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Abstract: In recent years, topology optimization has proved itself to be state of the art in the design of
mechanical structures. At the same time, energy harvesting has gained a lot of attention in research
and industry. In this work, we present a novel topology optimization of a multi-resonant piezoelectric
energy-harvester device. The goal is to develop a broadband design that can generate constant power
output over a range of frequencies, thus enabling reliable operation under changing environmental
conditions. To achieve this goal, topology optimization is implemented with a combined-objective
function, which tackles both the frequency requirement and the power-output characteristic. The
optimization suggests a promising design, with satisfactory frequency characteristics.

Keywords: topology optimization; broadband energy harvesting; piezoelectric energy harvesting

1. Introduction

Energy harvesting devices convert free ambient energy into usable electrical energy.
This energy can then be used as an additional power source for wireless autonomous
devices, e.g., inside a wireless sensor network. These devices are often deployed under
harsh environmental conditions, causing them to be not easily accessible [1]. There are
different sources of ambient energy available for energy harvesting, such as solar, wind,
and mechanical energy. In our works, we focus on energy harvesting from mechanical
vibrations that occur due to the motion of rotatory machines, e.g., in an industrial setting or
in automotive. Different techniques are applicable for vibrational energy harvesting: elec-
tromagnetic, electrostatic, magnetostrictive, and piezoelectric [2]. Of all these, piezoelectric
energy harvesters (PEH) are the most common type of vibration energy harvesters, due to
their high achievable power density, scalability, and simplistic geometry [3–6]. The sim-
plest design consists of a flexible beam structure that carries piezoelectric material, which
transforms vibration energy into usable electric power. Typically, a proof mass is added,
in order to achieve the desired resonant frequency for a given application. However, very
often the ”harvesting frequency” changes over time, due to, e.g., changes in environmental
conditions (temperature and humidity) or due to the aging of the vibration source. In such
case, a simple PEH fails, as the structure represents a single mass–spring–damper system
and, therefore, only exhibits a single dominant resonant mode.

An adaptation or tuning of the PEH’s resonant frequency is considered one of many
broadband energy-harvesting techniques applied to avoid a mismatch of excitation fre-
quency and the PEH’s resonant frequency. Comprehensive reviews on the topic of broad-
band piezoelectric energy harvesting can be found in [7,8]. In this work, we consider
a so-called multi-modal broadband energy-harvesting approach. Multi-modal energy
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harvesting requires a device that exhibits multiple resonant frequencies that, therefore,
can cover a larger frequency bandwidth. In [9], a bi-directional, U-shaped structure with
cross-connected beams was introduced that can capture vibration in 3D space. In [10,11],
”star”- and a ‘’pizza”-shaped arrays were proposed and, in [12], a trapezoidal geometry
and optimal segmentation for higher modes were presented. Most of these recent designs
are based on combining multiple simple beam PEHs with different resonant frequencies
into an array, which is often referred to as an ”in parallel” configuration. In our case, we
focus on serial designs, i.e., cascading simple beam PEHs instead of arranging them into an
array [13]. In [14], we showed that cascading/serial designs significantly outperform array
configurations and confirmed previously presented results from, e.g., [15,16].

We refer to our compact dual-frequency resonator as the folded-beam design. Its
design goal is to have the first two resonant frequencies with similar power amplitudes
in close proximity. Therefore, it can provide a broad usable frequency range for energy
harvesting. This design approach is our key differentiation from other authors. A major
challenge of our design is to account for unwanted interactions between the two modes,
such as switching or merging. That is why manual design approaches become unfeasible
and mathematical optimization approaches are to be favored.

The authors of [17] discuss various optimization algorithms with regard to their
respective suitability for finding the suitable geometric dimensions of PEHs. More device-
specific optimizations are presented in [18], where multiple topologies of a tip-excited
single beam PEH are parametrically optimized over a power spectrum from 0 Hz to 800 Hz.
In [19], the parameter optimization of a magnetic coupled PEH was performed, optimizing
the spacing of two coupled resonators for different magnetic flux densities. In [20], stack
PEH for automotive is optimized, with regard to parameters, such as the number of stack
layers or height to cross-section ratio. For the folded-beam PEH, we implemented a two-
stage global parametric design optimization and proposed novel geometries in [14,21,22].
Parameter optimizations, however, are strongly limited, as the topology of the final design
is already determined by the initial design. For example, the final design cannot be star-
shaped if the initial design was rectangular. Hence, in this work, we explore topology
optimization (TO) to gain more design freedom.

