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Abstract

Growing numbers of plug-in electric vehicles in Europe will have an increasing impact 

on the electricity system. Using the agent-based simulation model PowerACE for ten 

electricity markets in Central Europe, we analyze how different charging strategies 

impact price levels and production- as well as consumption-based carbon emissions in 

France and Germany. The applied smart charging strategies consider spot market 

prices and/or real-time production from renewable energy sources. 

While total European carbon emissions do not change significantly in response to the 

charging strategy due to the comparatively small energy consumption of the electric 

vehicle fleet, our results show that all smart charging strategies reduce price levels on 

the spot market and lower total curtailment of renewables. Here, charging processes 

optimized according to hourly prices have the strongest effect. Furthermore, smart 

charging strategies reduce electricity purchasing costs for aggregators by about 10% 

compared to uncontrolled charging. In addition, the strategies allow aggregators to 

communicate near-zero allocated emissions for charging vehicles. An aggregator’s 

charging strategy expanding classic electricity cost minimization by limiting total 

national PEV demand to 10% of available electricity production from renewable energy 

sources leads to the most favorable results in both metrics, purchasing costs and 

allocated emissions. Finally, aggregators and plug-in electric vehicle owners would 

benefit from the availability of national, real-time Guarantees of Origin and the 

respective scarcity signals for renewable production.
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Highlights 
• Agent-based simulation of ten European electricity markets in Central Europe 

• Simulating millions of EV under four different smart charging strategies by 2030 

• Impacts of prices, curtailment, production- and consumption-based emissions 

• All charging strategies reduce spot market prices and total renewable curtailment 

• Charging with renewables in real-time minimizes purchasing costs for aggregators 

Abstract 
Growing numbers of plug-in electric vehicles in Europe will have an increasing impact on the electricity 

system. Using the agent-based simulation model PowerACE for ten electricity markets in Central 

Europe, we analyze how different charging strategies impact price levels and production- as well as 

consumption-based carbon emissions in France and Germany. The applied smart charging strategies 

consider spot market prices and/or real-time production from renewable energy sources.  

While total European carbon emissions do not change significantly in response to the charging strategy 

due to the comparatively small energy consumption of the electric vehicle fleet, our results show that 

all smart charging strategies reduce price levels on the spot market and lower total curtailment of 

renewables. Here, charging processes optimized according to hourly prices have the strongest effect. 

Furthermore, smart charging strategies reduce electricity purchasing costs for aggregators by about 

10% compared to uncontrolled charging. In addition, the strategies allow aggregators to communicate 

near-zero allocated emissions for charging vehicles. An aggregator’s charging strategy expanding 

classic electricity cost minimization by limiting total national PEV demand to 10% of available electricity 

production from renewable energy sources leads to the most favorable results in both metrics, 

purchasing costs and allocated emissions. Finally, aggregators and plug-in electric vehicle owners 

would benefit from the availability of national, real-time Guarantees of Origin and the respective 

scarcity signals for renewable production. 
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1. Introduction 
Transport is responsible for about 23% of total energy-related CO2 emissions worldwide. Its emissions 

will continue to grow until 2030 under announced policies, overshooting the goal towards a net-zero 

approach by 2050 by almost 30% (IEA, 2021). In Europe, transportation is the only sector where 

emissions have increased between 1990 and 2018 (EEA, 2020). Consequently, road transport as the 

main source of emissions within the transport sector must contribute to a large extent to the emission 

reductions by, for instance, shifting from fossil fuels to electric-drive vehicles, i.e., plug-in electric 

vehicles (PEV, both purely electric and plug-in hybrid) (Creutzig et al., 2015). Globally, fast PEV-

adoption could lead to the best use of the remaining carbon budget (Märtz et al., 2021). 

However, shifting road transport-specific CO2 emissions from transport to the power sector might 

increase CO2 emissions in the power sector. Consequently, generation from renewable electricity 

sources (RES) must increase in stride with growing PEV sales. Strategies need to be developed with 

regard to how PEV could be integrated effectively and efficiently into competitive electricity markets 

in order to support decarbonization of the system (Parag and Sovacool, 2016). As a first step, e.g., 

Germany and Austria tied public funding schemes for charging infrastructure to the exclusive use of 

renewable electricity (BMK, 2020; BMVI, 2021). This is facilitated through well-established renewable 

electricity contracts: Energy suppliers buy electricity and Guarantees of Origin (GoO) from the 

wholesale market to create a “green electricity contract”. Such solutions have often been criticized for 

intransparency (e.g., Herbes et al., 2020), which gives rise to further considerations on differentiation 

and quality of green electricity contracts (Salah et al., 2017; Will et al., 2017b; Fabianek et al., 2020). 

One component of green electricity contracts may be the provision of renewable electricity in real-

time. While GoO bear a time-stamp of their creation, most classic green electricity contracts balance 

consumption and provision over an entire year. Real-time contracts limit the viability of GoOs to only 

the hour they were generated, creating a closer tie between the availability and consumption of 

renewables. If consumption and generation of renewable electricity coincide, no emissions are being 

relayed to other consumers. At the same time, scarcity signals for renewable supply are communicated 

to market actors much more tangibly (Will et al., 2017a). Therefore, Eurelectric (2022) has initiated a 

task force for the increased use of real-time renewable electricity supply in the industry and first 

market platforms for real-time electricity certificates have been defined and initialized1. Meanwhile, 

the US federal government pursues half of its direct electricity consumption to be serviced pollution-

free and in real-time by 2030 (White House, 2021). Furthermore, companies such as Mercedes-Benz, 

Google, or Microsoft, have already contracted real-time renewable electricity for their European 

operations (Douglas and Hunt, 2021). 

The challenge with real-time supply of renewable electricity is how to cover demand in times of low 

production from volatile sources like photovoltaic (PV) and wind (Gohla-Neudecker et al., 2011). To 

counteract this volatility, flexible consumers may shift their consumption to times of high RES supply, 

therefore more actively minimizing their contribution to carbon emissions. Simulating and shifting 

hourly PEV charging processes according to different charging strategies fuels a discussion on isolated, 

national, and international effects of this real-time coupling. E.g., such charging strategies could help 

avoid curtailment of RES generation. Conversely, the strategies could be harmful if emissions are 

shifted to other hours, i.e. if increased generation from fossil-fueled power plants or imports are used 

to charge the PEV. In addition to comparing emissions from a system perspective, we also show in how 

far aggregators may justify claims of carbon neutrality for their real-time electricity contracts. 

 
1 www.energytag.org/ 
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Meanwhile, how exactly emissions from fossil electricity generation should be allocated to PEV 

consumption is subject to political and academic debate (e.g., Xu et al., 2020; Kessler, 2021), as it is 

fundamental to the role that PEV play in climate change mitigation and respective preventative 

regulation. The literature applies various allocation methods, differing in approach, temporal, spatial, 

or physical parameters. For example, in addition to the emissions from national generation facilities, 

more consumption-centric approaches include the cross-border effects of electricity export and import 

flows. This consumption-centric perspective promises a better understanding of different 

stakeholders’ roles, e.g., the significance of PEV. Ultimately, PEV users may help integrate renewables 

and, therefore, further reduce emissions.  

The overarching goal of this paper is to understand the impact of smart charging strategies on the 

entire power system, especially on electricity prices and on related emissions. Based on the example 

of the French and German electricity system, it particularly investigates how PEV charging exclusively 

from real-time RES generation would impact the electricity market and the overall system emissions. 

The study also compares the effects of charging strategies under consideration of various emission 

allocation approaches. 

Following these research objectives, in this article, the following research questions are answered: 

RQ1: What are the impacts of different PEV charging strategies on electric power systems? 

RQ2: What are the impacts of different PEV charging strategies on CO2 emissions? 

RQ3: Can charging PEV, facilitated by an aggregator, be carbon neutral? 

The paper is structured as follows: Section 2 discusses related work and derives the research questions. 

Section 3 introduces the applied simulation framework, PEV scheduling algorithms and considered 

measures for carbon emissions. Section 4 discloses base data and key assumptions for the simulation. 

Simulation results are shown in two subsections in Section 5, respectively, for the energy market and 

carbon emissions. How far PEV can be considered carbon-neutral is comprehensively discussed in 

Section 6. Section 7 concludes and motivates fields for future research. 

2. Related work 
Several studies quantifying the environmental impacts of PEV have been carried out in recent years 

(e.g., Bekel and Pauliuk, 2019; Xia and Li, 2022). The resulting emission factors vary considerably 

depending on methodological and spatial framework conditions (Ryan et al., 2016). Particular in focus 

were life cycle analyses (LCA) of PEV usage in Europe (Hawkins et al., 2013) or individual countries, e.g., 

Australia (Sharma et al., 2013), Belgium (Rangaraju et al., 2015), England and California (Ma et al., 

2012), Germany (Bickert et al., 2015), Greece (Chatzikomis et al., 2014), Italy (Donateo et al., 2015), 

France, Poland and Portugal (Faria et al., 2013), as well as Scotland and Slovenia (Muneer et al., 2015). 

Meanwhile, many studies focus on PEV-specific use phase-CO2 emissions and distinguish between 

different measurement methods: (1) the annual average emission mix, (2) the time-dependent 

average electricity mix, (3) the marginal electricity mix, and (4) balancing emissions from electricity 

generation with other CO2 emission reductions. Most studies focusing on use phase-emissions – as 

well as most carbon mitigation policies – take average values for one year of a specific energy mix 

(Doucette and McCulloch, 2011; Plötz et al., 2017; Woo et al., 2017). Others use time-dependent 

average emissions (Robinson et al., 2013; Ensslen et al., 2017; van Fan et al., 2022) or marginal 

emissions (Ma et al., 2012; Jochem et al., 2015; Kamiya et al., 2019). An increasing number of authors 

are pointing to the importance of accounting for marginal emissions from electricity systems (e.g., 

Yuksel et al., 2016; Li et al., 2017; Khan, 2018) and specifically for evaluating PEV (Tamayao et al., 2015). 
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Significant differences between countries’ carbon intensity of PEV charging can be observed based on 

the carbon intensity of the electricity mix. Usually, CO2 emissions are calculated based on emissions at 

the national level. Exchange flows between countries are mostly not considered. However, potential 

imports from high-emitting neighboring countries might considerably affect emissions the importing 

country is responsible for. In fact, production- and consumption-based CO2 emissions deviate 

significantly for some OECD countries (Soimakallio and Saikku, 2012; Barrett et al., 2013), potentially 

linked to differing energy efficiency in electricity generation or import rates (Franzen and Mader, 

2018). Following Peters (2008), however, consumption-based inventories provide considerable insight 

into the effects of climate policy and mitigation, and consumption-based national emission indicators 

could play an increasing role in future climate policy. According to Barrett et al. (2013), consumption-

based emissions are an essential reminder of the global challenge of climate change, i.e., that 

individual actions have large implications in interconnected systems. Going further, Olkkonen and Syri 

(2016) identify marginal electricity generation units and, subsequently, the marginal CO2 emissions of 

electricity in the Northern European energy system focusing on Finland, Sweden, Norway and Denmark 

up to 2030. Their results show that marginal generation in isolated national systems is becoming 

outdated in the integrated European electricity market. They conclude that the marginal electricity 

generation in the larger international system should also be considered. Furthermore, they 

recommend using long-term perspectives when estimating marginal consequences of demand-side 

interventions that might influence the energy system in the long-term. Similar results can be found in 

the interconnected market of the United States (Graff Zivin et al., 2014; Tamayao et al., 2015). Smart 

charging of PEV is one such demand-side intervention and in the following we compare marginal 

production- and consumption-based emissions under different charging strategies. This research 

builds on a larger body of environmental multi-region input-output accounting (e.g., Turner et al., 

2007; Wiedmann et al., 2007; Wiedmann, 2009; Vetőné Mózner, 2013; Malik et al., 2018).  

