
K A S T E L

Oblivious Pseudo-Random Functions via
Garbled Circuits

Master’s Thesis of

Sebastian Faller

1939715

at the Department of Informatics

Institute for Theoretical Computer Science (ITI)

Reviewer: Prof. Dr. Jörn Müller-Quade

Second reviewer: Prof. Dr. Thorsten Strufe

Advisor: M.Sc. Astrid Ottenhues

Second advisor: M.Sc. Johannes Ernst

3. September 2021 – 3. March 2022

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 03.03.2022

. .

(Sebastian Faller)

Abstract

An Oblivious Pseudo-Random Function (OPRF) is a protocol that allows two parties – a

server and a user – to jointly compute the output of a Pseudo-Random Function (PRF).

The server holds the key for the PRF and the user holds an input on which the function

shall be evaluated. The user learns the correct output while the inputs of both parties

remain private. If the server can additionally prove to the user that several executions of

the protocol were performed with the same key, we call the OPRF veriable.

One way to construct an OPRF protocol is by using generic tools from multi-party

computation, like Yao’s seminal garbled circuits protocol. Garbled circuits allow two

parties to evaluate any boolean circuit, while the input that each party provides to the

circuit remains hidden from the respective other party. An approach to realizing OPRFs

based on garbled circuits was e.g. mentioned by Pinkas et al. (ASIACRYPT ’09). But OPRFs

are used as a building block in various cryptographic protocols. This frequent usage in

conjunction with other building blocks calls for a security analysis that takes composition,

i.e., the usage in a bigger context into account.

In this work, we give the rst construction of a garbled-circuit-based OPRF that is secure

in the universal composability model by Canetti (FOCS ’01). This means the security of our

protocol holds even if the protocol is used in arbitrary execution environments, even under

parallel composition. We achieve a passively secure protocol that relies on authenticated

channels, the random oracle model, and the security of oblivious transfer. We use a

technique from Albrecht et al. (PKC ’21) to extend the protocol to a veriable OPRF by

employing a commitment scheme. The two parties compute a circuit that only outputs a

PRF value if a commitment opens to the right server-key.

Further, we implemented our construction and compared the concrete eciency with

two other OPRFs. We found that our construction is over a hundred times faster than a

recent lattice-based construction by Albrecht et al. (PKC ’21), but not as ecient as the

state-of-the-art protocol from Jarecki et al. (EUROCRYPT ’18), based on the hardness of

the discrete logarithm problem in certain groups. Our eciency-benchmark results imply

that – under certain circumstances – generic techniques as garbled circuits can achieve

substantially better performance in practice than some protocols specically designed for

the problem.

Büscher et al. (ACNS ’20) showed that garbled circuits are secure in the presence of

adversaries using quantum computers. This fact combined with our results indicates that

garbled-circuit-based OPRFs are a promising way towards ecient OPRFs that are secure

against those quantum adversaries.

i

Zusammenfassung

Eine Oblivious Pseudo-Random Function (OPRF) ist ein Protokoll, dass es einem Server

und einem Nutzer erlaubt, gemeinsam die Ausgabe einer Pseudozufallsfunktion (PRF) zu

berechnen. Der Server besitzt den Schlüssel, unter welchem die Funktion ausgewertet wird.

Der Nutzer besitzt einen Eingabewert, an dem die Funktion ausgewertet wird. Der Nutzer

erhält die korrekte Ausgabewährend keine Partei die Eingabe der anderen erfährt. Kann der

Server dem Nutzer zusätzlich beweisen, dass in mehreren Protokollausführungen der selbe

Schlüssel verwendet wurde, so nennen wir die OPRF verizierbar. Eine Möglichkeit ein

OPRF Protokoll zu konstruieren ist, generische Techniken aus dem Bereich der sicheren

Mehrparteienberechnung, wie Yao’s Garblet Circuits, zu verwenden. Garbled Circuits

erlauben es zwei Parteien gemeinsam einen beliebigen boolschen Schaltkreis auszuwerten,

wobei die Eingaben beider Parteien geheim bleiben. Die Möglichkeit, eine OPRF mithilfe

von Garbled Circuits zu erhalten, wurde z.B. von Pinkas et al. (ASIACRYPT ’09) erwähnt.