The methodology of TO was introduced in [23] and has become very popular across all
fields of engineering. The TO methodology is designed to find an optimal layout of a struc-
ture given the available design space, applied loads, support conditions, and constraints
such as maximum weight. This is achieved by reformulating the classical optimization
problem with a set of distributed functions on a fixed domain [24]. In most applications,
this reformulation results in an optimal material distribution problem on a finite-element
grid. The most common TO application is weight or compliance minimization. However,
recent works show that TO is also considered for thermal applications [25], where a cold
plate for a lithium-ion battery was optimized, or for optical applications [26], where the
desired band gap characteristics for phononic crystals were obtained.

The first studies of TO on the eigenfrequency can be found in [27], where the support
of a plate-like structure was optimized. Later, in [28,29], the modified optimality criteria
and the mean frequency goal function were introduced, which significantly improved
the performance of TO for dynamical eigenfrequency problems. In [30], we introduced a
dynamic compliance-based optimization approach for resonant structures that uses the
compliance goal function to have more control over the modal shape and for a more
stable optimization process. As for applications, in [31], a 2D in-plane single mass MEMS
gyroscopes were optimized using TO, which was later extended to a tuning fork resonator,
i.e., a two mass configuration, in [32]. In [33], a composite material PEH was proposed
as a result of a multi-material TO. More recently, the same authors proposed plate-type
PEH designs [34], maximizing open-circuit voltage by topology optimizing the through-
thickness of piezoelectric material distribution.
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In this work, we present the TO of a multi-modal PEH and propose a novel folded-
beam design that fulfills its unique frequency requirements. The TO procedure implements
a multi-objective goal function to tackle both the frequency and the power amplitude
requirements. The achieved optimal design is characterized in a simulation. The manuscript
is structured as follows: the introduction of the folded-beam PEH is provided in Section 2;
in Section 3, we introduce our TO approach and establish the optimization setup; and,
in Section 4 we present the optimization results and discuss them in Section 5. Section 6
concludes this work and provides an outlook to future research.

2. Definition and Modeling of Multi-Modal Piezoelectric Energy Harvester

Piezoelectric materials can convert mechanical vibration into electrical energy using
the piezoelectric effect. The corresponding governing equation is usually provided in
coupled strain-charge form [35]:

S = sT + σTE, (1)

D = σT + εE, (2)

where S ∈ R6×1 and T ∈ R6×1 are the stress and strain tensors, respectively, and D
is the electric displacement vector. σ ∈ R3×6 s ∈ R6×6 denotes the compliance tensor
measured with a constant electric field E and ε ∈ R3×3 denotes the permittivity tensor at
constant strain. σ is the piezoelectric tensor. As most piezoelectric materials are classified as
ceramics, they are extremely brittle and require an elastic support structure for this designed
use case. Therefore, a PEH is typically composed of an elastic mechanical resonator that
carries piezoelectric material, which is attached to the areas that are exposed to mechanical
stress or strain. The design of a PEH mostly focuses on the geometry of the mechanical
resonator in order to achieve desired characteristics.

2.1. Finite Element Modeling of Piezoelectric Energy Harvester

The finite element discretization of the governing equation results in a second-order
system of dynamic algebraic equations:

Σ =



[
Mm 0

0 0

]
︸ ︷︷ ︸

=:M

[
ẍm

ẍel

]
+ D

[
ẋm

ẋel

]
+

[
Km Km,el

KT
m,el Kel

]
︸ ︷︷ ︸

=:K

[
xm

xel

]
=

[
b
0

]
u

y = C

[
xm

xel

] , (3)

where xm are the nodal displacements and xel the nodal electrical potentials. Mm and Km
denote the mechanical mass and stiffness matrices, respectively. Kel is the dielectric matrix
and Km,el describes the piezoelectric coupling. The input u acts on the system via the input
vector b and C gathers the user-defined outputs of the system y. Finally, D = αM + βK
defines the Rayleigh damping for the system.

2.2. Folded-Beam Resonator

The folded-beam design was introduced in [13]. Its geometry equals two cascading
simple beam harvesters, with the second beam folded toward the fixed end of the first
beam instead of further extending it. The initially proposed design is shown in Figure 1.



Micromachines 2023, 14, 332 4 of 14

Piezo

Piezo

MM Piezo

Figure 1. Folded-beam design introduced in [13]. The geometry is shown on the left. It is composed
of a steel structure (gray), two tip masses (black), and three piezoelectric patches (mustard). The first
two mode shapes of the structure are shown on the right.

