Sources of Oxidative Potential (OP) in atmospheric PM₁₀, PM_{2.5}, and PM₁

A study discovering and identifying the different drivers of OP in North-Eastern Spain

M. in 't Veld^{1,2}, M. Pandolfi¹, F. Amato¹, N. Pérez¹, C. Reche¹, G. Uzu³, P. Dominutti³, J. Jaffrezo³, A. Alastuey¹, X. Querol¹

¹Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, 08034, Spain ²Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona, 08034, Spain ³University Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), 38000 Grenoble, France

INTRODUCTION Particulate Matter

Particulate Matter (PM)

"PM are microscopic particles of solid or liquid matter suspended in the air."

4.5 million premature deaths around the world (7.6% of all deaths) was attributed to high levels of PM in 2016 (WHO, 2018) PM also has an ecological effect. This includes direct deposition into the soil, which **affect the nutrient cycling**, and its acidic and alkaline content can cause leaf surface injury in plants (Grantz et al., 2003).

These are major concerns as the impact of **PM might increase with climate change**, increasing the impact of PM on the environment and human health (Dias et al., 2012; Ministerio para la Transición Ecológica, 2018).

The WHO has established new guidelines for ambient PM levels, citing PM as the **"single biggest environmental treat to human health"**.

INTRODUCTION Challenges

Particulate Matter (PM)

"PM are microscopic particles of solid or liquid matter suspended in the air."

The PM has **diverse range of source**, both Primary and Secondary, and Biogenic and Anthropogenic. Correlating chemical composition with hazardous human health effects is a challenge.

INTRODUCTION Oxidative Potential

Measures intrinsic capacity of PM to generate Reactive Oxygen Species (ROS) that can oxidize the lungs.

Good indicator, as studies linked respiratory diseases with ROS.

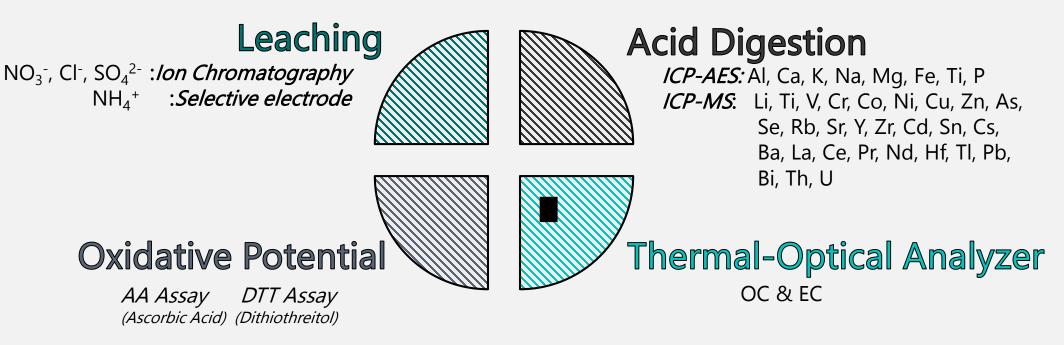
Different assays have different sensitivity

DTT (Dithiothreitol) is a balanced assay between transition metals and organic species. AA (Ascorbic Acid) is more sensitive to specific transition metals (like Cu)

