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Abstract—Documenting software architecture is important for
a system’s success. Software architecture documentation (SAD)
makes information about the system available and eases com-
prehensibility. There are different forms of SADs like natural
language texts and formal models with different benefits and dif-
ferent purposes. However, there can be inconsistent information
in different SADs for the same system. Inconsistent documenta-
tion then can cause flaws in development and maintenance. To
tackle this, we present an approach for inconsistency detection in
natural language SAD and formal architecture models. We make
use of traceability link recovery (TLR) and extend an existing
approach. We utilize the results from TLR to detect unmentioned
(i.e., model elements without natural language documentation)
and missing model elements (i.e., described but not modeled
elements). In our evaluation, we measure how the adaptations
on TLR affected its performance. Moreover, we evaluate the
inconsistency detection. We use a benchmark with multiple open
source projects and compare the results with existing and baseline
approaches. For TLR, we achieve an excellent F1-score of 0.81,
significantly outperforming the other approaches by at least 0.24.
Our approach also achieves excellent results (accuracy: 0.93)
for detecting unmentioned model elements and good results for
detecting missing model elements (accuracy: 0.75). These results
also significantly outperform competing baselines. Although we
see room for improvements, the results show that detecting
inconsistencies using TLR is promising.

Index Terms—Inconsistency Detection, Traceability Link Re-
covery, Consistency, Documentation, Software architecture, Soft-
ware engineering

I. INTRODUCTION

A system’s architecture is key for a well-engineered soft-
ware system and improves the development, maintenance,
and evolution of the system [1]. Preserving the knowledge
about the architecture and the underlying design decisions in
a software architecture documentation (SAD) further improves
the benefits of a good software architecture and prevents fast
deterioration [2]. According to a study by Xia et al., developers
spend on average 58% of their time on comprehension [3].
Here, SAD can support developers and reduce some effort.
Therefore, SAD can improve the development and the overall
quality of a system.

However, one problem with SAD is the difficulty to main-
tain consistent documentation. This is due to the several arti-

facts and types of documentation that are used in a project for
different aspects. For example, there are architecture models
and architecture description languages such as the Unified
Modeling Language (UML) [4] and the Palladio Component
Model (PCM) [5] that are used to simulate and evaluate
the system at design time to assess, e.g., quality attributes
(cf. [5]). Another type of SAD is informal natural language
software architecture documentation (NLSAD). Due to their
accessibility, NLSADs are a common choice for documenta-
tion [6]. NLSADs make knowledge about the system explicit
and document design decisions. These different types of SADs
are often created and updated at different times with different
formality and precision [7]. This can cause inconsistencies.

According to a survey by Wohlrab et al. [8], common
inconsistencies include inconsistent specifications, rules and
constraints, patterns and guidelines, and wording in different
artifacts. It is important to note that inconsistencies are not
per se problematic [9]. For each detected inconsistency, de-
velopers can decide to tolerate or fix it. However, undetected
inconsistencies do not allow such decisions and are, therefore,
problematic. All benefits might perish along with important
information when SAD is outdated and inconsistent [10].

In this paper, we propose our Architecture Documentation
Consistency (ArDoCo) approach for inconsistency detection
between NLSADs and software architecture models (SAMs).
We focus on two kinds of inconsistencies: unmentioned model
elements (UMEs) and missing model elements (MMEs). We
explain these in the following.

UMEs are model elements such as components that exist
in the model but are not mentioned within the NLSAD.
Therefore, important information such as responsibilities or
underlying design decisions are not captured. For example,
the Cache component in the example in Figure 1 is not docu-
mented in the NLSAD. Therefore, reasoning and details about
this component like perceived benefits, expected workloads,
planned configurations, or similar are not persisted.

MMEs are inconsistencies that occur when an NLSAD
contains an architectural element that is not part of the model.
In the example in Figure 1, the Common component from the
NLSAD is missing in the model. This can happen, e.g., with
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1) The system adheres to layered architecture.
2) The Facade is the entry point to the service.
3) It passes calls to the user management.
4) The user management then accesses the DB.
5) The Common component contains utility functionality.

Figure 1. Example architecture model and natural language documentation

prescriptive texts when something is not yet implemented in
the model. In other cases, this can be a sign for outdated
documentation, e.g., after refactorings.

To the best of our knowledge, detecting these kinds of
inconsistencies in NLSADs and SAMs has not been tackled
yet. However, based on the previous arguments, we see the
need for an approach to make these inconsistencies known
to developers. Our proposed approach ArDoCo locates and
reports these inconsistencies and lets the user decide on
ignoring, tolerating, or resolving them. The main idea is to
leverage traceability link recovery (TLR) for this. TLR is
generally used to create links between different artifacts, e.g.,
between requirements and their implementations. In our case,
we look at trace links between NLSAD and SAMs. The
presence of trace links shows the existence of a mutual element
in both artifacts. Absent trace links can indicate inconsistencies
regarding UMEs and MMEs. To do so, we build upon previous
work for TLR for NLSAD named SoftWare Architecture Text
Trace link Recovery (SWATTR) [11] that uses a combination
of natural language processing (NLP), natural language un-
derstanding, and information retrieval. While SWATTR shows
good results, one of its problems is not regarding phrases
(cf. constituency parsing [12]) extensively. Therefore, we first
improve TLR by adding new heuristics and by modifying
existing ones to overcome this weakness. Second, we add
additional processing steps to detect inconsistencies utilizing
the output of SWATTR, i.e., the found trace links as well as
intermediate results. For intermediate results, we use, among
others, the capability of SWATTR to identify named elements
in the text that should be represented in the model.

Overall, we have the following research questions:

RQ1 To what extent do changes to the previous approach
SWATTR improve the performance for TLR?

RQ2 How does the approach perform for detecting un-
mentioned model elements (UMEs)?

RQ3 How well does the approach detect missing model

elements (MMEs)?
Our main contributions with this paper are:
• We extend previous work for TLR, SWATTR [11], and

add capabilities to identify inconsistencies between archi-
tecture models and NLSAD.

