
JAWS – Just Another Workspace Suite
Data Orchestration for HPC Environments

DOCTORAL DISSERTATION COLLOQUIUM

EXTENDED ABSTRACT

Mehmet Soysal
Karlsruhe Institute of Technology (KIT),
Steinbuch Centre for Computing (SCC),

Karlsruhe, Germany
mehmet.soysal@kit.edu

Dissertation Advisor: Achim Streit

Abstract—The data volume in HPC environments is increasing
rapidly. To meet this demand, different storage systems are
installed hierarchically. A large number of storage systems and
various access methods overwhelm users.

A data management system is required to ensure the efficient
use of storage systems and infrastructure. This system should
simplify the use of the various storage systems. A concept for
JAWS (Just Another Workspace Suite) has been developed.
JAWS abstracts the different storage types and technologies as
well as the infrastructure. As a centralized data management
service, JAWS orchestrates the movement of data between the
different storage systems. It can be easily integrated into HPC
environments to facilitate scientific work.

By using a batch system for moving data, the efficient use
of the infrastructure is increased. It helps to orchestrate the
enormous amounts of data generated in scientific computing, for
operators and users. The developed prototype is available under
MIT license: https://github.com/mehsoy/jaws.

Index Terms—datasets, workspace, data mangement, data
movement, metadata, HPC, supercomputing, data orchestration

I. INTRODUCTION

High-performance computing (HPC) systems become larger
and more powerful. This allows users to perform simulations
with more complex models, higher resolution, larger domains,
and more simulation runs. Consequently, a lot of data is
generated and the demand for storage increases enormously,
which poses problems for users and operators of the HPC
Systems. Nowadays, simulations that create millions of files
and/or terabyte of data are not uncommon [1], [2]. Other
scientist develop methods to reduce the amount of data, so
only the mandatory parts of the results are written [3]. These
can limits the possibilities of follow-up examinations. Further-
more, new user communities are emerging, which generate,
process and analyze huge amounts of data. This trend, known
as data-intensive computing, is changing the demands on the
systems. Data-intensive communities have also an increased
capacity requirement. It can be assumed, that the demand
for data storage will continue to grow. To meet this demand

with the usual high-performance storages, like Lustre [4],
GPFS [5] or BeeGFS [6], a significant financial investment
is required. A common solution to solve this challenge is
to install different type of storages in a hierarchy [7]. Each
storage tier in this hierarchy focus a specific requirement.
The range from this hierarchy is from expensive, fast and
parallel, low-capacity storage to cheaper, slower, high-capacity
storages. As required, a HPC center can introduce several
layers to the storage hierarchy. For example, on-demand file
systems are offered at SCC. These are created with the node-
local SSDs if required, thus representing a further tier at the
top [2]. In a deeper hierarchical storage environments, more
cost and performance efficient data storage is possible. But
this is at the expense of simplicity. As a result, the user
often only uses the fast parallel storage. A movement of data
between the hierarchical layers are often avoided. However, in
some scientific domains, there are community built tools that
can help with the management and migration from storage to
storage. These are usually tailored to specific workflows and
often not prepared for generic usage in HPC centers.

The current situation leads to the fact that the expensive
storage is preferred by the users. Therefore the capacity of
these storage devices is often unnecessarily occupied. To
address this issue a concept has been developed, that helps
to automate the task of data orchestrating. Furthermore, the
prototype JAWS – Just Another Workspace Suite, has been
developed. JAWS can be used as a central service and reduce
the complexity of storage hierarchies.

To help automate data management, JAWS provides the
ability to move data in a batch queued manner. JAWS can also
be seen as the bridge between user and operator. Users can
add metadata to the workspaces, e.g., a DOI number could
show that the data has been published. So that the operator
knows whether this data should still be kept.

The main contribution of this work is the concept for data
management, within HPC environments, which led to the

https://github.com/mehsoy/jaws

Cluster-wide

Cluster/Multi-cluster

Multi-cluster / Site

Node-local storage:
NVMe, SSD ...