The design can be fabricated from a single sheet of steel. It includes piezoelectric films
on both cantilever beams and permanent magnets at their free ends. These magnets can be
used for bi-directional frequency tuning via external magnetic forces, which is, however,
out of the scope of the current work. The folded-beam geometry is designed to have two
fundamental modes, corresponding to the two respective beams, at specific frequencies in
the range of from 50 Hz to 100 Hz.

3. Topology Optimization Procedure

In general, a TO problem is defined as follows:

min
ρ

g(ρ) (4)

subject to:

Σ :

{
M(ρ)ẍ + D(ρ)ẋ + K(ρ)x = bu
y = Cx

(5)

n

∑
e=1

ρeVe −V∗ ≤ 0, (ρ = [ρe]e∈[1,n], V∗ = αV0), (6)

0 ≤ ρe ≤ 1, (7)

where the design parameter ρ is a vector containing all the elemental pseudo-densities
ρe ∈ [0, 1]. g is the objective function and Σ is the dynamical system resulting from finite
element discretization introduced in (3). The (6) introduces a volume constraint for the
optimization. The density-dependent system matrices are provided by the classical simple
isotropic material model with penalization (SIMP model):

M(ρ) =
n

∑
e=1

ρe Me, K(ρ) =
n

∑
e=1

ρ
p
e Ke, (8)

with Me and Ke, respectively, being the elemental mass and stiffness matrices of a full
finite element.

3.1. Objective Function and Sensitivity Analysis

The main design goal of the folded-beam PEH is to have the two fundamental modes
inside a pre-defined small frequency range. In this way, their response peaks overlap
and allow for efficient energy harvesting over the entire frequency range (cf. Figure 2).
However, the modes are also required to generate similar levels of power output, in order
to realize this usable frequency range, as if one of the modes has a significantly higher
power output, the second mode may not even be observable. These two goals are taken
into account via a combined-objective function that consists of two parts. The first part g1
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is the mean frequency objective function first introduced in [29], which has already been
involved in our previous works [36]. It is defined as:

Figure 2. An ideal case for a frequency range of efficient operation, formed by two overlapping
resonant modes (log scale).

g1 :=
(

1
w1 + w2

[
w1(λ1 − λ1,goal)

2 + w2(λ2 − λ2,goal)
2
]) 1

2
, (9)

where λ1, λ2 and λ1,goal, λ2,goal are the first two eigenvalues of the generalized eigenvalue
problem corresponding to model (3) and their respective target values. Note that each of
the eigenfrequencies of the strucure fi are connected to λi as follows: λi = (2π fi)

2. The
weighting factors w1 and w2 are chosen as 1/λ1,goal and 1/λ2,goal, respectively. This nondi-
mensionlizes the expression and ensures an equal convergence for all eigenvalues [29]. The
second part of the objective function g2 represents the relative difference of the electrical
energy of the structure at both resonant modes pel,1 and pel,2, i.e.:

g2 :=
(

2(pel,1 − pel,2)

pel,1 + pel,2

)2

. (10)

The dielectric energy of the structure [37,38] can be computed as:

pel,i =
1
2

φT
i,elKelφi,el , (11)

where φi,el contains the electrical degrees of freedom of the i-th eigenvector. The partial
objective functions are combined in a weighted sum:

g = v1g1 + v2g2, (12)

and, analogously, the sensitivity equals the weighted sum of both partial sensitivities:

∂g
∂ρe

= v1
∂g1

∂ρe
+ v2

∂g2

∂ρe
. (13)

The weighting factors v1 and v2 are chosen such that both sensitivities are in the same
order of magnitude. The partial sensitivities can be computed as:

∂g1

∂ρe
=

1
(w1 + w2)g1

[
w1(λ1 − λ1,goal)

∂λ1

∂ρe
+ w2(λ2 − λ2,goal)

∂λ2

∂ρe

]
(14)
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for the first part, where ∂λi
∂ρe

is obtained by (cf. Appendix A):

∂λi
∂ρe

= φT
i,e

(
∂Ke

∂ρe
− λi

∂Me

∂ρe

)
φi,e. (15)

The second part of the sensitivity is obtained using the quotient rule:

∂g2

∂ρe
= 8
√

g2

(
∂pel,1
∂ρe
− ∂pel,2

∂ρe

)
(pel,1 + pel,2)− (pel,1 − pel,2)