While the carbon-free generation of fluctuating RES, such as wind and PV, decreases electricity carbon 

intensity, high-penetration RES scenarios are challenging power systems. Meanwhile, too many PEV 

charging simultaneously can significantly strain low-voltage grids (Haider and Schegner, 2021). Reviews 

on PEV interacting with smart grids and RES under various charging strategies are provided by Mwasilu 

et al. (2014) and Richardson (2013). Different smart charging strategies for efficiently integrating PEV 

into the power system, including RES2, are tested in different regions: Dallinger and Wietschel (2012) 

and Juul and Meibom (2011) apply cost-minimizing charging strategies for Germany and Denmark. 

Heinrichs and Jochem (2016) discuss the benefits of smart charging for the German energy system 

until 2030. Bellekom et al. (2012) deploy different load management strategies concerning shapes of 

charging power, intending to integrate wind energy in the Netherlands better. Ekman (2011) 

maximizes the utilization of wind power for the case of Denmark by charging when wind power 

production minus power consumption is highest or when there is excess wind power. Faria et al. (2014) 

minimize load peaks by flattening the load profile while minimizing the environmental impacts in 

Portugal. Peças Lopes et al. (2009) discuss different charging strategies to integrate as many PEV as 

possible into the Portuguese power system. In 2050, PEV with uni- and bidirectional charging 

throughout the EU could reduce transport LCA emissions by 40% or 51%, respectively (Xu et al., 2020). 

With a more local focus, Pearre and Swan (2016) use a charging strategy intending to avoid the usage 

of transmission capacities for the case of Digby, Nova Scotia, Canada. Similarly, Doluweera et al. (2020) 

focus on the state of Alberta, Canada. Overall, the studies show that introducing PEV supports better 

usage of RES and can potentially increase the amount of fluctuating RES capacities installed in regional 

or national electricity systems. Furthermore, PEV can absorb excess energy production of fluctuating 

 
2 For an overview of charging scheduling algorithms cf. Wang (2022), Hu et al. (2016), Huber et al. (2019), 
García-Villalobos et al. (2014), or Unterluggauer et al. (2022). 
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RES that would otherwise be wasted or curtailed (Peças Lopes et al., 2009; Ekman, 2011; Bellekom et 

al., 2012; Dallinger and Wietschel, 2012; Faria et al., 2014). Specifcally, Gnann et al. (2018) estimate 

the excess renewable electricity that can be integrated through PEV smart charging at 25-30%. In the 

following we go further and compare multiple charging strategies: uncontrolled, (spot) price-based as 

well as two strategies based on the hourly availability of RES. 

In this context, the role of intermediaries might support the pooling of distributed flexibilities from PEV 

charging (Niesten and Alkemade, 2016; Ringler et al., 2016). Demand response provides a perfect 

opportunity for PEV aggregation agents to use smart charging to reduce costs (Gonzalez Vaya and 

Andersson, 2015) and, therefore, increase aggregator profits (Shafie-khah et al., 2016). Several case 

studies support this result for different regions of the world: Schill (2011) studies the effect of PEV on 

an imperfectly competitive German electricity market and shows that consumers benefit from PEV if 

excess battery capacity can be used for grid storage. Perez-Diaz et al. (2018) propose coordination and 

payment mechanisms for PEV aggregators, substantially reducing bidding costs in a case study of the 

Iberian Peninsula. Ensslen et al. (2018) develop a load shift-incentivizing electricity contract for PEV 

users. Their case study for French and German electricity markets shows that the contract is suitable 

for incentivizing vehicle users to provide load flexibilities. This consequently increases aggregators’ 

contribution margins. 

Many of these studies on smart charging consider PEV a flexible load that can freely respond to the 

needs of the distribution grid or environmental goals. For example, Huber et al. (2021) apply a forecast 

of marginal carbon emission factors for the smart scheduling of PEV charging, which, if adhered to, can 

lead to emission savings in Germany between 1-10%. While early adopters of PEV appear to be 

motivated to respond to such “communal incentives” (Will and Schuller, 2016), it could be challenging 

to convince less involved customer groups to restrict their mobility behavior (cf. Will et al., 2022). Since 

direct control of charging processes at home through a central planner may be perceived as invasive, 

research on approaching differentiated customer groups with attractive smart charging services is 

gaining more attention. Salah et al. (2017) provide a general overview of energy services for the 

differentiation of power products, e.g., specification of power source or a direct coupling of volatile 

production and demand through balancing real-time power consumption. Based on this categorization 

and drawing from established literature on green electricity contracts, Will et al. (2017b) characterize 

and discuss a range of quality attributes for green charging services. They evaluate two particular 

services: a reactive balancing service and an active balancing service, i.e., utilizing smart charging. Both 

strongly focus on the hourly balancing of supply and demand by an aggregator controlling PEV charging 

events through financial steering signals.  

However, the question remains if such services create benefits when aggregated on the system level. 

Considering consumers' low involvement in electricity purchase (e.g., Watson et al., 2002) and the 

resulting lack of awareness of differentiated sustainability criteria (Lehmann and Beikirch, 2020; Will 

et al., 2022), facilitating the coupling of RES provision and PEV demand requires a simple, transparent 

metric. At the same time, the dynamics of RES supply and PEV demand must be honored. Therefore, 

we investigate different charging strategies, one of which targets the availability of RES. It remains to 

be seen if the aggregate response of individual PEV to the availability of RES production impacts carbon 

emissions on a national or supra-national scale. To the best of our knowledge, we are the first to 

combine in equal parts analysis of future PEV-specific CO2 emissions focusing on production- and 

consumption-based calculations of national emission factors derived from different PEV charging 

strategies. Following the recommendations of Olkkonen and Syri (2016), we consider the effects on 

CO2 emissions from the long-term effects of smart PEV charging in closely interconnected European 

electricity markets. We report the findings for the cases of France and Germany as the largest 

economies with fundamentally different power plant portfolios but similar PEV ramp-up. Furthermore, 
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no studies have been published tackling whether carbon-neutral charging of national electric vehicle 

fleets is possible mid-term, i.e., in 2030. 

3. Research design 
The agent-based approach can be used to model individual actors who, on the one hand, make 

individual decisions and, on the other hand, interact with each other via markets (e.g., Tesfatsion, 

2002). Therefore, agent-based modelling and simulation can deliver valuable insights into agent 

interaction and resulting effects in a complex system, such as the electricity market, under 

consideration of economic, technical and social context factors (Ringler et al., 2016). Over the runtime 

of the simulation, agents may learn from the experience gained, improve their decisions and adapt 

these to the changing conditions within the simulation framework (Ventosa et al., 2005). 

Comprehensive reviews on agent-based models for electricity markets are provided by Sensfuß et al. 

(2007), Weidlich and Veit (2008), and Guerci et al. (2010). Therefore, agent-based simulations are a 

good tool for our analysis (Section 3.1). Section 3.2 describes the applied charging strategies, and 

Section 3.3 shows how we assess CO2 emissions. 

3.1. Simulation framework for electricity markets 
In this work, the day-ahead markets are simulated with the agent-based electricity market simulation 

model PowerACE. The simulation is carried out in hourly time steps for each year from 2015 to 2030. 

The market participants are modeled as separate agents and are active on the spot market (Genoese, 

2010): Large generation companies are represented by individual agents and, therefore, characterize 

the structure in their respective market areas. Electricity demand and generation from RES are 

modelled in aggregated form as one respective agent for each market area. In addition to short-term 

trading activities on the spot market, generation agents carry out investment planning for flexible 

power plants (Zimmermann et al., 2021). Mainly for this investigation, PEV-specific demand is 

modelled with an individual agent per market area (Ensslen et al., 2018). The PowerACE model 

encompasses the following ten interconnected market areas: France, Germany, Austria, Belgium, 

Czech Republic, Denmark, Italy, Netherlands, Poland, and Switzerland. 

The simulation in PowerACE takes place stepwise in discrete events. After initializing the model, a daily 

auction is performed on the spot market. All market participants submit hourly bids according to their 

demand profile and production costs. The volumes and prices offered result from power plant 

capacities, marginal costs, expected residual loads and start-up costs of individual power plants 

(Bublitz et al., 2015). Similar to the real-world market clearing algorithm EUPHEMIA, supply and 

demand bids are matched such that the total welfare across all modelled market areas is maximized, 

subject to the constrained transfer capacities between the market areas. The auction results are then 

stored so the information is available to all market participants. 

More specifically, the spot market simulation consists of the following four steps: (i) price forecast, (ii) 

bidding, (iii) market clearing and (iv) dispatch. 

(i) Price forecast: Based on expected hourly residual loads, supply traders carry out price forecasts for 

all hours of the following day. Furthermore, they consider electricity exchange expectations between 

coupled market areas in the price estimated centrally by multiple linear regression (cf. Fraunholz, 

2021). 

(ii) Bidding: The supply traders prepare bids for all their power plants for the following day. Thereby, 

the variable costs of the power plants and, if applicable, startup costs and markups are considered in 

bid price calculations. Additional price inelastic bids concerning RES feed-in, static demand, flexible 

demand of PEV, as well as bids for pumped storage are placed (cf. Keles et al., 2016). 
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(iii) Market clearing: All bids are submitted to the market coupling operator matching supply and 

demand in the market clearing process across all market areas in a welfare-maximizing linear 

optimization subject to the limited interconnector capacities between all simulated market areas (cf. 

Ringler et al., 2017). 

(iv) Dispatch: All supply traders calculate their hourly load curve and determine a dispatch of their 

dispatchable power plants based on technical limits. 

If demand cannot be fully met by the available production capacity, interruptible capacities are 

activated with market prices at 700 EUR/MWh (e.g., Paulus and Borggrefe, 2011). However, if 

interruptible load capacities are insufficient to balance supply and demand, there will be a deficit in 

satisfying electricity needs. The market price is set at the maximum permissible price for the day-ahead 

wholesale market of 3,000 EUR/MWh (EPEX Spot, 2021). If the market cannot be cleared adequately, 

the strategic reserve (if implemented in the respective market area) or the reserve market might 

provide additional energy to avoid black- or brownouts. However, the request of the reserve markets 

is not modeled. Only the required capacity for reserve markets is reserved and, therefore, not offered 

at the spot market. 

Contrary, hours can occur in which RES can meet the electricity demand fully. In this case the market 

price is assumed to be 0 EUR/MWh.  

At the end of each simulation year, the investment planning module calculates the expected net 

present values (NPV) of agents’ flexible power plant options. The generation companies then decide 

which conventional power plants to add in case of a positive NPV (Fraunholz et al., 2019; Zimmermann 

et al., 2021; Zimmermann and Keles, 2022). However, to isolate the effect of shifting charging on 

emissions, we decided to apply the same power plant park to all charging scenarios. This means that 

the mechanism described above is applied with uncontrolled PEV charging (cf. Table 1). This 

endogenously developing power plant park is used for all simulations with the other charging 

strategies. 

Active market coupling is assumed (Ringler et al., 2017; Ringler, 2017) with further market areas of 

southern and central-western Europe, i.e., Austria, Belgium, Italy, Netherlands, Switzerland, Denmark, 

Poland and the Czech Republic. Furthermore, capacity remuneration schemes introduced in several 

countries are considered in the modelling approach (Bublitz et al., 2015; Keles et al., 2016; Kraft, 2017; 

Zimmermann et al., 2017; Bublitz et al., 2019). 

3.2. Scheduling of PEV loads  
For the simulation of PEV on the spot market, it is assumed that there is exactly one charging manager 

agent (or aggregator) per market area, steering the total PEV-specific energy demand. The methods 

used in this paper to model PEV charging are based on Ensslen et al. (2018), who focused on the effects 

of charging managers in uncoupled electricity markets in France and Germany. We focus our analyses 

of simulation results in Section 5 on the German and the French market areas due to their similar 

vehicle fleet and comparable PEV ramp-up. Nevertheless, all ten market areas are coupled and have 

modelled PEV fleets. Thus, PEV charging is a full-fledged part of the energy system simulation in our 

model. To lower the simulation load, we apply the sample size reduction algorithm developed by 

Ensslen et al. (2019). 