• We present a novel approach (ArDoCo) to identify in-
consistencies regarding unmentioned and missing model
elements and evaluate the approach’s capabilities.

• We provide a replication package that includes the code,
baselines, our evaluation data, and results [13].

The remainder of the paper is structured as follows: In
Section II, we take a look at related work and identify the
research gap. In Section III, we outline the previous approach
SWATTR. Section IV then introduces ArDoCo, our approach
for inconsistency detection to detect unmentioned and missing
model elements, including our changes to SWATTR. We
evaluate the approach in Section V before we discuss the
approach and the threats to validity in Section VI. Lastly, we
conclude our paper in Section VII.

II. RELATED WORK

In this section, we give an overview of related work in the
domain of inconsistency and its detection. There are many
approaches and methods to avoid inconsistencies, for instance,
by notifying users about changes on different artifacts [14].
In this section, however, we focus on approaches that detect
already occurred inconsistencies between text and models.

A major area of current inconsistency detection research is
between API or code documentation and implementation. The
detection methods include machine learning [15], [16], static
analyses [17], [18], dynamic analyses [19], and trace link-
ing [20]. Many approaches, however, focus on pre-structured
text. Mostly unrestricted textual natural language input is used
by Kim and Kim [21] to detect inconsistent identifiers in
API documentation and code. For their analyses, they define
several kinds of inconsistencies and use NLP techniques to
detect them. They collect code identifiers from trusted API
documentations to map part of speech tags and synonyms to
idioms, domain, and abbreviated words. Like many similar
approaches, this work exploits the proximity of the text to the
model. Moreover, expressions in API documentation seem to
be more uniform than in NLSAD.

Another major area of inconsistency detection in software
engineering deals with requirements. There are approaches on
consistency between diagrams [22], between requirements and
design specifications [23], or within textual requirements [24].
Fantechi and Spinicci [25] propose an approach for incon-
sistency detection between several textual requirements or
UML class diagrams. They use part of speech tags to identify
subject-action-object triples in the text. Similar occurrences
of these subject-action-object triads indicate the possibility
of an inconsistency. More precisely defined inconsistency
can be found in the work of Kamalrudin et al. [26]. They
support managing textual requirements and their consistency
to essential use case models [26]. They use pattern matching



to extract interactions from textual requirements and trace
them to essential use case elements. An inconsistency is
detected if a phrase or element cannot be traced or has
changed. The biggest differences between their approach and
our approach is the type of the given SAD. Requirements are
often stricter than documentation and many rules exist on how
to write requirements, making them more formal. In some
cases, requirements are even expressed in formal models [27].
Processing these inputs differs from our case with unrestricted,
informal NLSAD. Moreover, the abstraction level between
requirements and essential use case models differs from our
case, making it hard to directly compare the approaches.

Inconsistency detection on architectural level is a small
research area. There are approaches for inconsistency detection
between automatically generated architectural decisions and
component-and-connector models [28], between component-
and-connector models and behavioral models [29], and be-
tween software specifications and implementations via ar-
chitectural models [30]. These works, however, often use
structured input instead of unrestricted natural language texts.
During their processing, texts are regularly formalized to ease
comparability. Our goal is the detection of inconsistencies
between unrestricted NLSAD and SAMs. Such an approach
does not yet, to the best of our knowledge, exist.

Overall, there is a number of previous work that deals
with some form of inconsistency detection. However, there
are few to none looking at SAM or NLSAD. Thus, we see a
research gap for inconsistency detection in NLSAD, especially
for unmentioned model elements and missing model elements.

III. BACKGROUND: SWATTR

Our inconsistency detection is based on TLR, specifically
on SWATTR [11]. SWATTR is an extendable agent-based
(i.e., heuristic-based) pipeline that takes NLSAD and several
kinds of SAMs as input. The TLR pipeline of SWATTR is
shown on the left side in Figure 2. There are four major
processing steps, namely model extraction, text extraction,
element identification, and element connection.

The model extraction loads model elements of a SAM into
a uniform, internal representation.

In the text processing part of the pipeline, the NLSAD is
first preprocessed with common NLP techniques like part-
of-speech tagging, sentence splitting, lemmatizing, and de-
pendency parsing. Based on the preprocessed text, the text
extraction searches for names and types of possible model
elements with different heuristics and agents (cf. [11] for
details). Mentions of similar names or types are clustered and
get a confidence value capturing the average rating of the
agents for the mention being a name or a type. Thereby, in
the example in Figure 1, both occurrences of user management
would have been clustered together and treated as one mention.
Since this step is part of the textual pipeline, it does not rely
on any model knowledge.

In contrast, the element identification step combines textual
and metamodel information. It uses information on existing el-
ement types from the metamodel (i.e., Component or Interface

in UML component models) to adapt the confidence of type
mentions found in text based on actual model element types.
Thereby in the example in Figure 1, it would become clear
that Common component would probably be a name-type-
combination as component is a type defined in the metamodel.
The element identification step returns such combinations as a
list of identified recommended instances (RIs). Like mentions,
RIs have a confidence that represent their assumed plausibility.
The confidence of an RI is combined from the confidence
of the contained mentions and the rating of the agents that
advocate in favor of the RI.

In the last step, the element connection, SWATTR creates
trace links by linking RIs to model elements using word
similarity metrics, namely normalized Levenshtein distance
(cf. [31], [32]) and the Jaro-Winkler similarity (cf. [33]). Re-
lations between model elements are currently not considered
by SWATTR.

IV. APPROACH

As described in Section I, we build ArDoCo on a TLR
approach, as this has some advantages. First, users that are
interested in links between artifacts could also be interested in
inconsistencies between them. One such example is estimating
consequences of changing one artifact. Second and more
important for us, an approach for inconsistency detection can
reuse knowledge gained during TLR. Thus, our approach con-
sists of two main processing steps, traceability link recovery
and inconsistency detection, as shown in Figure 2.