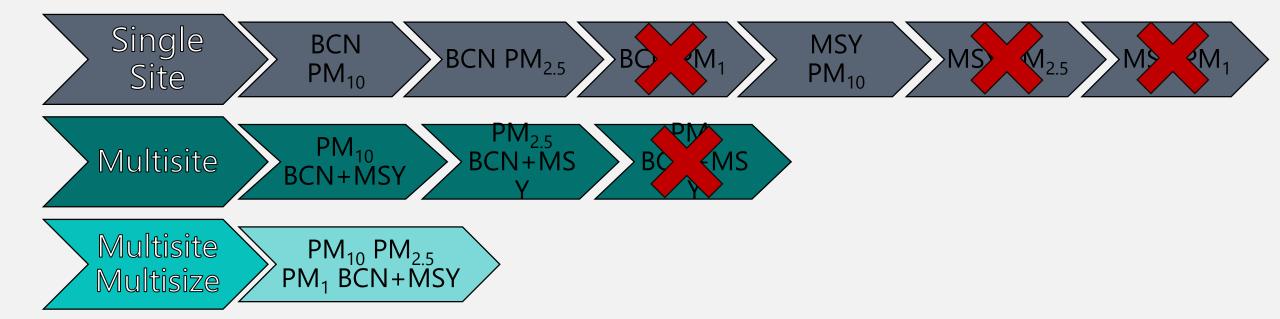
METHODOLOGY Chemical Speciation

Samples take: January 2018 – March 2019

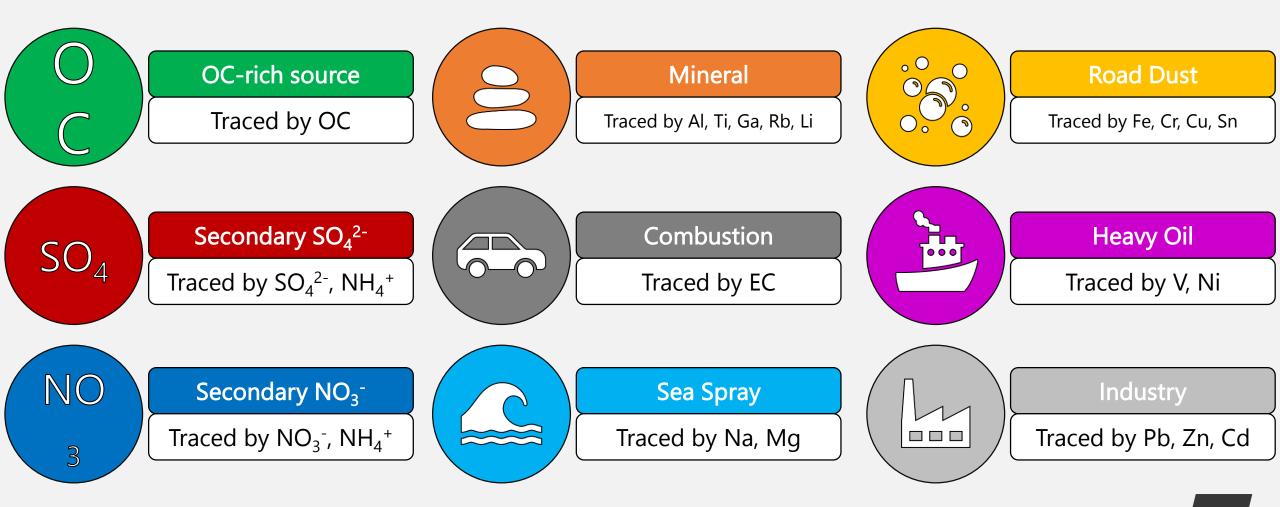
Filter sample take roughly once every 4 days


Montseny Rural Background Station 41°46'45.63''N, 02°21'28.92''E, 720 m a.s.l

Barcelona Urban Background Station 41°23'14.50"N, 02°06'55.60"E, 68 m a.s.l.


