 on the rights side.Within this
paper, the ANN input and output vectors are in the general
case defined as

x =

⎡

⎢⎢⎢⎢⎣

Δε

ε

σ

h
p

⎤

⎥⎥⎥⎥⎦
and z = Δσ . (9)

This is also illustrated in Fig. 1 for the one-dimensional
case with linear hardening. The starting point for each incre-
mental step is an equilibrium state defined by the ns strains
ε, the ns stresses σ and nh additional, strain and stress
dependent history variables h. They are required for hard-
ening behavior and can be interpreted as additional internal
variables. They have to be chosen by the user and have a sig-
nificant impact on the ANNs ability to learn specific material
behavior, e.g., several hardening phenomena. For unknown

123

Computational Mechanics

material behavior, this can be achieved by trial-and-error or
more sophisticated pruning algorithms, which select impor-
tant input variables, while deleting unnecessary ones. In the
context of this paper, we use only one additional scalar his-
tory variable, if it is required for isotropic hardening. For
example, in the following sections we use the total work
done up to the current equilibrium state as additional his-
tory variable. However, depending on the desired material
behavior, multiple variables can also be defined. It should be
noted, that there is no single perfect choice for the history
variables, which is discussed in the footnote of Sect. 2.4.
Furthermore, additional parameters p, which are not directly
related to strain or stress quantities, can be considered as part
of the input vector. These could be, for example in the case
of concrete, the water-cement value, the time between pro-
duction and testing of the specimen or the porosity of the
material. In the following, they are considered independent
of the stresses and strains. They should not be confused with
classical material parameters of analytical material models,
like Young’s modulus. To summarize, the input vector con-
tains ni = 3ns+nh+n p variables. Depending on the specific
application, several components of the input vector can be
omitted. For example: linear elastic ideal plastic solids need
only the strain increments and the stresses as input variables.

The number of output variables is the number of stress
variables no = ns . Given a strain increment Δε, the ANN
material model calculates the corresponding stress increment
Δσ . Different strain increments lead to different new equi-
librium states. With the new strains and stresses ε + Δε and
σ + Δσ , the history variables can be updated afterwards.
There are also other options to define the input and output
vectors, see for example [12,34].

The material tangent

CT (ε) = dσ (ε)

dε
= ∂Δσ

∂Δε
(10)

can be calculated with the forward pass of Appendix B by
extracting the corresponding partial derivatives of the whole
ANN Jacobian.

2.3 Incremental data sampling

The available data must be prepared and transformed,
depending on the ANN input and output vector definitions.
Within this paper, the data basis is always made of ordered
paths

{(ε0, σ 0), (ε1, σ 1), . . . , (εn, σ n), . . . , (εN , σ N)}, (11)

consisting of N strain–stress pairs each. The starting point
(ε0, σ 0) is typically (0, 0), but this is not obligatory. These
paths could be gathered by experiments, numerical homoge-

nization or, as in this paper, by analytical benchmarkmaterial
models. It is important to mention, that all further calcula-
tions are based on pure strain and stress information, which
can be obtained by real experiments. Other formulations, for
example based on plastic strains or plastic potential func-
tions, ease the treatment of plasticity with ANNs, but the
application to real data is at least questionable, because it is
often not possible to split the stress and strain data in elastic
and plastic parts.

2.3.1 Transformation to incremental vectors

In order to transform the given paths (11) to data samples
for the ANN training, the input and output vector definitions
(9) must be used. First, if history variables h are considered,
they must be calculated for each path and therein for each
strain–stress pair incrementally, depending on the specific
definition. For each path, starting typically with h0 = 0, the
updating formula can be of the following form

hn+1 = hn+1(hn, σ n+1, σ n, εn+1, ...), (12)

leading to the extended paths

{(ε0, σ 0,h0), . . . , (εn, σ n,hn), . . . , (εN , σ N ,hN)}, (13)

which now include the history variables. The additional
parameters p are assumed to be constant within each path.
The increments Δε and Δσ can be obtained by subtracting
strain–stress pairs from each other, keeping in mind the right
order. Eventually, this leads to ANN data samples with the
input and output vectors

x =

⎡

⎢⎢⎢⎢⎣

εn − εn−Δn

εn
σ n

hn
p

⎤

⎥⎥⎥⎥⎦
and z = σ n − σ n−Δn . (14)

The index delay Δn must be greater or equal to 0, in order
to maintain the temporal order. Often, Δn = 1 is used
and increments are defined only with two consecutive data
pairs (εn, σ n,hn) and (εn−1, σ n−1,hn−1). However, numer-
ical experience shows, that a set of delays, for example
Δn ∈ {0, 1, 2, 3}, leads to better training results. If a delay
Δn > 1 is used, one must take care of changes in loading
direction. This is shown in Fig. 2. Incremental samples can
only be defined safely within single loading directions. Giv-
ing a loading direction with M strain–stress pairs, for a set
of nn index delays Δn, the corresponding number of ANN
input samples is

123

Computational Mechanics

Fig. 2 Transformation to incremental samples: a change in loading
direction must be considered, if index delays Δn > 1 are used

P =
nn∑

i

(M − Δni) = nnM −
nn∑

i

Δni . (15)

For the exemplary path in Fig. 2 with two loading direc-
tions and Δn ∈ {0, 1, 2, 3}, the total number of possible
ANN training samples is 48. Double samples can be deleted
afterwards. One advantage of broadly distributed Δn is the
higherΔε-range covered, which is useful during training and
in applications of the ANN model within FE calculations.

2.4 Example: 1D plasticity with a poor data basis

The given ANN notation, sampling strategy and application
to inelastic material behavior is demonstrated based on a
one-dimensional linear elastic–plastic material with linear
isotropic hardening.

2.4.1 ANNmaterial definition and topology

In order to represent elasto-plastic behavior with isotropic
hardening, a reduced ANN mapping is defined as

x =
⎡

⎣
Δε

σ

hE

⎤

⎦ → Δσ = z. (16)

For this example, the strain state can be neglected as input
variable, it would be useful for kinematic hardening. Further
non-strain input variablesp are not considered. To capture the
effect of isotropic hardening, the additional history variable

is defined as the total work up to the current state1

hE (t) :=
t∫

0

σ ε̇ dt =
ε∫

0

σ dε. (17)

The ANN from Appendix A is used with topology [3-10-
10-1] resulting in 161 weights. In an a priori calculation,
considering multiple loading paths and a huge amount of
data, this topology was determined to be suitable for rep-
resenting plasticity with linear isotropic hardening for one
dimension. This is important to isolate the effect of a small
amount of data from a possible effect of not enough weights.

2.4.2 Training data: one cyclic strain–stress path

The training data is gathered from an analytical material
model. The material parameters are the Young’s modulus
C = 100, the initial yield stress Y0 = 0.3 and the hardening
modulus Cp = 10. Units are omitted. Starting from an equi-
librium state with current strain εn , stress σn , plastic strain ε

p
n

and hardening variable αn and a given new strain state εn+1,
the new stress state σn+1 and the internal variables ε

p
n+1 and

αn+1 can be calculated with a simple radial return algorithm,
see Algorithm 1.More background information can be found
in [24].

A purely strain controlled calculation does not need the
material tangent CT ; stress controlled unloading does. One
single training path is generated, including four loading
directions: Starting from (ε0, σ0) = (0, 0), one hysteresis
is performed by a strain controlled loading in 20 steps to
ε = 0.01, then to ε = −0.01 and back to ε = 0.01 again,
before a final stress controlled unloading to σ = 0 is applied.
This can also be seen in Fig. 3 on the left. The resulting path
contains N = 81 strain–stress pairs (εn, σn). In order to
rewrite the given strain–stress paths into ANN training sam-
ples, the history variable must be calculated incrementally,
see Sect. 2.3.1. Starting from hE

0 = 0, the discrete history
value update is

hE
n+1 = hE

n + 1

2

(
σn+1 + σn

)(
εn+1 − εn

)
, (18)

1 In general, the definition of additional history variables is arbitrary.
A more obvious choice in this case could be, for example, the maxi-
mum absolute stress value reached up to the current state. However, its
monotonicity has several downsides when it comes to ANN material
approximation. From our numerical experience, monotonically grow-
ing history variables show a tendency to be overestimated by the ANN
during loading paths, which can eventually lead to excessive stress
increases, far beyond the training range. This is especially a problem
with scarce data. However, this work-based history variable does not
show this kind of drawback and is therefore well suited for isotropic
hardening behavior.

123

Computational Mechanics

Algorithm 1 Algorithm for 1D elasto-plasticity, see [24]
Start equilibrium state: εn , σn , ε

p
n , αn

New strain state: εn+1
Elastic trial state: σ tr

n+1 = C(εn+1 − ε
p
n)

Evaluation of the trial yield function Ftr = |σ tr
n+1| − (Y0 + Cpαn)

if Ftr ≤ 0 then
γ = 0
σn+1 = σ tr

n+1
ε
p
n+1 = ε

p
n

αn+1 = αn
CT = C

else
γ = Ftr/(C + Cp)

σn+1 = σ tr
n+1(1 − Cγ /|σ tr

n+1|)
ε
p
n+1 = ε

p
n + γ sgn(σn+1)

αn+1 = αn + γ

CT = CCp/(C + Cp)

end if

when utilizing the trapezoidal rule. The extended cyclic path
{(εn, σn, hE

n)}Nn=0 consists of four loading directions to cal-
culate incremental samples from. Each loading direction
contains M = 20 + 1 samples. With an index delay set of
Δn ∈ {0, 1, 2}, this leads with Eq. (15) to P = 240 data
samples in total. Please note, that no information about the
used material model is required to evaluate the internal vari-
able given by Eq. (18), which also allows one to use it in case
of pure data-driven approaches, i.e., when stress and strain
data series from experiments are used.

2.4.3 Training process and test scenario

All 240 data samples are used for the training process,
which is stopped after 10000 epochs.Wedefine another load-
ing process with consecutive loading and unloading steps in
the tension domain as a test scenario, which is depicted in
Fig. 3 on the right. We decided to consider only the tension
range ε > 0 for the test scenario, because no initial load-
ing data for the compression range is available in the training
process. ANN results of a pure compression test would there-
fore not be reliable –with orwithout constraints. Theweights
leading to the minimum root mean squared error (RMSE)
between the ANN and the reference solution of the testing
scenario are saved, which is equivalent to an early stopping
strategy. Due to the random weights initialization, the train-
ing process is inherently stochastic. Therefore, 15 training
runs, with the same data and topology, but different weight
initializations, are done in order to get an understanding about
the reliability of the ANN approximation.

2.4.4 Results and discussion

All of the 15 trained ANNs are able to predict the given
training path reliably. Considering the test path scenario, the

best (RMSE = 0.057) and the worst (RMSE = 0.276)
ANN realizations of all 15 training runs are given in Fig. 3.
The average RMSE is 0.131. Although some realizations
achieve a very good approximation, there is a strong scatter
between the individual results.

The information from only one hysteresis is obviously
not enough to represent the material behavior under arbi-
trary loading conditions successfully and reliably, meaning
for every training run. This problem occurs especially when
training ANNs with real experimental data. In general it is
not possible to gather these data under arbitrary strain and
stress combinations and in any quantity. As can be seen in
Fig. 3 on the right, the ANNmaterial model can lack physical
properties and be unstable, even as a one-dimensional mate-
rial model. The following section introduces constraints for
regularizing the training process, leading to better approxi-
mations in regions not sampled appropriately.

3 Enforcing constraints for rate-independent
plasticity

Every material model should meet specific physical prin-
ciples, which depend on the desired material behavior. In
theory, for an infinite amount of data and weights, an ANN
should learn these characteristics implicitly from the given
data, without defining them explicitly. In practice, especially
experimental data can be scarce, limited in the strain and
stress information and noisy. Depending on the seriousness
of these issues, the ANN learns the physical properties only
approximately, not at all or fails entirely to learn a reasonable
material behavior. Enforcing constraints during the training
process can solve this issue and can lead consequently to
more stable numerical calculations. In [28], the concept of
constrained neural network training is described for arbitrary
equality constraints and is applied to hyperelastic mate-
rial modeling. The current section extends this approach to
inequality constraints and defines physical restrictions for
rate-independent plasticity. The introduced constraints are
physically motivated, only based on strain and stress infor-
mation and do not require the adherence to classical material
models.

3.1 Enforcing constraints via error term extension

In general, the optimization problem (6) can be extended by
neq equality and nie inequality constraints, leading to the
following constrained optimization problem

wC
min = arg min

w∈Rnw

E(w) s.t. hi (w) = 0, i = 1, ..., neq

g j (w) ≥ 0, j = 1, ..., nie,
(19)

123

Computational Mechanics

Fig. 3 ANN performance after pure data training of example of Sect. 2.4: from 15 training runs, all ANNs [3-10-10-1] are able to reproduce the
training path (left) but are not able to predict reliably the correct stress response to an unknown loading scenario (right)

where ’s.t.’ means ’subjected to’. These constraints restrict
the solution space for the input variables w. An introductory
example can be found in [28]. In the case of differentiable
error and constraint functions, a suitable strategy to solve
problem (19) is an appropriate extension to the objective
function, i.e., the data error function

EC (w) = E(w) + Ē(w). (20)

This leads to the unconstrained optimization problem

wC
min = arg min

w∈Rnw

EC (w), (21)

which has the same solution and is therefore equivalent to
the initially constrained optimization problem (19). Formore
information, see [13]. This unconstrainedminimizationprob-
lem can be solved by the same optimization algorithms as the
classical ANN training. Accordingly, the calculation of the
corresponding gradient

∇EC (w) = ∇E(w) + ∇ Ē(w) (22)

is needed. These gradients depend on the method defining Ē
and the specific constraints, which are described in detail in
the following sections.

