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A physical unclonable function (PUF) is a foundation of anti-counterfeiting
processes due to its inherent uniqueness. However, the self-limitation of

conventional graphical/spectral PUFs in materials often makes it difficult to
have both high code flexibility and high environmental stability in practice. In
this study, we propose a universal, fractal-guided film annealing strategy to
realize the random Au network-based PUFs that can be designed on demand in
complexity, enabling the tags’ intrinsic uniqueness and stability. A dynamic
deep learning-based authentication system with an expandable database is
built to identify and trace the PUFs, achieving an efficient and reliable
authentication with 0% “false positives”. Based on the roughening-enabled
plasmonic network platform, Raman-based chemical encoding is con-
ceptionally demonstrated, showing the potential for improvements in secur-
ity. The configurable tags in mass production can serve as competitive PUF
carriers for high-level anti-counterfeiting and data encryption.

Anti-fake labels as the authentication tools of product authenticity face
an increasing challenge in security, and researchers are developing
new secure anti-counterfeiting methods, continuously pushing the
anti-fake science and technology ahead. However, forgery and coun-
terfeiting still result in great losses worldwide, damaging the normal
order of the market or even human safety* For instance, counterfeit
electronics involving network security, counterfeit pharmaceuticals,
and so forth can cause an estimated trillion-dollar in losses each year'.
One major source of these losses is that current labels are often subject
to being counterfeited due to their deterministic fabrication mode**.
Thus, developing unclonable security tags based on a new principle
would be fundamentally important against the counterfeiting of labels.

Physical unclonable functions (PUFs; i.e., physical one-way
functions)* have become promising identifiers for high-fidelity
labels and digital storage. A PUF refers to a physical object with
inherent, unique, and fingerprint-like features that are generated via a
stochastic and non-deterministic process'. The intrinsic randomness
ensures sufficient complexity and a high encoding capacity of PUFs,
making them nearly impossible to be duplicated. To date, various

types of PUFs have been developed, including (i) directly visualized
graphical PUFs composed of randomly distributed micro/nanos-
tructures (e.g., wrinkling”*°/buckling"/folding"*based artificial finger-
prints, randomly formed evaporative patterns”™, and randomly
arranged micro/nanoparticles'®>°); (i) spectral PUFs with the aid of an
analytical tool for readout (e.g., random stimulated luminescence??,
surface-enhanced Raman scattering (SERS) patterns™?*, irregular
texture”/matrix>* linear scattering-based speckle patterns, and
chaotic nonlinear silicon photonic devices”*); and (iii) complex
electronic PUFs with diverse disorders and inherent imperfections
(e.g., graphene” or randomly distributed carbon nanotube-based™
field-effect transistors, oxide or halide-based memristors with intrinsic
entropy sources®***). Among these PUFs, graphically encoded tags
primarily focused on surface information are more convenient and
robust in identification due to direct imaging by simple optical
microscopy. Particularly, the levels of the PUF tags in complexity can
be actively regulated only by recording different pattern areas or
changing the physical feature size”*". For example, a random wrinkle
system has flexible controllability in code complexity by modulating
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wrinkle instability’”*, and thus, it has a configurable encoding capa-

city that can be sufficiently adaptable to an on-demand encryption
strategy. However, the surface textures of these flexible material-based
tags often have relatively low physical robustness in practice, such as
elastomeric polymer physical aging at high temperature, humidity/
water, or oxygen®**. Therefore, ideal graphical PUF carriers compatible
with both high environmental stability and flexibility remain to be
developed.

Random fractal structures widely exist in various irregular
morphologies in nature, owning highly random topography and sta-
tistical self-similarity between the local and whole geometries**’. The
fractal theory is also used to elucidate the complex surface morphol-
ogy evolution of diverse thin film systems, such as fractal-guided
percolation networks/clusters of films®***. A Percolation network/
cluster refers to a system in global connectivity through a continuous
“chain” of locally connected objects, such as self-assembled Au
nanoframeworks®, Au clusters through film deposition”, and film
annealed-induced Au islands®’. Thermal annealing of the gold film can
induce the sequential surface morphology evolution from film rup-
turing to spontaneously shrinking into randomly ramified structures
below the percolation threshold*®*. The ramified percolation struc-
tures possess typical fractal traits such as intrinsic randomness and
unpredictability, implying their qualifications as inimitable PUF tags.
More importantly, the stable physicochemical properties of gold
ensure the durability of the labels under extreme conditions.

On the other hand, tags with multiple responses can have a higher
security level">"72°, Combining chemistry with the PUFs is an ideal
strategy to achieve this goal by mixing various types of taggants (e.g.,
stimuli-responsive molecules) with multiple detectable chemical
characteristics****°. Plasmonic nanostructures can be used as effec-
tive carriers for further increasing the security level since they have
stable localized surface plasmon resonance (LSPR), which can generate
an enormous enhancement of the electromagnetic field under light
excitation and amplify the chemical signals*, such as randomly
arranged Raman-probe-embedded plasmonic nanoparticles”*. Yet
the unpredictable signal extraction sites and particle aggregations
pose a challenge to efficient authentication****. Plasmonic nano-
particles can also be incorporated into the graphically encoded hosts,
such as randomly folded" or de-wetted polymer systems?’, endowing
the polymer hosts with orthogonal chemical spectral information.
However, nanoparticles usually have indirect chemical-assisted bond-
ing with the object, causing low stability under external conditions*’.
Nonuniform particle distribution on the object surface can also lead to
a loss of information®, which affects the robustness of the readout.
Therefore, an inherent and homogeneous plasmonic platform inde-
pendent of chemically synthesized nanoparticles is desirable.