Global Buffers:
DDN IME, Cray DataWarp ...

Backgroundstorage:
Ceph, Object storages,
Gluster FS, NFS

Cluster storage PFS:
LUSTRE, GPFS, BeeGFS ...

Site Archive:
Tape, HSM ...

Multi-cluster Project Storages:
PFS, NFS ...

Performance Tier

Capacity Tier

Archive Tier

Node-local
H

ot
 S

to
ra

ge
C

ol
d

St
or

ag
e

Fig. 1. Different storage tiers available in HPC centers.

implementation of JAWS. In this paper, the background is
explained and the concept for the decisions. Furthermore the
design and implementation is explained. The implementation
is online available and should be considered as work in
progress. The paper is structured as follow; in Chapter 2 the
current state and the motivation for this work is explained.
Chapter 3 explains the concept, design and architecture of
the data management framework. A brief introduction in the
related work is given in Chapter 4 and ate the end a conclusion
and future work is given.

II. BACKGROUND AND MOTIVATION

a) Storages in HPC centers: Storage systems in HPC
environments are distinguished based on the requirements
of the intended use. Figure 1 presents a typical hierarchy
pyramid of storages and a possible classification. The top of
the pyramid is classified as the performance-tier, where the
fastest storages are located, in terms of bandwidth and latency.
But due to the costs, these usually offer a low capacity. The
bottom of the pyramid can be classified as an archive-tier.
The storage here provides high capacity for long term storage,
but has a reduced performance, e.g., high latency with tape
storages. The middle layer is filled with a compromise of speed
and capacity, this is often called capacity-tier.

A second view to the pyramid provides the location of the
storage. It starts from the top with the node-local storages,
which is only accessible from the corresponding compute
node. The end at the bottom is built of storage systems, which
are site-wide accessible. The left side in Figure 1 annotate
the distinction between cold and hot storages. Hot denotes a
suitable data location for starting jobs. Starting jobs with data
in cold storages is inefficient because the delivery of data is too
slow. To reduce the waste of compute resources it is preferred
that data is always located on a hot storage. For example,
parallel file systems like Lustre, GPFS or BeeGFS are often
used as hot storage. On the right side of Figure 1 some more
examples of storage and file systems are present.

Of course, it is important to note that different storage
types and file system should be used in a different manner
for efficient usage. For example, it is best practice to move
data in a archived format to a tape based storage, e.g., tarball

or as a zip-archive. The various storages and different access
options can easily overwhelm users.

III. JAWS

JAWS is designed to automate the data management process
within HPC environments. The key design aspects are (i)
simplify the usage of the different storage systems, (ii) efficient
use of infrastructure and storage systems, (iii) a simple way to
identify unused data, (iv) a role based system, and (v) an easy
integration to HPC environments. To archive this first some
elements of JAWS are introduced.

a) Workspace: A workspace is defined as a set of direc-
tories and files. The workspace has an associated expiration
date and a global unique identifier. Furthermore, additional
metadata can be included to provide a more detailed descrip-
tion of the content.

b) Target: A target describes the storage type, the storage
location and properties. Moreover, the way to access the stor-
age are configured. So it is possible to configure two different
targets on the same storage system, e.g, one target could
be configured so that the workspaces are stored here as one
compressed archive. Targets have also configured properties,
such as a maximum lifetime of workspaces, and number
of allowed extensions of this lifetime. A special property
classifies the target as hot or cold. This indicates whether the
workspace is located on a suitable storage for a batch job start.

c) Data Job: For physical operations like moving and
deleting a workspace, a data job is created. The data job
is submitted to a queuing system and will be processed by
workers.

d) Queuing System: A simple queuing system to effi-
ciently use the infrastructure and storage systems is imple-
mented. The master controls the queue and the workers. It
allocates data jobs to free workers and keeps track of the
progress.

e) Roles: A role define the privileges of different user
groups. Beside a user and admin role, a group manager role is
also provided. A group manager is associated with users and
has configurable privileges over these users’ workspaces.