3.1.1 The classical penalty method

In this paper, the error term extension Ē is always formu-
lated with the classical penalty method [22]. For the equality
constraints hi (w) from problem (19), the penalty function is
defined as

Ēeq(w) = ε

2

neq∑

i=1

h2i (w). (23)

The penalty factor ε > 0 controls the relative importance
compared to the data error E . It has to be chosen by the user.
Mathematically, the constraints are only fulfilled exactly for
ε → ∞. For example, the exact or L1-penalty method [22]
reaches exactness mathematically for a finite penalty factor.
However, this is not necessarily an advantage in the case of
ANN training. A comparison between these two methods
and a discussion about exactness is given in [28] and the
references therein. The corresponding penalty error gradient
needed for the training process is

∇ Ēeq(w) = ε

neq∑

i=1

hi (w)∇hi (w), (24)

with the constraint gradient terms ∇hi (w), which depend
on the specific constraints defined. In the case of inequal-
ity constraints of problem (19), the penalty function can be
formulated as

Ēie(w) = ε

2

nie∑

j=1

min
(
0, g j (w)

)2
. (25)

If the constraint is activewith g j < 0, i.e., needs to be penal-
ized, the summand simplifies to g2j as in the equality case of
Eq. (23). If it is inactive, the summand is zero. This motivates
an active set strategy, see for example [13], which is shown
in the following.

3.1.2 Penalty term approximation with constraint samples

In general, especially physically motivated constraint func-
tions hi and g j cannot be defined directly with respect to the
weights w. They may depend for example on ANN inputs

123

Computational Mechanics

x, outputs z or its partial derivatives. For example, in [28]
the material tangent symmetry is formulated with the equiv-
alence of partial derivative pairs. These kind of constraints
cannot be transformed into a term solely depending on the
weights and need therefore further treatment.

Considering only a single equality constraint h(w), the
corresponding penalty error term (23) is approximated by
means of a set of constraint samples

TC = {xC(k)}, k = 1, . . . , PC , (26)

which leads to

Ēeq(w) = ε

2
h2(w) ≈ ε

2PC

PC∑

k=1

h2(xC(k),w). (27)

The quality of this approximation improves with the number
of constraint samples PC and approaches a limit. This con-
vergence behavior is demonstrated and investigated in [28].2

In contrast to the data samples in definition (3), no data target
values are required, but only some synthetic samples of the
ANN inputs. Thus, in case of data-drivenANNmaterialmod-
eling, no extra experimental data beyond the original data set
is required and in case of ANN-based surrogate modeling
no extra computational (e.g. finite element) simulations are
needed to consider the physical constraints.

Now, considering a single inequality constraint g(w), its
approximation can be written as

Ēie(w) ≈ ε

2PC

PC∑

k=1

min (0, g(xC(k),w))
2
. (28)

By defining an active set

Ia := { k | g(xC(k),w) < 0 }, (29)

with all indices of samples that violate the constraint, the
error term approximation can be rewritten to

Ēie(w) ≈ ε

2PC

∑

k∈Ia
g2(xC(k),w). (30)

Thus, considering inequality constraints compared to equal-
ity constraints only requires a prior calculation of all data
points and thus a creation of the active set before the error
value and its gradient can be calculated in the same way as

2 The training success with respect to the data is not affected signifi-
cantly, if the number of constraint samples is very high. Therefore, as
a rule of thumb, the number of constraints samples can be chosen as
high as possible, and is only limited by the computational effort one is
willing to invest.

for equality constraints. It should be noted, that the denom-
inator in the prefactor contains the number of all constraint
samples PC and not only the active ones.

At this point it should be explicitly noted again that the
constraint samples xC and the data samples x are totally inde-
pendent from each other. The constraint samples have to be
defined in order to incorporate arbitrary constraints, contain-
ing ANN input, output and derivative information, into the
gradient-based training process. However, they can, but do
not have to be connected to the existing data samples.

3.2 Sampling strategy for constraint samples

In order to enforce constraints with the extended error func-
tion strategy, the constraint samples xC must be defined to
approximate the penalty terms in Eqs. (27) and (30). It is
advantageous to generate arbitrary constraint samples, which
are not part of the training set, i.e., the data samples. This is
possible, because the constraint error terms depend only on
the sample input vectors x and not on some data target values
t. In fact, if only the data samples are used, the huge poten-
tial of the proposed method is not exploited. A reasonable
sampling strategy for rate-independent plasticity is given in
the following section.

3.2.1 Convex hull as training space

The incremental training samples are calculated from given
strain–stress paths, as shown in Sect. 2.3. The resulting space
that these incremental data points occupy is not rectangular,
nor are the data points evenly distributed in it. This strongly
depends on the paths used for sampling and the ANN input
and output vector definition. Usually, the resulting input data
x is sparsely and not evenly distributed in a typically non-
convex and high-dimensional subspace ofRni . Theoretically,
the constraint samples could be generated in the whole vec-
tor space R

ni . However, from a numerical point of view, it
is reasonable to restrict this space close to the given data
samples. The ANN should not be used outside the training
space anyway. In the examples of this paper, it is always
ensured that the ANN is not used outside of the training data.
Therefore, the definition of the corresponding training space
Ω ⊂ R

ni determines the sampling space for the constraint
samples xC . A simple and naive approach would be to define
the training space as the smallest hyperrectangle contain-
ing all training samples. However, in higher dimensions, this
leads to most of the space lying outside of the physically
reasonable domain. Therefore, as a more practical approach,
we define the training spaceΩ as the convex hull of all given
training samples. The convex hull is the smallest possible
convex set, which includes the given training samples. This
is illustrated in Fig. 4 for two input variables.

123

Computational Mechanics

Fig. 4 Scatter plot of two-dimensional training samples and corre-
sponding training space Ω as their convex hull, with boundary ∂Ω .
A constraint sample xC can be sampled on a straight line between two
samples x(1) and x(2)

3.2.2 Random sampling inside the convex hull

We aim for a strategy to randomly generate PC samples
inside the training space Ω , i.e., the convex hull of all data
sample input vectors x. A straightforward method would be
to generate random points inside a bounding hyperrectangle
ofΩ and delete all points, which do not lie inside ofΩ after-
wards. It turns out, that testing whether a point lies inside a
convex set or not gets very time-consuming in higher dimen-
sions. Therefore, we propose a different strategy. We utilize
a property of convex sets: if two points lie inside the convex
set, then every new point on a straight line between them
automatically lies inside of Ω as well. This is illustrated in
Fig. 4. By randomly choosing two input vectors x(1) and x(2)

from the training sample set (3) and a uniformly distributed
random number θ between 0 and 1, a constraint sample

xC = x(1) + θ · (x(2) − x(1)). (31)

can be generated, which lies inside Ω per definition. All
constraint samples for the symmetry constraint, the stability
constraint and the energy dissipation constraint are gener-
ated with this method. These constraints are introduced in
Sect. 3.3.

3.2.3 Random sampling of zero-increment samples

Some constraints do not need to be fulfilled inside the whole
training space Ω , but on a subset defined by zero-valued
strain increments, leading to

x0 :=

⎡

⎢⎢⎢⎢⎣

Δε = 0
ε

σ

h
p

⎤

⎥⎥⎥⎥⎦
∈ Ω0, with Ω0 ⊂ Ω. (32)

Thus, the calculation of new samples with Eq. (31) needs
a slight modification. After the generation of the constraint
sample, just set Δε to 0. This additional step is needed for
the normalization constraint and the stationarity constraint.

3.3 Constraints for rate-independent plasticity

Five different constraints for rate-independent plasticity are
introduced in this section. They are physically motivated,
depend only on strains and stresses and do not need elements
of classical material formulations, like distinct loading and
unloading cases or plastic strains. The following constraints
are given in physical space and the corresponding penalty
term is defined. Please note, that not all constraints must be
considered simultaneously and it is also possible to weight
different constraints according to their importance within the
ANN material modeling process. In the Appendices C - F,
the transformation to the training space, normalization3 for
better training performance and the calculation of the corre-
sponding gradient is shown for a fully connected feedforward
ANN.

3.3.1 Incremental normalization

As normalization condition, we define that zero-valued strain
increments must lead to zero-valued stress increments

Δσ (Δε = 0) = 0. (33)

This excludes for example relaxation, which would be
expected for viscous material behavior. This constraint must
only be enforced inside the subset x0 ∈ Ω0, with Δε = 0,
see definition (32). From an implementation point of view,
this constraint can be interpreted as additional artificial data
samples with target values t0(k) ≡ 0. Therefore, the penalty
error term

Ē0 = ε

2PC

PC∑

k=1

ns∑

j=1

(
z j (x0(k),w) − t0j(k)

)2

(34)

can be defined analogously to the data error term. In
Appendix C its transformation and the calculation of the cor-

3 The error terms of the transformed data and the constraints can differ
in magnitudes, due to the derivatives. This can result in a poor training
performance. Therefore, the constraint error terms can be normalized
to improve the convergence behavior in the optimization process, as
introduced in [28].

123

Computational Mechanics

responding gradient d Ē0/dw is shown. It should be noted,
that the constraint target values t0j(k) = 0 do transform to
non-zero values, considering the transformation given in Eq.
(69). Additional normalization is not needed in this case. The
generation of an arbitrary number of constraint samples x0

is described in Sect. 3.2.3.

3.3.2 Stationarity of the normalization condition

The normalization condition of Sect. 3.3.1 must not change
with a variation of the initial equilibrium state (ε, σ ,h) or
material parameters p. This means, while changing the other
input variables, the stress increment value must remain zero.
Therefore, the partial derivatives of the ANN output with
respect to these inputs vanish

∂Δσ

∂ε

∣∣∣∣
Δε=0

= 0,
∂Δσ

∂σ

∣∣∣∣
Δε=0

= 0,

∂Δσ

∂h

∣∣∣∣
Δε=0

= 0,
∂Δσ

∂p

∣∣∣∣
Δε=0

= 0. (35)

This constraint is also defined on the subset x0 ∈ Ω0, with
Δε = 0, see definition (32). If the strain increments are the
first ns input variables, the physical penalty error, including
all possible partial derivatives of (35), writes

Ē0S = ε

2PC

PC∑

k=1

ns∑

j=1

ni∑

i=ns+1

(
z j,i (x0(k),w)

)2
. (36)

All together, there are (ni −ns) ·ns constraint terms for each
constraint sample x0(k). For example, in a plain stress state
with ns = 3 and without additional history variables nh = 0
and additional parameters n p = 0, this leads already to 18
additional terms per sample. The generation of an arbitrary
number of constraint samples x0 is described in Sect. 3.2.3.
Transformation to the training space, normalization for better
training convergence and calculation of the corresponding
gradient d Ē0S/dw is given in Appendix D.

3.3.3 Tangent symmetry: maximum plastic dissipation

In classical elasto-plasticity, see for example [24], a distinc-
tion is made between non-associated and associated flow
rules. The latter are calculated by gradients of the convex
yield surface, which acts as a plastic potential. This can also
be derived from the principle of maximum plastic dissipa-
tion, meaning that the physically correct stress state is the
one, which maximizes the plastic dissipation on the given
plastic strain rate. Within this framework, due to the poten-
tial character, this is equivalent to thematerial tangent having
major symmetries and eventually to its Voigt notation being

symmetric. In the 3D-case, this is

CT =

⎡

⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

⎤

⎥⎥⎥⎥⎥⎥⎦
= CT

T . (37)

This motivates the enforcement of the material tangent
symmetry, although no plastic strains are defined directly.
Without the definition of plastic strains, a directmathematical
connection to the principle of maximum plastic dissipation
or another physical principle remains to be done. If the strain-
and stress increments are the first ns input and output vari-
ables, the physical penalty error function is

Ē D = ε

2PC

PC∑

k=1

ns−1∑

j=1

ns∑

i= j+1

(
z j,i (xC(k),w) − zi, j (xC(k),w)

)2
.

(38)

In a plain stress condition, the penalty function contains three
derivative pairs per constraint sample xC , while 15 pairs
are needed for 3D materials. Transformation to the train-
ing space, normalization for better training convergence and
calculation of the corresponding gradient d Ē D/dw is given
in Appendix D.

3.3.4 Material stability

A material is considered stable, if dσ · dε ≥ 0 holds for all
strain and stress states and infinitesimal strain and stress dif-
ferentials. Materials which exhibit a damage behavior do not
fulfill this condition. Transferring this condition to the finite
steps of the ANN material model, the inequality constraint
reads

Δσ TΔε ≥ 0. (39)

This must be valid for all equilibrium states, material param-
eters and strain increments. Therefore it is enforced inside the
whole training spaceΩ . The corresponding physical penalty
error term reads

Ē St = ε

2PC

∑

k∈Ia

(ns∑

j=1

x j(k) · z j (xC(k),w)

)2

, (40)

if the strain and stress increments are the first ns input and
output variables, respectively. As a reminder: the error is
only defined on the active set Ia of all samples xC , which do
not fulfill the inequality (39). Therefore, in order to evaluate
this error term and the corresponding gradient, the active set

123

Computational Mechanics

Fig. 5 Illustration of the energy dissipation constraint: starting from
[ε, σ, h] and taking two consecutive steps+Δε and−Δε, the dissipated
energy ΔD must be greater or equal to zero

has to be calculated a priori. Transformation to the training
space, normalization for better training convergence and cal-
culation of the corresponding gradient d Ē St/dw is given in
Appendix E.

3.3.5 No energy production in a direct reversal

When taking two consecutive strain steps with an equal
amount but different signs, energy production is not allowed.
This is illustrated in Fig. 5 for a one-dimensional exam-
ple. Starting from an equilibrium point [ε, σ, h] going one
step +Δε forward to [ε I , σ I , hI] and directly back to
[ε, σ I I , hI I], the energy loss

ΔD = 1

2
Δε(σ + σ I) − 1

2
Δε(σ I + σ I I) (41)

must be greater or equal to zero. In the equality case, the
material would be elastic.4 The generalization to ns strain-
or stress variables is the inequality constraint

(σ I I − σ)TΔε ≤ 0, (42)

where the σ I -state cancels out. This constraint can be
enforced inside the whole training space. An active set Ia
must be calculated in advance to determine the constraint
samples, which are part of the error function. The uniqueness
of this constraint is, that two consecutive ANN evaluations
are part of the error term. The stress of the second step

σ I I = σ + Δσ I + Δσ I I (43)

depends on the ANN stress increment of the first step

Δσ I = Δσ ([Δε, ε, σ ,h,p]) (44)

and the second step

4 This constraint could also be used as equality constraint for Cauchy-
elastic material, but not for general elasticity.