Also, constructing an efficient and reliable authentication system
for identifying the security key is essential in anti-counterfeiting.
Automated image identification is appropriate to decode the PUF keys.
Conventional image processing algorithms are based on pattern
recognition and comparison analysis'. Apart from the relatively
tedious matching time, their performance also strongly depends on
the image orientation and quality****. Deep learning (DL)"*'¢, as an
artificial intelligence (Al) technique, has been popularly used to vali-
date the security key through trained neural networks with high
authentication efficiency and accuracy as well as high readout tolera-
tion under different conditions. The PUF system requires a record of all
the PUF keys. However, it is time-consuming to train the deep learning
model with a large PUF key database. Therefore, continuous
improvement is required in the back-end exploitation of the existing
deep learning-based PUF authentication systems.

In this study, we develop an efficient anti-counterfeiting system
based on the random fractal-network PUFs and an Al authentication
used for authenticity identification. Combined with laser lithography,
multiple network tags can be simultaneously integrated on the

substrate through one-step annealing of the Au film. These Au net-
works can be flexibly configured in terms of wavelengths and ampli-
tudes by changing the film thickness, which allows us to design the
structural complexity on demand. An effective encoding capacity of
10**8 is realized, and the capacity value can be raised by recording a
larger pattern area and denser network feature. The surface of the Au
network is roughened at the nanoscale and thus can generate
enhanced electromagnetic “hotspots” under light excitation. The
proof-of-concept of SERS-based chemical encoding shows the feasi-
bility of the Au-based PUF in multiple-level encryption. Finally, a con-
venient (smartphone readout), fast (authentication in 6.36s), and
reliable (zero “false positives” case) deep learning-based authentica-
tion system is presented to identify and trace the PUF tags. We also
propose a dynamic key database strategy to simplify the tedious
training procedure of the deep learning model, which has a lot of
potentials to manage a larger PUF key database. Thus, the compre-
hensive PUF labels that comply with the demands of inherent
uniqueness, code reconfigurability, multiple-level security, mass pro-
duction, and environmental stability (e.g., tolerable in extreme tem-
perature, water/humidity, and abrasion), along with efficient and
reliable Al authentication system, will pave a broad avenue toward the
applications in next-generation anti-counterfeiting.

Results

Random fractal-enabled PUFs

The generation of the random fractal-guided Au network structure is
described schematically in Fig. 1a. Using laser direct writing (LDW) and
magnetron sputtering, we can realize the Au film into arbitrary shapes
with a defined thickness on a Si/SiO, substrate and then follow a
thermal annealing process to obtain the randomly arranged Au net-
works as the PUFs (Fig. 1a). Representative bright- and dark-field
optical images show the unique fractal-like network tag (Fig. 1b, c).
Importantly, as an effective measure of protecting the physical object
from damage in practice, the PUF tag can be covered with a trans-
parent thin film according to the usage environment (Fig. 1a), such as
SiO,, Al,03, and poly(methyl methacrylate) (PMMA).

The fractal-guided surface depercolation process of the Au film as
a function of annealing time is shown in Supplementary Fig. 1. Ran-
domly distributed voids are first formed due to the strain instabilities
as a result of the thermal expansion mismatch between the Au film and
the underlying support***’. Then, the void edges in different orienta-
tions stochastically retract toward an equilibrium state below the
percolation threshold via edge curvature-induced tension gradients
until they stop at the bifurcations successively****. Irregular and
complex mesh-like structures are then formed (Supplementary Fig. 2),
which involve multiple randomly ramified percolation clusters with
different correlation lengths and typical fractal characteristics®*.
Some nearly spheroidized Au particles also exist due to the local het-
erogeneities of the film. X-ray diffraction patterns (Supplementary
Fig. 3) reveal the evolution of crystallinity from the polycrystalline
structure of the Au film to the approximately single-crystalline struc-
ture of the Au network, which finally tends to become spherical Au
particles®,

The branching fractal model is exhibited in Fig. 1d. A single PUF
tag is composed of distinct fractal objects, and several iterated bifur-
cations make up one fractal. Upon each iteration, two new branches
are added to the terminal branch. The extension directions and lengths
of the branches are randomly varied but exhibit statistical feature
similarity in different bifurcations. For example, in Fig. 1d, the bifur-
cations of part 1 and the derived part 2 have a similar quasi “Y-shape”
feature. Such a fractal-guided depercolation process ensures the
impossibility of duplicating the random network structures, making
these “fingerprints” immune to attacks. Even though, film thickness-
dependent annealing temperature and corresponding annealing time
can ensure the high reliability (a measure of reproducibility) of the
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Photoresist coating