METHODOLOGY Chemical Speciation

PM Filter



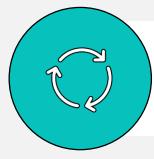
METHODOLOGY Source Apportionment

To obtain the source Positive Matrix Factorization (PMF) was applied

METHODOLOGY Source Apportionment

METHODOLOGY Source Apportionment

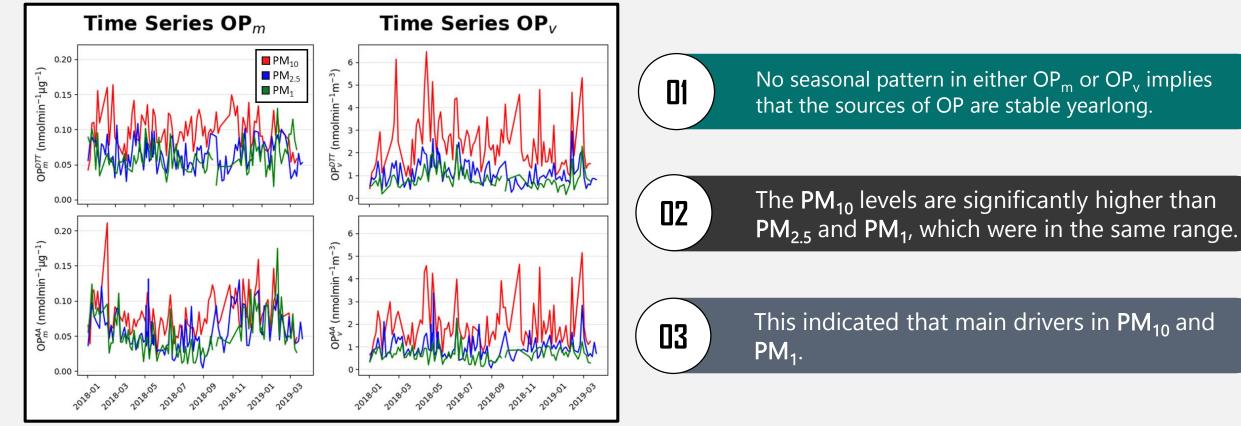
SOURCE		PM ₁₀		PM _{2.5}	
		PD	SID	PD	SID
OC-ri	ich	0.16	0.74	0.08	0.67
Secondary SO) ₄ ²⁻	0.05	0.57	0.05	0.64
Secondary NO	O ₃ ⁻│	0.06	0.06	0.02	0.47
Mine	ral	0.02	0.51	0.03	0.47
Combusti	on	-	-	0.16	0.70
Sea Spr	ray	0.05	0.65	0.05	0.67
Road Du	ust	-	-	0.14	0.51
Heavy	Oil	0.03	0.67	0.04	0.68
Indus	try	0.14	0.66	0.09	0.58


PD = Pearson Distance SID = Similarity Identity Distance Perrone, M.R., Bertoli, I., Romano, S., Russo, M., Rispoli, G., Pietrogrande, M.C., 2019. PM2.5 and PM10 oxidative potential at a Central Mediterranean Site: Contrasts between dithiothreitol- and ascorbic acid-measured values in relation with particle size and chemical composition. Atmos. Environ. 210, 143–155. https://doi.org/10.1016/j.atmosenv.2019.04.047

METHODOLOGY OP Apportionment

The OP apportionment was done using a **Multiple Linear Regression** (MLR) model, applying **Weighted Least Squared** (WLS)