Δσ I I = Δσ ([−Δε, ε + Δε, σ + Δσ I ,hI (Δσ I),p]), (45)

which again depends on the previous step Δσ I via its input
vector. Therefore, two ANN forward passes with matching
input vectors have to be calculated in order to build the
penalty error term

Ē E = ε

2PC

∑

k∈Ia

(ns∑

j=1

(
σ I I
j (x(k),w) − σ j(k)

)
Δε j(k)

)2
. (46)

Furthermore, the calculation of the gradient needs to take into
account the dependencies of the second stress increment from
the first, by applying the chain rule. This includes the stresses
and also the history variables. Due to the uniqueness of this
constraint, Appendix F derives the corresponding gradient
d Ē E/dw exclusively for this case and for the input vector
definition used within this paper.

3.4 Changes due to different input and output
definitions

In this paper, the input and output vector definitions (9) are
used. Of course, these are not the only ones possible. For
example, in [34], the input vector does not contain the strain
increment and the previous strain state, but the current and
previous strain states εn+1 and εn directly. The output vec-
tor is the current stress σ n+1 instead of the corresponding
increment. The overall information passed to the ANN is
equivalent, only provided in a different way. The constraints
of Sec. 3.3 must be transformed accordingly to match the
desired input and output vector definitions. For example:
with the input and output vector definitions from [34], the
normalization constraint (33) of Sect. 3.3.1 would transform
to

σ n+1(Δε = 0) − σ n = 0, (47)

withΔε = εn+1−εn in this context. Furthermore, the terms
for the stationarity constraint of Sect. 3.3.2 would transform
to

(
∂σ n+1

∂εn+1
+ ∂σ n+1

∂εn

)∣∣∣∣
Δε=0

= 0,
∂σ n+1

∂σ n

∣∣∣∣
Δε=0

= I,

∂σ n+1

∂hn

∣∣∣∣
Δε=0

= 0,
∂σ n+1

∂p

∣∣∣∣
Δε=0

= 0, (48)

with I being the identity matrix. In conclusion: the physical
constraints are valid for different input and output definitions,
but they must be redefined properly. The backpropagation
algorithms of Appendices C, D and E provide all necessary
information, also for different input and output vector defi-
nitions.

123

Computational Mechanics

3.5 Comparison to other approaches considering
physics for ANNmaterial modeling

As written in Sect. 1, there has been made a lot of effort
in the last years in order to incorporate physical informa-
tion into the subject of ANN material modeling. Most of
these approaches, like the TANNs of [19], or the input
convex neural networks from, e.g., [2] and [14] utilize spe-
cialized ANN architectures. For example, the latter define
the stresses not as output, but as partial derivatives of the
neuron in the last layer with respect to the inputs, i.e.,
the strains. With additional restrictions to the weights and
the activation functions, it is assured that the output of
this last neuron serves as a convex potential, leading to
the material model being stable and energy conserving, in
the case of hyperelastic material modeling. In all of these
approaches, the physical restrictions are fulfilled exactly,
not only in the training domain, but for every input vec-
tor.

This is in contrast to our approach, where we weakly
enforce the constraints with a penalty function. Addition-
ally, the penalty parameter has to be chosen. In [28], we
tested an alternative, exact penalty approach, but the results
were similar. In our opinion, the classical penalty function is
a good compromise between efficient implementation and
exactness through the choice of the penalty factor. Fur-
thermore, the constraint samples have to be generated in
order to define these penalty terms. By defining the corre-
sponding sample space as for example the convex hull of
the training data, we limit the domain in which the con-
straints are enforced. However, from our perspective, this
is not much of a drawback, because the ANNmaterial model
should not be used outside of the training domain in the first
place.

Nevertheless, it is because of these drawbacks, that, if
possible, architecture-based physical enhancement should
always be considered. However, the advantage of ourmethod
is the flexibility to define arbitrary physical constraints and
the easy implementation in combination with the classical
ANN architecture. Of course, bothmethods can be combined
as well, leading to some constraints being enforced exactly
through the specific architecture and others only enforced
weakly.

3.6 Introductory example: 1D plasticity with
constraints

In order to show the influence and benefits of the con-
straints, the introductory example with the poor data basis
of Sect. 2.4 is utilized, while the training data and ANN
definitions remain the same. Additionally to the data error
containing the P = 240 samples, the penalty error terms

from the introduced physical constraints are minimized as
well.

3.6.1 Constraints and constraint samples

The symmetry constraint of Sect. 3.3.3 cannot be applied
for a one-dimensional material model. The normalization,
stability and energy constraints are used with a penalty fac-
tor ε = 104. For the stationarity constraint ε = 102 holds.
This constraint is very restrictive and needs usually a careful
choice of the penalty factor. As investigated in [28], scarce
data needs a higher penalty factor. The limit from which
the choice of the penalty factor affects the training process
negatively is rather high. Penalty factors, which are too low,
have no negative impact, but also no positive. The number
of constraint samples for the normalization and stationarity
constraint is PC = 100. It is lower than the PC = 1 000
samples for the stability and energy dissipation constraints.
This is reasonable because the space for the latter ones is the
whole convex hull Ω , whereas the other ones are only sam-
pled on the subsetwithΔε = 0. The 1000 samples are shown
in Fig. 6, as well as the convex hull defined by the training
data, in which these constraint samples are generated. As can
be seen: the convex hull is not perfectly filled, there are con-
centrations to the center and several edges have no data at all.
This is not really a problem and could be compensated by a
more sophisticated post processing of the data, which is not
done here. The convex hull sampling has proven to be reliable
and useful in the context of constraints for rate-independent
plasticity. For the energy dissipation constraint, the derivative
of the history variable with respect to the stresses is needed:

∂hE
n+1

∂σn+1
= 1

2
Δε. (49)

3.6.2 Results and discussion

In Fig. 7, the best (0.057) and worst (0.134) ANN real-
izations with respect to the RMSE of the testing scenario
are shown. The average RMSE of the 15 ANNs is 0.090
in this case. Contrary to the results of Sect. 2.4, where the
average RMSE is 0.131, all 15 ANNs trained with physical
constraints are able to predict the unknown loading pathmore
reasonably and more reliably. Even if the curve of the worst
realization does not lie exactly on the reference solution, it is
still physical, does not diverge and covers the correct stress
space, including hardening behavior. It should be noted, that
the approximation of the training path is still as good as in
Fig. 3 for the ANN without constraints. This is important,
because the constraints affect the mapping of the data only
to a small extent, which is also shown and investigated in
[28]. The crucial point here is, that even with a limited data
basis, i.e., with only one loading path in this case, in all

123

Computational Mechanics

Fig. 6 Left: scatter plot of all data samples xT = [Δε, σ, hE] and corresponding convex hull Ω . Right: constraint samples xC for the stability and
energy dissipation constraint inside the convex hull Ω

Fig. 7 ANN performance after training with constraints of the example presented in Sect. 3.6: from 15 training runs, all ANNs [3-10-10-1] trained
on hysteresis data (left) are able to predict the stress response of an unknown test loading path (right) reasonably and more reliably

started training processes, the unknown loading paths are all
physically reasonable approximated. This indicates, that the
constraints stabilize the ANN training in a way, that it is less
sensitive to a change in the initial training conditions. This
makes the ANN as a material model more reliable.

4 Implementation into a finite element
model

A brief description on how to implement the ANN material
model into an FE framework is given in this section. For
details, the reader is referred to, e.g., [32]. We limit this sec-
tion to the description of geometrically linear and materially
nonlinear three-dimensional solids. Plain stress formulations
used in the numerical examples of Sect. 5 could be derived
similarly.

4.1 FE discretization

The principle of virtual work for a three-dimensional solid
with volume V is

δπ(u, δu) =
∫

V

δεT σ dV − δπext = 0, (50)

with the Cauchy stress tensor σ and the virtual linear strain
tensor δε in theirVoigt notations. The virtualwork of external
loads is assumed to be independent of the displacement field
u. Due to the nonlinear material model the linearization of
the virtual work

L[δπ] = δπ + Δδπ = δπ +
∫

V

δεTΔσ dV = 0 (51)

123

Computational Mechanics

is required to solve the nonlinear Eq. (50) within a Newton
iteration scheme. The linearization

Δσ = CTΔε (52)

of the material model is calculated with the material tan-
gent CT . In the context of the finite element method, the
residual δπ and its linearization Δδπ are calculated on a
subset Ve ⊂ V , the volume of the finite element e. From
the isoparametric local ansatz for the element displacement
field u = Nve follow the virtual strains δε = Bδve and the
strain increments Δε = BΔve. The vectors ve, δve and Δve
contain the physical, virtual and linearized element nodal
displacements, respectively. The matrix B contains deriva-
tives of the ansatz functions, which are given in the matrix
N. Both matrices depend on the specific finite element for-
mulation used and are not described here in more detail. The
stresses σ are part of the vector of internal forces

Fe =
∫

Ve

BT σ dV (53)

and the material tangent CT is part of the tangential stiffness
matrix

KT e =
∫

Ve

BTCTB dV . (54)

Usually, these integrals are calculated with numerical inte-
gration. Together with the element load vector Pe, the
discretized residual and its linearization are obtained as

δπe = δvTe (Fe − Pe) = δvTe Ge, (55)

Δδπe = δvTe KT eΔve, (56)

with the element residual vector Ge. After assembling the
element quantities Ge and KT e to the whole structure V ≈⋃

e Ve, and assuming arbitrary virtual nodal displacements
δv, the system of linear equations

KTΔv = −G (57)

can be solved for the nodal displacement increments Δv
within a Newton iteration scheme.

4.2 ANN plasticity algorithm

The ANN constitutive model provides the current stresses
σANN and the material tangent CANN

T at each integration
point. Their calculation is described in Sect. 2.2. They are
part of the vector of internal forces (53) and the tangential
stiffnes matrix (54). An overview on how to implement the

described ANN material model in an incremental iterative
FE algorithm is illustrated in Fig. 8. In contrast to classi-
cal elasto-plastic implementations, no radial return mapping
algorithms, see for example [32], are needed. This simplifies
the calculation of the material tangent, which do not depend
on consistent linearization of the chosen implicit integration
scheme but only on the derivative of the explicit ANN map-
ping. Stresses, strains and possibly other history variables
must be stored for each integration point. They have to be
updated at the end of the corresponding load step. The strain
increment in the input vector is defined with respect to the
last converged strain state of the corresponding integration
point. Another simplification in terms of numerical imple-
mentation is the independence of the ANN algorithm of the
material behavior, see Appendices A and B. In the context
of this paper, the ANN material model is implemented in
an extended version of the general purpose finite element
program FEAP [25].

From a computational point of view, the ANN material
model, even without the need of a local iteration algorithm,
is in most cases slower than analytical material models. Of
course, this highly depends on the ANN topology, i.e., the
number of layers and neurons. This is not a major drawback
in our view, as the objective is not to substitute for analytical
material models, but to train ANN material models directly
with data from laboratory experiments or from numerical
homogenization, i.e., without an analytical material model.

5 Numerical examples

In this section, the performanceof the constrainedANNtrain-
ing is investigated in three numerical examples. The first one
is concerned with the approximation of yield surfaces, con-
sidering isotropic hardening. The other two examples will
deal with the FE simulation of structures, including a plain
stress and a three-dimensional shell problem. It has been
observed, that the global convergence behavior is better with
a symmetrized material tangent

CANN,sym
T = 1

2

(
CANN
T + (CANN

T)T
)

. (58)

and thus a symmetric global tangent matrix KT , see [28].
Therefore the ANN material tangent is symmetrized for all
following FE simulations.

5.1 Approximation of a yield surface using a limited
data basis

In classical elasto-plasticity, the yield surface F(σ , a,b)

defines the boundary of the purely elastic stress space. It
serves as a condition, whether the current stress σ corre-

123

Computational Mechanics

Fig. 8 Implementation of the described ANN material model in an
incremental iterative FE algorithm

sponds to an elastic state (F < 0) or not (F = 0). With
hardening, the yield surface may change while yielding.
There are two well known concepts describing basic harden-
ing phenomena. Isotropic hardening is a self-similar growing
of the yield surface, depending on the scalar hardening vari-
able a. Kinematic hardening describes the rigid motion of
the yield surface in stress space, usually described by back
stresses b. Data-based ANN material models do not need
the definition of yield surfaces, hardening variables or back
stresses in order to approximate these phenomena. Neverthe-

less, in order to get a better understanding of the underlying
material behavior, the calculation of equivalent ANN yield
surfaces can be advantageous,which has been done for exam-
ple in [20]. In the following, wewill investigate the capability
of ANNmaterial models to approximate the underlying yield
surface and its evolution in terms of isotropic hardening for
a plain stress state, considering only a limited data basis,
meaning in this case only two loading paths.

5.1.1 ANNmaterial definition and topology

The reduced ANN material mapping from Sect. 2.4.1 is
extended to two dimensions

x =
⎡

⎣
Δε

σ

hE

⎤

⎦ → Δσ = z, (59)

with ni = 7 input variables and no = 3 output variables. The
incremental update of the additional scalar history variable
hE is therefore

hE
n+1 = hE

n + 1

2

(
σ n+1 + σ n

)T (
εn+1 − εn

)
. (60)

The ANN from Appendix A is used with topology [7-20-
20-20-20-3] resulting in 1483 weights. This is suitable for
representing plasticity with linear isotropic hardening in a
plain stress state, which has been checked a priori.