Fig. 1| Fabrication and characterization of random fractal-guided PUFs. a Flow
chart of the PUF tag fabrication. The Si/SiO, substrate was first spin-coated with one
layer of photoresist (step 1), followed by laser-writing the circular films as basic
units (step 2). After the development of the patterning area, one layer of Au film was
then deposited on the substrate through magnetron sputtering (step 3), followed
by the photoresist lift-off procedure (step 4). Next, the Au film in the circular area
was annealed to obtain the random fractal-like Au networks (step 5). Finally, one
layer of the optically transparent thin film was spin-coated on the tag as a protective
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layer (step 6). b Optical micrograph of the annealing-induced random Au network
tag as the PUF. ¢ Dark-field micrograph of b, which shows a stronger visual contrast
of the structure profile. d Cayley tree-like fractal structure analysis. As the degree of
redness deepens, the fractal order increases gradually. The distinct fractals are
extracted from the binarized network pattern. The corresponding mathematical
models from orders O to 3 are also presented as a comparison. Scale bars:

20 pum (b, ).

fabricated PUF tags with the same production parameters (Supple-
mentary Fig. 4).

Configurable encoding design

Similar to the elastic wrinkle system”®, these random rigid network
structures can also be flexibly configurable in terms of amplitude and
wavelength by changing the film thickness and corresponding
annealing parameters. Thermal fluctuations induced by the interface
interactions between the film and the substrate can account for the
spontaneous rupture of the original Au film*”*°. The induced pertur-
bative oscillation across the surface that causes the deformation of the
film can be quantitatively represented by the critical wavelength Ac,

3
Ac=h 4’%’ M
where hy is the thickness of the film, ¢ is the temperature-dependent
surface tension of the film, and A is the Hamaker constant of the film on
the specific support. The film fragment with a span smaller than the
critical wavelength tends to be stable. According to this physical
model, as the thickness increases, the critical wavelength lengthens
(i.e., the ruptured Au-film fragment can have a larger size to maintain a
state of thermal stability)*’. Therefore, the sparser network with a
wider wavelength can be contracted from the thicker Au film, which is
consistent with the experimental results shown in Fig. 2a-d. A typical
3D topographical image of the Au network pattern (Fig. 2e) and the
corresponding cross-sectional profile (Fig. 2f) shows the relatively
uniform network wavelength and amplitude. The height information
of the network can also be encoded into the PUFs and decoded via
structure height characterization. Figure 2g shows an increase in the

amplitude and wavelength of the network with an increase in film
thickness, and these parameters might be anticipated to be extended
with broader variation ranges.

In addition to the visual contrast of the pattern complexity, the
fractal dimension is widely used to quantitatively characterize the
complexity of fractal thin film structures®*°. In the PUF patterns, there
exists an increase in fractal dimension (D; see details in Supplementary
Fig. 5) with a decrease in film thickness from 1.52 at 90 nm to 1.75 at
30 nm. Therefore, the complexity of the network tag can be designed
on-demand by regulating the film thickness. In this study, four typical
thicknesses were implemented to exhibit the configurability in code
complexity, and theoretically, the thickness can be further subdivided
to systematically classify the security level (e.g., low, medium, or high
level) based on the network wavelength for different applications. The
size of the PUF tags can also be flexibly regulated to control the
security level (Supplementary Fig. 6).

Also, random networks can be generated in various geometries
via a deterministic production mode. Laser direct writing can satisfy
the unlimited flexibility in shape design, such as square, triangle,
pentagon, and pentagram (Fig. 2h). Therefore, it can be additionally
used in categorically labeling an abundant variety of goods or
designing customized trademarks. Collectively, the high controll-
ability of the network-based PUF tag in internal physical features and
external geometric configurations is demonstrated, allowing us to
design the security levels and classify a randomly generated anti-
counterfeiting tag on demand.

Performance of the PUFs
We calculated the cross-correlation values of 600 patterns from the
same batch of production using the feature similarity algorithm

Nature Communications | (2023)14:2185
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Fig. 2 | Configurable network topography. a-d Optical micrographs of the ran-
dom Au networks with different film thicknesses (from 30 to 90 nm). e Typical 3D
topography of an isolated PUF tag for the 70-nm-thick Au film and f cross-sectional
profile along the diameter. g Amplitude and wavelength of the networks with dif-
ferent Au film thicknesses, both showing a gradually increasing tendency with an
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30 50 70 90
Au film thickness (nm)

increase in film thickness. The error bars represent the standard deviations of the
independent data, which correspond to the small fluctuation of the network size.
h PUF patterns with various geometries for classification. Scale bars: 5 um (a inset)
and 20 pm (a-d, e, h).