(
∂pel,1
∂ρe

+
∂pel,2
∂ρe

)
(pel,1 + pel,2)2 , (16)

where ∂pel,i
∂ρe

are, again, computed via the adjoint method (cf. Appendix B):

∂pel,i

∂ρe
= µT

i,m

(
∂Km

∂ρe
− λi

∂Mm

∂ρe

)
φi,m, (17)

and µi,m is the mechanical part of the adjoint state vector that solves the adjoint problem:[
Km − λi Mm Km,el

KT
m,el Kel

][
µi,m
µi,el

]
=

[
0

1
2 Kelφi,el

]
. (18)

3.2. Filters

Having elemental pseudo-density as its design variable, TO suffers from a number
of issues. Firstly, the solution depends on the discretization of the design domain. Finer
meshes often generate thin details that cannot be obtained by coarser meshes and would
therefore converge to a completely different topology. Secondly, TO on a coarse mesh often
converges to designs suffering from the well-known checkerboard problem [39,40]. These
problems can be tackled by applying appropriate filter techniques [24,41], these filters
themselves, however, introduce a third issue. The aforementioned filtering techniques reg-
ularize elemental density based on a weighted average of the elemental density of adjacent
elements and, therefore, introduce blurred, i.e., gray areas with intermediate elemental
densities, which are not manufacturable. We have experienced this issue extensively in our
previous works [30,36]. In order to resolve this issue and to obtain manufacturable designs,
we have implemented a Heaviside filter utilizing the threshold projection suggested in [42].
Figure 3 shows both filters and their effects on the same optimization process.

Checkerboard 
pattern

Non-realizable 
gray areas

Figure 3. Filter techniques in TO. Left: A TO-obtained structure without any filter. Center: Same
optimization with a density filter. Right: Same optimization with both filters active.

To summarize, we have implemented both the density filter and the threshold projec-
tion in our optimization to achieve a manufacturable design. First, we apply a density filter
on the candidate design encoded in ρ, which is suggested by the optimizer. Subsequently,
the density-filtered design ρ̃ is projected onto a pre-defined threshold using the Heaviside
filter, providing us with the final design ˆ̃ρ. Both filters will be introduced in detail in the
following subsections.



Micromachines 2023, 14, 332 7 of 14

3.2.1. Density Filter

Let ρi be the elemental pseudo-density of the i-th element computed by the optimizer.
The density filter replaces this value with ρ̃i by performing a weighted average of its
adjacent elemental densities:

ρ̃i =
∑j∈Ne,i

w(rj)ρj

∑j∈Ne,i
w(rj)

, w(rj) = Rmin − |ri − rj|, (19)

where Ne,i is the set of adjacent elements in the neighborhood of element i and w(r) is the
weight function based on a user-specified filter radius Rmin and the Euclidean distance
between the elements i and j (ri, rj denotes the coordinates of the center point of the
respective element).

Accordingly, the sensitivity of the density filter (19) with reference to the design
variable is provided by:

∂ρ̃i
∂ρj

=
w(rj)

∑j∈Ne,i
w(rj)

. (20)

Equation (20) needs to be added to the sensitivity of the goal function according to the
chain rule.

3.2.2. Threshold Projection

The threshold projection sets all the density values above a user-defined threshold to 1
and all the values below this threshold to 0. There are several versions of this filter. In [42],
the filter is constructed as follows:

ˆ̃ρe =
tanh(βη) + tanh(β(ρ̃e − η))

tanh(βη) + tanh(β(1− η))
, (21)

where η is the projection threshold and β is a projection parameter tuning the ”sharpness”
of the projection (cf. Figure 4).

Figure 4. Threshold projection (21) for threshold η = 0.7 and different β values.

The corresponding elemental correction term for the sensitivity is provided by:

∂ ˆ̃ρe

∂ρ̃e
=

1
β cosh2(β(ρ̃e − η))[tanh(βη) + tanh(β(1− η))]

. (22)

4. Optimization Results

The optimization is initialized with a design space that measures 80× 78 mm2. The
design space is discretized with 1× 1× 1 mm3 linear cubic finite elements. From this
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design space, we exclude regions reserved for the application of commercially available
piezoelectric patches as well as pre-defined gaps between the inner and outer beam, as
well as between the inner beam and the fixed end. Figure 5 depicts the setting for the
optimization. The design space is marked light gray. Both masses (M) are modeled as
point masses, as we found this approximation to be sufficiently accurate for our application.
Finally, the piezoelectric patches are modeled as a secondary layer on top of the design space
using the material parameters provided in [43]. The material parameters are presented in
Table 1.