5.1.2 Data and constraint samples

The artificial experimental data is gathered from an analyt-
ical material model. The material parameters for the von
Mises plasticity model with linear isotropic hardening are
given in Table 1. The four strain–stress paths used to gen-
erate the training data are illustrated in Fig. 9 and consist
of a tension and a compression test to ε11 = ±0.003 and
an equibiaxial tension and an equibiaxial compression test
to ε11 = ε22 = ±0.003. For the calculation of these paths,
see for example [24]. Each path consists of a loading and an
unloading direction with M = 21 samples each, leading to
168 strain–stress pairs in total. For each of these samples,
the history state for hE must be calculated, as described in
Sect. 2.3.1, with hE

0 = 0.
Generally, these four paths are not sufficient to represent

the underlying material behavior. Assuming isotropy, we can
transform the frame of reference of the given paths. Giving
a rotation matrix

R =
[
cos θ − sin θ

sin θ cos θ

]
(61)

123

Computational Mechanics

Table 1 Material parameters of
the von Mises plasticity model
with linear isotropic hardening
for the example in Sect. 5.1

Young’s modulus Poisson’s ratio Initial yield stress Isotropic hardening modulus

C [kN/cm2] ν [−] Y0 [kN/cm2] CP [kN/cm2]
21000 0.3 23.5 2100

Fig. 9 Strain–stress paths for the approximation of the yield surfaces
in Sect. 5.1: uniaxial and equibiaxial tension and compression tests

with a rotation angle θ , the matrix forms of the strain and
stress tensors can be transformed to a rotated coordinate sys-
tem

ε∗ = RεRT and σ ∗ = RσRT . (62)

After rearranging the components again to the corresponding
vector forms, a new strain–stress path can be used

{(ε∗
0, σ

∗
0, h

E
0), . . . , (ε∗

n, σ
∗
n, h

E
n), . . . , (ε∗

N , σ ∗
N , hE

N)}. (63)

The history variable hE is frame invariant, hence hE∗
n = hE

n .
By defining 20 uniformly distributed random rotation angles
θ ∈ between 0 and 2π , the four loading paths are extended
to 84, with 3 528 material equilibrium states in total. Now,
these states can be transformed to proper training data for
the ANN, by using the definitions (59) and the procedure
of Sect. 2.3.1. This leads, with the definition of the index
delays Δn ∈ {0, 1, 2, 3, 4} in this example, eventually to
15 960 samples, see Eq. (15). Finally, as a post processing,
we delete double samples and truncate the total number of
samples randomly to P = 10 000 data samples (x, z) to train
the ANN.

All five constraints from Sect. 3.3 are used to stabilize the
training process. The penalty factor is chosen to be ε = 1
for all of them. The constraint samples are gathered with the
convex hull strategy proposed in Sect. 3.2. For the normaliza-
tion and stationarity constraints, which are only enforced on a
subspace withΔε = 0, PC = 200 samples x0 are generated,

Fig. 10 Random straight strain paths in the rectangular space formed
by the three strain components ε11, ε22 and 2ε12. All paths start from
ε = 0 and end at the cuboid boundaries of ±0.003. The initial history
value hE

0 can be greater than 0 to simulate a previous loading hisory

respectively. For the other three constraints, PC = 5 000
samples xC are sampled for each of them. For a brief discus-
sion on the training timewith the additional backpropagation
algorithms needed for the constraints can be found in [28].
The ANN is trained with or without constraints for 10000
epochs. Early stopping or L2-regularization are not consid-
ered here.

5.1.3 Calculation of an ANN yield surface

For the von Mises plasticity model, the analytical yield sur-
faces can be illustrated by ellipses in the space of the principal
stresses σ1 and σ2,

F(σ1, σ2) = σ 2
1 + σ 2

2 − σ1σ2 − Y 2 = 0, (64)

with the current yield stress Y ≥ Y0. In order to approxi-
mate these ellipses with our trained ANN material model,
we define 50 random straight loading paths in strain space,
going from the origin to the boundaries of the rectangular
bounding space, as illustrated in Fig. 10. These boundaries
are given by the training data and are for all strain vector com-
ponents ±0.003. Along each path, we want to find the stress
state, which is by our definition the beginning of yielding.
For ANN material models, purely based on strain and stress
information, a strain or stress based yield threshold must be

123

Computational Mechanics

Fig. 11 ANN yield criterion definition in one dimension: yielding
occurs if the dissipated energy in consecutive loading and unloading
steps exceeds a predefined energy threshold three times in a row. Here,
we define D0 as 20% of the work done in the first loading step

defined, in order to define yielding mathematically. Within
this example, we use the following yield criterion. It is illus-
trated in Fig. 11 for the one-dimensional case. As described
in Sect. 3.3.5, one can calculate the dissipated energy ΔD
for every loading step Δε followed by a direct unloading
step with−Δε. By defining an energy threshold D0, one can
define a yield criterion as follows: if this energy threshold is
exceeded in three consecutive loading- and unloading steps,
as depicted in Fig. 11, the yield stress state is defined as the
first stress state of this series. For the energy threshold D0,
we choose 20% of the work done in the first loading step
of the current loading path. If needed, the number of ran-
dom paths, the energy threshold and the number of required
consecutive exceedings can be chosen otherwise. Due to the
definition σ1 > σ2, the 50 stress states can be mirrored at the
σ1 = σ2-axis in order to fill the full space. Furthermore, if the
initial value of the history variable hE

0 is chosen to be greater
than zero at the beginning of a loading path, it is possible to
calculate subsequent yield surfaces and observe the influence
of the given ANN history variable on the yielding behavior.
This is shown in the next section. It should be noted, that the
history variable hE grows also in the elastic range, but van-
ishes completely in a purely elastic loading cycle. Changing
the initial value, simulates previous loading cycles outside
the elastic domain.

5.1.4 Results and discussion

We compare two different training configurations: one with
and one without the introduced constraints. As an error mea-
sure, we define the mean distance between the initial ANN
yield surface (hE

0 = 0) stresses and the analytical points of

the initial yield surface over the 50 strain paths,

σ err = 1

50

50∑

s=1

∣∣∣∣(σANN − σ analyt.)
∣∣∣∣. (65)

Due to the random initialization of the weights, the data aug-
mentation and the constraint sampling, the ANN training
is a random process. Therefore, we run 15 training pro-
cesses for each of these configurations. The averaged errors
σ err, their standard deviations and the minimum and maxi-
mum values are given in Table 2. The realizations leading
to the minimum, i.e., best σ err of the yield surfaces with
and without constraints are given in Fig. 12.5 Addition-
ally, the yield surfaces for different non-zero starting values
hE
0 ∈ [0.05, 0.1] kN/cm2 are shown.
Despite using data augmentation, the classically trained

ANN is not able to approximate the underlying yield sur-
face reliably. It should be noted, that this issue does not
change with classical L2-regularization, more data through
augmentation or with another yield surface criterion. The
given loading paths of Fig. 9 simply provide not enough
information to train an ANN to represent this behavior. Fur-
thermore, the data training error for bothANNconfigurations
behave similar and do not indicate the quality of a yield sur-
face approximation.As canbe seen in the statistics ofTable 2,
the constraints lead to anoverall lower yield surface error.Not
only the mean value, but also the range of errors decreases.
This implicates, that the introduced constraints lead to bet-
ter and more reliable ANN material models, when it comes
to strain or stress states, which have not been seen during
the training process. In addition, the ANN correctly shows
the isotropic hardening behavior. This indicates the correct
choice of the ANN history variable hE as well as a good
interpolation within the whole training space.

5.2 Aluminum sheet with a hole under cyclic loading

In this example, the elastoplastic behavior of a square alu-
minum sheet of side length 100 cm, thickness 2 cm and a
central hole with radius 10 cm is investigated. The geometry
of the system, the loading function with varying magnitude
and the FE model are shown in Fig. 13. The latter is build
on a quarter of the system by taking advantage of the double
symmetry. The FE model consists of 200 four-node isopara-
metric plain stress elements with linear shape functions for
the displacements u1 and u2. The FE discretization is refined
closer to the hole. The 80 load steps are equidistantly dis-
tributed within the pseudo time t between 0 and 8.

5 Please note, that it is not possible to compare other than the initial yield
surfaces quantitatively, because no connection can be made between
the ANN history variable hE and the history variable of the analytical
material model, which is the accumulated equivalent plastic strain.

123

Computational Mechanics

Table 2 Average, standard deviation, minimum and maximum of the yield surface error σ err over the 15 ANN training runs with and without
constraints

Configuration Av. σ err [kN/cm2] Std. σ err [kN/cm2] Min σ err [kN/cm2] Max σ err [kN/cm2]
Without constraints 6.97 3.24 2.75 14.29

With constraints 1.49 0.38 0.46 2.47

Fig. 12 Approximation of the initial
(
hE
0 = 0 kN/cm2

)
and subsequent

(
hE
0 > 0 kN/cm2

)
yield surfaces after isotropic hardening, with the ANN

material models. The best realization of the ANN trained without constraints is on the left, the best realization of the ANN trained with constraints
is on the right. σ err [kN/cm2] corresponds to the initial yield surface error

Fig. 13 Sheet with a hole under triangular loading: FE model of a quarter of the system and the loading function. The displacement u2 at node 211
and the strains ε22 and stresses σ22 at integration point 1 of element 140 are monitored

Table 3 Material parameters of
the von Mises plasticity model
with linear kinematic hardening
for the sheet with hole example
of Sect. 5.2

Young’s modulus Poisson’s ratio Initial yield stress Kinematic Hardening modulus

C [kN/cm2] ν [−] Y0 [kN/cm2] CP [kN/cm2]
7000 0.34 24 70

123

Computational Mechanics

Fig. 14 Two exemplary strain–stress paths of the sheet with a hole
example of Sect. 5.2, which are used to calculate incremental training
samples. An overview of all paths is given in Table 4

5.2.1 ANN definition, constraints, data and training

In order to capture the effect of kinematic hardening, the
strain state of the previous equilibrium state must be incor-
porated into the input vector. This leads to the mapping

x =
⎡

⎣
Δε

ε

σ

⎤

⎦ → Δσ = z, (66)

with ni = 9 input variables and no = 3 output variables. The
information about the current strain state ε is sufficient to
describe kinematic hardening, even if no additional history
variables h are considered.6 The topology is chosen as [9-25-
20-15-10-3], which is sufficient to approximate the desired
material behavior. This has been checked a priori.

The training data is gathered from a von Mises plastic-
ity model with parameters from Table 3. Altogether, 22
strain–stress paths are used to generate the incremental ANN
training data. They all are one-loop hysteresiswith stress con-
trolled unloading afterwards and are bounded by the strain
input space ε11, ε22, 2ε12 ∈ [−0.02, 0.02]. They consist only
of one or two non-zero stress components. No path with all
three stress components being simultaneously non-zero is
used. An overview of all paths is given in Table 4, two of
themare illustrated in Fig. 14. By assuming the samematerial
behavior in the tension and compression domain, one could
gather these paths by only six real world experiments. Each
path and therefore each hysteresis consists of four loading
directions to calculate the incremental samples. Here, each

6 This can easily be shown for a one-dimensional example with lin-
ear kinematic hardening, by transforming the back-stresses with b =
CT (ε − C−1).

loading direction containts M = 40 + 1 samples, equidis-
tantly defined in the strain space. Within this example, all
possible index delays are used: Δn ∈ [0, 1, ..., 40], leading
to 861 incremental samples for each direction and eventu-
ally to 75768 incremental samples {[Δε, ε, σ],Δσ } in total.
They are randomly truncated to 20000. It should be noted,
that taking more than 20000 samples does not change the
results of this example significantly. From the 20000 data
samples, 80% are used as training set and the remaining 4000
data samples are used as test set for an early stopping strat-
egy. The training process is terminated after 10000 epochs.
The weights resulting in the minimum test set error are saved
and used to calculate the following results.

We investigate two different ANN material models, one
trainedwith the introduced constraints and onewithout them.
They are compared to an FE solution with the reference
vonMisesmaterial model. The state-of-the-art (SOTA)ANN
material model ANNSOTA is trained without the introduced
constraints. In addition to an early stopping-strategy, an L2-
regularization is applied with a penalty factor of ε = 10−5.
The latter has been found to be the best choice by trial and
error. This regularization penalizes high weight values. It
is necessary to stabilize the training process but does not
introduce additional physical information. The ANN mate-
rial model ANNCONS is trained with four7 of the introduced
constraints butwithout additional regularization. The penalty
factor is chosen to be ε = 1 for all of them. The con-
straint samples are gathered with the convex hull strategy
proposed in Sect. 3.2. For the normalization constraint 2000
samples x0 are generated. For the stability, symmetry and
energy production constraints, 20000 samples xC are sam-
pled, respectively.

5.2.2 Results and discussion

The displacement u2 of node 211 over pseudo time t and the
strain–stress curve (ε22, σ22)of integration point 1 of element
140 are depicted in Fig. 15. At this integration point, the
maximum magnitudes of these strain and stress components
are reached, while the highest Mises equivalent stress

σe =
√

(σ 2
11 + σ 2

22 − σ11σ22 + 3σ 2
12) (67)

is at the edge of the hole. In Fig. 16, the ratio of the vonMises
equivalent stress σe to the initial yield stress Y0 is illustrated
at t = 7. It should be noted, that the amount of training
data, constraint data, L2-regularization and loading history
has been chosen in a way, that both approaches, meaning
also the state-of-the-art one, can calculate a full loading path.

7 The stationarity constraint is omitted here. This constraint can be
very restrictive and the penalty factor must be chosen more carefully,
see example of Sect. 3.6.