(FSIM)* to verify the uniqueness of the PUF tag. The cross-correlation
map shows a typical diagonal feature (Fig. 3a), which reveals that a high
topographical feature correlation value (i.e., the high intracorrelation
values and the rest data are expressed as the intercorrelation values)
only comes from the same pattern. Cross-correlation values of pat-
terns from different batches under identical fabrication parameters
were also evaluated to verify the inherent uniqueness along the con-
secutive production process (Supplementary Fig. 7). The distribution
histogram of the cross-correlation values in Fig. 3b also shows a clear
separation between the intracorrelation and intercorrelation values,
implying that the random network tags are particularly suitable for
unclonable anti-counterfeiting labels due to their unique topo-
graphical features and the unlimited number of different topo-
graphies. The 3-dimensional feature information can be encoded into
every pixel of the PUF pattern, while each pixel is used as a variable in
different grayscale intensities derived from the structure height-
dependent different light reflection and refraction. However, due to
the inevitable limitation of the imaging unit in image contrast or color
resolution, the physical features in practically captured PUF images
usually cannot possess a theoretical grayscale distribution from 0 to
255. To present a more general level of grayscale encoded in physical
features, we calculated the grayscale histograms from 10 randomly
selected PUF images in the basic database, subtracted the grayscale
information that the feature structure cannot reach, and counted an
average value of 140 as the valid level of grayscale in a practical PUF
image (valid grayscale distribution from 74 to 214, as shown in Sup-
plementary Fig. 8). By converting an illustrational image to a size of
750 x 750 pixels, an effective encoding capacity of 10**® was estimated
according to Carro-Temboury’s universal model” (see calculation
details in Supplementary Fig. 9 and Supplementary Note 1), which is
much larger than a basic PUF encoding capacity of 10* and has good
anti-counterfeiting effectiveness'.

The encoding capacity of the PUFs is not dominant compared to
the wrinkling/crumpling system with dynamic grayscale information
or randomly distributed stimuli-responsive taggants with multiple
responses. However, a PUF with an extremely large encoding capacity

can reduce the probability of fabricating two tags with the same con-
figuration by a stochastic process (i.e., a low reproducibility) and
generating the same response. The ultrahigh complexity and poor
stability also cause difficulty in cryptography applications. We can also
achieve a configurable encoding arrangement (Fig. 3c) due to the
flexible design in the complexity of the networks. Within a fixed area of
the image, the PUF pattern can be regulated in size (coverage area of
networks) and Au film thickness (filling ratio of networks) to realize
different capacities (Supplementary Fig. 10 and Supplementary
Note 1), which is sufficiently suitable for a customized encryption
strategy for different applications. The captured image size and con-
trast may be decreased by inevitable interference from the imaging
unit, which can be alleviated by employing PUFs with denser feature
information (Fig. 2a-d) or image preprocessing of denoising and
grayscale stretch.

Interestingly, the random Au networks show unique features that
can not only be graphically displayed via pixel-based microscope
images but also be spectrally monitored through SERS response,
highlighting the potential of realizing multiple-level security. As a
typical noble metal, Au has strong LSPR properties at the nanoscale®.
However, the micron-sized network structure introduced in this study,
similar to bulk Au to some extent, exhibits a poor LSPR effect. Through
a straightforward ion bombardment on the network surface by the ion
cleaning technique (Fig. 3d), we can subtly fabricate dense and uni-
form convex Au nanostructures on the surface, which can be used as
the “hot spots” of the electromagnetic field enhancement and regar-
ded as a reliable SERS substrate. The 3D atomic force microscopy
(AFM) image in Fig. 3e shows the roughened surface with a height
fluctuation of approximately 1.5 nm. Scanning electron microscopy
(SEM) images in Supplementary Fig. 11 show the apparent topography
contrast before and after the roughening treatment. Finite-difference
time-domain (FDTD) simulation (Supplementary Fig. 12) reveals the
intrinsic electromagnetic field enhancement on the roughened surface
under light excitation, theoretically predicting the effectiveness of this
versatile plasmonic platform. The Raman response of rhodamine 6G
(R6G) (Fig. 3f) and Raman spectra collected from the networks before
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Fig. 3 | Individuality characterization and multiple-level security strategy of
the PUFs. a Heat map showing the cross-correlation values obtained from 600
network patterns among the same fabrication batch. Each pattern was scanned
twice, and calculations were carried out between these two image sets. The color
bar represents the similarity index, the data along the diagonal line represent the
values from the same images, and the others represent the values from different
images. b Distribution of the correlation coefficients from (a). ¢ Encoding capacity
of the PUF tags with different film thicknesses and pattern sizes, showing expo-
nential growth in terms of the pattern size, which is well fitted by the ExpDec 1
function. d Schematic illustration of the surface roughening process of the Au

—On SiO,
2 — On pattern
c 1651
=1
)
2
&
2
‘@
=
2
£
0 50 100 150 1200 1400 1600 1800

Distance (nm) Raman shift (cm™)

(Counts)
8000

network via oxygen ion cleaning. e 3D AFM image of the surface morphology of the
roughened Au network and the corresponding cross-sectional profile with a height
fluctuation of approximately 1.5 nm. f Raman spectra of the R6G probe molecules
from the Si/SiO, substrate and roughened Au network surface. g Raman mapping of
the R6G molecules orthogonal to the physical feature. The color contrast remains
consistent for quantification. Macroscopic graphics of h letters “BUAA” and i QR
code composed of j isolated PUF patterns. k Enlarged image of one typical PUF
pattern from j. Scale bars: 100 nm (e), 20 pm (g the first image, and k), 4 pm (g right
two images), 1cm (h, i), and 60 pm (j).

and after the surface treatment (Supplementary Fig. 13) verify that
surface roughening stimulates the active LSPR of the pristine Au net-
work. Raman mapping in Fig. 3g provides direct insight into the spatial
distribution of the SERS response, demonstrating the robust readout
of the chemical tag orthogonal to the physical feature of the plasmonic
network. Thus, as a proof-of-concept, the SERS-based chemical infor-
mation encoded into the hierarchical networks with unique identifiers
can also be employed as an auxiliary security layer, enabling the
plasmonic network to be a potential multidimensional PUF tag with a
higher encoding capacity and non-replicability.