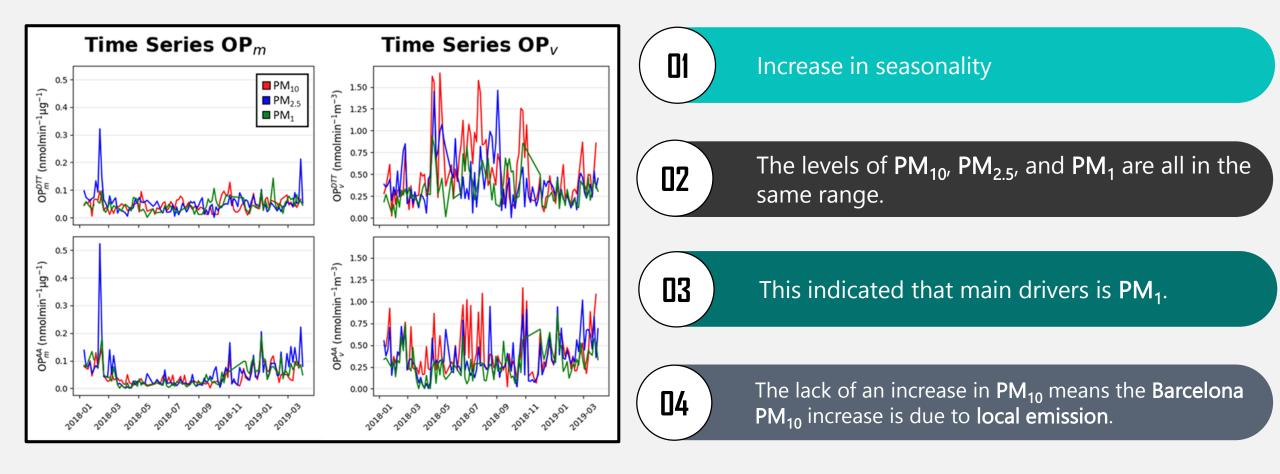
$$OP_{obs} = \beta_0 + (G_i * \beta_i) + \varepsilon$$



Model was bootstrapped a 1000 times, randomly selecting 70% of the samples

Multiplying the Intrinsic OP with the median mass contribution will determine the median human exposure.

RESULTS **Barcelona OP Time Series**



No seasonal pattern in either OP_m or OP_v implies that the sources of OP are stable yearlong.

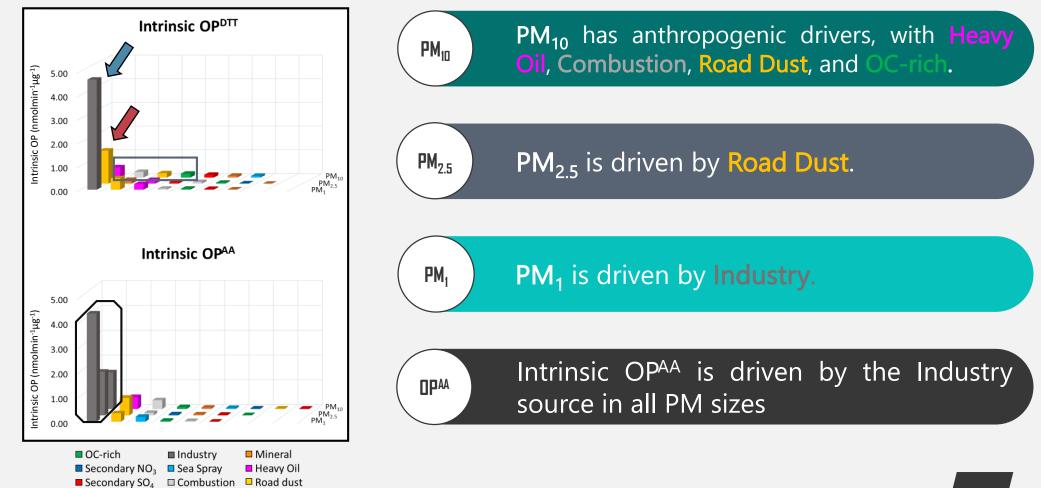
This indicated that main drivers in PM_{10} and