To recharge its customers' PEV, the aggregator purchases electricity on the spot market and acts as 

the energy supplier for the charging processes. In practice, the aggregator guarantees fully charged 

vehicles at the departure time and shifts the charging times according to the respective charging 
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strategy. His goal is to minimize electricity purchasing costs (scenarios Opt Price and Opt RES) and/or 

to meet restrictions on real-time RES provision (scenarios Opt RES and Max RES). 

The PowerACE model is used to simulate the effects of an increasing number of PEV and different 

charging strategies of the charging manager on spot electricity markets. The different scenarios and 

corresponding charging strategies considered in this paper are summarized in Table 1 and described 

in further detail in the following. The table uses symbols and abbreviations in correspondence with 

Eq. (2)-(14). 

Table 1: Overview of considered scenarios 

Scenario Description 
Consideration of penalty function in 

the objective function 
Optimization problem 

No PEV 
(baseline) 

Market simulation without 
PEV 

n/a 
n/a 

Uncontrolled Direct PEV charging n/a n/a 

Opt Price 
Expenditure minimizing PEV 
charging 

𝜗𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

= 0 
Objective function (2), 
subject to Eq. (3)-(8) 

Opt RES 
Expenditure minimizing PEV 
charging with RES limit 

𝜗𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

  

𝑤𝑖𝑡ℎ   𝑃𝑅𝑂𝐷𝑡
𝑡𝑒𝑐ℎ = 0.1 𝑃𝑅𝑂𝐷𝑡

𝑅𝐸𝑆 

Objective function (2), 
subject to Eq. (3)-(8) 

Max RES 
Minimizing excess demand 
above RES limit 

𝑝𝑖,𝑡
𝑝𝑟𝑖𝑐𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

= 0   𝑎𝑛𝑑   𝜗𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

= 1 

𝑤𝑖𝑡ℎ   𝑃𝑅𝑂𝐷𝑡
𝑡𝑒𝑐ℎ = 0.1 𝑃𝑅𝑂𝐷𝑡

𝑅𝐸𝑆 

Objective funct. (12), subject 
to Eq. (3)-(8) and (13)-(14) 

The charging manager allocates bids on the spot market using the following steps: First, the charging 

manager makes a price forecast for the 24 hours of the following day before the day-ahead auction 

takes place. The forecast is based on a merit order model for the respective market area and is 

prepared using the information available to the agent. With Uncontrolled charging, all PEV charge as 

soon as possible, irrespective of the price forecast. In all other PEV scenarios, an iterative method takes 

load shift potentials into account in the price forecast. The agent's goal is to shift the demand of PEV 

charging into hours with the lowest possible forecast spot prices (Figure 1, scenarios Opt Price and 

Opt RES) and in scenarios Opt RES and Max RES to not exceed the hourly power limit set by 𝑃𝑅𝑂𝐷𝑡
𝑡𝑒𝑐ℎ. 

 
Figure 1: Schematic representation of the iterative disposition of PEV-specific charging loads by the aggregator (Ensslen et 
al., 2018). 

In order to promote the use of RES, we specify 𝑃𝑅𝑂𝐷𝑡
𝑡𝑒𝑐ℎ = 𝛼 𝑃𝑅𝑂𝐷𝑡

𝑅𝐸𝑆 for scenarios Opt RES and 

Max RES, as an incentive to limit hourly PEV-demand to a specified share α of domestic RES-generation 

in this hour. This model corresponds to the aggregator sourcing the electricity supplied to its customers 
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in real-time and exclusively from national RES, thereby increasing demand for such GoO3. Growing 

demand and correspondingly increasing prices could lead to incentives for additional investments in 

RES, especially with hourly balancing (Will et al., 2017b). As RES generation is included exogenously in 

the model, investigations of the described mechanism are the subject of future work. In this paper, we 

investigate in how far shifting PEV demand under different target functions can lead to advantages 

concerning domestic and supra-national carbon emissions. While Max RES disregards economic 

aspects to minimize excess demand by PEV (cf. (12)), a sizeable financial penalty in Opt RES incentivizes 

limiting PEV demand to the energy available from RES as well as focusing on the lowest available prices. 

The energy to be charged in a charging event 𝑥, including corresponding potentials for load shifting, is 

calculated by subtracting the battery’s maximum state of charge 𝑆𝑜𝐶𝑥
𝑚𝑎𝑥 from the state of charge 

when the vehicle arrives 𝑆𝑜𝐶𝑥
𝑎𝑟𝑟𝑖𝑣𝑎𝑙, if the plug-in time of the vehicle is sufficient. Otherwise, the PEV 

are charged during the time they are plugged-in 𝑑𝑡,𝑥 at maximum power 𝑃𝑥
𝑚𝑎𝑥 (Eq. (1)): 

 𝑄𝑥
𝑑𝑒𝑚𝑎𝑛𝑑 = 𝑚𝑖𝑛 {𝑆𝑜𝐶𝑥

𝑚𝑎𝑥 − 𝑆𝑜𝐶𝑥
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 , 𝑃𝑥

𝑚𝑎𝑥∑𝑑𝑡,𝑥

24

𝑡=1

} ∀𝑥 (1) 

Subsequently, the charging manager begins with the iterative, incremental, expenditure-minimizing 

disposition (𝑖 = 1. . . 𝐼) of the energy to be charged. 𝑝𝑖,𝑡
𝑝𝑟𝑖𝑐𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

 represents the iteration-specific 

price forecast, 𝑒𝑖,𝑡,𝑥 the charging event-specific demand during hour 𝑡, and 𝜗𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

 the penalty costs 

considered in Opt RES. The penalty 𝜗𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

 applies when PEV-specific hourly demand cannot be 

covered entirely by RES4 (in case 𝑃𝑅𝑂𝐷𝑡
𝑡𝑒𝑐ℎ = 𝑃𝑅𝑂𝐷𝑡

𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠) or CO2-neutral electricity (in case 

𝑃𝑅𝑂𝐷𝑡
𝑡𝑒𝑐ℎ = 𝑃𝑅𝑂𝐷𝑡

𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠
𝑎𝑛𝑑 𝑛𝑢𝑐𝑙𝑒𝑎𝑟). We set the penalty to 3001 EUR/MWh, just above the price cap on 

the day-ahead market (cf. 3.1), to force the aggregator to prioritize adherence to RES-availability over 

the lowest price. 

After energy amount 
𝑖

𝐼
∙ 𝑄𝑥

𝑑𝑒𝑚𝑎𝑛𝑑 was scheduled in iteration 𝑖, the price forecast is updated under 

consideration of the scheduled loads of the last iteration 𝑖. The updated price forecast 𝑝𝑖,𝑡
𝑝𝑟𝑖𝑐𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

 

is used to plan the incremental energy quantity within iteration 𝑖 + 1. After this step, the energy 

amount 
𝑖+1

𝐼
∙ 𝑄𝑥

𝑑𝑒𝑚𝑎𝑛𝑑 including the increment 𝑖 + 1 is scheduled. After all energy to be charged has 

been scheduled, i.e., 𝑖 > 𝐼, the heuristics stops. The linear optimization problem solved in each 

iteration 𝑖 is formulated as follows (Eq. (2)-(8)): 

 
3 Obviously, the RES production allocated to PEV is not available to any other consumers, leading to increased 
allocated emissions for these consumers. 
4 Since renewable production is exogenous to the model, its availability for the following day and years are 
known to all market actors. This simplification eliminates the uncertainty of production and puts the analytic 
focus on the system impact of flexible PEV demand. 
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𝑚𝑖𝑛∑(∑𝑝𝑖,𝑡
𝑝𝑟𝑖𝑐𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

∙ 𝑒𝑖,𝑡,𝑥

𝑋

𝑥=1

+ 𝜗𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

∙ 𝑚𝑎𝑥 (0;∑𝑒𝑡,𝑥

𝑋

𝑥=1

− 𝑃𝑅𝑂𝐷𝑡
𝑡𝑒𝑐ℎ))

24

𝑡=1

 (2) 

s.t.  

 ∑𝑒𝑖,𝑡,𝑥

24

𝑡=1

 = 
𝑖

𝐼
∙ 𝑄𝑥

𝑑𝑒𝑚𝑎𝑛𝑑 ∀𝑖 ∀𝑥  (3) 

 𝑒𝑡,𝑥 ≤ 𝑃𝑥
𝑚𝑎𝑥 ∙ 𝑑𝑡,𝑥 ∀𝑡 ∀𝑥  (4) 

 𝑒𝑡,𝑥 ≥ 0 ∀𝑡 ∀𝑥  (5) 

 ∑𝑒𝑖,𝑡,𝑥

𝑋

𝑥=1

 ≥ ∑𝑒𝑖−1,𝑡,𝑥

𝑋

𝑥=1

 ∀𝑖 ∀𝑡  (6) 

 
𝑡 ∈ {1,… ,24}   (7) 

 
𝑥 ∈ {1,… , 𝑋}   (8) 

The charging manager schedules the charging events 𝑥 as an expenditure-minimizing problem (2) (for 

Opt Price and Opt RES). Since 𝜗𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

> 0 in scenario Opt RES, penalty costs are added if PEV-specific 

loads cannot be allocated to hours with sufficient amounts of RES. The first constraint of the 

optimization problem (Eq. (3)) ensures that the energy balance is maintained during each charging 

event, taking into account the respective driving data. The second and third constraints ensure that 

specific charging capacity constraints are met (Eq. (4)), and that energy flow is always unidirectional 

(Eq. (5)). The fourth constraint (Eq. (6)) ensures that the energy charged in iteration 𝑖, cannot fall below 

the energy charged in the previous iteration 𝑖 − 1. The fifth and sixth constraints (Eq. (7) and Eq. (8)) 

make sure that all charging events are scheduled during the hours of a day. 

The price forecast in iteration 𝑖 is identical for all PEV and is updated in each iteration. Consequently, 

potential PEV-specific demand-response avalanche effects are avoided (cf. Kühnbach et al., 2021). 

Furthermore, the iterations can be interpreted as 𝐼 aggregators sequentially active in the same market. 

Aggregators place day-ahead bids on the market as price-independent bids, so PEV-specific demand is 

covered as planned by the charging manager. The calculations are based on the assumption that 

complete information is available to the charging manager, so there is no reason for additional market 

balancing mechanisms, such as an intraday market or balancing energy markets. 

For modeling purposes, the maximum term in the objective function is linearized with the help of the 

auxiliary variable 𝑧𝑡. This changes the model according to the following, while Eq. (3)-(8) remain in 

place unchanged:  
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𝑚𝑖𝑛∑(∑(𝑝𝑖,𝑡
𝑝𝑟𝑖𝑐𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

∙ 𝑒𝑡,𝑥)

𝑋

𝑥=1

+ 𝜗𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

∙ 𝑧𝑡)

24

𝑡=1

 (9) 

s.t.  

 𝑧𝑡 ≥ ∑𝑒𝑡,𝑥

𝑋

𝑥=1

− 𝑃𝑅𝑂𝐷𝑡
𝑡𝑒𝑐ℎ ∀𝑡  (10) 

 
𝑧𝑡 ≥ 0 ∀𝑡  (11) 

 
Constraints Eq. (3)-(8) remain unchanged. 

In consequence, the auxiliary variable 𝑧𝑡 will only be chosen as greater than 0 if the hourly PEV-specific 

consumption exceeds the specified production mix for that hour. Note that this linearization only 

works because the objective function is minimized, therefore exerting no “upward pressure” on 𝑧𝑡 

beyond the lack of specified production 𝑃𝑅𝑂𝐷𝑡
𝑡𝑒𝑐ℎ. 