123

Computational Mechanics

Fig. 15 Sheet with a hole under triangular cyclic loading: observation of the strains ε22 and stresses σ22 at integration point 1 of element 140 (left)
and the displacement u2 at node 211 (right). Comparison of the ANNmaterial model with (CONS) and without (SOTA) constraints to the reference
von Mises solution

Fig. 16 Sheet with a hole under triangular cyclic loading: plot of the ratio of von Mises equivalent stress σe of Eq. (67) to the initial yield stress Y0
for the ANN material models at t = 7 trained with constraints (ANNCONS) and trained without constraints (ANNSOTA) They are compared to the
reference solution with the von Mises material model

This allows the investigation of the direct impact of physical
regularization compared to the other, purely mathematical
one. It is assured, that within the whole loading path, no
integration point suffers from a strain–stress state which lies
outside of the training space.

If physical constraints are applied, the overall structural
behavior of the sheet can be excellently represented with the
ANN material model, even if the response at the integration
points differ a little bit. However, even at the material point
a perfect agreement with the reference solution can not be
expected because the available data is limited to the numeri-
cal experiments given in Table 4. The structural response is
composed on the interaction of all integration points, loading
and boundary conditions and the structural geometry. There-
fore, local differences can, if the overall physical behavior is
sufficient, balance each other out on average. Additionally,
within this example, the influence of plasticity on the struc-
tural level is small, which can be seen in Fig. 16. However,
a robust plasticity model is required near to the hole to rep-
resent the yielding behavior. Here, the results of the ANN

material model with constraints are much closer to the ref-
erence solution. However, exactly the same result cannot be
expected at this point, because the ANN did not have infor-
mation about stress states with three non-zero components.
But, with the introduced constraints, it is able to general-
ize this behavior reasonably, leading to a stable numerical
calculation. On the other side, the ANN trained onlywith L2-
regularization is also able to perform a complete calculation,
but fails at representing the full structural behavior reliably.
Due to the incorrect distribution of the yielding areas, see
Fig. 16, the structural response differes significantly, even in
the first loading direction, as can be seen in Fig. 15 (right). On
the material level, the strain–stress curves differ more from
the reference solution. This is due to the L2-regularization
not being physically motivated, which leads to unreasonable
elastic and plastic responseswithin areas of the sample space,
which are not represented sufficiently by the given data.

5.3 Channel-section beam

123

Computational Mechanics

Table 4 Overview of the 22
strain–stress paths of the sheet
with hole example of Sect. 5.2.
Path 9 & 19 are illustrated in
Fig. 14

No Description non-zero stress intervalls [kN/cm2]

1/2 Tension 1/2 σ11/σ22 ∈ [−25.47, 25.51]
3/4 Compression 1/2 σ11/σ22 ∈ [−25.51, 25.47]
5 Shear 1 σ12 ∈ [−14.86, 14.87]
6 Shear 2 σ12 ∈ [−14.87, 14.86]
7 Equibiax. tension σ11 = σ22 ∈ [−25.36, 25.45]
8 Equibiax. compression σ11 = σ22 ∈ [−25.45, 25.36]
9 Tension + compression 1 σ11 ∈ [−15.08, 15.11] σ22 ∈ [−15.11, 15, 08]
10 Tension + compression 2 σ11 ∈ [−15.11, 15.08] σ22 ∈ [−15.08, 15, 11]
11/12 Tension + shear 1 σ11/σ22 ∈ [−22.37, 22.41] σ12 ∈ [−8.04, 8.05]
13/14 Tension + shear 2 σ11/σ22 ∈ [−22.37, 22.41] σ12 ∈ [−8.05, 8.04]
15/16 Compression + shear 1 σ11/σ22 ∈ [−22.41, 22.37] σ12 ∈ [−8.04, 8.05]
17/18 Compression + shear 2 σ11/σ22 ∈ [−22.41, 22.37] σ12 ∈ [−8.05, 8.04]
19 Plain strain (ε22 = 0) tension σ11 ∈ [−28.94, 29.00] σ22 ∈ [−13.93, 13.96]
20 Plain strain (ε22 = 0) compression σ11 ∈ [−29.00, 28.94] σ22 ∈ [−13.96, 13.93]
21 Plain strain (ε11 = 0) tension σ11 ∈ [−13.93, 13.96] σ22 ∈ [−28.94, 29.00]
22 Plain strain (ε11 = 0) compression σ11 ∈ [−13.96, 13.93] σ22 ∈ [−29.00, 28.94]

Table 5 Material parameters of
the von Mises plasticity model
with linear isotropic hardening
for the channel-section beam
example of Sect. 5.3

Young’s modulus Poisson’s ratio Initial yield stress Isotropic hardening modulus

C [kN/cm2] ν [−] Y0 [kN/cm2] CP [kN/cm2]
21000 0.3 23.5 210

Fig. 17 Channel-section beam: geometry, FE model and position of
load F and prescribed displacement w

In this example, a steel channel-section cantilever with a ver-
tical tip force at the free end is investigated using an ANN as
a three-dimensional material model. Elasto-plastic solutions
for shell formulations are presented for example in [5] and
[15]. However, in this paper, we use other dimensions and
material definitions. The von Mises plasticity model param-
eters, considering isotropic hardening, are given in Table 5.
The beam has a length of 2m, the web and the flanges are

4mm thick. The height of 30 cm and the width of 10 cm are
measured with respect to the corresponding middle surfaces.
The geometry of the system, the position of the load and the
FEmodel are shown in Fig. 17. The latter consists of 64 shell
elements along the length direction, 12 along the web and 4
shell elements along the flanges, i.e., 1280 shell elements in
total. The isoparametric quadrilateral shell element is based
on a Reissner-Mindlin theory and a three-field variational
formulation. It was originally published in [26]. In [15], it
was extended by independent thickness strains in order to
allow arbitrary 3D constitutive equations. The present ver-
sion [10] is additionally capable of calculating the stress state
in layered structures with different materials. Here, three
numerical layers are used with 6 gaussian integration points
in thickness direction in order to consider the elasto-plastic
behavior. For the present calculation, four EAS parameters
for the membrane strains, four for the bending strains and
two for the shear strains are used, respectively. The analysis
is done with an arc length method with a prescribed displace-
ment increment Δw = 0.2 cm at the load application point.
The maximum tip displacement of wmax = 6 cm is reached
after 30 loading steps, before the structure is unloaded again.

123

Computational Mechanics

Table 6 Overview of the 14
strain–stress paths of the beam
example of Sect. 5.3

No Description non-zero stress intervalls [kN/cm2]

1 Tension σ11 ∈ [−28.95, 32.46]
2 Compression σ11 ∈ [−32.46, 28.95]
3 Shear 1 σ12 ∈ [−15.29, 16.39]
4 Shear 2 σ12 ∈ [−16.39, 15.29]
5 Equibiax. tension σ11 = σ22 ∈ [−34.73, 41.91]
6 Equibiax. compression σ11 = σ22 ∈ [−41.91, 34.73]
7 Tension + compression 1 σ11 ∈ [−17.32, 19.75] σ22 ∈ [−19.75, 17.32]
8 Tension + compression 2 σ11 ∈ [−19.75, 17.32] σ22 ∈ [−17.32, 19.75]
9 Tension + shear 1 σ11 ∈ [−25.91, 29.50] σ12 ∈ [−8.71, 10.23]
10 Tension + shear 2 σ11 ∈ [−25.91, 29.50] σ12 ∈ [−10.23, 8.71]
11 Compression + shear 1 σ11 ∈ [−29.50, 25.91] σ12 ∈ [−8.71, 10.23]
12 Compression + shear 2 σ11 ∈ [−29.50, 25.91] σ12 ∈ [−10.23, 8.71]
13 Plain strain (ε22 = 0) tension σ11 ∈ [−34.29, 38.89] σ22 ∈ [−17.08, 19.36]
14 Plain strain (ε22 = 0) compression σ11 ∈ [−38.89, 34.29] σ22 ∈ [−19.36, 17.08]

5.3.1 ANN definition, constraints, data and training

The ANN definition of Eq. (59) is used, but with ni = 13
input variables and no = 6 output variables in the three-
dimensional case. The same history variable as in Sect. 5.1 is
used to capture the effect of isotropic hardening. The ANN
topology is chosen to be [13-30-25-20-15-6], resulting in
2126 weights. This is sufficient to approximate the desired
material behavior and has been checked a priori.

The training data is gathered from the analytical three-
dimensional von Mises plasticity model with the parameters
from Table 5. Altogether, 14 strain–stress paths are defined
as experimental basis. All paths are one-loop hysteresis with
stress controlled unloading afterwards.Only one or two stress
components are non-zero during each test. No pathwithmore
than two non-zero stress components is used. The strain
vector components are bounded by ±0.01. Each path and
therefore each hysteresis consists of four loading directions
to calculate incremental samples from. Here, each loading
direction containsM = 40+1 samples, equidistantly defined
in the strain space. An overview of all paths is given in Table
6. Similar to the previous numerical example, by assuming
the same material behavior in the tension and compression
domain, one could gather these paths by only six real world
experiments.

In order to train anANNsufficiently, as in the yield surface
example of Sect. 5.1, the datamust be enriched by rotating the
frame of reference. This is described in detail in Sect. 5.1.2.
Therefore, by defining 20 random rotations,8 the initial 14

8 In 3D space, the definition of random rotations can be done in several
ways. Here, we defined it with a random rotation angle and a random
rotation direction and usedRodrigues’ formula to define the correspond-
ing rotation matrix, similar to [28]. This is a relatively simple approach,
but sufficient in this case.

paths are extended to 294. Now, these new paths can be used
to calculate incremental samples from. By using all possible
index delays Δn ∈ [0, 1, ..., 40], 3444 incremental samples
per loading path and 1012536 incremental samples in total
can be calculated. They are truncated randomly to 20000.
From the 20000 data samples, 80% are used as training data
and the remaining 4000 samples are used as test set for an
early stopping strategy. The training process is terminated
after 10000 epochs. The weights resulting in the minimum
test set error are saved and used to calculate the following
results.

We compare the ANNSOTA material model with L2 reg-
ularization (ε = 10−5) with the ANNCONS material model.
The latter is trained with four of the introduced constraints,
without the stationarity restriction. For the normalization
constraint 1000 samples x0 are generated. For the symme-
try and energy constraints, 10000 samples xC are sampled,
respectively. For these constraints the penalty factor ε is 1.
It turns out, that for this examples the material stability is
very important. Therefore, we use 50000 samples xC for the
stability constraint with a penalty factor ε = 100 for this
constraint.

5.3.2 Results and discussion

The load-deflection curve of the displacement w at the load
application point can be seen in Fig. 18. The external load is
not located in the center of shear. Therefore, the beam twists
immediately, leading to large displacements and rotations.
As a side effect, the resulting compression stresses at the
top flange lead to local buckling, which can also be seen in
Fig. 18. From the seventh to the eighth loading step, aNewton
convergence study with respect to the residual norms is given
in Table 7.

123

Computational Mechanics

Fig. 18 Channel-section beam: load-deflection curve of the load application point (left) and the deformed configuration at maximum displacement
(right). A convergence study is done from step 7 to step 8, see Table 7

Table 7 Newton convergence study in terms of the residual norm ||G||
at load step 8, comparing the ANN trained with constraints to the one
trained without constraints

Newton step ||G|| for ANNCONS ||G|| for ANNSOTA

1 2.7358558E+00 4.3467223E+00

2 7.1441342E+01 7.6390431E+01

3 9.7346244E-01 3.1685351E+00

4 1.2218827E-01 4.2916863E-01

5 6.1137981E-02 4.4903747E-02

6 1.3957943E-04 2.3330237E-02

7 5.6976029E-07 4.8986588E-03

8 2.4455923E-03

... ...

16 7.5131456E-07

While the non-enhanced ANN material model leads to
early divergence, the ANN trained with constraints is able to
calculate thewhole loading andunloadingprocess. The struc-
tural behavior at the loading path can be approximated very
well, including the local buckling phenomenon. On the other
hand, the unloading curve differs considerably. As already
stated in the previous example, an exact representation inside
thewhole three-dimensional stress space cannot be expected,
as the available information was very limited. The reason for
the rather poor approximation of the unloading behavior can
be the fact, that the size of the elastic regime compared to the
plastic one is very small and was not sampled sufficiently in
this example. Of course, considering a lot more data would
improve this behavior. At this point, it should be noted, that
this structure, with complex three dimensional stress states
inside the shell layers can be calculated, even if only reduced
two-dimensional material information was available in the
first place. Furthermore, looking at the convergence study in

Table 7, the superior performance in terms of Newton con-
vergence rates is evident, which has already been discussed
and shown in [28] for another example.

6 Conclusion

In this paper, the concept of constrained ANN training is
extended to the application of modeling elasto-plastic mate-
rial behavior. After introducing the treatment of equality
and inequality constraints and a suitable sampling strategy
for constraint samples, specific constraints are given for
elasto-plastic material behavior. Subsequently, the concept
is applied to three numerical examples.

We have shown, that the consideration of constraints dur-
ing the ANN training leads to stable numerical material
models, which can be used in challenging FE calculations.
Even the channel-section beam example, with complicated
three-dimensional stress states inside the shell layers can
be calculated with data only containing two non-zero stress
components. The given concept is applicable on every ANN
architecture based on optimization strategies and it is not
limited to a specific material formulation. Due to the purely
strain and stress based nature of the introduced method, it
can easily be applied to real world experimental data in the
future. Furthermore, the application as a surrogate material
model for numerical homogenization is possible. Whenever
the amount of available data is limited, this approach seems to
be an excellentway to add information to the training process.
We are convinced that physically enhancing ANN training
with constraint optimization techniques has a great potential
inANNmaterial modeling, alone, or as a supplement to other
strategies enhancing ANNs with physical information.