Also, the naked-eye visible tags integrated with the basic PUF units
were manufactured by the mask-assisted lithography technique. Fig-
ure 3h, i display the customized patterns with the logo of Beihang
University (BUAA) and the QR code (carrying additional information),
respectively. While the macroscopic graphics are easy to authenticate,
they are also simple to counterfeit. Nevertheless, at the microscopic
level, in this case, all basic units are completely distinct from each
other, showing a unique and unclonable physical feature (Fig. 3j, k).

In addition, commercial security labels should also meet several
requirements, such as high environmental stability, mass production,
and low cost'. With its intrinsic stability due to the relativistic con-
traction of the 6 s electron shell?, Au has excellent antioxidation and
chemical anti-corrosion properties. Considering the importance of the

label’s stability at extreme temperatures (e.g., applications in cold
chain logistics or high-temperature service)*’, we tested the tempera-
ture durability of the proposed PUF labels. The label was refrigerated
at —40 °C in the atmosphere for 60 h, showing no variation in topo-
graphical features (Supplementary Fig. 14). To test the long-term
thermal stability, the same PUF label was consecutively heated in the
atmosphere from 600 to 775 °C for 10 h with an interval of 50 °C. The
Au-based label remained stable up to 750 °C but began to change at
775 °C (Supplementary Fig. 15), which is marginally below the original
label production temperature of 800 °C, showing superior stability at
high temperatures. The security label should also survive inevitable
ambient exposure in daily life*'?, such as mechanical abrasion, aqu-
eous corrosion, and contamination. All these can be simply imple-
mented by covering a protective layer, such as SiO, or Al,O5 for high-
temperature situations, PMMA for daily temperature situations, and
others on the PUF tag according to the specific use cases. In this study,
the label covered with PMMA was evaluated to demonstrate whether it
has an excellent anti-scratch, waterproof, and anti-dust performance.
The label underwent sonication in water and repetitive physical fric-
tion and showed no variation in physical features (Supplementary
Fig. 16). Dust and stains generated from the real-world environment
can also be cleanly removed by wiping with a soft cloth (Supplemen-
tary Fig. 17). In addition, the PMMA layer can also be used as an anti-
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Fig. 4 | Deep learning-based authentication system and anti-counterfeiting
strategy. a Conceptual schematic of the product authentication flow. Two pipe-
lines are used throughout the entire process: (i) “Registration”: For manufacturers,
they are mainly responsible for training the deep learning model and building up
the key database; (i) “Authentication”: For end users, they only need to capture the
image and upload it to the database for decoding. b The training epoch of the
classification model as a function of the newly added PUF patterns, showing a
gradually stable epoch below 40. The inset shows a plot of the training and
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validation accuracy of the classification model with the first newly added image.
The training stops when the validation accuracy reaches the threshold of 0.95
(within 770 training epochs), and acc represents the accuracy. ¢ Ratio of correct
validation, wrong validation, and invalidation of the 37,000 images as a function of
similarity threshold. The 0% wrong validation can be achieved beyond the
threshold of 0.5. 0.7 is the ideal maximum ratio of correct validation, as the whole
test dataset contains 30% fake images.

transfer protective layer to avoid malicious replication, synergy with
the potential chemical encoding (also has the long-term stability in
daily light, see details in Supplementary Fig. 18). Microfabrication of
similar network structures is theoretically possible, but the cost of a
mass duplication of “fingerprint” labels and the intricate manufactur-
ing technology with nanoscale accuracy eliminates the risk posed from
such alaborious endeavor. In addition to the environmental stability of
the security labels, mass production, and low cost are also the primary
considerations in commercial applications'. During the high-
throughput production process of the proposed labels, a mass of the
PUF tags is estimated to be simultaneously integrated on a wafer by a
combination of mask-assisted UV lithography (alternatively, a stencil
mask) and film deposition as well as one-step thermal annealing
technique (Supplementary Fig. 19) followed by wafer cutting and
product packaging compatible with microchip fabrication, meeting
the needs of scalability and mass production in the industry. Each PUF
label is estimated to cost only approximately US$ 7x107 (see

calculation details in Supplementary Note 2), demonstrating their
commercial feasibility in economics.

Authentication of the PUFs

Because the graphical PUFs can be easily read out using an optical
microscope, a deep learning-based image identification system is
appropriate to perform the tag authentication. However, once a new
key is added, a separate model must be retrained, thereby resulting in a
long training time with a large database. We thus proposed an
improved deep learning-based authentication system with a dynamic
database strategy.