For TLR, we use and adapt SWATTR [11] (cf. Section III).
A benefit of SWATTR compared to other TLR approaches is
that suggested model elements (RIs) can be created without
any knowledge on the instantiated model. Thereby, RIs can
be reused to identify mentioned model elements whose types
are not contained in the model (e.g., MMEs). The found RIs
are then linked to instances of the model and, thereby, the
trace links are created. The inconsistency detection uses then
both, RIs as intermediate results and trace links as final results
of SWATTR, to locate and report inconsistent specifications
(cf. [8]) in form of UMEs and MMEs. The absence of trace
links for model elements corresponds to model elements that
could not be found in the text is an indication for UMEs.
Absent trace links for identified RIs indicate MMEs, because
mentioned elements could not be found in the model. The
found inconsistencies, along with existing trace links, are
presented to the user to decide on their treatment.

A. Improvements to SWATTR

As the quality of our results heavily depends on the quality
of the RIs and trace links of SWATTR [11], we made several
adaptations to improve results. A problem with SWATTR is
the rather simple handling of compound nouns that leads to
inaccurate results. We thus introduce the concept of phrases
(cf. [12]) and adapt heuristics to consider whether possible
names and types for an RI are in the same (noun) phrase.
Moreover, the previous version often recommends the software
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Figure 2. Overview of the approach for inconsistency detection, based on SWATTR [11]

project’s name that is irrelevant for both TLR and inconsis-
tency detection. Thus, we ignore its mention.

Further improvements on SWATTR includes a refactoring
of the similarity calculation. The approach now has a flexible,
extensible design to calculate similarity using various word
similarity metrics. These metrics that can be used out-of-
the-box, including string-based, knowledge-based, and vector-
based approaches, as well as combinations of these ap-
proaches. For this paper, we use a combination of normalized
Levenshtein distance and Jaro-Winkler (cf. Section III).

We evaluate and compare both versions of SWATTR in
Section V-D.

B. Unmentioned Model Elements

As described earlier, we conclude that absent trace links
indicate UMEs. Unmentioned Model Elements are model
elements that are not mentioned in NLSAD. One example in
Figure 1 is the Cache component that cannot be linked to any
sentence of the NLSAD. We translate this into the necessity
of each model element to have at least one trace link. Thus,
we base on the assumption that each model element has at
least one mention in the text.

To detect UMEs between NLSAD and SAM, we first count
the number of found trace links for each model element.
If there are no trace links for a certain model element, the
approach reports an UME, including additional information,
like its name and type.

The approach allows to configure the minimum number of
needed mentions (i.e., trace links) to increase the required
amount of documentation that is needed for each model
element. The detector then compares the number of trace links
with the set threshold limit.

To add flexibility to the detection, there are further configu-
ration options. First, users can configure preferred types from
the metamodel. Thereby, only UMEs of such typed model
elements (e.g., components) are investigated. Per default, we
look at Components for UML and at BasicComponents and
CompositeComponents for PCM (cf. [5]). Second, it is possible
to whitelist elements that users do not want to be reported
as inconsistent. For this, we support regular expression-based
whitelisting. This can be handy when the user, for example,

wants to ignore inconsistencies about model elements with
certain prefixes or suffixes. At the same time, a user still can
provide exact names.

C. Missing Model Elements

To detect MMEs, we utilize RIs that are found in text during
the processing of SWATTR. RIs represent elements in text that
should also be elements in the model. Therefore, if RIs are not
traced to the model (M), i.e., to at least one model element
m ∈ M, there are possible inconsistencies regarding MMEs.
Formally speaking, we can define it as follows:

TLs ⊆ {(r,m) | r ∈ RIs,m ∈ M}
MMEs = {ri | ri ∈ RIs ∧ ∄(ri,m) ∈ TLs}

A problem lies in the general paradigm of SWATTR to
not discard possible solutions too early to increase the overall
recall [11]. For TLR, this is a valid strategy as the final linking
step effectively filters RIs that cannot be linked. For detecting
MMEs, this paradigm results in having a high number of
unconnected RIs. We are looking at those unconnected RIs,
including those that actually are no model elements (or very
unlikely). While this allows us to achieve high recall, the
precision of the approach can be quite low. Therefore, we
include a filter step (cf. Figure 2) to reduce RIs and increase
precision. We use different heuristics for filtering: a threshold
filter, an occurrence filter, and a filter for unwanted words. The
approach uses these filters consecutively in the above order.

The filters that we explain in the following have different
configuration settings. We report default values for these
settings that are based on thorough considerations and pre-
studies. The user can update settings to fine-tune the approach
to their use case, though.

The threshold filter looks at the confidence value of each
RI. We use this value to filter out RIs with low confidence of
being a model element, based on the heuristics (cf. Section III).
However, setting the exact threshold value for a confidence
value is hard and often project-dependent. To circumvent this,
the filter creates dynamic threshold values based on the highest
confidence value. The dynamic threshold is determined by
figuring out the highest confidence value and multiplying it



with a (downsizing) factor. Based on pre-studies, we set the
default factor to 0.7.

We additionally enhance the threshold filter by looking
at the details within a RI regarding its name and type (cf.
Section III). The idea is to sort out RIs that do not have
a convincing confidence regarding their name or type. The
approach determines the highest confidences for the name and
type of an RI and compares them to threshold values. In the
more common case, the RI needs decent confidence values
(default: >0.3) for both name and type. In the other case, the
RI needs a really high confidence (default: >0.8) for either
a name or type. In the latter case, we assume that the RI
corresponds to a model element. The threshold values for both
cases are independent of the previous dynamic threshold value.

The occurrence filter removes RIs that seldom appear in
text. The underlying assumption is that less frequent RIs are
also less important. Thus, they are less likely elements that
should be reflected in the model. Therefore, the approach
filters all RIs that appear less than a set value, with a default
value of two appearances.

Lastly, the filter for unwanted words looks at RIs that consist
of undesired words. Often these words include certain names
that are used to reference, for example, common computer
science entities or terms from domain language. Since such
words appear similar to actual model elements within the text,
they are hard to distinguish. Therefore, we propose blacklists
to filter such project- and domain-specific vocabulary. Accord-
ingly, the approach uses two blacklists: a general blacklist and
a domain-specific one.