The optimization in scenario Max RES ignores the price forecast (𝑝𝑖,𝑡
𝑝𝑟𝑖𝑐𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

= 0  ∀𝑖 ∀𝑡 ) and 

𝜗𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

 is irrelevant and therefore fixed to 1. This scenario aims to investigate the effects of extreme 

attention to RES availability without accounting for hourly electricity prices. Without a price forecast, 

however, the aggregator lacks a signal for when to allocate PEV load in the case of insufficient provision 

of 𝑃𝑅𝑂𝐷𝑡
𝑡𝑒𝑐ℎ. Here, in order to avoid arbitrary optimization behavior, constraint Eq. (13) forces the 

algorithm to exceed 𝑃𝑅𝑂𝐷𝑡
𝑡𝑒𝑐ℎ as little as possible, therefore distributing excess PEV load across all 

hours of the day. It uses a similar linearization approach as described above. 𝜀 > 0 is a small number, 

e.g., 10-4. The objective function (12) for this scenario, therefore, can be reduced as follows: 

𝑚𝑖𝑛 {[∑𝑚𝑎𝑥 (0;∑𝑒𝑡,𝑥

𝑋

𝑥=1

− 𝑃𝑅𝑂𝐷𝑡
𝑡𝑒𝑐ℎ)

24

𝑡=1

] + 𝜀 ∙ 𝑣} (12) 

s.t.  

 
𝑣 ≥  ∑𝑒𝑡,𝑥

𝑋

𝑥=1

− 𝑃𝑅𝑂𝐷𝑡
𝑡𝑒𝑐ℎ ∀𝑡 (13) 

 𝑣 ≥  0  (14) 
 

Constraints Eq. (3)-(8) remain unchanged. 
 

 

3.3. Assessment of CO2 emissions 
Due to the additional electricity demand of PEV, their charging strategy impacts the carbon intensity 

of electricity provision. Assessing this impact in coupled electricity markets requires delimiting 

production- and consumption-based emissions. In the following, we briefly show how we calculate CO2 

emissions under consideration of different market areas with different electricity production 

technologies varying in specific CO2 emissions. Based on Peters (2008), a more detailed discussion of 

our approach can be found in Appendix A. 

The amount of electricity produced in a market area must be equal to the amount consumed. However, 

in the application of multi-regional input-output analysis, when electricity is exported, domestic 

production is increased, while when electricity is imported, domestic production is decreased (Peters 

and Hertwich, 2009). Every market area's export must be imported into another market area.  
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In the strongly interconnected European market, this happens constantly and dynamically. 

Consequently, emissions are caused by a market area importing electricity while the amount of 

emissions is tracked in the exporting market area. We call the latter production-based (PB) emissions 

calculated by allocating fuel-based emission factors to every kWh produced domestically. 

Consumption-based (CB) emissions are equal to the produced and the imported emissions reduced by 

exported emissions. Since the net exchange flows of electricity are known ex-post in our model, we 

can build a linear system of equations for all market areas and then solve for consumption-based 

emissions for each hour. The approach is based on Tranberg et al. (2019). Losses (e.g., transmission, 

self-consumption) are neglected. Further, we do not keep track of storage charging and discharging 

emissions. 

Having outlined the fundamental dimensions for emissions and demand, we define three approaches 

for determining emission factors, each using a PB and a CB approach, aggregated for single hours and 

over the entire year studied: 

(1) Energy mix-specific CO2 emissions factor (EF) 

(2) Marginal PEV-specific CO2 emission factor (MEF) 

(3) Allocated PEV-specific CO2 emission factor (AEF) 

The different factors are described in detail below: 

(1) The first approach calculates energy mix-specific CO2 emissions. Average annual PB and CB CO2 

emission factors (𝐸𝐹𝑃𝐵, 𝐸𝐹𝐶𝐵) as well as average hourly CO2 emission factors (𝐸𝐹𝑡
𝑃𝐵, 𝐸𝐹𝑡

𝐶𝐵) are 

calculated as described below and in Eq. (15) and Eq. (16). 

 
𝐸𝐹𝑡

𝑃𝐵 =
𝐸𝑡
𝑝𝑟𝑜𝑑

𝑃𝑅𝑂𝐷𝑡
 ∀𝑡 (15) 

 
𝐸𝐹𝑡

𝐶𝐵 =
𝐸𝑡
𝑐𝑜𝑛𝑠

𝐶𝑂𝑁𝑆𝑡
 ∀𝑡 (16) 

𝐸𝐹𝑡
𝑃𝐵 and 𝐸𝐹𝑡

𝐶𝐵 are calculated for every hour in the year considered (Eq. (15) and Eq. (16)). 𝐸𝐹𝑃𝐵 is 

then calculated by aggregating the CO2 emissions due to electricity generation in the market area 

considered 𝐸𝑡
𝑝𝑟𝑜𝑑

 for all hours 𝑡 ∈ {1,… , 𝑇} with 𝑇 = 8760 and dividing by the annual energy 

produced within the market area considered ∑ 𝑃𝑅𝑂𝐷𝑡𝑡∈𝑇 . 𝐸𝐹𝐶𝐵 is calculated by considering CB CO2 

emissions. In order to determine 𝐸𝐹𝐶𝐵, the aggregated CB CO2 emissions are divided by the annual 

electricity consumption within the market area considered ∑ 𝐶𝑂𝑁𝑆𝑡𝑡∈𝑇 .  

(2) The second approach calculates marginal PEV-specific CO2 emission factors. Unlike empirical 

approaches by, e.g., Hawkes (2010) or Braeuer et al. (2020), we can utilize the knowledge available 

from our simulation and compare the additional emissions from a system with PEV to one without 

them. We allocate the additional emissions caused by PEV in the power system directly to the marginal 

demand of PEV. Annual marginal PB and CB CO2 emission factors (𝑀𝐸𝐹𝑃𝐵, 𝑀𝐸𝐹𝐶𝐵) and hourly 

marginal CO2 emission factors (𝑀𝐸𝐹𝑡
𝑃𝐵, 𝑀𝐸𝐹𝑡

𝐶𝐵) are calculated as described in Eq. (17) and Eq. (18). 

 𝑀𝐸𝐹𝑡
𝑃𝐵 =

∆𝐸𝑡
𝑝𝑟𝑜𝑑

𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉 ∀𝑡 (17) 

 𝑀𝐸𝐹𝑡
𝐶𝐵 =

∆𝐸𝑡
𝑐𝑜𝑛𝑠

𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉 ∀𝑡 (18) 

𝑀𝐸𝐹𝑡
𝑃𝐵 and 𝑀𝐸𝐹𝑡

𝐶𝐵 are calculated for every hour (Eq. (17) and Eq. (18)). Hourly marginal PEV-specific 

domestic CO2 emissions ∆𝐸𝑡
𝑝𝑟𝑜𝑑

 are calculated by subtracting total hourly domestic and exported CO2 
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emissions produced in the baseline scenario 𝐸𝑡
𝑝𝑟𝑜𝑑 𝑏𝑎𝑠𝑒

 from total hourly domestic and exported CO2 

emissions produced in the PEV-specific scenario 𝐸𝑡
𝑝𝑟𝑜𝑑 𝑠𝑐𝑒𝑛

, i.e., ∆𝐸𝑡
𝑝𝑟𝑜𝑑

= 𝐸𝑡
𝑝𝑟𝑜𝑑 𝑠𝑐𝑒𝑛

− 𝐸𝑡
 𝑝𝑟𝑜𝑑 𝑏𝑎𝑠𝑒

. 

𝑀𝐸𝐹𝑃𝐵 is then calculated by dividing aggregated annual marginal CO2 emissions of electricity 

produced ∑ ∆𝐸𝑡
𝑝𝑟𝑜𝑑

𝑡∈𝑇  by annual energy production allocated to PEV ∑ 𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉

𝑡∈𝑇  with 𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉 =

∑ 𝑒𝑡,𝑥
𝑋
𝑥=1 . Hourly marginal CB PEV-specific CO2 emissions ∆𝐸𝑡

𝑐𝑜𝑛𝑠 are calculated by subtracting total 

hourly CO2 emissions in the baseline scenario 𝐸𝑡
𝑐𝑜𝑛𝑠 𝑏𝑎𝑠𝑒 from total hourly CO2 emissions in the PEV-

specific scenario 𝐸𝑡
𝑐𝑜𝑛𝑠 𝑠𝑐𝑒𝑛, i.e., ∆𝐸𝑡

𝑐𝑜𝑛𝑠 = 𝐸𝑡
𝑐𝑜𝑛𝑠 𝑠𝑐𝑒𝑛 − 𝐸𝑡

𝑐𝑜𝑛𝑠 𝑏𝑎𝑠𝑒 and dividing by the aggregated 

annual PEV-specific electricity consumption ∑ 𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉

𝑡∈𝑇 . 𝑀𝐸𝐹𝐶𝐵 is calculated by considering 

aggregated annual marginal CB CO2 emissions.  

(3) The third approach allocates, if possible, PEV-specific loads to national carbon-neutral electricity 

generation technology, i.e., RES certificates or GoOs available within each market area are used for 

attributing CO2-free electricity to PEV charging. PEV-specific electricity consumption being covered by 

GoO 𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉,𝐶𝑁 is represented by the minimum of market area-specific production with GoOs 

𝑃𝑅𝑂𝐷𝑡
𝐺𝑜𝑂 and PEV-specific demand 𝐶𝑂𝑁𝑆𝑡

𝑃𝐸𝑉 (cf. Eq. (19)).  

 𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉,𝐶𝑁 = 𝑀𝑖𝑛{𝐶𝑂𝑁𝑆𝑡

𝑃𝐸𝑉; 𝑃𝑅𝑂𝐷𝑡
𝐺𝑜𝑂} 

 
 (19) 

Consequently, the share of PEV-specific production covered by GoOs is calculated as described in 

Eq. (20). 

 𝜌𝑡
𝑃𝐸𝑉,𝐺𝑜𝑂 =

𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉,𝐶𝑁

𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉   (20) 

Adjusted hourly PB (CB) PEV-specific CO2 emission factors 𝐴𝐸𝐹𝑡
𝑃𝐵 (𝐴𝐸𝐹𝑡

𝐶𝐵) are calculated by 

multiplying the CO2 emission factor 𝐸𝐹𝑡
𝑃𝐵 (𝐸𝐹𝑡

𝐶𝐵) with the share of PEV demand that cannot be 

covered by GoOs 1 − 𝜌𝑡
𝑃𝐸𝑉,𝐺𝑜𝑂 and multiplying with a correction factor 

𝑃𝑅𝑂𝐷𝑡

𝑃𝑅𝑂𝐷𝑡−𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉,𝐶𝑁 

(
𝐶𝑂𝑁𝑆𝑡

𝐶𝑂𝑁𝑆𝑡−𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉,𝐶𝑁). This permits full allocation of corresponding CO2 emissions to the share of 

electricity production (consumption) not being covered by GoOs. Corresponding adjusted annual PB 

and CB PEV-specific CO2 emission factors are calculated analogously: The factors consider annual 

average CO2 emission factors 𝐸𝐹𝑃𝐵 and 𝐸𝐹𝐶𝐵, annual averages of the share of PEV-specific production 

covered by GoOs and annually aggregated production, consumption and PEV-specific consumption 

being covered by GoOs (cf. Eq. (21)-(24)). 

The PB and CB CO2 emission factors of carbon-neutral allocation of PEV-specific loads (𝐴𝐸𝐹𝑃𝐵, 𝐴𝐸𝐹𝐶𝐵) 

and corresponding hourly CO2 emission factors (𝐴𝐸𝐹𝑡
𝑃𝐵, 𝐴𝐸𝐹𝑡

𝐶𝐵) are calculated as described in 

Eq. (21)-(24). 