Figure 4a schematically demonstrates the deep learning-based
authentication system of the security label. First, each PUF pattern is
captured by the manufacturers using a microscope. The different
images are then preprocessed by modification of the grayscale dis-
tribution (Supplementary Fig. 20) and devoted to a ResNet50-based
classification model** for learning the characteristics of the PUF
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patterns. To reduce the training time and guarantee the general-
izability of the model, the pretrained model parameters on ImageNet>
are used to initialize ResNet50. Next, the images are classified in a
general manner and stored in the database for subsequent authenti-
cation. Regarding the further database expansion, to avoid training a
separate model for each image and to shorten the training period, we
proposed a dynamic database strategy, and only the final layer of the
classification model needs to be trained with new images added. The
procedures described above are performed by the manufacturers (see
details in Supplementary Note 3 and Supplementary Fig. 21). Mean-
while, the produced PUF labels are sold to goods producers for
packaging and delivered to consumers through commodity circulation
with rounds of authentication. The graphical security tags can be
conveniently read out by the end users using their smartphone con-
nected with a portable mini-microscope (Supplementary Fig. 22) and
then uploaded to the deep learning engine for authentication. The
preliminarily predicted target images with top similarities (outputs
from the trained deep learning model) are searched from the database,
and then, the similarity indexes between the target images and the
uploaded image are compared by FSIM to further select the most
similar image to achieve a higher validation accuracy. If the selected
highest similarity is higher than the setting similarity threshold, the
image is identified as the genuine code, and the software feeds back on
the category that the image belongs to, which can be used for product
traceability and anti-channeling (i.e., giving the information of product
source and product distributor). Otherwise, if the similarity is lower
than the threshold, the captured image cannot be validated, meaning
that the image is preliminarily considered not in the established
database (see more evaluation details in Supplementary Note 3). Then,
the client is reminded to capture the original image again with a better
imaging quality for further identification. This process can intelligently
eliminate the incorrect authentication caused by poor capturing
quality.

To experimentally demonstrate the above authentication system,
1300 different PUF tags were randomly captured to establish the
security key database (parts of PUFs shown in Supplementary Fig. 23).
Totally, 1100 PUFs were used to establish a basic database, and the
remaining 200 PUFs were used for the key expansion test of the
database. Each of the 1100 PUFs was rotated with different angles,
forming 211,200 images as the dataset for deep learning model train-
ing (13,200 images for training and 198,000 images for validation, see
details in Methods). Every input image is preprocessed by grayscale
stretch to adapt to the influences of different brightness/contrasts,
and random noise is added to avoid overfitting. This training process
was repeated until convergence (a total of 2500 epochs), and the
model at the epoch of 2250 with the highest validation accuracy
(99.63%, Supplementary Fig. 24) was selected as the final base model.
In the database expansion test, when the fifth new image was added,
the training was finished in 5.48 s (a total of 40 epochs, 0.137 s for each
epoch, Fig. 4b). Another 195 images were successively added to the
deep learning model, and a gradually stable training epoch below 40
was demonstrated (Fig. 4b), allowing for a large number of new PUFs
and a low time cost. This strategy helps to break the trade-off between
the large key database of the PUF system and the long training time of
the deep learning model in practice.

To test the proposed authentication system, 26,000 images from
above 1300 PUF tags (in the database) under different conditions
(brightness, rotation angle, and random noise, Supplementary Fig. 25)
and 11,000 images from 550 new PUF tags (not in the database) were
captured and uploaded to the trained Al for a test. We investigated the
validation ratio as a function of the similarity threshold to obtain the
best threshold of validation. Figure 4c reveals that when the similarity
threshold reaches 0.5, we can achieve a 0% wrong validation ratio of
the genuine images (i.e., the rate of false positives is 0%) and 5% false
negatives, demonstrating the good effectiveness and adaptability of

the proposed authentication system. In this study, we set the similarity
threshold at a value of 0.5, and the authentication of a PUF tag with an
encoding capacity of approximately 10**® can be finished in 6.36s.

Discussions

We have developed an effective anti-counterfeiting system comprising
random fractal network-based PUFs and a deep learning-based
authentication strategy. The complexity of the Au network tag can
be flexibly regulated by changing the film thickness, allowing the
overcomes of the trade-off between the high code configurability and
relatively low stability in general PUF taggants. A comprehensive
understanding of the smart code control mechanisms for the thin film
annealing process is also presented. Finally, based on a large basic
database composed of 1300 PUF tags, a dynamic deep learning-based
authentication system with an expandable database is proposed for
the reliable (0% false positives), rapid, and traceable decoding of PUFs
(about 37,000 images for authentication).

The conceptual presentation of the SERS-based encoding mode
reveals that the Au network-based PUF can be used as a universal
plasmonic platform and has the potential for carrying more informa-
tion and further improving label security. Multidimensional chemical
encoding can strongly fight against sophisticated forgeries but also
requires a long readout time and special readout conditions. However,
with the rapid development of the handheld Raman system with a
high-speed readout*, Raman characterization has the potential to be a
convenient readout way in the near future.