The general blacklist contains terms that are commonly
used in software engineering. These terms regularly appear
in NLSAD and are similar to named model elements but are
seldom used as such. Among others, the general blacklist
contains programming languages (e.g., “Java”), technologies
(e.g., “servlet”), and common abbreviations (e.g., “CPU”).

The project-specific blacklist allows users to set words
that are commonly used within their domain and that should
not represent model elements. This concerns, for example,
certain technologies and tools that are used by the project,
like MongoDB, Kafka, or WebRTC. Adding few words can
drastically improve the performance of our tool.

In Section V-E2, we look into detail how these blacklists
affect the outcome. Using such blacklists is an easy way to
deal with this complex problem and improve results. However,
blacklists have to be created and maintained manually. We
argue that the extent of these lists as well as the effort to
create them is reasonable. Users do not need to create project-
specific blacklists, but can reduce the number of occurring
false positives to improve the helpfulness of our approach. In
future work, we plan to improve semantic analyses to omit the
need for such blacklists as much as possible.

After discarding RIs based on these filters, the remaining
RIs are then reported as inconsistencies. Although the ap-
proach detects these inconsistencies on a word or phrase level
within a sentence, the reports of each sentence are collectively
presented to the user. In our view, this makes it easier for the

user to grasp the context. Further, this eases comparisons with
competing or baseline approaches (cf. Section V-A).

V. EVALUATION

In this section, we evaluate our approach for TLR and
inconsistency detection to answer our research questions (cf.
Section I). We use the Goal Question Metric approach [34]
to structure the evaluation and assess the performance of our
approach in different evaluations.

The first goal (G1) is to link sentences that mention a certain
model element to the corresponding model element (TLR).
This goal can be answered with RQ1 about measuring the
effects of our changes in SWATTR.

The second goal (G2) and third goal (G3) deal with incon-
sistency detection. G2 is about finding model elements that
are not described in text. This goal leads to RQ2 about the
performance of detecting UMEs. G3 is about finding expected
model elements in text that are missing in the model. This goal
is answered with RQ3 about our capabilities to detect MMEs.
Moreover, an additional question is how the different blacklists
affect its performance.

We answer our research questions using different metrics:
precision, recall, F1-score, accuracy, specificity, and Φ. We
introduce these metrics in Section V-C.

Parts of the evaluation are aligned with the evaluation of
the previous approach. The structure of this section is as
follows: Section V-A introduces baseline approaches for TLR
and inconsistency detection. In Section V-B, we present the
used dataset before introducing our metrics in Section V-C. We
then compare the results of the TLR approach with previous
work (SWATTR) and a baseline approach in Section V-D.
Lastly, we evaluate our results for inconsistency detection in
Section V-E.

A. Baseline Approaches

To be able to set the evaluation results into perspective,
we need comparative approaches. For TLR, we can compare
our adaptations with the previous version of SWATTR [11].
We previously showed that SWATTR outperforms other TLR
approaches that were adapted to work with NLSADs and
SAMs [11]. Apart from that, there are, to the best of our
knowledge, no approaches that look directly into the same
problem. In this section, we introduce baseline approaches
for the given problems. These approaches represent basic
solutions that are based on certain assumptions about their
respective problems. Unfortunately, there is no baseline for
detecting UMEs.

1) Traceability Link Recovery: The baseline approach for
TLR uses the assumption that elements that should be linked
have equal or really similar naming. This assumption is
generally used for Information Retrieval approaches. Thus, the
baseline approach employs common techniques from Informa-
tion Retrieval: n-grams and word similarity techniques.

We extract n-grams, specifically unigrams, bigrams, and
trigrams, for the words of each sentence and for the words in
each model element. The approach then compares the n-grams



from the text with the n-grams from the model. The com-
parison ignores casing and uses the normalized Levenshtein
distance as defined by Charlet and Demnati [32] to determine
the similarity of n-grams. If the similarity of two n-grams
exceeds a given threshold, we create a trace link between the
sentence and the model element the n-grams belong to. Based
on empirical evidence while optimizing on F1-score, we use
a threshold of 0.9. This threshold leads to precise results and
reasonable recall. Reducing the threshold increases the recall
slightly but is demanding towards precision.

2) Detecting Missing Model Elements: As there are no
existing approaches for detecting MMEs, the goal of the
baseline is to present a lower boundary.

The baseline approach is based on the assumption that each
sentence in the textual documentation is related to a model
element. We base the assumption on the foundational idea
that there are no wasteful sentences in NLSAD. Thus, each
sentence should have at least one associated trace link. Using
this assumption, the baseline approach detects sentences that
have no trace links. For these sentences, the approach reports
that there are inconsistencies regarding MMEs.

The challenging part of this task is the detection of meaning-
ful sentences w.r.t. the model. There are sentences that describe
architectural properties that cannot be represented with the
model. Examples include design rules or technological deci-
sions (cf. [35], [36]) or sentences that add further explanation,
set the scope, or similar. The first sentence in the running
example in Figure 1 is an example for this. Additionally, the
assumption disregards that one single sentence can mention
multiple model elements. If one of these elements is actually
missing in the model, the baseline approach does not detect
the inconsistency.

The mentioned special cases are usually present in few
sentences. Overall, we expect the baseline approach to achieve
good recall and, thus, this baseline serves as good lower bound
for the evaluation. The different results between the baseline
and our approach show the capabilities of our approach in this
regard. We further discuss assumptions in Section VI.

B. Case Studies

For the evaluation, we use case studies of a benchmark
dataset [37] already used in previous work [11]. This bench-
mark is created for TLR between NLSAD and SAM (cf. [37]).
It consists of NLSADs and SAMs of several open source
software projects and provides gold standards for each project.
The gold standards define the expected trace links between a
sentence in NLSAD and specific elements in an SAM.