A. Design and Architecture

JAWS is developed using python 3 and the Flask frame-
work [8]. Flask is a web micro-framework, which helps devel-
oping web based application with a template engine. Figure 2
illustrates the components of the JAWS framework. The main
daemon is offering a REST API [9]. JAWS provides different
clients, a web-interface and a Command Line Interface (CLI),
both use the same API calls.

a) JAWS Daemon: The main service is composed of
several components. The two components workspace manager
and application/controller contain the complete logic for man-
aging and controlling the data management.

Another important component is the queuing system con-
sisting of the job queue and the corresponding master. The
master is the controller for the job queue and communi-
cates with the workers. All jobs that make any changes on

Rest-API

WEB

CLI

Client

Master /
Job Queue

JAWS-Daemon

Metadata
storage

Worker

Data Mover

Workspace
manager

Application/
Controller

Rest-API

Worker
Rest-API

Worker
Rest-API

Fig. 2. Design of the JAWS framework. Clients (Web/CLI) access the main
daemon via REST API. JAWS Daemon communicates via REST API with
distributed worker.

˜$ jaws --help
usage: jaws <command> [<args>]

JAWS - CommandLineTool

----- Currently available Command -----
move, activate, active, cancel, configuration,
resume, queue, job, log, resume, rights,
deactivate, setPriority, workers, share,
shareInfo, workspaces, storages

positional arguments:
command Subcommand to run

optional arguments:
-h, --help show this help message and exit

Fig. 3. JAWS cli-frontend listing the available commands.

workspaces are placed in the job queue. The job queue ensures
that the infrastructure can be used efficiently and that no
congestion situations can occur.

The metadata of workspaces, such as lifetime, is stored
in the metadata storage. Modifications to the metadata of
workspaces are done within the main daemon.

b) Workers: Workers are responsible for physical actions
on workspaces, like moving, packing or deleting. Any number
of workers can be deployed. Every worker can be configured
for multiple targets. At startup, workers register themselves to
the master and wait until a job is allocated. During registration,
workers indicate which targets they serve.

c) Client: Two different clients are provided to use
JAWS. The web client is basically derived from the Flask
daemon, which is the base for the JAWS daemon. Therefore,
technically speaking, the web-frontend is part of the JAWS
daemon. As already mentioned, the web and cli, both uses
the same REST API. A complete list of available command
is shown in Figure 3. An important difference between both
variants is the way of authentication to the main daemon (see
next paragraph). More information and detailed manual of the
tools can be found in the documentation.

d) Authentication: JAWS offers different ways to au-
thenticate users with the main daemon, based on the access
methods. The command line interface offers two optional

methods. (i) A random string is created and stored as a file to
the user home and to the JAWS database. This string then can
be used as a credential to authenticate the user by appending
it as a key to the REST API calls. (ii) A more secured method
uses the authentication service MUNGE [10] (MUNGE Uid
’N’ Gid Emporium). It is highly scalable and often used
in HPC cluster environments. When enabling MUNGE, the
whole communication between the CLI-clients, the daemon,
and the workers are encrypted by MUNGE. Furthermore,
additional safety features offered by MUNGE are also used,
e.g., replay protection or time-to-live.

To login to the web interface a username and password is
needed. After successful authentication a session key is created
and stored in the browser. For the user password two optional
methods are implemented. (iii) The user password from the
system. (iv) The string from (i).

Please note that the solution (i) and (iv) are fallback
methods. The generation of the string could be insecure if the
JAWS daemon is running on a different host. Therefore, this
method should be only used in testing environments. For (iii)
the JAWS daemon requires extended privileges. This might
be too insecure for some HPC centres, but adding additional
method for authentication for a web-based login is easy to
implement.