In contrast to other physical or chemical graphic-based PUF
manufacturing strategies, fractal-guided surface evolution of the thin
film is an emerging and universal methodology in PUF design due to its
inherent uniqueness and universality of materials. In addition to the
described Au film annealing technique, diffusion-limited aggregation
growth, such as electrochemical deposition, metal-induced crystal-
lization, or evaporation-driven crystallization, can also be exploited as
effective approaches in designing on-demand PUF keys for anti-
counterfeiting or data encryption in the future. Although we focused
on the Au network as the PUF carrier in this study, this sophisticated
and universal self-organization process can be extended to various
material systems at multiple scales and is anticipated to be developed
with diverse matrix-dependent functional integrations, such as flexible
packaging or invisible displays. The current PUF design also leaves
room for improvement to cover various product fields, such as elec-
tronics. Due to the good compatibility with the microelectronic pro-
cess, the network tag induced by rapid thermal annealing (RTA) is
expected to be seamlessly integrated with electronics and fabricated in
great batches on one wafer*. Overall, the proposed PUF-based anti-
counterfeiting system complies with the demands necessary for
commercial applications, and the proposed fractal-guided manu-
facturing strategy provides promising insights into the design and
development of comprehensive PUFs with high code configurability,
multiple-level security, environmental stability, and mass production.

Methods

Materials

Gold target (99.999%) was purchased from ZhongNuo Advanced
Material Co. Ltd. Poly(methyl methacrylate) (average Mw
~996,000 g mol™) and rhodamine 6G were all purchased from Sigma—
Aldrich. Photoresist (S1813) was purchased from Microresist Tech-
nology GmbH, and photoresist (Ar-3110) was purchased from Allresist.
The photomask was purchased from the Institute of Microelectronics
of the Chinese Academy.

Fabrication of the random Au network-based PUFs

The fabrication flow of the random Au network-based PUF tag is illu-
strated in Fig. 1a. In the typical procedure, a commercially available
silica-coated silicon wafer (silica thickness=300nm) was cut into
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small pieces of 1.5 cm x 1.5 cm and then cleaned with acetone, ethanol,
and deionized water (DIW) successively. The cleaned substrate was
spin-coated with a layer of photoresist (Ar-3110) (1min at 3000 rpm)
and baked on a hotplate at 90 °C for 1 min. Then, a circular area with a
diameter of 120 pm was exposed via raster scanning by using a laser
direct writing system (HWN LDW-LM4, laser wavelength =405 nm,
laser peak power=83 mW, pulse duration=2000ns, and scanning
frequency =100 Hz). The exposed sample was immersed in the
developing solution for 100 s for the as-prepared patterns. A layer of
the Au film was deposited on the prepared substrate by magnetron
sputtering (Kurt J. Lesker PVD75, DC power=50W, and Ar flow
rate = 23 sccm). The 70-nm-thick Au film can be obtained by deposition
for 1440 s. After the photoresist was lifted-off with acetone, the Au
circle patterns were obtained. The sample was then annealed in a
muffle furnace (QSX1200) in the atmosphere at 800 °C for 90 min,
followed by cooling to room temperature to obtain the PUF tags.
Network-based PUF tags can be simultaneously obtained on the sup-
port via the facile and high-throughput one-step annealing technique.
Finally, the sample can be spin-coated with a thin layer of PMMA (40's
at 5500 rpm) to prevent the PUF tag from various external damages.
Various PUF tags in sizes and shapes can be simply realized by laser
lithography. For the configurable network tag design, Au films with
different thicknesses of 30, 50, 70, and 90 nm were deposited for 540,
900, 1440, and 1800s, respectively. The corresponding annealing
parameters were 30 min at 500 °C, 90 min at 700 °C, 90 min at 800 °C,
and 90 min at 900 °C. The annealing time is not a restricted parameter;
a marginal change around the given time is acceptable. The fractal
dimensions of the Au networks from different thicknesses were
counted by using the method of box counting in the fractal theory via
ImageJ software with the FracLac plugin®°.

Implementation of PUFs with multiple-level security

The annealed Au network was first roughened by a plasma cleaner
(HM-Plasma5L) for 210s at a power of 70 W to create a plasmonic
matrix. A small dose of rhodamine 6G ethanol solution (1 mM, 10 pL)
was dropped on the plasmonic network, which was then washed with
ethanol and DI water after full evaporation for the Raman test. The
graphics of “BUAA” and QR code were fabricated by mask-assisted UV
ultraviolet lithography under hard contact mode (MJB4, SUSS Micro-
Tec, exposure time = 48 s) followed by the deposition of the 70-nm-
thick Au film and annealing for 90 min at 800 °C. The electromagnetic-
field distribution of the roughened surface of the Au network was
simulated by commercial Lumerical FDTD Solutions software. Surface
nanostructures were modeled in a simulation domain of 120 nm x
120 nm x 60 nm. A high-resolution simulation (mesh size of 0.5nm)
was run at a 514nm excitation utilizing a p-polarized incident
plane wave.

Environmental stability tests

The Au network tags were characterized by optical microscopy before
and after the exposure under various harsh conditions. The detailed
steps are described as follows:

Low temperature: the PUF label was put into the freezer dryer
(SCIENTZ-10N) at —40 °C for 60 h.

High temperature: the PUF label was put into the muffle furnace at
600, 650, 700, 750, and 775 °C for 10 h, respectively.

Aqueous corrosion and sonication: the PUF label covered with the
PMMA layer was put into the DIW and sonicated for 10 min at a working
frequency of 40 kHz.

Mechanical abrasion: the PUF label covered with the PMMA layer
was rubbed on the frosted desktop ten times.