In the context of this paper and for the sake of simplic-
ity, we applied the constrained ANN training to data from

123

Computational Mechanics

Fig. 19 MLP topology: definition of layers, weights and neurons

well known and relatively simple von Mises plasticity mod-
els with linear hardening behavior. The future objective is to
apply this concept to experimental data or data from numeri-
cal homogenization,where nomacroscopicmaterialmodel is
known a priori. For example, in [28], an ANN is trained from
limited experimental data of vulcanized rubber, with excel-
lent results. Furthermore, additional parameters as discussed
in Sect. 6 can be considered. This leads to a larger input
space and therefore to more data required in order to learn
the corresponding underlying dependencies. In this case,
the constraint optimization strategy could lead to a signif-
icant reduction of the necessary data. Other future work may
deal with treatment of large strain plasticity, viscous material
behavior or damage. Therefore, new constraints have to be
formulated, which can easily be implemented with the algo-
rithms presented in detail in the Appendices of this paper.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A MLP definitions and data forward pass

The ANN used in this paper is a fully connected multilayer
perceptron (MLP). In Fig. 19, its topology and the used ter-
minologies are shown for neurons, weights and layers. A

specific MLP topology is labeled with its neuron quantities
summarized in square brackets: [ni - n1 -... - nnh - no]. The
aim of the following appendices is to provide all forward and
backward passes in a compact vector matrix notation, which
can be used for an efficient implementation of the intro-
duced constraints. All vectors are defined as column vectors.
The input and output variables are arranged in the vectors
x = [x1, ..., xni]T and z = [z1, ..., zno]T . They are linearly
and independently transformed into the ’training space’,

x̂i = (xi − mxi)/sxi , i = 1, ..., ni , (68)

ẑ j = (z j − mzj)/sz j , j = 1, ..., no . (69)

This accelerates training convegence, see e.g. [16]. In this
papers studies, mxi and mzj are the mean values of the cor-
responding input and output variables of all given samples.
The sxi and sz j are the standard deviations, respectively. The
transformed in- and output variables are summarized in the
vectors x̂ and ẑ. The following forward passes of the Appen-
dices A and B are defined for one single sample x. The output
y of neuron m in layer L

y[L]
m = g(s[L]

m) (70)

is calculated with the weighted sum from the previous layer

s[L]
m = w

[L]
m0 · (−1) +

nL−1∑

l=1

w
[L]
ml · y[L−1]

l =
nL−1∑

l=0

w
[L]
ml · y[L−1]

l

(71)

and the activation function g(s). For the hidden layers, a
hyperbolic tangent function is used, for the output layer, the
identity function gout(s) = s is applied. The bias-neuron
output y[L]

0 ≡ −1 is constant for every layer. Therefore, the

corresponding weights w
[L]
m0 perform a shift in the activation

function. Theneuronoutputs andweighted sums are arranged
in the vectors

y[L] = [−1, y[L]
1 , y[L]

2 , . . . , y[L]
nL]T ∈ R

nL+1 and (72)

s[L] = [s[L]
1 , s[L]

2 , . . . , s[L]
nL]T ∈ R

nL (73)

of every layer L . If the bias-value is not included, a bar is
added to the symbol: ȳ[L] ∈ R

nL . With this notation in mind,
the input and output layer can be written as y[0] = [−1, x̂T]T
and ȳ[nh+1] = ẑ. For each layer, the weights are stored in a
matrix as

W[L] =

⎡

⎢⎢⎢⎢⎣

w
[L]
10 w

[L]
11 . . . w

[L]
1nL−1

w
[L]
20 w

[L]
21 . . . w

[L]
2nL−1

... w
[L]
ml

...

w
[L]
nL0

w
[L]
nL1

. . . w
[L]
nLnL−1

⎤

⎥⎥⎥⎥⎦
∈ R

nL×(nL−1+1).

(74)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Computational Mechanics

The weights are defined with the ’receiving’ neuron index as
first subscript, in front of the index of the ’giving’ neuron.
The first column contains the bias-weights. If omitted, then a
bar is added to the symbol: W̄[L] ∈ R

nL×nL−1 . The weighted
sum vector

s[L] = W[L] · y[L−1] (75)

and the neuron output vector, without bias value,

ȳ[L] = g(s[L]), (76)

can be written for each layer in vector–matrix notation. With
these definitions in mind, a complete forward calculation of
the MLP mapping x
→ z can be done with Algorithm 2.

Algorithm 2 MLP Output z(x) Forward Pass
Input transformation: x
→ x̂, see Eq. (68)
Input layer: y[0] = [−1, x̂T]T
Loop over all hidden layers
for L = 1, . . . , nh do

s[L] = W[L] · y[L−1]
ȳ[L] = g(s[L])
y[L] = [−1, ȳ[L]T]T

end for
Output layer
s[nh+1] = W[nh+1] · y[nh]
ẑ = gout(s[nh+1])

Output transformation: ẑ
→ z, see Eq. (69)

B MLP tangent forward pass

For the material tangent dσ/dε, several, but not all MLP
derivatives are needed. This Appendix provides a forward
pass to calculate the partial derivative of the MLP outputs
with resprect to a single input ∂z/∂xi for one single sample
x. It is part of thewhole Jacobian ofEq. (2). This is convenient
for the used plasticity model and for the backward pass of
Appendix D. First, considering the transformations of Eqs.
(68) and (69), the partial derivatives transform as

∂z j
∂xi

=
(
sz j
sxi

)
∂ ẑ j
∂ x̂i

=
(
sz j
sxi

)
∂ y[nh+1]

j

∂ x̂i
. (77)

Considering the derivative of an arbitrary neuron output,
applying the chain rule and the weighted sum formula of
Eq. (71), one obtains the forward update rule

y[L]
m,i = ∂ y[L]

m

∂ x̂i
= ∂ y[L]

m

∂s[L]
m

· s[L]
m,i = g′(s[L]

m)

nL−1∑

l=1

w
[L]
ml · y[L−1]

l,i . (78)

The partial derivatives of the neuron outputs and theweighted
sums are ordered for layer L and input variable x̂i in the
following vectors,

ȳ[L]
,i := [y[L]

1,i , . . . , y[L]
m,i , . . . , y

[L]
nL ,i]T ∈ R

nL , (79)

s[L]
,i := [s[L]

1,i , . . . , s[L]
m,i , . . . , s

[L]
nL ,i]T ∈ R

nL , (80)

while y[L]
,i = [0, ȳ[L]T

,i]T ∈ R
nL+1. The vector of activation

function derivatives

g′[L] := g′(s[L]) ∈ R
nL (81)

can be calculated and saved within the forward pass of
Algorithm 2. With the weight matrices, excluding the bias-
weight-column, the derivatives can be written as

ȳ[L]
,i = g′[L] ◦ s[L]

,i = g′[L] ◦ (W̄[L] · ȳ[L−1]
,i), (82)

with ◦ being the element-wise product. For the first hidden
layer, s[1],i is the i th-column of the W̄[1]-matrix. In the last

layer g′
out must be used for y[nh+1]

,i = ẑ,i . With these defini-
tions in mind, a complete forward calculation for the MLP
Jacobian part ∂z/∂xi can be done with Algorithm 3.

Algorithm 3MLP Derivative ∂z(x)/∂xi Forward Pass
Input transformation: x
→ x̂, see Eq. (68)
Input layer: s[1],i = W̄[1]

(:,i) Loop over all hidden layers
for L = 1, . . . , nh do

ȳ[L]
,i = g′[L] ◦ s[L]

,i

s[L+1]
,i = W̄[L+1] · ȳ[L]

,i
end for

Output layer: ∂ ẑ/∂ x̂i = g′[nh+1]
out ◦ s[nh+1]

,i
Output Transformation: ∂ ẑ/∂ x̂i
→ ∂z/∂xi , see Eq. (77)

This procedure is practical in combination with the back-
propagation algorithms for derivatives, see Appendix D, or if
only specific partial derivatives are needed. However, if the
whole Jacobian is wanted, the formula

d ẑ
dx̂

=
1∏

L=nh+1

[(
g′[L] · 1[L−1]T

)
◦ W̄[L]

]
(83)

can be applied, with 1[L] = [1, 1, . . . , 1]T ∈ R
nL and n0 =

ni .

123

Computational Mechanics

Fig. 20 Neuronal neighborhood for weight w[L]
ml

C MLP backward pass for data

In this section, the classical backpropagation algorithm is
described in the introduced notation, which matches the
other backpropagation algorithms in the Appendices D, E
and F. However, the basic algorithm is known for decades
[23,29]. It can be used for the training data error and the
normalization constraint error. The neuronal neighborhood
in Fig. 20 illustrates local neuronal dependencies. For easy
formula reading: the layer indices are defined as l(eft),m(id),
r (ight). Given a set of P training or constraint samples
{x(k), t(k)}, k = 1, ..., P , the error function is usually defined
in the training space,

E(w) = ε

2P

P∑

k=1

no∑

j=1

(
ẑ j (x(k),w) − t̂ j(k)

)2

= ε

P

P∑

k=1

E(k), (84)

see transformations in Eqs. (68) and (69). The penalty fac-
tor ε is usually 1 for training samples, but could vary for
the normalization constraint. If the transformed differences
between MLP and target outputs are stored in the matrix

D̂ = [(ẑ(1) − t̂(1)), . . . , (ẑ(P) − t̂(P))] ∈ R
no×P , (85)

the error can be written with help of the frobenius norm || · ||,

E(w) = ε

2P
||D̂||2. (86)

The error gradient with respect to the weights∇E = dE/dw
is part of the training algorithm. The gradient components

∇E [L]
ml = ∂E

∂w
[L]
ml

= ε

P

P∑

k=1

∂E(k)

∂s[L]
m(k)

· ∂s[L]
m(k)

∂w
[L]
ml

(87)

are sorted for each layer L in a matrix,

∇E [L] =

⎡

⎢⎢⎢⎢⎣

∇E [L]
10 ∇E [L]

11 . . . ∇E [L]
1nL−1

∇E [L]
20 ∇E [L]

21 . . . ∇E [L]
2nL−1

... ∇E [L]
ml

...

∇E [L]
nL0

∇E [L]
nL1

. . . ∇E [L]
nLnL−1

⎤

⎥⎥⎥⎥⎦
, (88)

matching the weight matrix definition (74). Traditionally, the
δ-values are defined as

δ
[L]
m(k) := ∂E(k)

∂s[L]
m(k)

. (89)

Here, they are sorted for all samples and neurons layer-wise
in a matrix as follows,

δ[L] =

⎡

⎢⎢⎢⎢⎣

δ
[L]
1(1) δ

[L]
1(2) . . . δ

[L]
1(P)

δ
[L]
2(1) δ

[L]
2(2) . . . δ

[L]
2(P)

... δ
[L]
m(k)

...

δ
[L]
nL (1) δ

[L]
nL (2) . . . δ

[L]
nL (P)

⎤

⎥⎥⎥⎥⎦
∈ R

nL×P . (90)

The neuron output vectors from definition (72) of layer L are
sorted for all samples in the matrix

Y[L] = [y[L]
(1) , . . . , y

[L]
(P)] ∈ R

(nL+1)×P . (91)

With these definitions, the gradient matrix of Eq. (88),
regarding all P samples, can be calculated with one matrix
multiplication

∇E [L] = ε

P
δ[L] · Y[L−1]T . (92)

The Y[L]-matrices can be obtained by the forward pass of
AppendixA. Simultaneously, thematrices of activation func-
tion derivatives

G′[L] = [g′[L]
(1) , . . . , g′[L]

(P)] ∈ R
nL×P , (93)

can be calculated for every layer, with G′[nh+1] = G′
out.

The δ[L]-matrices are calculated with a backpropagation
algorithm. Starting at the output layer, the δ-values can be
calculated by using Eq. (89):

δ[nh+1] = G′
out ◦ D̂. (94)

Beginning at Eq. (89) and taking advantage of the chain rule,
considering dependencies from the next layer L+1, together
with Eq. (71), the δ-updating rule becomes

δ
[L]
m(k) =

nL+1∑

r=1

∂E(k)

∂s[L+1]
r(k)

∂s[L+1]
r(k)

∂s[L]
m(k)

= g′(s[L]
m(k))

nL+1∑

r=1

δ
[L+1]
r(k) w[L+1]

rm , (95)

which can be written in matrix notation:

δ[L] = G′[L] ◦ (W̄[L+1]T · δ[L+1]). (96)

123

Computational Mechanics

Table 8 Index relationships for
plain stress symmetry constraint
in the context of arbitrary linear
combinations of MLP
derivatives as error function

d j1 i1 j2 i2

1 1 2 2 1

2 1 3 3 1

3 2 3 3 2

With these definitions in mind, the layer-wise defined gradi-
ents can be calculated with Algorithm 4.

Algorithm 4 MLP Data Gradient dE/dw Backward Pass
Forward Pass, see Algorithm 2: Y[L], G′[L]
Output layer

δ[nh+1] = G′
out ◦ D̂

∇E [nh+1] = (ε/P) · δ[nh+1] · Y[nh]T
Loop over remaining layers
for L = nh, . . . , 1 do

δ[L] = G′[L] ◦ (W̄[L+1]T · δ[L+1])
∇E [L] = (ε/P) · δ[L] · Y[L−1]T

end for

In the case of most higher order training algorithms, the
gradient ∇E is needed in vector form. After calculating the
matrices ∇E [L] for every layer they can easily be rearranged
to a vector form, as long as the ordermatches the one from the
corresponding weights vector w ∈ R

nw . The ordering of the
nw weights in the weight vector w is in our implementation
as follows: first the layers, then the ’receiving’ neurons and
finally the ’giving’ neurons:

w = [w[1]
10 , . . . , w

[1]
1ni

, w
[1]
20 , . . . , w

[2]
10 , . . . , w[nh+1]

nonnh
]T . (97)

D MLP backward pass for derivative
combinations

The constraints for tangent symmetry and stationarity add
ANN derivatives in different ways to the error function. The
following Appendix aims for an efficient implementation of
the corresponding gradient. In [28], a single gradient compo-
nent of an ANN derivative is shown, based on [3]. In general
nd linear combinations of two ANN derivatives

Ed = cd1

(
∂z j1
∂xi1

)
+ cd2

(
∂z j2
∂xi2

)
, d = 1, . . . , nd (98)

can be penalized, with the two constants cd1 and cd2 and
the derivative indices j1, i1, j2, i2 per pair d specifying the
constraint type. The calculation of derivative components is
shown in Appendix B. For example: in the case of the plain
stress symmetry constraint, the constants are cd1 ≡ 1 and
cd2 ≡ −1. The index relationships are shown in Table 8.