The benchmark’s initial dataset consists of three open
source software projects MediaStore (MS), TeaStore (TS), and
TEAMMATES (TM). We additionally extend the dataset by
adding the projects JabRef (JR) and BigBlueButton (BBB) to
improve validity towards generalizability. BigBlueButton is a
web conferencing system that contains different programming
languages and different technologies. JabRef is a bibliography
manager written in Java that is, alongside TEAMMATES,

Table I
PROJECTS FOR EVALUATION, BASED ON [37]

Project Language (kLOC) Forks Contributors

MediaStore (MS) Java(4) — —
TeaStore (TS) Java(12) 0.1k ≈ 15
TEAMMATES (TM) Java(91), TypeScript(54) 2.6k ≈ 500
BigBlueButton (BBB) JavaScript(69), JSX(47),

Scala(22), Java(21)
5.8k ≈ 180

JabRef (JR) Java(157) 2.0k ≈ 490

widely used as case study in the software architecture com-
munity (cf. [38]–[40]).

We also extend this benchmark with alternative versions
of NLSADs and the corresponding gold standards, where
possible. These NLSADs have been taken from the past
(historical) versions of the respective projects. This way, we
intend to gain more insights into software evolution scenarios.

On the model side, we use the same models as in pre-
vious work (cf. [11]). For JabRef, we create models based
on existing ones within the software architecture community
(cf. [38]–[40]). For BigBlueButton, we manually reflect their
architecture in both a PCM and UML model based on the code
and an architecture overview figure in their NLSAD.

In Section VI, we discuss the creation of the gold standards
and reflect on threats to validity.

Table I shows an overview of the projects used for eval-
uation. The table shows characteristics of the projects like
the primarily used programming languages with lines of code
(LOC), the number of forks, and the number of contributors.
The projects have different characteristics like size or program-
ming language. Moreover, TM and JR have a considerably
higher number of contributors that can benefit from consistent
documentation.

C. Metrics

For our evaluation, we use the metrics Precision (P), Recall
(R), F1-score (F1), and Accuracy (Acc) that are commonly
used in TLR and similar research areas (cf. [41], [42]). Apart
from these standard metrics, we also look at Specificity (Spec)
and the Φ coefficient.

With Specificity (Spec), the true negative rate. we assess
the probability of not falsely reporting something as trace link
or inconsistency:

Specificity =
TN

TN+FP

With the Φ coefficient [43], also known as Matthews cor-
relation coefficient [44], we measure how the results correlate
with the expected values. This allows us to quantify how well
an approach differs from chance. This metric is often used in
machine learning and is seen as superior to accuracy, F1-score,
and similar metrics [45], [46]. Other than previous metrics that
have values ranging between 0 and 1, the values of Φ range
between -1 and +1. A Φ of +1 shows perfect correlation, -1
shows total disagreement. Random predictions achieve a value
of 0. It needs to be noted that Φ usually does not achieve



values of +1 or -1. At the same time, a value that is not equal
to +1 or -1 does not directly state how similar it is to random
guessing [46]. To deal with this, we use the common trick to
normalize Φ with the help of its maximum achievable value,
Φmax [47], [48]. This normalization then shows the relation to
random guessing. In the following, the formulas for calculating
Φ, Φmax and the normalized version ΦN are presented:

P1 = TP+FP Q1 = TN+FN

P2 = TP+FN Q2 = TN+FP

R1 =
√
P1Q2 R2 =

√
P2Q1

Φ =
TP ∗TN−FP ∗FN√

P1P2Q1Q2

Φmax =

{
R1/R2 if P2 ≥ P1

R2/R1 otherwise

ΦN = Φ/Φmax

In addition to the results per project, we provide the macro
average (Avg.) as well as a weighted average (w. Avg.) for
every metric. We weight each project’s result by the number of
expected trace links or the number of expected inconsistencies.
The macro average allows us to summarize the expected
results when applying our approach on a project. The weighted
average instead shows the expected results per trace link or per
inconsistency, i.e., how likely each instance will be detected.

D. Traceability Link Recovery

In this part of evaluation, we want to tackle G1 and RQ1.
To answer RQ1, we compare the results of the approach for
TLR with previous work (SWATTR) as well as the previ-
ously described baseline approach that performs TLR between
NLSAD and SAM. Since previous work shows that SWATTR
outperforms similar approaches [11], we focus on comparing
the current approach with SWATTR and the baseline approach.

To use the metrics from Section V-C, we need to define what
exactly TP, TN, FP, and FN are. We use the same definitions
as in previous work [11]. Trace links consist of two parts, the
sentence number and the model element. We define a TP as
a reported trace link where both parts match to a trace link
in the gold standard. FP are those trace links that are found
but not defined in the gold standard. FN are defined as trace
links that are present in gold standard but are not found by
the TLR approach. Finally, TN denotes all those trace links
that are correctly not reported. We calculate their number by
taking into account that we link a finite set of sentences and a
finite set of model elements. Therefore, we can use the number
of possible combinations of sentences and model elements:
#Sentences × #ModelElements = TP+FP+FN+TN. As
we have TP, FP, and FN, we can calculate TN.

Table II shows the detailed results of the approach for
the different metrics. Additionally, Table III compares the
macro average and weighted average of our approach with
the baseline and the previous work SWATTR.

Table II
DETAILED RESULTS FOR TLR WITH (WEIGHTED) AVERAGE ((W.) AVG.)

RESULTS FOR CURRENT AND HISTORICAL TEXTS AND OVERALL (Σ).

Project P R F1 Acc Spec Φ ΦN

C
ur

re
nt

MS 1.0 .62 .77 .98 1.0 .78 1.0
TS 1.0 .74 .85 .99 1.0 .85 1.0
TM .56 .90 .69 .97 .98 .70 .89
BBB .88 .83 .85 .99 .99 .84 .87
JR .90 1.0 .95 .97 .97 .93 1.0
Avg. .87 .82 .82 .98 .99 .82 .95
w. Avg. .83 .82 .80 .98 .99 .80 .93

H
is

to
ri

ca
l

TS 1.0 .93 .97 1.0 1.0 .96 1.0
TM .52 .70 .60 .97 .98 .59 .68
BBB .81 .62 .70 .98 .99 .70 .80
JR .82 1.0 .90 .97 .96 .89 1.0
Avg. .79 .81 .79 .98 .98 .79 .87
w. Avg. .80 .79 .79 .98 .99 .78 .86