RESULTS Montseny OP Time Series

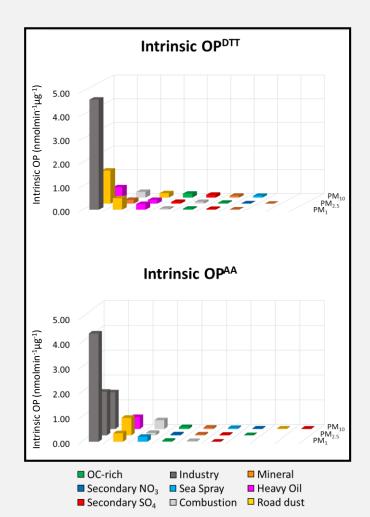
RESULTS OP Comparison

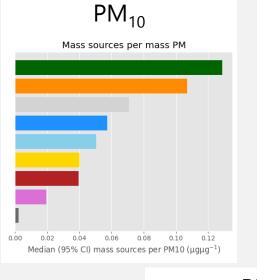
Site	Country	Туре	Year	Reference	
Barcelona	ES	Urban Background	Jan 2018 – Mar 2019	This study	
Montseny	ES	Rural Background	Jan 2018 – Mar 2019	This study	
Passy	FR	Urban Valley	Nov 2013 – Oct 2014	(Weber et al., 2021)	
Grenoble	FR	Urban Background	Mar 2017 – Mar 2018	(Weber et al., 2021)	
Nogent	FR	Urban Background	Jan 2013 – May 2014	(Weber et al., 2021)	
Roubaix	FR	Traffic	Jan 2013 – May 2014	(Weber et al., 2021)	
Marseille	FR	Urban Background	Jan 2015 – Dec 2015	(Weber et al., 2021)	
Strasbourg	FR	Traffic	April 2013 – April 2014	(Weber et al., 2021)	
Chamoix	FR	Urban valley	Nov 2013 – Nov 2014	(Weber et al., 2021)	
Nice	FR	Urban traffic	Jul 2014 – May 2015	(Weber et al., 2021)	
Aix-en-provence	FR	Urban background	Aug 2013 – Jul 2014	(Weber et al., 2021)	
Talence	FR	Urban background	Mar 2012 – Mar 2013	(Weber et al., 2021)	
Marnaz	FR	Urban valley	Nov 2013 – Oct 2014	(Weber et al., 2021)	
Port-de-bouc	FR	Industrial	Jun 2014 – May 2015	(Weber et al., 2021)	
Vif	FR	Urban background	Mar 2017 – Mar 2018	(Weber et al., 2021)	
Bern	СН	Urban-Traffic	June 2018 – May 2019	(Grange et al., 2022)	
Zürich	СН	Urban	June 2018 – May 2019	(Grange et al., 2022)	
	<u></u>				

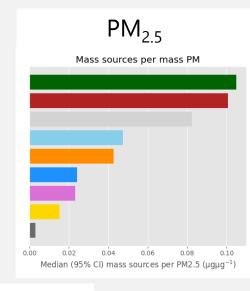
0	P _v DTT			OP _v ^{AA}			
Site	Country	PM ₁₀	PM _{2.5}	Site	Country	PM ₁₀	PM _{2.5}
Passy	FR	4.4	-	Bern	СН	4.1	1.6
Bern	СН	2.9	1.1	Chamoix	FR	2.6	-
Nogent	FR	2.7	-	Passy	FR	2.2	-
Roubaix	FR	2.6	-	Nogent	FR	2.2	-
Marseille	FR	2.6	-	Roubaix	FR	2.1	-
Barcelona	ES	2.5	1.2	Barcelona	ES	1.9	1.0
Strasbourg	FR	2.4	-	Aix-en-provence	FR	1.7	-
Chamoix	FR	2.3	-	Zürich	СН	1.7	0.8
Nice	FR	2.2	-	Cadenazzo	СН	1.7	1.2
Aix-en-provence	FR	1.9	-	Marnaz	FR	1.6	-
Talence	FR	1.8	-	Grenoble	FR	1.5	-
Marnaz	FR	1.8	-	Vif	FR	1.5	-
Port-de-bouc	FR	1.8	-	Strasbourg	FR	1.3	-
Grenoble	FR	1.5	-	Basel	СН	1.2	0.7
Vif	FR	1.3	-	Nice	FR	1.0	-
Zürich	СН	1.3	0.8	Talence	FR	1.0	-
Cadenazzo	СН	1.0	0.7	Payerne	FR	0.7	0.4