The error terms are defined in the non-transformed or
physical space. Considering the tangent transformation from
Eq. (77), they each transfer to

Ed = cd1
sz j1
sxi1

(
∂ ẑ j1
∂ x̂i1

)
+ cd2

sz j2
sxi2

(
∂ ẑ j2
∂ x̂i2

)
. (99)

They are for example part of the penalty error function

E(w) = ε

2P

P∑

k=1

nd∑

d=1

(
Ed(k)

αd

)2

, (100)

which is defined on arbitrary samples x(k), k = 1, . . . , P .
The normalization numbers α were introduced in [28] and
stabilize the training process with constraints. Here, they
depend on the data normalization and are defined as

αd := α j1i1 j2i2 = max

{∣∣∣∣c1
(
sz j1
sxi1

)∣∣∣∣,
∣∣∣∣c2

(
sz j2
sxi2

)∣∣∣∣

}
. (101)

The gradient value

∇E [L]
ml = ∂E

∂w
[L]
ml

= ε

P

P∑

k=1

nd∑

d=1

Ed(k)

α2
d

(
∂Ed(k)

∂w
[L]
ml

)
(102)

can be rewritten as the sum of derivative values by redefining
the indices:

∇E [L]
ml = ε

P

∑

i∈I

P∑

k=1

∑

j∈J(i)
fi j(k) · ∂

∂w
[L]
ml

(
∂ ẑ j(k)
∂ x̂i

)
. (103)

The factors fi j(k) depend on the error term Ed(k) the deriva-
tive z j,i(k) was part of, the corresponding normalization
number αd and data transformation values sz j and sxi . For
example: in the case of the plain stress symmetry constraint,
the set of input indices is therefore I = {1, 2, 3}. The sets
of output indices J(i) contain all indices of output vari-
ables, which are differentiated with respect to x̂i . In this case
J(1) = {2, 3}, J(2) = {1, 3} and J(3) = {1, 2}, see Table 8.
Also for the symmetry constraints, the derivative factors are

fi j(k) =
(
sz j
sxi

(
∂ ẑ j(k)
∂ x̂i

)
− szi

sx j

(
∂ ẑi(k)
∂ x̂ j

))
·
(

sz j
sxi · α2

j i i j

)
.

(104)

For the stationarity constrain of Sec 3.3.2, the following
parameters and index sets must be used: cd1 ≡ 1, cd2 ≡ 0,
αd = α j i = sz j/sxi , I = {ns + 1, ..., ni } and J(i) ≡ J =
{1, ..., ns}. The advantage of this rearrangement becomes
clear in the following backpropagation algorithm, which
allows to collect the output index sum into a single vari-
able. Starting from Eq. (103), using the independence of w

123

Computational Mechanics

and x to change the order of the derivatives and the chain
rule combined with the definition of the weighted sum of Eq.
(71), the gradient value can be transformed to

∇E [L]
ml = ε

P

∑

i∈I

P∑

k=1

∑

j∈J(i)
fi j(k) · ∂

∂ x̂i

(
∂ ẑ j(k)

∂s[L]
m

· y[L]
l(k)

)
.

(105)

By defining the new variables

δ
[L]
im(k) :=

∑

j∈J(i)
fi j(k)

∂ ẑ j(k)

∂s[L]
m

and (106)

γ
[L]
im(k) :=

∑

j∈J(i)
fi j(k)

∂

∂ x̂i

(
∂ ẑ j(k)

∂s[L]
m

)
(107)

and making use of the product rule, the gradient value even-
tually becomes

∇E [L]
ml = ε

P

∑

i∈I

P∑

k=1

(
δ
[L]
im(k) · y[L−1]

l,i(k) + γ
[L]
im(k) · y[L−1]

l(k)

)
. (108)

The neuron output derivatives y[L]
l,i(k) of Layer L can be sorted

for all samples k in the matrix

Y[L]
,i = [y[L]

,i(1), ..., y
[L]
,i(k), ..., y

[L]
,i(P)] ∈ R

(nL+1)×P (109)

as in Eq. (91), with the vectors of Eq. (79) and the leading
zeros. Due to the bias values, its first row contains only zeros.
By packing the δ-values for every index i in a matrix δ

[L]
i as

in Eq. (96) and the γ -values in the samemanner in the matrix
γ

[L]
i , together with the matrix of neuron outputs Y[L] from

Eq. (91), the gradient per layer L can be calculated with

∇E [L] = ε

P

∑

i∈I

(
δ
[L]
i · Y[L−1]T

,i + γ
[L]
i · Y[L−1]T)

. (110)

The neuron output matricesY[L] and its derivatives Y[L]
,i can

be obtained in the forward passes of Algorithms 2 and 3, as
well as the matrices of activation function derivatives G′[L]
and analogous G′′[L]. The δ

[L]
i - and γ

[L]
i -matrices are calcu-

lated via backpropagation. Starting with the δi -values at the
output layer: by using Eq. (106), they can be calculated with

δ
[nh+1]
i = G′

out ◦ Fi , (111)

with the matrix of derivative factors per input index i

Fi =
⎡

⎢⎣
fi1(1) . . . fi1(P)

... fi j(k)
...

fino(1) . . . fino(P)

⎤

⎥⎦ ∈ R
no×P . (112)

Beginning at Eq. (106) and taking advantage of the chain
rule, considering dependencies from the next layer L + 1,
together with Eq. (71), the δi -updating rule can be obtained
in matrix notation as

δ
[L]
i = G′[L] ◦ (W̄[L+1]T · δ

[L+1]
i), (113)

similar to Eq. (96). The initial conditions at the output layer
for the γi -values can be derived from definition (107) as

γ
[nh+1]
i = G′′

out ◦ Fi ◦ S[nh+1]
,i . (114)

The matrices of weighted sum derivatives

S[L]
,i = [s[L]

,i(1), . . . , s
[L]
,i(k), . . . , s

[L]
,i(P)] ∈ R

nL×P (115)

can also be calculatedwithin the forward pass ofAlgorithm3.
The updating rule for γi -values can be obtained in a simi-
lar way as the one for δi . Starting at Eq. (107), considering
dependencies from the next Layer L + 1, together with Eq.
(71) and the product rule, we obtain

γ
[L]
im(k) =

∑

j∈J(i)
fi j(k)

nL+1∑

r=1

[
∂

∂ x̂i

(
∂ ẑ j(k)

∂s[L+1]
r

)
g′(s[L]

m(k))w
[L+1]
rm

+ ∂ ẑ j(k)

∂s[L+1]
r

g′′(s[L]
m(k))

∂s[L]
m(k)

∂ x̂i
w[L+1]
rm

]
. (116)

By changing the order of summation and identifying the δi
and γi -values of the next layer, we obtain the updating rule

γ
[L]
im(k) = g′(s[L]

m(k))

nL+1∑

r=1

w[L+1]
rm γ

[L+1]
ir(k)

+ g′′(s[L]
m(k))

∂s[L]
m(k)

∂ x̂i

nL+1∑

r=1

w[L+1]
rm δ

[L+1]
ir(k) . (117)

In matrix form it is

γ
[L]
i = G′[L] ◦ (Ŵ[L+1]T · γ

[L+1]
i)

+ G′′[L] ◦ S[L]
,i ◦ (Ŵ[L+1]T · δ

[L+1]
i). (118)

With these definitions in mind, the layer- and input index-
wise defined gradient matrices can be calculated with Algo-
rithm 5.

E MLP backward pass for scalar product

The stability constraint of Sect. 3.3.4 and the isotropy con-
straint defined in [28] penalize a scalar product of vectors
containing network input and output variables. Exemplary,

123

Computational Mechanics

Algorithm 5 Lin. Comb. of Deriv. Gradient Backward Pass

Forward pass, see Algorithms 2 and 3: Y[L], Y[L]
,i , S[L]

,i G′[L],G′′[L], Fi

Initialize all ∇E [L] to 0
Loop over input variables and layers
for i ∈ I do

δ
[nh+1]
i = G′

out ◦ Fi

γ
[nh+1]
i = G′′

out ◦ Fi ◦ S[nh+1]
,i

∇E [nh+1] ← ∇E [nh+1] + (ε/PC) · (δ[nh+1]
i · Y[nh]T

,i

+γ
[nh+1]
i · Y[nh]T)

for L = nh, . . . , 1 do
δ
[L]
i = G′[L] ◦ (W̄[L+1]T · δ

[L+1]
i)

γ
[L]
i = G′[L] ◦ (Ŵ[L+1]T · γ

[L+1]
i)

+G′′[L] ◦ S[L]
,i ◦ (Ŵ[L+1]T · δ

[L+1]
i)

∇E [L] ← ∇E [L] + (ε/PC) · (δ[L]
i ·Y[L−1]T

,i + γ
[L]
i ·Y[L−1]T)

end for
end for

for the stability constraint defined in this paper, the error
function

E = ε

2Pα2

P∑

k=1

ϕ2
(k) (119)

with the scalar product

ϕ(k) =
no∑

j=1

x j(k) · z j(k) (120)

is suitable, when the first no input variables are defined as the
strain increments. In the case of an inequality constraint, the
sum only contains the active set members. The normalization
number for this error term can be defined as

α = max {|sz1sx1|, ..., |sz j sx j |, ..., |sznosxno |}. (121)

By defining the variables

δ
[L]
m(k) := ϕ(k) ·

no∑

j=1

x j(k) · sz j · ∂ ẑ j(k)

∂s[L]
m(k)

, (122)

the gradient values

∇E [L]
ml = ε

Pα2

P∑

k=1

δ
[L]
m(k) · y[L−1]

l(k) . (123)

can be calculated layer wise

∇E [L] =
(

ε

Pα2

)
· δ[L] · Y[L−1]T , (124)

with theneuronoutputmatrix fromEq. (91) andby sorting the
δ-values as in Eq. (90). The Y[L]-matrices can be obtained

by the forward pass of Appendix A. The δ[L]-matrices are
calculated with a backpropagation algorithm. Starting at the
output layer, the δ-values can be calculated by using Eq.
(122),

δ
[nh+1]
m(k) = ϕ(k) · xm(k) · szm · g′

out(s
[L]
m(k)). (125)

Beginning at Eq. (122) and taking advantage of the chain
rule, considering dependencies from the next layer L + 1,
together with Eq. (71), the δ-updating rule can be obtained
in matrix notation as

δ[L] = G′[L] ◦ (W̄[L+1]T · δ[L+1]), (126)

as in the other backpropagation algorithms. With these defi-
nitions in mind, the layer-wise defined gradient matrices can
be calculated with Algorithm 6.

Algorithm 6MLP backward pass for scalar products

Forward pass, see Algorithm 2: Y[L], G′[L]
Output layer

δ[nh+1], see Eq. (125)
∇E [nh+1] = (ε/Pα2) · δ[nh+1] · Y[nh]T

Loop over remaining layers
for L = nh, . . . , 1 do

δ[L] = G′[L] ◦ (W̄[L+1]T · δ[L+1])
∇E [L] = (ε/Pα2) · δ[L] · Y[L−1]T

end for

F MLP backward pass for Energy loss
constraint

The constraint of Sect. 3.3.5 contains two consecutive ANN
evaluations, which leads to a more complex and specific cal-
culation of the gradient. This Appendix exclusively deals
with the calculation of this gradient. Starting from the error
term of Eq. (46), the central objective is the partial derivative
∂σ I I

j (xC I ,w)/∂w. For the moment, the weight indices are

neglected and only one constraint sample xC is considered.
The input vector

xC I = [−Δε, ε + Δε, σ + Δσ I ,hI (Δσ I),p] (127)

depends on the intermediate ANN output Δσ I (xC ,w). The
weights are the same for both evaluations. By applying the
chain rule, considering the dependencies of the intermediate
stress and history variables from the first ANN evaluation,
the partial derivative is

∂σ I I
j (xC I ,w)

∂w
=

ns∑

o=1

(
∂Δσ I I

j

∂σo
+

(
∂Δσ I I

j

∂h

)T
∂hI

∂œo

)
∂Δσ I

o

∂w

123

Computational Mechanics

+ ∂Δσ I I
j

∂w
+ ∂Δσ I

j

∂w
. (128)

It contains the direct derivatives of both stress increments
with respect to the weight and the indirect derivative con-
sidering dependencies of the stresses and additional history
variables. The derivatives of the stress increments with
respect to the stresses and the history variables can be
obtained from the Jacobian from Appendix B, keeping in
mind the correct input vector xC I . The derivatives of the
history variables with respect to the stresses depends on
the definition of the history variables. An example is given
in Sect. 3.6. Inserting this partial derivative into the par-
tial derivative of the error function of Eq. (46), considering
only one sample at the moment and a unit penalty factor, we
obtain:

∂ Ē E

∂w
=

ns∑

j=1

(
(σ I I − σ)TΔε

)
Δε j︸ ︷︷ ︸

=: β̄ j

∂σ I I
j (xC I ,w)

∂w
. (129)

It is possible to rearrange the sum over the stress increments
from the error function of Eq. (129) and the partial derivative
of Eq. (128) in such a way that the partial derivatives of the
ANN outputs with respect to the weights can be bracket out,

∂ Ē E

∂w
=

ns∑

j=1

β̄ j

(
Λ j · ∂Δσ I

j

∂w
+ ∂Δσ I I

j

∂w

)
, (130)

with the parts from the chain rule9

Λ j := 1 +
ns∑

o=1

Δεo

Δε j

(
∂Δσ I I

o

∂σ j
+

(
∂Δσ I I

o

∂h

)T
∂hI

∂σ j

)
. (131)

In summary, by defining β I I
j := β̄ j sz j and β I

j := β̄ j sz jΛ j ,
the error term gradient for this constraint in the transformed
space is

∂ Ē E

∂w
[L]
ml

= ε

PC

∑

k∈Ia

ns∑

j=1

[
β I
j(k)

∂ ẑ j (xC)

∂w
[L]
ml

+ β I I
j(k)

∂ ẑ j (xC I)

∂w
[L]
ml

]
,

(132)

considering all active samples. From now on, the deriva-
tion of the backpropagation algorithm is straightforward. By

9 The denominator of the strain increment fraction can be zero. This
can be handled numerically by assigning a small fraction to all zero
valued strain increments. On the other hand, the denominator strain
increment in Λ j cancels with the same increment in β̄ j , which can
motivate another implementation.

defining the two matrices

BI/I I =

⎡

⎢⎢⎣

β
I/I I
1(1) . . . β

I/I I
1(PC)

... β
I/I I
j(k)

...