Σ
Avg. .83 .82 .81 .98 .99 .80 .92
w. Avg. .81 .81 .80 .98 .99 .79 .90

Table III
COMPARISON OF THE AVERAGE RESULTS FOR TLR OF OUR APPROACH

WITH SWATTR AND THE BASELINE

Approach P R F1 Acc Spec Φ ΦN

Average
- Baseline .82 .38 .51 .89 .98 .50 .79
- SWATTR .53 .69 .57 .94 .95 .56 .70
- Ours .83 .82 .81 .98 .99 .80 .92

Weighted Avg.
- Baseline .80 .37 .50 .89 .98 .49 .76
- SWATTR .49 .63 .52 .94 .96 .52 .66
- Ours .81 .81 .80 .98 .99 .79 .90

According to the classification scheme of Hayes et al. [41],
the approach achieves excellent results on average for preci-
sion, recall, and F1. We want to emphasize the improvement
of precision compared to the previous work [11]. Additionally,
the recall for the approach is increased compared to SWATTR.
For F1-score, our approach significantly outperforms the other
approaches according to the one-sided Wilcoxon signed-rank
test (α = 0.05). Moreover, specificity and recall are also close
to 1. Good results in these metrics are important as they affect
the inconsistency detection approach. Φ and ΦN also show that
our results closely correlate to the expected results.

To summarize RQ1, the changes on SWATTR lead to
improvements in all metrics. Regarding precision, recall, F1-
score, and ΦN , the changes improve results in each metric
by more than 20 percentage points (pp). Respective accuracy
and specificity, we achieved small improvements of 4 pp. With
an F1-score of 80%, ΦN of 0.90 and accuracy and specificity
around 100%, our approach is performing excellent and is
outperforming SWATTR and the baseline in all metrics.

E. Inconsistency Detection

In this part of evaluation, we address RQ2 and RQ3 by
evaluating our approach w.r.t. G2 and G3. We first focus on
G2, the detection of model elements that are not described



Table IV
DETAILED RESULTS FOR DETECTING UNMENTIONED MODEL ELEMENTS

FOR CURRENT AND HISTORICAL TEXTS AND OVERALL (Σ). E IS THE
NUMBER OF EXPECTED ELEMENTS.

Project E P R F1 Acc Spec Φ ΦN

C
ur

re
nt

MS 4 .67 1.0 .80 .88 .83 .75 1.0
TS 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
BBB 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
JR 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Avg. .92 1.0 .95 .98 .97 .94 1.0
w. Avg. .88 1.0 .93 .95 .94 .91 1.0

H
is

to
ri

ca
l

TS 6 1.0 .83 .91 .91 1.0 .83 1.0
TM 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
BBB 4 .50 .75 .60 .73 .73 .43 .58
JR 3 1.0 .67 .80 .83 1.0 .71 1.0
Avg. .88 .81 .83 .87 .93 .74 .90
w. Avg. .86 .79 .80 .85 .92 .70 .88

Σ
Avg. .90 .91 .89 .93 .95 .84 .95
w. Avg. .87 .88 .86 .90 .93 .79 .93

in the text (UMEs), in Section V-E1. In Section V-E2, we
analyze our approach for G3, the detection of described but
not modeled elements (MMEs).

1) Detecting Unmentioned Model Elements: At first, we
look at the results of the approach w.r.t. identifying missing
textual documentation for model elements.

In order to evaluate the approach, we extend the gold
standard of the benchmark dataset: The UME gold standard
labels model elements as inconsistent that have no trace links
according to the gold standard for TLR. Two persons have
each created a gold standard and discussed their results to
form the final gold standard.

In this setting, we define TP as UMEs that are correctly
identified as such, according to the gold standard. In the
same fashion, TN are all model elements that are correctly
not classified as inconsistent. FP are model elements that are
wrongly reported as UMEs. Similarly, FN are model elements
that are falsely not reported as inconsistent UMEs.

Table IV shows the detailed results of the approach. We
also provide the number of these expected UMEs (E) to give a
better overview of the problem and subsumption of the results.
The table does not contain results for TM as the gold standard
does not contain any UME for it. The approach correctly
reports no inconsistencies for this project. However, some
metrics cannot be applied to such scenarios and, therefore,
we omit this project.

The results in Table IV show that the approach achieves
excellent results and detects nearly all inconsistencies regard-
ing UMEs with high precision for most projects. The only
outlier is historical BBB. In this case, some incorrect and
unidentified trace links that also negatively affect TLR apply
to UMEs. The results rely on good performance for TLR and
are directly affected by it. In cases where our TLR approach
underperforms, inconsistency detection is clearly affected.

Despite the outlier, we get excellent results for detecting
UMEs. In general, the weighted average F1-score achieves
0.86 whereas accuracy, specificity, and ΦN range from 0.90

Table V
DETAILED RESULTS FOR DETECTING MISSING MODEL ELEMENTS FOR

CURRENT AND HISTORICAL TEXTS AND OVERALL (Σ).

Project P R F1 Acc Spec Φ ΦN

C
ur

re
nt

MS .21 .79 .33 .70 .69 .23 .68
TS .96 .70 .79 .96 1.0 .81 .95
TM .18 .76 .28 .85 .85 .29 .71
BBB .89 .46 .43 .96 .99 .54 .65
JR 1.0 .44 .44 .85 1.0 .62 1.0
Avg. .65 .63 .45 .86 .91 .50 .80
w. Avg. .60 .63 .43 .87 .90 .47 .75

H
is

to
ri

ca
l

TS .16 .98 .28 .38 .29 .15 .94
TM .17 .63 .26 .86 .87 .26 .57
BBB .09 .18 .11 .81 .87 .02 .04
JR .22 .11 .15 .57 .78 -.09 -.11
Avg. .16 .48 .20 .66 .70 .09 .36
w. Avg. .14 .47 .19 .71 .74 .11 .36

Σ
Avg. .43 .56 .34 .77 .82 .31 .60
w. Avg. .39 .64 .34 .77 .78 .32 .66

to 0.93. Thereby, we are confident to conclude excellent
performance of our approach for RQ2.