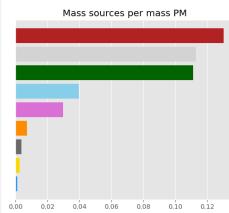

B () () **F**B

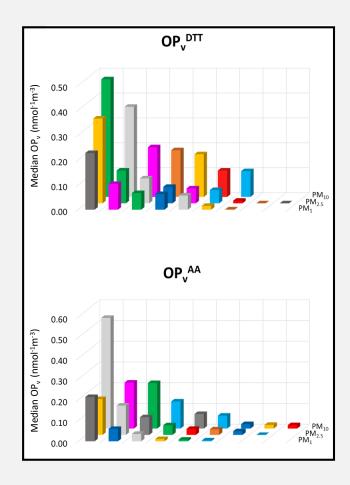
0.0


-


12


RESULTS Barcelona Intrinsic OP


RESULTS Barcelona Intrinsic OP



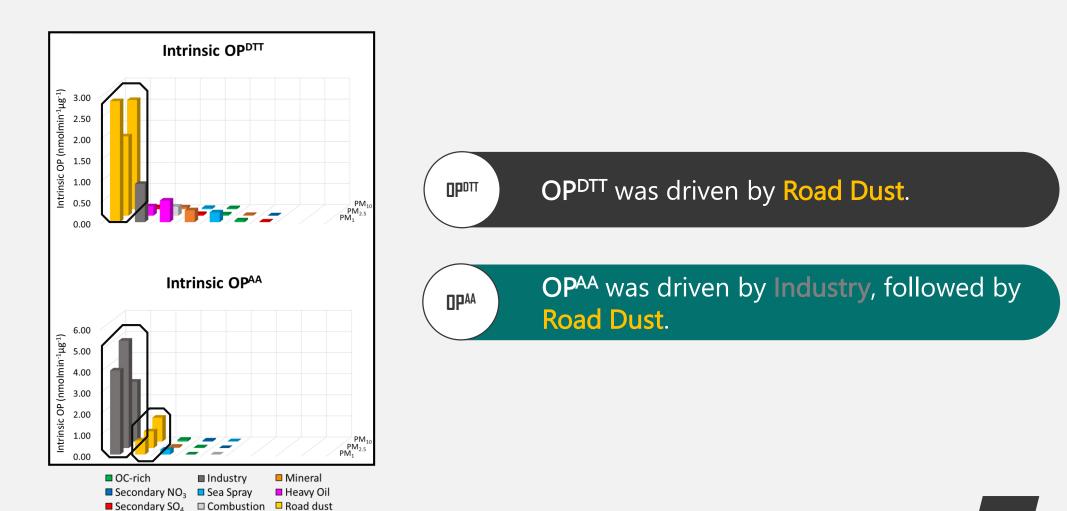
 PM_1

RESULTS Barcelona Human Exposure OP

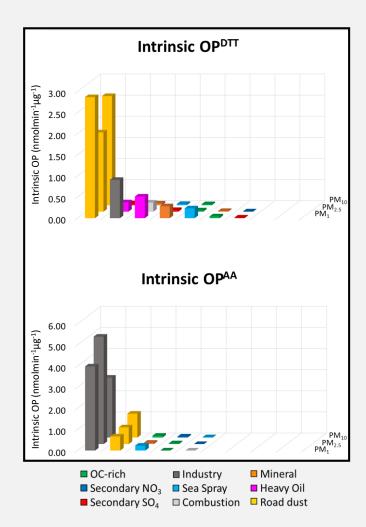
OC-rich
Industry
Mineral
Secondary NO₃
Sea Spray
Heavy Oil
Secondary SO₄
Combustion
Road dust