Piezo

Piezo

MM Piezo

Design Space

A
ir

 G
ap

80

7
8

Figure 5. Design space of the problem. The areas beneath the piezo (-electric) patches and the masses
M are excluded from the design space.

Table 1. Mechanical properties of commercial MFC piezoelectric patches [43].

Density (kg/m3) Piezoelectric Constants (C/m2)

ρ 4700 e31 −2.227

Young’s Modulus (GPa) e32 −0.671

E1 45.21 e33 16.665
E2 12.39 e24 0.0258
E3 40.44 e15 13.668

Shear Modulus (GPa) Dielectric Relative Constants

G12 6.03 εT
11/ε0 1574.8

G23 6.68 εT
22/ε0 24.7

G31 17.01 εT
33/ε0 1528.7

Poisson’s Ratio

ν12 0.39
ν23 0.17
ν13 0.44

For this contribution, the target values for the structure’s resonant frequencies are set
to f1 = 74 Hz and f2 = 76 Hz. Furthermore, the penalty factor is set to p = 2 and the
volume fraction to α = 0.7. At the beginning of the optimization, β = 1 and this parameter
is subsequently increased during optimization until β = 8. The optimization is stopped
either if the maximum change of elemental density is less than 1% or when the number
of iterations reaches 100. The resulting geometry is presented in Figure 6. The structure’s
resonant frequencies are f1 = 73.59 Hz and f2 = 74.48 Hz. The relative difference in
dielectric energy between these resonant modes is

√
g2 = 15.03%.
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Figure 6. Optimized geometry. The gray level indicates the value of ρe for each element.

To achieve a manufacturable design, the final geometry is cut-off at ρe = α (volume
fraction), i.e., elements with ρe > α are considered full and those with ρe ≤ α are considered
void. The boundary of the geometry is smoothed as the final step of this conversion. Figure 7
shows the mode shapes of the first two resonant modes of the structure after conversion.
They value at f1 = 74.573 Hz and f2 = 79.054 Hz, respectively. The corresponding open-
circuit voltage and maximum power outputs are presented in Figures 8 and 9. For the
computation of the electrical power output, we assumed optimally matched load resistances
at each frequency. Note that both outer patches are connected in parallel.

Figure 7. Mode shapes of the first two resonant modes of the optimal structure after the conversion
to a manufacturable design value at f1 = 74.573 Hz and f2 = 79.054 Hz.

Figure 8. Open- circuit voltage output of the structure obtained through harmonic analysis. The
structure is excited with 0.2 g at its fixed end. The damping is set to 0.008.
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Figure 9. Maximum power output of the structure at optimal load value computed from values
presented in Figure 8. Both outer patches are connected in parallel. The total power output is
computed as the sum of both patches.

5. Discussion

As presented in Section 4, the intended objectives are not achieved by the optimization.
This is to be expected, as the optimization result can only partially fulfill both objective
contributions (g1 and g2). Furthermore, we observe a change in the resonant frequency f2
after deriving a manufacturable geometry from the optimization result. However, both
values are still acceptable for our intended application.

After analyzing the power output of the manufacturable geometry using a harmonic
analysis (Figure 9), we observe a bigger relative difference in the power amplitudes at the
two resonant frequencies compared to the optimization process. During the optimization,
the structure’s dielectric energy has been used as a power potential indicator (as imple-
mented in g2). After optimization, the relative difference of the dielectric energy

√
g2 at

both resonant frequencies was minimized to 15%, whereas the relative difference in the
power output values to 124%. There are several factors contributing to this discrepancy.
Firstly, we use the eigenvectors for the evaluation of the dielectric energy of the system in
(11). This is computationally efficient, as the mode shapes, i.e., the eigenvectors, are directly
obtained during the computation of the resonant frequencies. By definition, the nodal
displacements and potentials in the eigenvectors represent the mode shape and cannot
be evaluated quantitatively. Hence, proper scaling of the eigenvectors would improve
the accuracy of the indicator. Such an improvement can be implemented by a harmonic
analysis within the optimization loop, which motivates the following discussion.