IV. RELATED WORK

Even with current solutions the task of data management
in HPC environments are still a challenge. There are several
solutions available, however, we can only give a brief intro-
duction.

The utility collection HPC-Workspace [11] also uses the
basic idea of workspaces, but it has no data movement
components implemented. The fields to enrich metadata are
very limited. Stork [12] is a scheduler for data placement
activities in the Grid. Stork queues, monitors and manages
data placement in a fault tolerant manner. However, it does
not offer any further metadata to organize data.

The tools Data Jockey [13] and Rucio [14] are similar to
JAWS. Both aggregate file and directories to a logic unit
– called datasets. Data Jockey was developed to automate
the task of bulk data movement and placements of scientific
workflows within HPC centres. Rucio is a project that pro-
vides services and associated libraries for allowing scientific
collaborations to manage large volumes of data spread across
facilities at multiple institutions and organisations. Rucio has
been developed by the ATLAS [15] experiment. Both tools
are very complex and need a tight integration to the system
while JAWS is a very lightweight framework. Pegasus [16]
is a framework for mapping complex scientific workflows
onto distributed systems. It uses catalogs to map files to
their physical locations but do not allow any advanced data
placement. JAWS in contrast moves data to new locations. It
does not have a catalogue for every file, instead it returns the
absolute path of the workspace.

Pwrake [17] and ADIOS [18] are introduced for efficiently
transferring data over wide area networks. Our aim is the man-

agement of data within a computing center. If the workspaces
have to be transferred over remote networks, we could benefit
from these tools, so they are not in contrast to this approach.

V. CONCLUSION AND FUTURE WORK

In this work, a lightweight framework JAWS to manage
data within HPC centers is presented. Files and directories
are logically combined to workspaces. These workspaces can
be annotated and easily moved between storages. JAWS em-
powers the users to manage their scientific data across various
storage architectures within a compute-site. It transparently
provide access to these storages, reducing the need to get
familiar with the heterogeneous storage types.

Operators can move orphaned or expired workspaces to
back-end storage, this allows to increase the free capacity on
the hot storage. The operators can extend their site with new
storage technologies. JAWS enable transparent deployment of
storage systems and eliminates the need for extensive user
training. JAWS helps to optimize storage efficiency by storing
only active data in hot storage and moving unused data to less
expensive storage. With its lightweight user interface, the user
experience is not affected. In the end, the financial resources
can be used in a better and more targeted manner, instead of
reserving fast storage for inactive data.

For the prototype a simple queue manager is implemented.
This queue manager is only provided with the most necessary
functions. For future versions, it is planned to use a well
established HPC job scheduler. JAWS would then benefit from
the comprehensive features of an HPC job scheduler.

Large scale storages are going to get more heterogeneous
and more complex. A tool to abstract the usage of these
different storages will help user and operators with the usage
of such systems. The complexity of a storage system can be
hidden by frameworks like JAWS.

VI. ACKNOWLEDGEMENTS

Parts of the JAWS Framework were developed during a
student course. The task at the course was to develop an
independent service for copy jobs. This ended up in the Data
Movement Daemon (DMD), which has become part of the
JAWS project. The students are hereby sincerely thanked for
their work and they are of course also listed as authors of the
software. This work as part of the project ADA-FS is funded
by the DFG Priority Program “Software for Exascale Comput-
ing” (SPPEXA, SPP 1648), which is gratefully acknowledged.
Also this developemt is funded by the Ministry of Science,
Research and the Arts Baden-Württemberg.

REFERENCES

[1] Thorsten Zirwes, Feichi Zhang, Jordan Denev, Peter Habisreuther, and
Henning Bockhorn. Automated code generation for maximizing perfor-
mance of detailed chemistry calculations in OpenFOAM. In W.E. Nagel,
D.H. Kröner, and M.M. Resch, editors, High Performance Computing
in Science and Engineering ’17, pages 189–204. Springer, 2017.