 𝐴𝐸𝐹𝑃𝐵 = 𝐸𝐹𝑃𝐵 ∙ (1 −
∑ 𝜌𝑡

𝑃𝐸𝑉,𝐺𝑜𝑂
𝑡∈𝑇

𝑇
) ∙  

∑ 𝑃𝑅𝑂𝐷𝑡𝑡∈𝑇

∑ 𝑃𝑅𝑂𝐷𝑡𝑡∈𝑇 − ∑ 𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉,𝐶𝑁

𝑡∈𝑇

  (21) 

 
𝐴𝐸𝐹𝐶𝐵 = 𝐸𝐹𝐶𝐵 ∙ (1 −

∑ 𝜌𝑡
𝑃𝐸𝑉,𝐺𝑜𝑂

𝑡∈𝑇

𝑇
) ∙  

∑ 𝐶𝑂𝑁𝑆𝑡𝑡∈𝑇

∑ 𝐶𝑂𝑁𝑆𝑡𝑡∈𝑇 − ∑ 𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉,𝐶𝑁

𝑡∈𝑇

  (22) 

 𝐴𝐸𝐹𝑡
𝑃𝐵 = 𝐸𝐹𝑡

𝑃𝐵 ∙ (1 − 𝜌𝑡
𝑃𝐸𝑉,𝐺𝑜𝑂) ∙

𝑃𝑅𝑂𝐷𝑡

𝑃𝑅𝑂𝐷𝑡 − 𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉,𝐶𝑁 ∀𝑡 (23) 

 𝐴𝐸𝐹𝑡
𝐶𝐵 = 𝐸𝐹𝑡

𝐶𝐵 ∙ (1 − 𝜌𝑡
𝑃𝐸𝑉,𝐺𝑜𝑂) ∙

𝐶𝑂𝑁𝑆𝑡

𝐶𝑂𝑁𝑆𝑡 − 𝐶𝑂𝑁𝑆𝑡
𝑃𝐸𝑉,𝐶𝑁 ∀𝑡 (24) 
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4. Data and assumptions 

Generally, the PowerACE model relies on different types of exogenous input data. Time series data 

typically have an hourly resolution. Mainly publicly available sources are used, e.g., scenario data is 

based on European Commission (2016) or ENTSO-E (2017) for historical data – therefore, the impacts 

of the war in Ukraine on the electricity sector are not considered. Table 2 provides an overview of key 

input data types and sources, also used in Zimmermann et al. (2021). 

Table 2:  Overview of key input data and sources 

Input data type Resolution Main data sources 

Conventional power 
plants 

Plant/unit level, various 
techno-economic 
characteristics 

Platts (2016) 

Fuel-specific CO2 
emission factors 

Average values per fuel UBA (2021a, 2021b) 

Feed-in from RES Hourly feed-in, aggregated 
for each market area 

Hourly profiles from ENTSO-E (2017), yearly capacity and 
production quantity development from European 
Commission (2016), for Switzerland: Prognos AG (2012) 
(scenario C&E), Swissgrid (2015) 

Demand Hourly load, aggregated for 
each market area 

Hourly profiles from ENTSO-E (2018b) (ENTSO-E, 2018b), 
yearly capacity and production quantity development from 
European Commission (2016), for Switzerland: Prognos AG 
(2012) (scenario C&E) and Swissgrid (2015)  

Fuel and carbon spot 
market prices 

Daily/yearly European Commission (2016) 

Investments New flexible power plants Schröder et al. (2013) 
Transmission capacity Yearly ENTSO-E (2018a), NEP (2019) 
Mobility data Daily trip profiles infas (2008) and MEEDDM (2008) 

 

Bass diffusion models are used to model PEV diffusion in all seven market areas (Ensslen, 2019). A PEV 

stock of 55,900 vehicles is used as a starting point for France and 48,300 for Germany in 2015. Based 

on initial political targets5, six million PEV respectively are assumed for France and Germany in 2030, 

i.e., a fleet share of 19% and 13%, respectively (BMWi et al., 2011; Bourbon, 2017). Households 

adopting PEV within the representative mobility datasets are identified by applying a binary logit 

model. This model yields probabilities for purchasing PEV to substitute old cars of households (Ensslen 

et al., 2014; Ensslen et al., 2016). 

PEV-specific electricity demand and load shift potentials are derived from the PEV stock data and the 

vehicle operation data from infas (2008) and MEEDDM (2008). We assume that the charging managers 

can actively control the charging processes of PEV during the time they are parked at home or the 

workplace. These are the places PEV are parked most frequently and are likely to have the most 

extended idle times (Schäuble et al., 2017). We assume that all charging facilities are equipped with 

smart devices permitting controlled charging. 

We assume that there is one central charging manager in each market area. The energy volume 

allocated by the charging managers is equal to the total PEV-specific energy demand in the different 

market areas. The calculations concerning the electricity consumption of PEV are based on a PEV-

specific consumption of 0.2 kWh/km, a battery capacity of 60 kWh, and a maximum charging power of 

3.7 kW. Since this battery capacity is insufficient for some trips, we assume that any remaining distance 

is covered by gasoline (i.e., by plug-in hybrid or range-extended electric vehicles). This approximation 

 
5 While these political targets have since diversified, we use the initial targets for comparability between the 
core markets of the analysis. 
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of the vehicles is tolerable due to the national scale of the simulation and the necessity to focus on the 

aggregate effect of the fleet on the system rather than individual vehicle’s behavior. 

Based on these assumptions, within the simulated time frame between 2015 and 2030, the total 

annual energy demand from PEV grows from 246 GWh to 22.2 TWh in France and from 317 GWh to 

21.9 TWh in Germany across all PEV scenarios. As the vehicles have the same mobility and energy 

requirements every day, these values are annual aggregates of the respective daily demands of 

673 MWh in 2015 to 60.8 GWh in 2030 in France and 870 MWh to 60.0 GWh in Germany. 

Finally, we specify 𝛼 = 0.1 for scenarios Opt RES and Max RES as an incentive to limit hourly PEV-

demand to 10% of domestic RES generation in this hour. The value of 0.1 is exemplary but derived 

from the share of domestically generated GoO used in Germany, which amounted to roughly 10% in 

2017 (AIB, 2021). 

5. Results: Effects of different charging strategies… 
We discuss the simulation results in the following two subsections for the energy market outcome 

(Section 5.1), i.e., PEV charging patterns, power-plant dispatch, and market prices, and resulting 

carbon emissions (Section 5.2) with a focus on curtailment and total system emissions. 

5.1. On the electricity system (RQ1) 

5.1.1. PEV charging patterns 
Central to our analysis, we first describe the PEV load profiles as scheduled by the aggregators of 

France and Germany, as well as how these loads impact dispatch of flexible power plants, spot prices 

and PEV aggregators’ electricity costs. 

Details on the PEV-specific load distribution in 2030 can be found in Figure 2. It shows the average RES 

output available for PEVs as limited to 10% of hourly RES production in scenarios Opt RES and Max RES. 

Evening peaks for Uncontrolled charging are clearly visible in both markets, even though in these hours, 

traditionally, the prices are the highest. Since our model allows for charging at work, a sizeable peak is 

also visible in the morning and in France around noon. Considering the charging behavior under the 

controlled charging scenarios, the model clearly successfully shifts demand to low-price periods at 

midnight and the early morning, especially in scenario Opt Price. The solar generation peak at noon 

reduces prices considerably in both market areas and the system load reacts accordingly. Average PEV 

load stays more reliably below 10% RES production in Opt RES and Max RES than in Opt Price. The 

notably higher demand in the early morning hours indicates that RES energy supply is, on some days, 

insufficient to cover PEV demand, and the aggregator is forced to exceed the RES limit. In fact, PEV 

demand exceeds the allotted RES limit made available in scenarios Opt RES and Max RES on 64% of 

days in France (cf. Figure 10 in Appendix B). The maximum daily demand excess is above 30 GWh for 

both markets, while Germany experiences excess demand for about 30% of the year. 
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a) Germany 

 
b) France 

 
Figure 2: Average PEV-demand (lines) and RES provision (area) for a) Germany and b) France in 2030 

Furthermore, Table 3 shows statistics for hourly demand from PEV in 2030. It is noticeable that 

uncontrolled charging leads to a fairly balanced hourly PEV load, while especially scenarios Opt Price 

and Opt RES produce more extreme hourly PEV demand. Since the total allocated energy is constant 

across all scenarios, the mean demand from PEV is 2.50 GW in Germany and 2.53 GW in France. 

Table 3: Statistics for PEV demand in Germany and France in 2030 (all values in MW) 

Scenario 
Min Median Max Std. dev. 

GER FR GER FR GER FR GER FR 

Uncontrolled 1,241 1,124 2,202 2,000 4,160 5,425 858 1,186 

Opt Price 321 319 1,721 2,393 12,169 10,366 1,936 1,828 

Opt RES 343 310 2,200 2,257 9,081 10,174 1,380 1,220 

Max RES 986 1,197 2,375 2,421 6,060 4,575 755 596 
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5.1.2. Generation capacities 
Since PEV charging behavior under a charging strategy impacts the load curve and market outcomes 

and, subsequently, hourly emissions, it also impacts investment decisions by conventional power plant 

operators in the long-term. The simulation model was used to determine power plant expansion based 

on the uncontrolled charging scenario. For all other scenarios, the generation capacity development 

was taken directly from the uncontrolled charging scenario so that an identical power plant 

development was fixed to guarantee the comparability of other results between the scenarios. The 

fixed capacities imply that investments are made with the agents’ expectation that PEV always charge 

as soon as possible and without taking price levels or RES production into account. 

Investments in gas combined-cycle turbines (CCGT) and open-cycle gas turbines (OCGT) are possible in 

the model applying the cost assumption from Schröder et al. (2013). As described in Section 4, the 

German phase-out of nuclear power plants (until end 2022) and the phase-out of coal-fired power 

generation in Germany (until end 2038) and France (until end 2022) were taken into account. Thus 

investments in coal-fired power plants were not allowed in all modelled countries, and investments in 

nuclear power plants were not allowed in Germany, leading to a decrease in capacities for these power 

plant technologies. Furthermore, power plants will be decommissioned after reaching their technical 

lifetime, e.g., hard coal and gas power plants after 45 years. Investments in RES are exogenously given 

due to political targets and cannot be performed by the model. In addition, investments in market-

scale battery storage were neglected since no substantial installation is expected by 2030 due to still 

comparably high battery costs (cf. Fraunholz et al., 2021). 

a) Germany 

 

b) France 

 
 

Figure 3: Capacity development identical for all scenarios based on the uncontrolled charging scenario in a) Germany and 
b) France 

Figure 3 shows Germany’s and France's resulting capacity developments in 5-year steps. The results 

show that between 2023 and 2030, large CCGT capacities will be added in Germany (30.4 GW). France 

invests in both OCGT power plants (32.8 GW) and CCGT (13.6 GW). Due to the French capacity 

remuneration mechanism, the increase in new capacity in France is considerably higher than in 

Germany. The French mechanism also causes OCGTs to be more economical than other options due 

to the comparatively low investment expenditures for gas turbines. 

Towards the end of the simulation period, German capacity grows strongly, which is justified and 

accounted for by the assumed increasing PEV demand, especially in the years after 2030. Increasing 
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demand cannot be compensated through the increasing generation of RES only but by new 

investments in flexible power plants. 

5.1.3. Power plant dispatch and spot market prices 
Figure 4 shows the electricity generation specified by fuel type in Germany and France over the 

simulated time span with uncontrolled charging. 

a) Germany 

 

b) France 

 

 

Figure 4: Technology-specific generation in a) Germany and b) France with uncontrolled charging6 

It can be seen that increasingly large shares of generation will be provided by RES, especially wind and 

PV. In France, a major share of generation continues to be provided by nuclear power plants. Germany 

has a clear shift in generation from coal to gas. In total, generation in France also increases due to the 

added capacity, and France will become a net electricity exporter in 2030. Germany meanwhile 

transitions to a net electricity importer. Generation decreases until 2025 and increases slightly in 2030, 

almost to the initial level. These trends are stable across all PEV charging scenarios for either Germany 

or France.  