β
I/I I
ns (1)

. . . β
I/I I
ns (PC)

⎤

⎥⎥⎦ and ∈ R
ns×PC

, (133)

the corresponding delta-values at the output layer can be cal-
culated with

δ I/I I [nh+1] = BI/I I ◦ (
GI/I I

out

)′
. (134)

The matrices of weighted sum derivatives are defined anal-
ogously to Eq. (93) and depend on the input vectors used.
The delta-values can be backpropagated like the ones of the
previous sections,

δ I/I I [L] = (GI/I I [L])′ ◦ (W̄[L+1]T · δ I/I I [L+1]) (135)

and can be used to calculate the gradient matrices per layer

∇ Ē E[L] =
(

ε

PC

)[
δ I [L] · YI [L−1]T + δ I I [L] · YI I [L−1]T

]
.

(136)

The neuron outputsYI [L−1]T are from the forward pass with
xC and the neuron outputs YI I [L−1]T are from the forward
pass with xIC . With these definitions in mind, the layer-wise
defined gradientmatrices can be calculatedwithAlgorithm7.

Algorithm 7MLP backward pass for Cons. from Sect. 3.3.5

Forward pass 1 with all xC , see Algorithm 2: YI [L], (GI [L])′
Update history variables hI = hI (h,Δσ I , ...)

Forward pass 2 with all xIC , see Algorithm 2:YI I [L], (GI I [L])′,BI ,BI I

Output layer
δ I [nh+1] = BI ◦ (GI

out)
′

δ I I [nh+1] = BI I ◦ (GI I
out)

′
∇ Ē E[nh+1] = (ε/PC)

[
δ I [nh+1] · YI [nh]T + δ I I [nh+1] · YI I [nh]T]

Loop over remaining layers
for L = nh, . . . , 1 do

δ I [L] = (GI [L])′ ◦ (W̄[L+1]T · δ I [L+1])
δ I I [L] = (GI I [L])′ ◦ (W̄[L+1]T · δ I I [L+1])
∇ Ē E[L] = (ε/PC)

[
δ I [L] · YI [L−1]T + δ I I [L] · YI I [L−1]T]

end for

References

1. Abu-Mostafa YS (1990) Learning from hints in neural net-
works. J Complex 6(2):192–198. https://doi.org/10.1016/0885-
064x(90)90006-y

2. As’ad F, Avery P, Farhat C (2022) A mechanics-informed artificial
neural network approach in data-driven constitutive modeling. Int
J Numer Meth Eng 123(12):2738–2759. https://doi.org/10.1002/
nme.6957

123

https://doi.org/10.1016/0885-064x(90)90006-y
https://doi.org/10.1016/0885-064x(90)90006-y
https://doi.org/10.1002/nme.6957
https://doi.org/10.1002/nme.6957

Computational Mechanics

3. BishopC (1993) Curvature-driven smoothing: a learning algorithm
for feedforward networks. IEEE Trans Neural Netw 4(5):882–884

4. CybenkoG (1989)Approximation by superpositions of a sigmoidal
function. Math Control Signals Syst 2(4):303–314

5. Eberlein R, Wriggers P (1999) Finite element concepts for
finite elastoplastic strains and isotropic stress response in
shells: theoretical and computational analysis. Comput Meth-
ods Appl Mech Eng 171(3–4):243–279. https://doi.org/10.1016/
s0045-7825(98)00212-6

6. Freitag S,Muhanna RL,GrafW (2012) A particle swarm optimiza-
tion approach for training artificial neural networks with uncertain
data. In: Proceedings of the 5th international conference on reliable
engineering computing (REC 2012), Brno, Czech Republic, Lit-
era, pp 151–170. https://rec2012.fce.vutbr.cz/documents/papers/
freitag.pdf

7. Ghaboussi J, Garrett JH,WuX (1991) Knowledge-based modeling
ofmaterial behaviorwith neural networks. JEngMech117(1):132–
153. https://doi.org/10.1061/(asce)0733-9399(1991)117:1(132)

8. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT
Press

9. Gorji MB, Mozaffar M, Heidenreich JN, Cao J, Mohr D (2020)
On the potential of recurrent neural networks for modeling path
dependent plasticity. J Mech Phys Solids 143:103972. https://doi.
org/10.1016/j.jmps.2020.103972

10. Gruttmann F, Wagner W (2020) An advanced shell model for
the analysis of geometrical and material nonlinear shells. Comput
Mech 66(6):1353–1376

11. Hashash YMA, Jung S, Ghaboussi J (2004) Numerical implemen-
tation of a neural network based material model in finite element
analysis. Int J Numer Meth Eng 59(7):989–1005. https://doi.org/
10.1002/nme.905

12. Huang D, Fuhg JN, Weißenfels C, Wriggers P (2020) A machine
learning based plasticity model using proper orthogonal decompo-
sition. Comput Methods Appl Mech Eng 365:113008. https://doi.
org/10.1016/j.cma.2020.113008

13. Jorge Nocedal SW (2006) Numerical optimization. Springer-
Verlag GmbH

14. Klein DK, Fernández M, Martin RJ, Neff P, Weeger O (2022)
Polyconvex anisotropic hyperelasticity with neural networks. J
Mech Phys Solids 159:104703. https://doi.org/10.1016/j.jmps.
2021.104703

15. Klinkel S, Gruttmann F, Wagner W (2008) A mixed shell formu-
lation accounting for thickness strains and finite strain 3d material
models. Int J Numer Meth Eng 74(6):945–970

16. LeCun YA, Bottou L, Orr GB, Müller KR (2012) Efficient Back-
Prop. Springer, Berlin, Heidelberg, pp 9–48

17. Lefik M, Schrefler B (2003) Artificial neural network as an incre-
mental non-linear constitutive model for a finite element code.
Comput Methods Appl Mech Eng 192(28–30):3265–3283. https://
doi.org/10.1016/s0045-7825(03)00350-5

18. Liu Z, Wu C, Koishi M (2019) A deep material network for
multiscale topology learning and accelerated nonlinear modeling
of heterogeneous materials. Comput Methods Appl Mech Eng
345:1138–1168. https://doi.org/10.1016/j.cma.2018.09.020

19. Masi F, Stefanou I, Vannucci P, Maffi-Berthier V (2021)
Thermodynamics-based artificial neural networks for constitutive
modeling. J Mech Phys Solids 147:104277. https://doi.org/10.
1016/j.jmps.2020.104277

20. Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa
MA (2019) Deep learning predicts path-dependent plasticity. Proc
Natl Acad Sci 116(52):26414–26420. https://doi.org/10.1073/
pnas.1911815116

21. Márquez-Neila P, Salzmann M, Fua P (2017) Imposing hard con-
straints on deep networks: Promises and limitations. https://doi.
org/10.48550/ARXIV.1706.02025

22. MurrayW,WrightMH,Gill PE (1982) Practical optimization.Aca-
demic Press Inc., London

23. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal
representations by error propagation. Bradford Books, Cambridge

24. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer,
New York. https://doi.org/10.1007/b98904

25. Taylor RL (2022) FEAP - finite element analysis program. http://
projects.ce.berkeley.edu/feap/

26. Wagner W, Gruttmann F (2005) A robust non-linear mixed hybrid
quadrilateral shell element. Int J Numer Meth Eng 64(5):635–666

27. Wang K, Sun W (2018) A multiscale multi-permeability poro-
plasticity model linked by recursive homogenizations and deep
learning. Comput Methods Appl Mech Eng 334:337–380. https://
doi.org/10.1016/j.cma.2018.01.036

28. Weber P, Geiger J, Wagner W (2021) Constrained neural network
training and its application to hyperelasticmaterialmodeling.Com-
put Mech 68(5):1179–1204. https://doi.org/10.1007/s00466-021-
02064-8

29. Werbos PJ (1982) Applications of advances in nonlinear sensitivity
analysis. In: system Modeling and Optimization. Springer-Verlag,
London, pp 762–770

30. Wolfe P (1969) Convergence conditions for ascent methods. SIAM
Rev 11(2):226–235

31. Wolfe P (1971) Convergence conditions for ascent methods. II:
some corrections. SIAM Review, USA, pp 185–188

32. Wriggers P (2010) Nonlinear finite element methods. Springer,
Berlin, Heidelberg

33. Xu K, Huang DZ, Darve E (2020) Learning constitutive relations
using symmetric positive definite neural networks. J Comput Phys.
https://doi.org/10.48550/ARXIV.2004.00265

34. Yun GJ, Ghaboussi J, Elnashai AS (2008) A new neural network-
basedmodel for hysteretic behavior of materials. Int J NumerMeth
Eng 73(4):447–469. https://doi.org/10.1002/nme.2082

35. Zhang A, Mohr D (2020) Using neural networks to represent von
mises plasticity with isotropic hardening. Int J Plast 132:102732.
https://doi.org/10.1016/j.ijplas.2020.102732

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/s0045-7825(98)00212-6
https://doi.org/10.1016/s0045-7825(98)00212-6
https://rec2012.fce.vutbr.cz/documents/papers/freitag.pdf
https://rec2012.fce.vutbr.cz/documents/papers/freitag.pdf
https://doi.org/10.1061/(asce)0733-9399(1991)117:1(132)
https://doi.org/10.1016/j.jmps.2020.103972
https://doi.org/10.1016/j.jmps.2020.103972
https://doi.org/10.1002/nme.905
https://doi.org/10.1002/nme.905
https://doi.org/10.1016/j.cma.2020.113008
https://doi.org/10.1016/j.cma.2020.113008
https://doi.org/10.1016/j.jmps.2021.104703
https://doi.org/10.1016/j.jmps.2021.104703
https://doi.org/10.1016/s0045-7825(03)00350-5
https://doi.org/10.1016/s0045-7825(03)00350-5
https://doi.org/10.1016/j.cma.2018.09.020
https://doi.org/10.1016/j.jmps.2020.104277
https://doi.org/10.1016/j.jmps.2020.104277
https://doi.org/10.1073/pnas.1911815116
https://doi.org/10.1073/pnas.1911815116
https://doi.org/10.48550/ARXIV.1706.02025
https://doi.org/10.48550/ARXIV.1706.02025
https://doi.org/10.1007/b98904
http://projects.ce.berkeley.edu/feap/
http://projects.ce.berkeley.edu/feap/
https://doi.org/10.1016/j.cma.2018.01.036
https://doi.org/10.1016/j.cma.2018.01.036
https://doi.org/10.1007/s00466-021-02064-8
https://doi.org/10.1007/s00466-021-02064-8
https://doi.org/10.48550/ARXIV.2004.00265
https://doi.org/10.1002/nme.2082
https://doi.org/10.1016/j.ijplas.2020.102732

	Physically enhanced training for modeling rate-independent plasticity with feedforward neural networks
	Abstract
	1 Introduction
	2 ANN model for rate-independent plasticity
	2.1 Overview of ANN mapping and training
	2.2 ANN material formulation for plasticity
	2.3 Incremental data sampling
	2.3.1 Transformation to incremental vectors

	2.4 Example: 1D plasticity with a poor data basis
	2.4.1 ANN material definition and topology
	2.4.2 Training data: one cyclic strain–stress path
	2.4.3 Training process and test scenario
	2.4.4 Results and discussion

	3 Enforcing constraints for rate-independent plasticity
	3.1 Enforcing constraints via error term extension
	3.1.1 The classical penalty method
	3.1.2 Penalty term approximation with constraint samples

	3.2 Sampling strategy for constraint samples
	3.2.1 Convex hull as training space
	3.2.2 Random sampling inside the convex hull
	3.2.3 Random sampling of zero-increment samples

	3.3 Constraints for rate-independent plasticity
	3.3.1 Incremental normalization
	3.3.2 Stationarity of the normalization condition
	3.3.3 Tangent symmetry: maximum plastic dissipation
	3.3.4 Material stability
	3.3.5 No energy production in a direct reversal

	3.4 Changes due to different input and output definitions
	3.5 Comparison to other approaches considering physics for ANN material modeling
	3.6 Introductory example: 1D plasticity with constraints
	3.6.1 Constraints and constraint samples
	3.6.2 Results and discussion

	4 Implementation into a finite element model
	4.1 FE discretization
	4.2 ANN plasticity algorithm

	5 Numerical examples
	5.1 Approximation of a yield surface using a limited data basis
	5.1.1 ANN material definition and topology
	5.1.2 Data and constraint samples
	5.1.3 Calculation of an ANN yield surface
	5.1.4 Results and discussion

	5.2 Aluminum sheet with a hole under cyclic loading
	5.2.1 ANN definition, constraints, data and training
	5.2.2 Results and discussion

	5.3 Channel-section beam
	5.3.1 ANN definition, constraints, data and training
	5.3.2 Results and discussion

	6 Conclusion
	A MLP definitions and data forward pass
	B MLP tangent forward pass
	C MLP backward pass for data
	D MLP backward pass for derivative combinations
	E MLP backward pass for scalar product
	F MLP backward pass for Energy loss constraint
	References

