# Chemical characterization and source apportionment of PM<sub>2.5</sub> in two East-Mediterranean sites

Marc Fadel<sup>1,2</sup>, Dominique Courcot<sup>2</sup>, Marianne Seigneur<sup>2</sup>, Adib Kfoury<sup>4</sup>, Konstantina Oikonomou<sup>3</sup>, Jean Sciare<sup>3</sup>, Frédéric Ledoux<sup>2</sup> and Charbel Afif<sup>1,3</sup>

<sup>1</sup>Emissions, Measurements, and Modeling of the Atmosphere (EMMA) Laboratory, CAR, Faculty of Sciences, Saint Joseph University, Beirut, Lebanon

<sup>2</sup>Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, FR CNRS 3417, University of Littoral Côte d'Opale (ULCO), Dunkerque, France

<sup>3</sup>Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus

<sup>4</sup>Department of Environmental Sciences, University of Balamand, Al Kourah, Lebanon







#### Mediterranean region



Source : Google Earth



<sup>1</sup>(Badran et al., 2020); <sup>2</sup>(Borgie et al., 2016); <sup>3</sup>(Daher et al., 2013);
<sup>4</sup>(Abdallah et al., 2018); <sup>5</sup>(Melki, 2017); <sup>6</sup>(Massoud et al., 2011);
<sup>7</sup>(Nakhlé et al., 2015); <sup>8</sup>(TEDO, 2009); <sup>9</sup>(Waked et al., 2013);
<sup>10</sup>(Waked et al., 2014); <sup>10</sup>(Jaafar et al., 2014); <sup>11</sup>(Saliba et al., 2007);
<sup>12</sup>(Massoud et al., 2011); <sup>13</sup>(Yammine et al., 2011); <sup>14</sup>(Kfoury et al., 2009);



Fiaa site (FA) Cement plants



Zouk site (ZK)

Power plant running on heavy fuel oil

Social and economic development in the region



Increased emissions of air pollution from the transport, industrial, and residential sectors

Higher concentrations of air pollutants

### Objectives of the study



Identify pollution sources in two urbanindustrial sites in Lebanon

Quantify the contribution of the identified sources by positive matrix factorization.

Study the chemical composition

### PM<sub>2.5</sub> sampling

#### Zouk site



#### Fiaa site



- December 2018 October 2019
- High volume sampler operating at 30 m<sup>3</sup>/h
- Frequency: 1 day over 3
- 24-hour basis
- Around 100 filters collected at each site



### PM<sub>2.5</sub> chemical characterization

| Image: constrained of the second of the se | OC/EC analyzer                               | Ion<br>chromatography                                                                                                                                                    | ICP / OES<br>ICP / MS                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Organic fraction (80 species)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Carbonaceous fraction                        | Water-soluble ions (8 species)                                                                                                                                           | Elements (30 species)                                                                                                                    |
| N-alkanes<br>Polycyclic aromatic<br>hydrocarbons<br>Phthalates<br>Fatty acids<br>Hopanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Organic carbon (OC)<br>Elemental carbon (EC) | Anions: Cl <sup>-</sup> , $SO_4^{2-}$ and $NO_3^{-}$<br>Cations: Ca <sup>2+</sup> , Mg <sup>2+</sup> , K <sup>+</sup> , Na <sup>+</sup> and NH <sub>4</sub> <sup>+</sup> | Al, Mg, K, Ca, Ba, Fe,<br>Mn, Ni, Sr, Zn, P, Sr, Ti,<br>Zn, and Pb<br>As, Rb, Nb, Sn, Cd, Co,<br>Sn, Cu, Cr, Sb, V, La,<br>Ce, Bi and Tl |





WHO PM<sub>2.5</sub> annual guideline value: **5.0 µg/m<sup>3</sup>** (WHO, 2021)

#### Enrichment factors for elements



Rb, Nb, Ce, K, Fe, Mn, La, Sr, Ti, Mg, Ba and Tl: Crustal origins

Sn, As, V, Cu, Pb, Zn, Ni, Bi, Cd and Sb: Anthropogenic origins

### Source apportionment by PMF

Species concentrations (ng/m<sup>3</sup>) = Source contribution (ng/m<sup>3</sup>) x Sources profiles ( $\mu$ g/ $\mu$ g) + Error (ng/m<sup>3</sup>) (Paatero and Tapper, 2012)



| Carbonaceous fraction | Water-soluble ions                              | Elements          | Organic compounds                                        |
|-----------------------|-------------------------------------------------|-------------------|----------------------------------------------------------|
| EC and OC             | Na+, CI-, SO <sub>4</sub> 2-, NO <sub>3</sub> - | Mg, Al, Ca, Cu,   | levoglucosan                                             |
|                       | and NH <sub>4</sub> +                           | Fe, K, Ni, Ti, V, | Hexadecanoic acid                                        |
|                       |                                                 | Sb and Sn         | Octadecanoic acid                                        |
|                       |                                                 |                   | 17a(H)-21β(H)-hopane                                     |
|                       |                                                 |                   | Isoprene and a-pinene oxidation products                 |
|                       |                                                 |                   | $C_{20}, C_{21}, C_{24}, C_{25}, C_{27}, C_{29}, C_{31}$ |

#### Focus on source profiles by PMF

V et Ni are tracers of HFO combustion(Swietlicki et Krejcj, 1996)



(Pandolfi et al.,2011)

Ratio between 1.5 et 2.2 For heavy fuel combustion from power plants

### Evaluation of the ratio InPy/(InPy + B[ghi]Pe)



#### Focus on source profiles by PMF



#### Long-range transport evaluation

Concentrations in  $\mu g/m^3$ 



#### Sources contribution to $PM_{2.5}$



#### Conclusions



14

#### Acknowledgment





## Thank you!





## Questions?