 
6 Since grid restrictions are only modelled for international transfer capacities to selected countries deviations 
from historical production volumes are possible. 
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a) Germany 

 

b) France 

 

 
Figure 5: Arithmetic average spot market electricity prices in the smart charging scenarios in a) Germany and b) France 
across simulated timeframe relative to scenario “Uncontrolled”. 

We use the average price as the first indicator of the system impacts of PEV charging strategies. Figure 

5 shows that Opt Price has the most considerable lowering impact on the price level compared to the 

scenario Uncontrolled. Opt RES (Max RES) is less (not at all) reactive to price, leading to smaller price 

differences. It must be noted that annual PEV demand for electricity represents only around 4% of the 

annual total electricity demand in Germany in 2030, but PEV charging behavior still influences the price 

level in an integrated European energy market. This is due to fewer restarts of power plants at the 

higher end of the merit order and, therefore, lower start-up costs. For the Uncontrolled scenario, the 

nominal prices in Germany increase from around 33 EUR/MWh7 in 2015 (36 EUR/MWh in France) to 

85 EUR/MWh in 2030 (79 EUR/MWh in France). 

5.1.4. Aggregators‘ electricity costs 
Multiplying the scheduled PEV demand with the associated simulated hourly price, the aggregators’ 

electricity expenditures for PEV charging can be calculated. Please note that, for the sake of 

comparability, Figure 6 does not include the penalty payments for scenarios Opt RES and Max RES. 

Scenarios Opt price, and Opt RES tend to have the lowest charging costs, while Max RES leads to slightly 

increased costs. However, all smart charging schemes yield considerable cost reductions for the 

aggregators, in total around 140 Mio EUR in Germany and 180 Mio EUR in France. 

 
7 All nominal prices in EUR2013. 
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a) Annual aggregator electricity costs 2030 

 

b) Distribution of hourly electricity costs (DE) 

 

 
Figure 6: Electricity costs (without penalty in “Opt RES”) for a) aggregators in Germany and France in 2030 and b) 
distribution of hourly electricity costs in Germany 

Unintuitively, Opt Price generates slightly higher electricity costs for the German aggregator than the 

Opt RES charging strategy. The lower average price level and lower median load with Opt Price cannot 

compensate for the substantial impact of the strategy’s rare but high load spikes. Furthermore, Table 

3 shows statistics for PEV demand in 2030. It is noticeable that uncontrolled charging leads to a 

reasonably balanced hourly PEV load, while especially scenarios Opt Price and Opt RES produce more 

extreme PEV demand. Since the total allocated energy is constant across all scenarios, the mean 

demand from PEV is 2.50 GW in Germany and 2.53 GW in France. 

In fact, the large load potential shifted by the aggregator can lead to peak prices in the spot market at 

other times, leading to extremely costly hours for the aggregator. As an indicator of the increased 

volatility due to price-based load shifting, the standard deviation of hourly electricity costs for Opt Price 

is 28% higher than in Opt RES. 

In reality, aggregators would likely sooner adjust to this avalanche effect (i.e., to the high impact of 

PEV load on price levels) and avoid such self-inflicted price spikes. The results can also be interpreted 

in the context of market power: As soon as aggregators manage a large pool of vehicles with 

considerable load, they may be able to exploit their impact on prices to their benefit. However, the 

significance of the effect may be overestimated by simulating a single aggregator for each market area. 

An iterative approach of splitting PEV demand into 20 sequential segments shows that this effect can 

be mitigated. 

5.2. On carbon emissions (RQ2) 

5.2.1. Curtailment 
Due to the strong expansion of RES capacity in some countries, RES production can sometimes outpace 

total electricity demand on very sunny or windy days. Grid balance may have to be maintained by 

curtailing production from inflexible RES. The results in Figure 7 indicate that smart PEV charging 

strategies, compared to uncontrolled charging, can help mitigate curtailment across Europe in 2030, 

improving economic efficiency. In fact, the additional demand from PEV leads to an additional 

200 GWh of green electricity being used in the 2030 system. Smart charging leads to further 

curtailment reductions, particularly with the Opt Price strategy (by almost 30%) and Opt RES strategy 

(by around 27% compared to Uncontrolled). Charging with Max RES also reduces up to 16% of RES 
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electricity curtailment, but compared with Opt Price and Opt RES, it takes less advantage of RES 

oversupply due to its smaller demand spikes. 

Considering individual market areas, the vast majority of curtailment occurs in Denmark due to its 

large wind capacity and restricted connection to Germany8. Smart charging eliminates all curtailment 

in Germany and almost halves curtailment in Italy and the Netherlands. It must be noted that our 

model only considers energy flows between markets. However, curtailment could also be caused due 

to domestic grid congestion, which is neglected in our model. Ried (2021) shows that PEV can reduce 

curtailment within a country. 

 
Figure 7: Cumulative curtailment of RES across all simulated markets under the different scenarios in 2030. Percentages 
relative to Uncontrolled. 

5.2.2. Emissions 
The time-varying power demand affected by the charging strategies directly impacts the electricity 

production required from fossil fuels and, in consequence, impacts carbon emissions. In order to 

analyze the effects that different charging scenarios have on emissions, we discuss below both annual 

absolute emissions as well as the emission factors introduced in Section 3.3. 

Across all charging strategies (incl. No PEV), CB emissions are higher than PB emissions, indicating that 

France and Germany are markets exporting carbon-neutral energy (e.g., at times of high RES 

production) and importing more carbon-intensive electricity (Figure 8). The additional demand from 

PEV leads to rising emissions compared to the No PEV scenario, particularly in France9 (Figure 8a). 

While in Germany, total emissions are fairly stable in both the PB and CB perspectives, the French PEV 

have some impact on total emissions: Relatively small changes in demand appear to have a sizeable 

effect on more polluting power plants being in the market. This is likely due to the smaller share of RES 

in the French electricity generation mix, and in consequence, excess demand is covered by fossil power 

plants and more carbon-intensive imports (nuclear energy is carbon-neutral but not regarded as RES 

in this paper). Price-optimized charging (Price Opt) leads to the lowest emissions in France, followed 

by Opt RES and Max RES. On average, smart charging saves up to 5%-points compared to uncontrolled 

charging or more than 400,000 tCO2 of CB carbon emissions between France and Germany in 2030. 

 
8 It must be considered, that we do not simulate interconnection to Sweden and Norway, which would likely 
further reduce the absolute amount of curtailed energy. 
9 With exogenous RES growth, increasing net demand cannot be met with accelerated RES expansion but only 
more fossil fueled power plants. 
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Taking the sum over all simulated markets, emissions remain stable for all charging scenarios, both for 

PB and CB emissions. 

a) Total emissions relative to "No PEV" 

 

b) PEV emissions relative to "Uncontrolled" 

 

 
Figure 8: a) Total annual emissions in Germany and France relative to scenario No PEV for 2030 and b) total emissions 
attributed to PEV charging according to the traditional emission factor (Equations (15) and (16)) in 2030. The horizontal 
black dash shows the relative difference between PB and CB, i.e. “(PB-CB)/CB”). 

Figure 8b shows emissions directly caused by PEV charging according to each scenario relative to 

Uncontrolled. Emissions are allocated to PEV by multiplying hourly PEV demand with the traditional 

emission factor EFCB and EFPB as defined in Equations (15) and (16). Consequently, the best charging 

strategies for reducing emissions caused by PEV charging are Opt RES in Germany and Opt Price in 

France. Max RES lowers emissions the least as this strategy does not appear to take advantage of 

frequent occurrences of large oversupplies of RES. 

The chosen methodology does not consider RES production of neighboring countries in national PEV 

charging dispatch, which influences the results of Opt RES and Max RES. However, neighbors’ RES 

production impacts the PEV CB emissions in case of import flows in the importing market. Due to the 

lack of information on the expected exchange flows prior to market clearing, PEV charging agents only 

optimize for the best results in PB emissions. Therefore, the desired effects of PEV charging strategies 

on CB emissions are likely to be lower than on PB emissions if charging strategies are not formulated 

with care and, e.g., do not consider international synchronization effects. 
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Table 4: Average CO2 emission factors [kg/MWh] for France and Germany according to Equations (15)-(18) and (21)-(24). 

Scenario  
 

[factors in 
kgCO2/MWh] 

Country  Year Average mix emission 
factor 

Marginal emission factor  Emission factor allocating 
PEV-specific consumption 

to carbon-neutral 
production  

𝐸𝐹𝑃𝐵 𝐸𝐹𝐶𝐵 𝑀𝐸𝐹𝑃𝐵 𝑀𝐸𝐹𝐶𝐵 𝐴𝐸𝐹𝑃𝐵 𝐴𝐸𝐹𝐶𝐵 

No PEV 
(baseline) 

France 
2015 10 22 n/a n/a n/a n/a 

2030 15 17 n/a n/a n/a n/a 

Germany 
2015 470 471 n/a n/a n/a n/a 

2030 290 275 n/a n/a n/a n/a 

Uncontrolled 

France 
2015 10 22 88 253 0 0 

2030 19 23 128 142 3 4 

Germany 
2015 471 472 1566 1589 0 0 

2030 294 293 422 731 41 41 

Opt Price 

France 
2015 10 22 2 40 0 0 

2030 18 22 107 121 3 4 

Germany 
2015 471 472 2533 1649 0 0 

2030 293 293 447 732 36 35 

Opt RES 

France10 
2015 9 22 -187 -22 0 0 

2030 19 22 117 125 1 2 

Germany 
2015 470 472 1209 1421 0 0 

2030 294 293 457 737 12 12 

Max RES 

France 
2015 9 22 -74 239 0 0 

2030 19 23 126 132 2 3 

Germany 
2015 471 472 323 1725 0 0 

2030 294 292 429 723 19 19 

 

The previous results for total emissions are mirrored in the two columns of Table 4 dedicated to the 

average mix emission factor (EF): Due to the different fuel mixes (large coal generation in Germany, 

large nuclear generation in France), Germany experiences much higher emission factors than France. 

At the same time, German emissions fall from 2015 to 2030 due to the strong growth of renewable 

generation, while the French production-based emission factor (EFPB) increases for all scenarios due to 

increased generation from natural gas in 2030. Consumption-based average mix emission factors (EFCB) 

remain stable, indicating that the increase in carbon-intensive domestic production is compensated 

through less carbon-intensive imports. The impact of charging strategies on total emissions is 

negligible, reflected in the average mix emission factor. 

Aggregators of PEV charging are likely to focus their communication on allocated emission factors, i.e., 

utilization of green electricity reporting using GoOs. As described in Sections 3.2 and 3.3, aggregators 

in Opt RES and Max RES buy up to 10% of domestic, time-specific GoOs to cover PEV electricity 

consumption. PEV charging is then scheduled according to the different scenarios in order to stay 

below the GoO availability. Any PEV consumption above the 10% of renewables available at the 

respective hour then causes emissions according to EFCB. The results in Table 4 show how successful 

all smart charging strategies are at lowering Germany’s allocated emission factors in 2030. Specifically, 

Opt RES and Max RES more than halve allocated emission factors (AEF) compared to Uncontrolled 

charging. AEF for Opt Price is also lower than Uncontrolled by around a third. Despite excess PEV 

demand occurring in most hours for French aggregators (cf. Figure 10 in Appendix B), their allocated 

emission factors remain relatively stable and are at a very low level due to the lower emissions of the 

French electricity mix. 

When comparing marginal emission factors (MEF), result interpretation becomes more complex. 