2) Detecting Missing Model Elements: In this last part of
our evaluation, we focus on RQ3. We analyze if we accomplish
G3, the identification of elements in text that should be
modeled but are not part of the SAM, based on RQ3 and the
previously defined metrics. In addition, we tackle the question
of how the blacklists for unwanted words (cf. Section IV-C)
affect the performance.

We use the same projects and benchmark dataset as before.
We simulate missing model elements by removing them from
the model while conserving the text. The trace links defined in
the gold standard then indicate inconsistencies for the removed
model element. Therefore, we can utilize the existing gold
standard and automate the evaluation: We conduct multiple
runs for the inconsistency detection approach. In each run,
we provide a SAM with all model elements except one that is
removed for this run. We repeat runs until each model element
was removed once. For each run, we then assess how well
the approach detected the introduced inconsistency. As we
perform multiple runs for each project, we accumulate the
results of all runs within a project.

In this setting, TP are those inconsistencies that correctly
mark an MME. FP are then those inconsistencies that are
incorrectly reported as MME inconsistency. Consequently, FN
are all sentences that contain an inconsistency but are not
labeled as inconsistent by the approach. Finally, TN are all
sentences that are correctly not marked as inconsistent.

Table V shows the detailed results of the approach with
results for each project. For the results in this table, we use
the common as well as project-specific blacklists. Detailed lists
of these blacklists can be found in the dataset [13]. We do not
use any whitelists for this evaluation.

The results are mixed depending on the project. For some
projects like TS, BBB, or JR, the approach can detect incon-
sistencies with high precision and quite good recall. For most
other projects, precision is rather low compared to recall. Still,



Table VI
INFLUENCE OF FILTERS FOR INCONSISTENCY DETECTION OF MISSING

MODEL ELEMENTS

Approach P R F1 Acc Spec Φ ΦN

Average
- Baseline .09 .58 .15 .39 .37 -.02 .02
- Ours (All Filters) .43 .56 .34 .77 .82 .31 .60
- Ours (Common) .27 .58 .27 .71 .75 .21 .55
- Ours (No Filters) .17 .61 .24 .65 .66 .13 .44

ΦN indicates good results. An average recall of 0.56 shows
that we find more than half of the contained inconsistencies.

When not factoring in the outliers, the recall is even higher.
Outliers for this are historical BBB and JR. For both projects
the difference between the versions are quite big. Additionally,
the documentation consists of a comparably high amount of
noise (i.e., named entities that are not directly related to the
model). The approach has problems differencing noise from
actual model elements. We plan to improve the approach for
such cases in future work.

Table VI contains the average results for the baseline
approach. Comparing the results of our approach to the
baseline, we conclude that our approach outperforms the
baseline in all metrics except recall when applying all filters,
where we achieve similar results. Regarding F1-score, our
approach significantly outperforms the baseline approach in all
settings with a significance level α of 0.05. Our approach has
considerably better results for ΦN . As expected, the baseline
approach achieves high recall but is imprecise.

Table VI additionally compares the results for the different
configurations regarding the blacklists for filtering unwanted
words (cf. Section IV-C). No Filters means that we disable
the unwanted words filter. Common refers to the global
blacklist for unwanted words, containing common software
engineering-related terms. All Filters refers to the combination
of the common blacklist and a project-specific blacklist. For
our case studies, the latter contains on average 10 words,
ranging from 5 to 22 words (median: 7). The exact content of
the blacklists can be found in the reproduction package [13].
The results show that adding filters increases the precision by
a lot, whereas recall decreases only slightly.

To answer RQ3, the results are overall promising and show
the capabilities of the approach. In general, with all filters
enabled, we achieve a weighted average F1-score of 34%
whereas accuracy, specificity, and ΦN lie between 0.60 and
0.82. Even though the results seem to be promising, there is
still room for improvements, especially to better filter false
positives and to avoid outliers.

VI. DISCUSSION

Our approach for TLR and inconsistency detection has
limitations that are based on assumptions and design decisions.
As the inconsistency detection builds on SWATTR, we inherit
most of these limitations [11].

We assume that software architecture documentation is writ-
ten in English. In order to adapt SWATTR to other languages,

the pre-processing and many heuristics for TLR have to be
exchanged. However, the inconsistency detection is mostly
language-independent.

Additionally, we assume that the text refers to model
elements and uses similar and unique naming. With dissimilar
names, the approach fails to recover trace links and falsely
identifies inconsistencies. Ambiguous names also threaten
TLR and consequently inconsistency detection. To mitigate
this risk, the approach needs further improvements, e.g.,
by considering contexts from both textual and model side.
This would require the tracing of relations. Nevertheless, the
approach leads to promising results and shows great potential
for these future improvements.

Finally, we have an assumption regarding inconsistency de-
tection. We assume that each sentence in an NLSAD should be
traceable to some model element of an SAM. The assumption
reflects the common decision in TLR that each trace artifact is
traced (cf. [41], [42], [49]). Automated approaches typically
select the best option(s) for each trace artifact in the source
artifact type, e.g., the best class(es) for a requirement. As our
inconsistency detection heavily depends on trace links between
sentences and model elements, we adopt the common practices
of TLR to our case. The assumption is slightly overestimating
the importance of each sentence, but is a good approximation
for its objective.

In the following, we discuss the threats to validity based on
the guidelines for case study research in software engineering
by Runeson and Höst [50].

a) Construct Validity: We use common TLR experimen-
tal designs and metrics for our evaluation to mitigate risks
regarding construct validity. The results rely on case studies
that are already used in literature. The cases cover different
project and model sizes, architecture styles, and patterns. This
reduces bias when choosing a representative collection.

b) Internal Validity: In our approach, we assume that
SADs are consistent. In our case, this also implies that NLSAD
and SAM are on similar levels of abstraction. We thereby
disregard trace links between vastly different abstraction levels
or links between more than two elements. Whether such trace
links can be useful and whether they are applicable to our use
cases is part of future research.