Dust and stain exposure: the PUF label covered with the PMMA
layer was exposed to sand, and organic contamination, respec-
tively, followed by wiping with an ultra-clean cloth dipped in
alcohol.

Photostability of the chemical encoding: the Raman spectra of the
identical PUF label that was placed in real-world conditions with nor-
mal ambient light exposure, oxidation, temperature, and humidity
were collected again six months later under identical collecting
parameters.

All the contrast images are shown in Supplementary Figs. 14-18.

Characterization

Optical microscopic bright- and dark-field images of the random Au
network morphology were captured by a polarizing microscope
(Olympus, BX53M, magnification: 50x). The 3D microscopic image of
the network tag was obtained by a laser scanning confocal microscope
(Olympus LEXT-OLS4000, magnification: 50x). The image of the net-
work tag in the readout demonstration was captured by a smartphone
(HUAWEI nova 6) connected with a mini-microscope (commercially
purchased). The X-ray diffraction data of the Au film before and after
annealing were measured by an X-ray diffractometer (D8 ADVANCE).
The 3D topographic image of the roughened Au network surface was
obtained by AFM (Bruker Dimension Icon). Raman spectra and map-
ping of R6G were collected by a laser Raman spectrometer (Renishaw
inVia plus) with a 514-nm laser (1.4 mW power at the sample surface)
focused by a 50x microscope objective lens with a 10 s exposure time
and one accumulation. The spectral data and Raman mapping were
analyzed by the WIRE 2.0 software suite. The morphology contrast of
the network surface before and after ion cleaning was obtained by
high-resolution scanning electron microscopy (HRSEM) (Hitachi, S-
8200). The thicknesses of the Au film and PMMA film were measured
by a Step Profiler (DEKTAK 6 M). The amplitude and wavelength of the
random networks were measured and counted by measuring software
in the laser scanning confocal microscope and further verified by the
Step Profiler.

The deep learning-based authentication system
Based on the PyTorch library, a CNN-based deep learning model was
built to identify and classify the PUF tags (Supplementary Fig. 21). The
developed codes were run in PyCharm 2020.2 using a GPU (GeForce
RTX 2080 Ti) to perform the calculations. The uploaded PUF images
were first preprocessed by the localization of the PUF center (Otsu’s
method) and graying (Supplementary Fig. 26). Given that the images
obtained by the microscopy may have different brightness or con-
trasts, the captured images were implemented with grayscale stretch
by the homemade algorithm for unifying the image information
(Supplementary Fig. 20). Therefore, the influences of these different
conditions can be suppressed in deep learning model training. The
captured images were then resized for training. Considering the ima-
ging difference from different consumers, several images in different
conditions were also obtained from one PUF tag (Supplementary
Fig. 25) to test the trained Al model.

Randomly rotated images (rotated from 0° to 330° at 30° internal,
a total of 12 images for each pattern) were involved in the deep
learning model training for implementing the data augmentation to
obtain the general neural networks. Rotated images from 1° to 359° at
2°internal, a total of 180 images for each pattern, were used to validate
the trained model at each training step. More specifically, 1100 PUF
patterns were used to form the base dataset consisting of 211,200
images in this study. 13,200 images among them were used as the
training set (12 x 1100 images), and 198,000 images were used as the
validation set (180 x 1100 images). All dataset information for the Al
model training/validation/testing is shown in Supplementary Table 1.
Random Gaussian noise was added to the training image to avoid
overfitting. After each training epoch, the images used for validation
were sent to the validation procedure of the model. This training
process was repeated until convergence. The training images can then
be removed because they do not need to be stored. Therefore, the
storage space is only determined by the model parameters as well as
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the initial images for each pattern. The ResNet50-based classification
model was trained within 2500 epochs, where each epoch required
51.4 s of computation time. Therefore, the base deep learning training
model takes approximately 35 h.

A ResNet50-based classification model that was pretrained by
ImageNet™ (3.2 million images) is used as the classifier (see details in
Supplementary Note 3). To reduce the training time and guarantee the
generalizability of the model, the pretrained model parameters on
ImageNet are used to initialize ResNet50. With a new PUF, only one
parameter is added to the last classification layer, and only this final
layer is updated during the training of the new PUF. Both the original
PUFs in the database and newly added PUFs are used to update the
model to avoid the model forgetting the previous database, and the
training of the updated model stops when a validation accuracy
threshold of 0.95 is reached. The update of only the last layer ensures a
fast training procedure (0.137s per epoch with the fifth new PUF
added). Owing to the “black box” mode of deep learning, it is advan-
tageous for PUF anti-counterfeiting as it is a tamper-proof.

Ethics and inclusion statement
This work does not include any local researchers throughout the
research process and any studies with animals performed by authors.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data needed to evaluate the conclusions are present in the paper
and the Supplementary Information. The PUF images with corre-
sponding datasets used for the PUF authentication have been depos-
ited in the repository https://github.com/Seven-year-promise/PUF_
authentication. Additional data related to this paper are available from
the corresponding authors upon request. Source data are provided in
this paper.

Code availability
All codes used for the PUF authentication are available via https://
github.com/Seven-year-promise/PUF_authentication.
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