Comparing 2015 and 2030 values, the trend towards lower factors in Germany and higher factors in 
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France remains unchanged or is even amplified10 (e.g., MEFPB in Germany with Opt Price charging). For 

Germany, under consideration of PB emissions, more and higher demand peaks in Opt Price and 

Opt RES allow more carbon-intensive power plants to run as opposed to in the more balanced 

scenarios Uncontrolled and Max RES. In France, the effect appears reversed and Opt Price shows the 

lowest MEFPB. The trend continues for CB emissions on a slightly higher level, hinting at similar and 

compounding mechanisms in export markets. For Germany, MEFCB appears to be more stable across 

scenarios but at a much higher level due to domestic production and additional imports from carbon-

intensive Polish coal production in times of excess demand. Notable are the higher MEF in Germany 

for Opt RES. Under the considered CO2 prices, power plants at the lower end of the Merit order tend 

to have higher emission factors, i.e., coal power plants compared to gas turbines. A higher focus on 

RES by PEV optimization leads to intersections of demand and supply lower down in the Merit order, 

thus at power plants with higher emission factors. A similar effect occurs in France, where the more 

extreme charging strategies lead to comparatively lower MEF than the more balanced scenarios 

Uncontrolled and Max RES. With baseload supplied mainly by nuclear power plants, hard coal power 

plants are often price-setting in times of medium load. Higher demand peaks from PEV under Opt Price 

or Opt RES at night lead to further use of lower-emitting gas power plants. 

6. Discussion 
The holistic nature of the market simulation leads to complex results, which are discussed in detail 

below. Section 6.1 explores the sensitivity of the results in response to changes in the availability of 

RES production for the aggregator. Section 6.2 then summarizes and discusses all results and reaches 

a synopsis of research question RQ3. The limitations of our approach are discussed in Section 6.3. 

6.1. Sensitivity: RES availability 
One of the core premises of the simulation is the reservation of 10% of renewable production for PEV 

charging in the scenarios Opt RES and Max RES. Below, Figure 9 shows how selected result metrics 

change in response to variations of the 10%-quota (x-axis). 

 
10 The negative values for France in 2015 indicate that PEV allow an improved utilization of less polluting 
powerplants such as nuclear power plants. For example, increased PEV charging under Opt RES at midday due 
to peak PV generation, when the generally high system load also requires generation from fossil-fueled power 
plants, leads to higher emissions than if charging remained at night. However, this only works if nuclear units 
are not running at full power at night. 
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a) Germany 

 

b) France 

 
 

Figure 9: Sensitivity of results (y-axis) in response to deviations from 10% allocated RES for Opt RES (x-axis) for a) Germany 
and b) France. Panel a) also shows results for the total curtailment across all markets (green dashed line). 

With less limitations on power demand, i.e., increased allocated RES quota, the PEV load becomes 

more eccentric, and the median PEV load increases. The effect is more dramatic in France, where less 

RES is available in total and therefore represents a tighter boundary condition for PEV scheduling. The 

average prices and aggregated electricity costs are similar for both markets and around 5% lower than 

the base case at the 10%-RES quota. In France, PEV-specific emissions decrease by around 8% with 

growing RES-shares for PEV charging, while in Germany, PEV emissions are stable or increase slightly 

when deviating from the 10%-RES quota. Finally, total curtailment across all markets appears to 

increase with a higher allocated RES quota, indicating that excess RES availability leaves room for a 

stronger focus on price optimization and less forced use of, e.g., the lunch solar peak or imports from 

Danish wind power plants. At 10% RES availability, the optimization model appears to be at an 

inflection point between heavy price and some RES focus. 

The most sensitive result parameter is the hourly PEV load. Its standard deviations dramatically 

increase when deviating from the 10%-share, especially in France, where less RES are available (cf. 

Table 5 in Appendix B). This implies that additional gains for aggregators are possible with country-

specific adaptations to their load scheduling algorithms. In the long run, this could lead to increased 

competition among aggregators. Meanwhile, more extreme PEV demand exposes aggregators to 

greater price risk. At the same time, results on electricity costs in Figure 9 indicate that these more 

extreme load schedules are beneficial as they help reduce peak loads (and therefore peak prices) 

throughout the system, at least under the strategy Opt RES. As the largest standard deviation occurs 

in France, with 5% of RES made available to PEV, this can be interpreted as restricted RES availability 

leading to more erratic responses from market participants, such as PEV. If flexible demand is to take 

advantage of real-time RES availability, there must be sufficient RES production to reliably provide 

enough RES – but also provide tangible incentives for market participants. Such incentives could also 

motivate aggregators (and consumers) without sustainability goals to respond to RES availability and 

decrease PEV-specific emissions. Real-time RES supply is a tool to increase RES usage in the transitional 

period towards fully renewable energy systems. 
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6.2. Synopsis: Can charging PEV be carbon neutral? (RQ3) 
The question of carbon-neutral PEV charging within the complex, traditionally fossil fuel-based 

European electricity system, can be approached from multiple angles: 

Firstly, when considering our results on total emissions (cf. Section 5.2.2), the notion of carbon-

neutrality for PEV must be viewed with scepticism: Under exogenous (i.e., politically desired and 

supported) RES-expansion levels, additional demand from PEV causes additional emissions – and 

different charging strategies barely change that outcome. While PEV can cause substantial demand 

peaks, their total energy consumed remains relatively small until 2030 compared to, e.g., Germany’s 

overall energy demand. In France, the charging strategy has a more substantial impact due to the 

currently low level of emissions, especially considering that less energy from RES is available, which 

often restricts the optimization. Nevertheless, both the transport and energy sector are in a 

transitional period, and with more RES and functional markets, both sectors can work towards 

decarbonization. 

On top of that, curtailment was successfully reduced in our simulation through the application of 

different charging strategies, indicating a better inclusion of RES. However, the effect is too small to 

register in the total amount of European emissions by 2030, potentially also due to the exclusive 

consideration of international curtailment instead of curtailment caused by grid bottlenecks within 

countries. For example, Germany curtailed almost 6.5 TWh of renewables in 2019 due to transmission 

and distribution grid restrictions (BNetzA, 2021), ten times the total curtailment in all market areas 

exhibited in this simulation (cf. Figure 7). However, our results still indicate that PEV charging under 

consideration of availability of RES may help mitigate such inefficiencies in the future. 

Conversely, the results can be interpreted from a different perspective: Instead of carving out 10% of 

RES for the use of PEV, we conclude that with an additional 10% of RES, most power demand from PEV 

can be covered in 2030, rather than mandating construction of new conventional power plants. If PEV 

were to drive additional demand for RES, investors may be incentivized to expand RES capacity. 

Additional RES capacity contributes to higher RES shares and, therefore, a more sustainable overall 

electricity mix. Even if the power balance of RES and PEV consumption is not part of the premise set, 

additional RES capacity will be built if RES is the cheapest technology. According to our results, covering 

daily PEV charging demand with 100% renewables on 98% of days would require an additional 19% / 

17% of energy provided from RES in Germany / France. The higher share of flexible hydropower 

production in the French electricity mix leads to the lower value, as for this calculation, we assumed 

that all RES technologies scale in parallel. 

Drastic reductions of overall carbon emissions will require a more fundamental overhaul of the 

electricity system with considerably more carbon-free production and storage solutions. For PEV 

charging scheduling to have a significant effect, the flexibility potential of PEV has to be increased, i.e., 

the amount of energy that can be shifted over a specific time frame. Beyond higher PEV numbers, 

shifting charging events from one day to the next would be beneficial. In addition, PEV could be utilized 

as storage through bidirection charging flows. However, this could not be considered in our 

investigation. 

Secondly, stepping away from total emission and taking the perspective of an aggregator or smart 

charging service provider shows the true strength of the different charging strategies. As seen in 

Section 5.2.2, different charging strategies have a remarkable impact on the emissions allocated to 

PEV and, therefore, the emissions the aggregator can communicate to their service customers. As a 

result, the correct charging strategy can benefit product marketing and economics (cf. Section 5.1.4). 

We showed that a mixed strategy, Opt RES, is the most beneficial, and if enough RES (and adequate 

infrastructure) are available, national real-time provision for PEV charging is possible. 
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We also show that smart charging approaches lead to lower total demand peaks and also slightly lower 

market price levels (cf. Section 5.1.3). Given appropriate market mechanisms, e.g., carbon pricing, a 

more efficient system could also be achieved with lower pollution levels. The promising results for 

curtailment show a clear trend, but further analysis is necessary to scale these results to real market 

levels correctly. 

In conclusion, green charging can be achieved in 2030 from the vantage point of aggregators marketing 

charging services with allocated emissions (as is common practice today). Both AEFCB and AEFPB 

approach zero in 2030 with increasing RES availability. The real-time RES provision enables service 

providers to demonstrate the positive impact of their charging scheduling on the energy system and 

reassert their customers in their contribution to sustainable transport through PEV.  

The interpretation from the service perspective has further implications: With only an additional 10% 

of RES, the total additional energy consumption of PEV can be fully compensated using real-time GoOs. 

Our simulation shows transparently how the service perspective and system benefits may align. This 

discussion could inform policy decision-making and stakeholder dialogues on PEV and, in the long run, 

leads to coupling between the energy and transport sector. 

Our results on aggregator costs also indicate that aggregators may have market power (cf. 

Section 5.1.3): Opt Price aggregators have higher electricity costs than with Opt RES at a lower average 

price level, indicating that their bidding behavior increases the price excessively (due to limitations in 

the endogenous price prognosis). Large aggregators could learn to adapt their bidding behavior and 

use such effects to their benefit. As stated in Section 3.1, our simulation uses a single aggregator per 

market area. However, PEV charging demand is allocated 1/20th at a time to mitigate synchronization 

effects and excessive peak load. This allocation could also be interpreted as 20 aggregators per market 

area bidding sequentially into the market. The final aggregator to bid anticipates all other aggregators’ 

bidding behavior. 

6.3. Limitations 
Due to runtime limitations, we implemented active market coupling only between selected European 

countries with a strong focus on the German market. This leads to a limitation for the French case as 

interconnections with Spain and the UK are not explicitly modelled. The integration of further market 

areas could influence the results but would also drastically increase computation time and likely not 

influence the main conclusions of this paper. Furthermore, we use one set of base data for the 

development of demand, market penetration of RES, development of carbon prices and different 

technology options. The set is consistent and has been used for many other publications (e.g., 

Fraunholz et al., 2021; Zimmermann et al., 2021) so that our results can build on the literature. While 

an update of the data set in future work could be possible, newer RES scenarios are often even more 

ambitions. This idicates our results represent a more conservative development. 

In terms of model results, we can assume that the investments in flexible power plants will not take 

place to the modeled extent in reality and are subject to model-related restrictions since the model, 

in particular, cannot invest in additional RES. However, it remains uncertain whether additional RES 

can be added at a rate sufficient to meet the additional PEV demand. Also, emission assessments may 

be estimated too low as the partial operation of power plants is only considered rudimentarily and 

higher inefficiencies at ramp-up and -down are likely in reality. 

The modeling of PEV is limited in multiple ways: First, the ramp-up of vehicle numbers is based on 

national objectives, as our focus is on determining the charging behavior of the users rather than 

delving into adoption research. Here, a fundamental assumption is that household mobility behavior 

does not change when conventional cars are substituted with PEV, and that average daily driving 
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behavior is constant throughout the year. In addition, we use the same average parametrization for all 

PEV (consumption: 0.2 kWh/km; range 300 km; 60 kWh batteries; 3.7 kW chargers) in order to simplify 

the model. For the same reason, all markets except France use the same mobility patterns as Germany, 

and as stated previously, optimization happens only within one day and not in preparation for the 

following day. However, the use of averages and the listed abstractions for the simulation is justified 

because the focus of this paper is to assess the impacts of charging strategies of PEV fleets on the 

energy sector rather than modeling individual mobility behavior. 

Arguably, electrification of the European transport sector is not associated with any additional 

emissions during the use phase of PEV due to the EU Emission Trading Scheme (Jochem et al., 2015). 