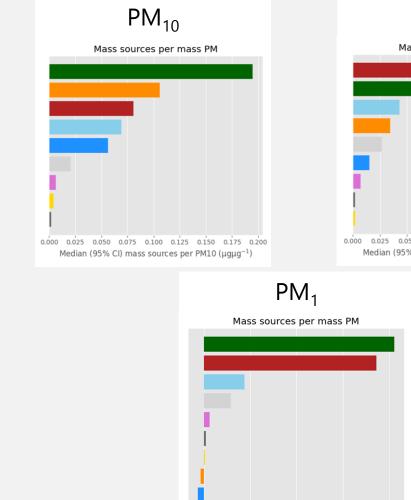
PM₁₀ has anthropogenic drivers, with OC-rich, Combustion, Road Dust, and Heavy Oil.

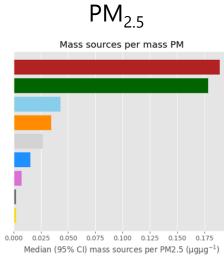
PM_{2.5}


PM₁

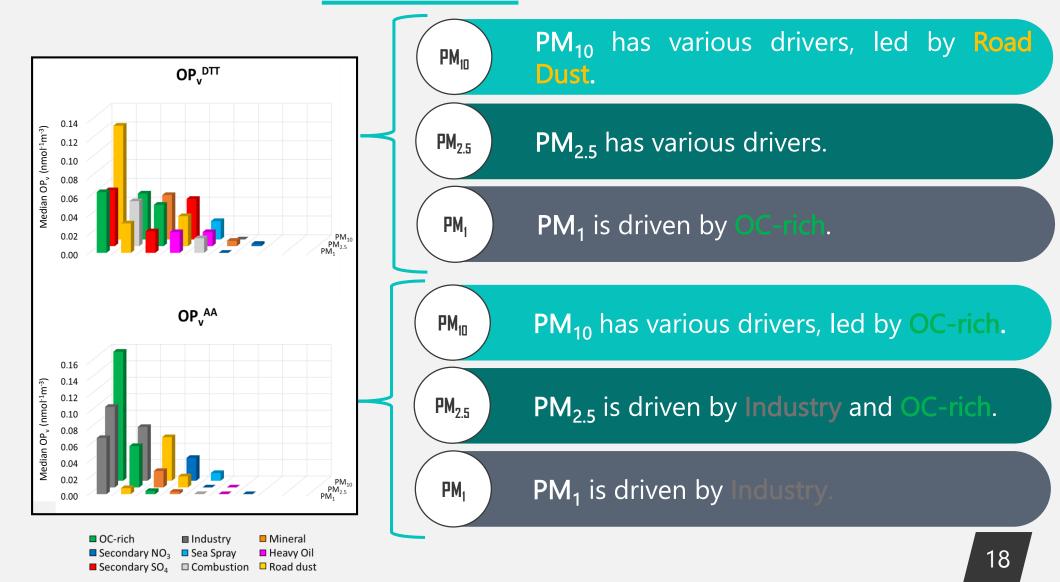
PM₁₀


PM_{2.5} is driven by Road Dust and Combustion.


PM₁ is driven by Industry.


RESULTS Montseny Intrinsic OP

RESULTS Montseny Intrinsic OP



0.00 0.05 0.10 0.15 0.20 Median (95% Cl) mass sources per PM1 (μgμg⁻¹)

RESULTS Montseny Human Exposure OP

CONCLUSIONS

$\left \right \rightarrow \left \right $

This research is, to the authors knowledge, the first paper to be published regarding the simultaneous OP measurement in PM₁₀, PM_{2.5}, and PM₁.

Main drivers of OP are in PM_{10} and PM_1 in Barcelona. Only in PM_1 in Montseny. The OP was driven mostly by local anthropogenic sources in Barcelona such as Shipping and Traffic in PM₁₀ PM_{10} and $PM_{2.5}$ had similar drivers in Barcelona but PM_1 was different and driven by PM_1 . This shows the important of PM_1 OP measurements

THANK YOU FOR YOUR ATTENTION