Although we can create fine-grained trace links on word-
or phrase-level, we report trace links on sentence-level. We
choose this output as it is common practice in the TLR com-
munity and allows us to compare our approach against others.
However, this has some side effects. First, a correct trace link
can be found even though the approach does not identify the
exact mention in a sentence. Second, only one trace link for
a given model element and sentence is effectively detected.
Since our inconsistency detection builds on SWATTR’s results,
it is influenced by these effects.

For the evaluation of inconsistency detection, we searched
for varying versions of NLSADs and SAMs. However, we only
found alternating (historical) NLSADs in four of the five cases.
Moreover, we could barely find older models. Thus, we assume
the varying versions to be consistent with the current model,



which is not necessarily given. For the detection of MMEs,
we decided to create artificial inconsistencies by removing
model elements to simulate them. These artificial inconsis-
tencies are possibly not always realistic. For the evaluation
of UME detection, we compare the historical documentations
to the current model. This combination takes into account
the realistic evolution of artifacts. Although the scope of the
changes between the two versions could be criticized to be
larger than between two usual consecutive versions, we expect
that this reduces the bias mentioned above.

c) External Validity: We carefully selected the case stud-
ies from open source projects. Since the artifacts from such
projects, especially SADs, might differ from closed source
projects, this could affect generalizability. We selected only
case studies with component-based architecture models. In
future work, we want to extend the experiments to other
architecture models to mitigate this bias. Additionally, two of
the case studies have their origin in academia. To balance this,
we used three non-academic ones. Lastly, with a total of only
five case studies, we risk to cover not all aspects of trace links
and inconsistencies in our evaluation. Therefore, this collection
should be extended in future work.

d) Reliability: For this paper, we reused and extended
a benchmark dataset. However, we updated the gold stan-
dards as we identified some mistakes and wrong definitions
in the previous version. For instance, packages that shared
their name with a component were treated as mentions of
referred components. We argue that there is a difference
between talking about package names and components and,
therefore, we do not regard these cases as trace links. This
affects the comparability between this and the previous work.
In order to reduce bias, multiple researchers (re-) created
the gold standards independently. Afterwards, they discussed
their differences as well as differences to the existing gold
standards. This way, we improve correctness and reduce bias
of the gold standards. We then applied SWATTR to the updated
gold standards to compare its results. Thus, we believe to have
reduced the impact of the revised gold standards.

VII. CONCLUSION

In this paper, we looked into the automatic detection of in-
consistencies in software architecture documentations (SADs).
SADs can contribute to successful software development and
are thereby beneficial. However, undetected inconsistencies in
SAD, like inconsistent specifications, can introduce problems,
lead to misunderstandings, and threaten development.

To uncover inconsistencies, we proposed our ArDoCo ap-
proach for inconsistency detection by combining traceability
link recovery (TLR) with further heuristics. For this, we
extended previous work in TLR between natural language
software architecture documentation (NLSAD) and software
architecture models (SAMs). We adapted and extended the
SoftWare Architecture Text Trace link Recovery (SWATTR)
approach for TLR. Our approach detects inconsistencies re-
garding unmentioned model elements (UMEs) and missing
model elements (MMEs). UMEs are found via not traced

model elements whereas MMEs are identified with absent
trace links for perceived model element in NLSAD.

The TLR and inconsistency detection steps of our approach
are individually evaluated using a benchmark of five open
source projects. We compare our approach with existing and
baseline approaches. The results show that our approach
significantly outperforms the other approaches (α = 0.05).

For TLR, the approach achieves an average F1-score of 0.81
and an accuracy of 0.98. We achieve a minimum increase
in F1-score of 0.24 and in accuracy of 0.09 compared to
competing approaches. The Φ-metric also indicates that the
results of our approach correlate closely with expectation.

The detection of UMEs achieves an average F1-score of 0.89
and an accuracy of 0.93. Lastly, the evaluation for detecting
MMEs achieves an average F1-score of up to 0.34 and an
average accuracy of 0.77. The results of our approach are
significantly better than the results of the baseline approach.

Overall, we showed that using trace links to detect inconsis-
tencies is reasonable and promising. We can use the absence
of trace links to identify and pinpoint inconsistencies. In this
paper, we focused on UMEs and MMEs but expect to be able
to use this approach for further kinds of inconsistencies.

Despite promising results, we see room for improvements.
Regarding the processing steps, we want to investigate

whether we can improve the identification of mentioned model
elements in NLSADs. The underlying problem can be seen
as a special variant of the named entity recognition problem
in natural language processing. State-of-the-art approaches
for named entity recognition use deep learning and neural
language models (cf. [51]–[53]). However, our mention detec-
tion searches for project-specific entities whereas most named
entity recognition approaches base on widely used entities. We
plan to investigate whether we can utilize transfer-learning
for our special use case. The biggest hurdle for using such
approaches is the lack of training data.

The detection of mentions, trace links, and inconsistencies
could also profit from a precise identification of sentences with
model-related design decisions. In future research, we want to
ignore unrelated sentences by classifying sentences based on
contained design decisions to increase precision.

Lastly, relations can help to identify the context of a model
element, similar to design decisions. Concerning relations
could ease the detection of mentions and thereby improve TLR
and inconsistency detection. However, relations can also be
inconsistent between NLSAD and SAMs. Therefore, we want
to investigate whether we can extend our approach to tracing
relations and identifying inconsistent relations.
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[50] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

study research in software engineering,” vol. 14, no. 2, p. 131.
[51] X. Wang, Y. Jiang, N. Bach, T. Wang, Z. Huang, F. Huang, and K. Tu,

“Automated concatenation of embeddings for structured prediction,”
arXiv preprint arXiv:2010.05006, 2021.

[52] I. Yamada, A. Asai, H. Shindo, H. Takeda, and Y. Matsumoto,
“LUKE: Deep contextualized entity representations with entity-aware
self-attention,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, Nov. 2020, pp. 6442–6454.

[53] X. Wang, Y. Jiang, N. Bach, T. Wang, Z. Huang, F. Huang, and K. Tu,
“Improving named entity recognition by external context retrieving and
cooperative learning,” arXiv preprint arXiv:2105.03654, 2021.