Our experimental observations revealed that the damping of a multi-resonant structure
is mode-specific and generally dependent on frequency. It was not possible to determine
a single damping ratio, which applies to the whole frequency range under investigation.
Common practice is to adjust the damping model, such that the simulation results match
the experimental findings. Due to the unavailability of a reliable extent of damping, we
have to state that the additional computational effort for the calculating power output from
a harmonic analysis is of limited use. Thereby, we favored the use of dielectric energies as
obtained from the eigenvectors for power estimation. Only experimental characterization
can provide mode-specific damping information and resulting power output.

6. Conclusions and Outlook

In this work, we performed a TO of a multi-resonant PEH. For the optimization, we
proposed a novel combined-objective function with the following requirements: (1) the
final structure should have its first two resonant frequencies at f1 = 74 Hz and f2 = 76 Hz
and (2) the relative difference in the power output value corresponding to the two modes
should be minimal. To obtain a manufacturable design, a regularization filter for the



Micromachines 2023, 14, 332 11 of 14

elemental material density has been implemented. The optimization has converged to a
promising structure that fulfills the requirements. In post-processing, the optimal result is
converted into a manufacturable geometry. The subsequent finite element simulation of this
manufacturable design shows satisfactory results for the structure’s resonant frequencies.
The corresponding power output amplitudes can be improved. However, these values
may not be a true representation of the device’s real-world performance as, in the course
of simulations, constant damping was assumed. This assumption is not realistic but is
a common practice, since accurate frequency-dependent damping models can only be
obtained experimentally. Therefore, only an experimental characterization can determine
the actual power output level of the device.

As a next step, we will fabricate the optimized design obtained from this work and
perform experimental characterizations for further validation of the design approach. Fur-
thermore, we will implement a harmonic analysis of the power output values within the op-
timization loop for a more accurate estimation of the output power. The additional compu-
tational effort will be minimized by the state-of-the-art model order-reduction techniques.
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Appendix A

The generalized eigenvalue of a Matrix pencil (K, M) is defined by:

Kφi = λi Mφi ⇐⇒ (K− λi M)φi = 0. (A1)

Therefore, the derivative w.r.t to ρe can be computed by:

∂(K− λi M)

∂ρe
φi + (K− λi M)

∂φi
∂ρe

= 0. (A2)

By multiplying with φT
i from the left, we can eliminate the second part of the equation:

φT
i

∂(K− λi M)

∂ρe
φi = 0 (A3)

φT
i

∂K
∂ρe

φi − φT
i

∂λi
∂ρe

Mφi − φT
i λi

∂M
∂ρe

φi = 0. (A4)

As φT
i Mφi = 1 by normalization, it follows:

∂λi
∂ρe

= φT
i,e

(
∂Ke

∂ρe
− λi

∂Me

∂ρe

)
φi,e. (A5)
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Appendix B

The derivative of pel can be computed as:

∂pel
∂ρe

=
∂

∂ρe

1
2

φT
elKelφel =

1
2

(
φT

elKel
∂φel
∂ρe

+
1
2

φT
el

∂Kel
∂ρe

φel

)
. (A6)

∂Kel
∂ρe

= 0 since dielectric properties do not change with the change of design space. ∂φel
∂ρe

can be computed using the adjoint method. The harmonic equilibrium equation from the
System (3) for an arbitrary excitation frequency f reads:[

Km − λMm Km,el
KT

m,el Kel

]
︸ ︷︷ ︸

=:K̄

[
φm
φel

]
︸ ︷︷ ︸
=:φ

=

[
Bu
0

]
, (A7)

with λ = (2π f )2. Its derivative w.r.t ρe is provided by:

∂K̄
∂ρe

φ + K̄
∂φ

∂ρe
= 0 ⇐⇒ ∂φ

∂ρe
= K̄−1 ∂K̄

∂ρe
φ. (A8)

Now, let [µm, µel ]
T solve the following adjoint system:

K̄
[

µm
µel

]
︸ ︷︷ ︸

µ

=

[
0

1
2 Kelφel

]
. (A9)

Combining (A8) with (A9) and using the symmetry of K̄, (A6) can be rewritten as:

∂pel
∂ρe

= µT ∂K̄
∂ρe

φ (A10)

From here, only:
∂pel
∂ρe

= µT
e

(
∂Ke

∂ρe
− λ

∂Me

∂ρe

)
φe (A11)

remains, as the piezoelectric properties stored Km,el is also independent from ρe and µel,e = 0
and φel,e = 0 for all the design space elements (steel structure).
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