However, doubts concerning the efficiency of the scheme are expressed repeatedly (Paltsev et al., 

2018). For example, savings can be achieved more cheaply in other sectors than in road transport 

(Heinrichs et al., 2014). As a result (and if carbon contracts for difference are not available), energy-

intensive industries might migrate to regions with lower emission standards. 

Aspects under only limited consideration in our market simulation are national grid restrictions. As 

seen above, PEV charging may lead to new load peaks, which combine national prices and renewable 

availability but pays no heed to the localization of grid connections, decentralized RES production or 

PEV demand. In practice, aggregators will have to consider restrictions imposed by grid operators, e.g., 

load limitations. 

Overcoming the methodological limitations above would add further complexity to the simulation 

without necessarily improving the answers to the research questions. We are confident to have 

derived significant and robust findings. 

7. Conclusions and future work 
With rising numbers of plug-in electric vehicles (PEV) in Europe, their impact on the energy system will 

become more and more apparent. In this paper, we analyzed how different charging strategies 

considering spot market prices and real-time production from renewable energy sources (RES) impact 

price levels and production- and consumption-based carbon emissions in France and Germany. We use 

the agent-based simulation model PowerACE covering ten electricity markets in Central Europe. Total 

European carbon emissions do not change significantly in response to the charging strategy since the 

total energy volume charged by electric vehicles in 2030 remains comparatively small. Nevertheless, 

our results show that all smart charging strategies reduce price levels on the spot market and lower 

total curtailment of renewables, with charging processes optimized according to hourly prices having 

the strongest effect. However, the total amount of reduction in curtailment of RES is relatively small 

compared to total system demand and therefore does not noticeably impact total annual emissions. 

This effect is likely underrepresented as we only consider international grid congestion, while most 

curtailment is due to national and regional bottlenecks. 

Compared to uncontrolled charging, smart charging strategies reduce electricity purchasing costs by 

about 10% for flexibility aggregators operating the charging service. In addition, the strategies allow 

for communication of deeper decarbonization due to lower allocated emission factors. A charging 

strategy expanding on classic price optimization by limiting total national PEV demand to 10% of 

available RES (Opt RES) leads to the most advantageous results in both metrics. Aggregators and PEV 

owners would benefit from the availability of national, real-time Guarantees of Origin and the 

respective scarcity signals for renewable production. 

Finally, our results indicate that in the medium term, it is essential for regulators to incentivize enough 

RES to reduce the system's total carbon emissions and potential investments in flexible power plants. 
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Moreover, as the share of RES generation increases, the effects of smart charging will become more 

critical.  

Future work could simulate and analyze a day-ahead market for time-specific Guarantees of Origin to 

understand the market dynamics under consideration of different technologies. Flexible RES 

production and market-scale storage would be an instrument to balance production from RES in such 

a system and are likely price-setters. A deeper investigation of how storages impact emissions could 

also be considered. Furthermore, it would be interesting to consider how bidirectional charging, i.e., 

vehicle-to-grid, could increase flexibility potential by PEV. 
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Appendix A: Detailed carbon calculation 
CO2 emissions of a market area, which are embodied in PEV-specific consumption, are calculated based 

on the following accounting balance of power flows for each market area 𝑟 ∈ 𝑅 in hour t (Eq. (25)): 

 𝑃𝑅𝑂𝐷𝑟,𝑡 = 𝐶𝑂𝑁𝑆𝑟,𝑡 + 𝐸𝑋𝑃𝑟,𝑡 − 𝐼𝑀𝑃𝑟,𝑡  ∀𝑡, ∀𝑟 (25) 

The amount of electricity produced in a market area (PROD) must be equal to the consumed amount 

of electricity (CONS). However, in the application of multi-regional input-output analysis, when 

electricity is exported (EXP), domestic production is increased, while when electricity is imported 

(IMP), domestic production is decreased (Peters and Hertwich, 2009). Every particular market area's 

export must be imported into another market area.  

In Europe, electricity is generated predominantly in flexible thermal power plants burning fossil fuels. 

As a result, CO2 is emitted in the market areas where the power plant is located, but the electricity 

demand may originate in another market area. In order to perform a market area-specific analysis of 

the emissions, it is necessary to allocate the emissions to the individual market areas based on 

causation because the highly interconnected and coupled markets in Europe lead to a permanent 

exchange of electricity.  

Therefore, we develop a demand-based allocation approach for the electricity market model based on 

Tranberg et al. (2019): All emissions produced must be equal to the consumed emissions (Eq. (26)). 

Losses (e.g., grid, self-consumption) are neglected. Further, we do not keep track of storage charging 

and discharging emissions.  

 
∑ 𝐸𝑟∈𝑅 𝑟,𝑡

𝑐𝑜𝑛𝑠
= ∑ 𝐸𝑟∈𝑅 𝑟,𝑡

𝑝𝑟𝑜𝑑
  ∀𝑡 (26) 

Additionally, the energy as well as the emissions that are exported or imported, must be balanced. 

Consequently, the consumed emissions in a market area must be equal to the produced and the 

imported emissions reduced by exported emissions (Eq. (27)). 
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𝐸𝑟,𝑡
𝑐𝑜𝑛𝑠 = 𝐸𝑟,𝑡

𝑝𝑟𝑜𝑑
+ 𝐸𝑟,𝑡

𝑖𝑚𝑝
− 𝐸𝑟,𝑡

𝑒𝑥𝑝
  ∀𝑡, ∀𝑟 (27) 

A neighboring (interconnected) market area m can export electricity to or import from the domestic 

market area r that leads to an account for emissions according to the substitutes for import and export 

in Eq. (28). All exports of market area r are imports in other market areas. Analogously, the imports 

are the sum of exports from other market areas into market area r. In case of no flows in the considered 

direction, the emission value for this flow is zero: 

 
𝐸𝑟,𝑡
𝑐𝑜𝑛𝑠 = 𝐸𝑟,𝑡

𝑝𝑟𝑜𝑑
+ ∑ 𝐸𝑚∈𝑅\{𝑟} 𝑚→𝑟,𝑡

𝑒𝑥𝑝
− ∑ 𝐸𝑚∈𝑅\{𝑟} 𝑟→𝑚,𝑡

𝑖𝑚𝑝
  ∀𝑡, ∀𝑟  (28) 

Meanwhile, the consumption-based emissions 𝐸𝑟,𝑡
𝑐𝑜𝑛𝑠 can be calculated from specific emissions 

𝐶𝑂2𝑟,𝑡
𝑠𝑝𝑒𝑐

 (in metric tons per MWh) and electricity demand 𝐶𝑂𝑁𝑆𝑟  (in MWh) in a specific market 

area r. Therefore, the result is the absolute CO2 emissions in metric tons (Eq. (29)).  

 
𝐸𝑟,𝑡
𝑐𝑜𝑛𝑠 = 𝐶𝑂𝑁𝑆𝑟,𝑡 ∙ 𝐶𝑂2𝑟,𝑡

𝑠𝑝𝑒𝑐
  ∀𝑡, ∀𝑟  (29) 

The respective flows multiplied by the specific emission factor increase or decrease the local emissions 

by the resulting absolute value 𝐸
𝑒𝑥𝑝

 or 𝐸
𝑖𝑚𝑝

. Therefore, the emissions can be calculated for exchange 

flows (export flows from market area r to m, Eq. (30), as well as import flows from market area m to 

r, Eq. (31)). The specific emission factors must be taken from the area where the energy flow 

originates. For exports, the flow originates in the domestic area (market area r); for imports, the flow 

originates from market area m.  

 
𝐸𝑟→𝑚,𝑡
𝑒𝑥𝑝

= 𝐹𝐿𝑂𝑊𝑟→𝑚,𝑡  ∙ 𝐶𝑂2𝑟,𝑡
𝑠𝑝𝑒𝑐

  ∀𝑡, ∀𝑟 (30) 

 
𝐸𝑚→𝑟,𝑡
𝑖𝑚𝑝

= 𝐹𝐿𝑂𝑊𝑚→𝑟,𝑡  ∙ 𝐶𝑂2𝑚,𝑡
𝑠𝑝𝑒𝑐

  ∀𝑡, ∀𝑟 (31) 

The absolute emissions of generated electricity 𝐸𝑟,𝑡
𝑝𝑟𝑜𝑑

 in area r can be measured as a result of power 

plant dispatch within the model. Eq. (29)-(31) are inserted into Eq. (28). 

 

𝐶𝑂𝑁𝑆𝑟,𝑡 ∙ 𝐶𝑂2𝑟,𝑡
𝑠𝑝𝑒𝑐

= 

𝐸𝑟,𝑡
𝑝𝑟𝑜𝑑

+ ∑ 𝐹𝐿𝑂𝑊𝑚→𝑟,𝑡  ∙ 𝐶𝑂2𝑚,𝑡
𝑠𝑝𝑒𝑐

𝑚∈𝑅\{𝑟} − ∑ 𝐹𝐿𝑂𝑊𝑟→𝑚,𝑡  ∙𝑚∈𝑅\{𝑟}

𝐶𝑂2𝑟,𝑡
𝑠𝑝𝑒𝑐

  

∀𝑡, ∀𝑟 (32) 

After the reorganization of Eq. (32) (to 𝐸𝑟,𝑡
𝑝𝑟𝑜𝑑

) a linear system of equations for all market areas r can 

be built to solve ex-post for every hour t. Known are all exchange flows 𝐹𝐿𝑂𝑊𝑟→𝑚,𝑡, the demand 

𝐶𝑂𝑁𝑆𝑟,𝑡 and the emissions emitted 𝐸𝑟,𝑡
𝑝𝑟𝑜𝑑

 as hourly results of the model or given input data. This 

allows the calculation of the specific emissions 𝐶𝑂2𝑟,𝑡
𝑠𝑝𝑒𝑐

 of each market area r for all hours t. Eq. (33) 

shows the resulting 𝑛 × 𝑛-matrix for the example of Germany (r = DE): 
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(

 
 
 

𝐶𝑂𝑁𝑆𝐷𝐸,𝑡 + ∑ 𝐹𝐿𝑂𝑊𝐷𝐸→𝑚,𝑡
𝑚∈𝑅\{𝑟}

⋯ −𝐹𝐿𝑂𝑊𝑛→𝐷𝐸,𝑡

⋮ ⋱ ⋮

−𝐹𝐿𝑂𝑊𝐷𝐸→𝑛,𝑡 ⋯ 𝐶𝑂𝑁𝑆𝑛,𝑡 + ∑ 𝐹𝐿𝑂𝑊𝑛→𝑚,𝑡
𝑚∈𝑅\{𝑟} )

 
 
 

∙ (

𝐶𝑂2𝐷𝐸,𝑡
𝑠𝑝𝑒𝑐

⋮
𝐶𝑂2𝑛,𝑡

𝑠𝑝𝑒𝑐
) = (

𝐸𝐷𝐸,𝑡
𝑝𝑟𝑜𝑑

 

⋮

𝐸𝑛,𝑡
𝑝𝑟𝑜𝑑

 

)  

∀𝑡 (33) 

 

 

Appendix B: Supplementary information on the market outcome 

 
Figure 10: Excess PEV demand (positive values) above 10% RES-availability per day for Germany and France in 2030 for all 
scenarios 

 

Table 5: Descriptive statistics for hourly PEV-demand ∑ 𝑒𝑡,𝑥𝑋  in Germany and France in 2030 in response to different RES 

allocations. Median values are shown in Figure 9. 

RES allocation 
Min Median Max Std. dev. 

GER FR GER FR GER FR GER FR 

5%-quota 34.07% 83.68% -12.13% -23.47% 49.71% 1.57% 21.50% 44.62% 

10%-quota 0% 0% 0% 0% 0% 0% 0% 0% 

15%-quota -0.36% -15.33% 2.82% 9.92% -8.89% -21.30% 15.91% 17.33% 

20%-quota -6.37% -15.33% 2.30% 14.63% 5.19% -11.75% 23.48% 34.15% 
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