[2] Mehmet Soysal, Marco Berghoff, Thorsten Zirwes, Marc-André Vef,
Sebastian Oeste, Andre Brinkman, Wolfgang E. Nagel, and Achim
Streit. Using On-demand File Systems in HPC Environments. The
2019 International Conference on High Performance Computing and
Simulation, 2019.

[3] Martin Bauer, Johannes Hötzer, Marcus Jainta, Philipp Steinmetz,
Marco Berghoff, Florian Schornbaum, Christian Godenschwager, Harald
Köstler, Britta Nestler, and Ulrich Rüde. Massively parallel phase-field
simulations for ternary eutectic directional solidification. In Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12, 2015.

[4] Peter J Braam and Philip Schwan. Lustre: The intergalactic file system.
In Ottawa Linux Symposium, page 50, 2002.

[5] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for
large computing clusters. In Proceedings of the 1st USENIX Conference
on File and Storage Technologies, FAST ’02, Berkeley, CA, USA, 2002.
USENIX Association.

[6] Jan Heichler. An introduction to BeeGFS, 2014.
[7] Wing N Toy and Benjamin Zee. Computer Hardware-Software Archi-

tecture. Prentice Hall Professional Technical Reference, 1986. pg. 30.
[8] Miguel Grinberg. Flask web development: developing web applications

with python. ” O’Reilly Media, Inc.”, 2018.
[9] Roy T Fielding and Richard N Taylor. Architectural styles and the

design of network-based software architectures, volume 7. University
of California, Irvine Irvine, 2000.

[10] C Dunlap. Munge uid n grid emporium. Technical report, Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States), 2004.

[11] Holger Berger. HPC Workspaces. https://github.com/holgerBerger/hpc-
workspace, 2020.

[12] Tevfik Kosar and Miron Livny. Stork: Making data placement a first
class citizen in the grid. In 24th International Conference on Distributed
Computing Systems, 2004. Proceedings., pages 342–349. IEEE, 2004.

[13] Woong Shin, Christopher D. Brumgard, Bing Xie, Sudharshan S.
Vazhkudai, Devarshi Ghoshal, Sarp Oral, and Lavanya Ramakrishnan.
Data Jockey: Automatic Data Management for HPC Multi-tiered Storage
Systems. In 2019 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), pages 511–522, May 2019. ISSN: 1530-2075.

[14] Vincent Garonne, R Vigne, G Stewart, M Barisits, M Lassnig, C Serfon,
L Goossens, A Nairz, Atlas Collaboration, et al. Rucio–the next
generation of large scale distributed system for atlas data management.
In Journal of Physics: Conference Series, volume 513, page 042021.
IOP Publishing, 2014.

[15] Georges Aad, JM Butterworth, J Thion, U Bratzler, PN Ratoff, RB Nick-
erson, JM Seixas, I Grabowska-Bold, F Meisel, S Lokwitz, et al. The
atlas experiment at the cern large hadron collider. Jinst, 3:S08003, 2008.

[16] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil,
Carl Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John
Good, and et al. Pegasus: A framework for mapping complex scientific
workflows onto distributed systems. Sci. Program., 13(3):219–237, July
2005.

[17] Masahiro Tanaka and Osamu Tatebe. Pwrake: A parallel and distributed
flexible workflow management tool for wide-area data intensive com-
puting. In Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, HPDC ’10, page 356–359,
New York, NY, USA, 2010. Association for Computing Machinery.

[18] Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki,
and Chen Jin. Flexible io and integration for scientific codes through
the adaptable io system (adios). In Proceedings of the 6th Interna-
tional Workshop on Challenges of Large Applications in Distributed
Environments, CLADE ’08, page 15–24, New York, NY, USA, 2008.
Association for Computing Machinery.

https://github.com/holgerBerger/hpc-workspace
https://github.com/holgerBerger/hpc-workspace

	Introduction
	Background and Motivation
	JAWS
	Design and Architecture

	Related work
	Conclusion and Future Work
	Acknowledgements
	References