Allerdings werden OPRFs oft als Baustein in größeren Protokollen verwendet. Dieser

häuge Einsatz in Verbindung mit anderen Bausteinen erfordert eine Sicherheitsanalyse,

die Komposition, also die Verwendung in größerem Kontext, mit einbezieht.

In dieser Arbeit geben wir die erste Konstruktion einer OPRF an, die auf Garbled Circuits

basiert und deren Sicherheit gleichzeitig im Universal Composability-Modell von Canetti

(FOCS ’01) bewiesen ist. Das bedeutet, unsere Sicherheitsanalyse ist auch dann noch

aussagekräftig, wenn das Protokoll in beliebigen Umgebungen, sogar unter paralleler

Komposition eingesetzt wird. Wir erhalten ein passiv sicheres Protokoll, dass unter der

Annahme von authentizierten Kanälen, des Random Oracle Models und der Sicherheit

eines Oblivious Transfer Protokolls, sicher ist. Wir setzen eine von Albrecht et al. (PKC

’21) vorgeschlagene Technik ein, um unser Protokoll zu einer verizierbaren OPRF zu

erweitern. Wir verwenden dazu ein Commitment Verfahren. Die Parteien berechnen einen

leicht veränderten Schaltkreis, der nur dann die PRF Ausgabe erzeugt, wenn sich ein

Commitment auf den Schlüssel des Servers korrekt önen lässt.

Zusätzlichen haben wir unsere Konstruktion implementiert und vergleichen die Ezienz

mit zwei weiteren OPRF Konstruktionen. Die Experimente zeigen, dass unsere OPRF

mehr als 110-mal schneller ist, als die Gitter-basierte OPRF von Albrecht et al. (PKC

’21). Unsere Konstruktion ist allerdings nicht so ezient wie die OPRF von Jarecki et al.

(EUROCRYPT ’18), die auf der Schwierigkeit der Berechnung diskreter Logrithmen basiert.

Unsere Experimente zeigen, dass – unter bestimmten Umständen – generische Techniken

wie Garbled Circuits eine wesentlich bessere Ezienz erreichen können, als speziell auf

den Anwendungsfall zugeschnittene Protokolle. Büscher et al. (ACNS ’20) haben gezeigt,

dass Garbled Circuits sicher gegen Angreifer sind, die im Besitz von Quantencomputern

sind. Nimmt man diese Tatsache mit unseren Ergebnissen zusammen, zeigt sich, dass

Garbled Circuit-basierte OPRFs ein wichtiger Schritt auf dem Weg zu ezienten und

gleichzeitig gegen derartige Quantenangreifer sicheren OPRFs sind.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Contribution . 4

1.2. Related Work . 6

1.2.1. Die-Hellman-Based OPRFs . 6

1.2.2. MPC-Based OPRFs . 7

1.2.3. OPRFs from Post-Quantum Assumptions 8

1.3. Outline . 9

2. Preliminary 11
2.1. Notation . 11

2.2. Pseudo-Random Functions . 11

2.3. Commitment Schemes . 12

2.4. Universal Composability . 13

2.5. Oblivious Transfer . 16

2.6. Garbled Circuits . 17

2.6.1. Boolean Circuits . 17

2.6.2. Yao’s Garbled Circuits . 18

2.6.3. Garbling Schemes . 21

2.6.4. Free-Xor . 23

2.6.5. Half-Gates . 25

2.7. Security of OPRFs . 26

2.7.1. Simulation-Based Security . 26

2.7.2. Universally Composable OPRFs 28

3. Construction 33
3.1. Adversarial Model . 33

3.2. Security Notion . 33

3.3. The main construction . 33

3.4. Some Remarks on the Construction . 35

3.5. Proving Security . 38

4. Verifiability 57
4.1. Adapting the Construction . 57

4.2. Proving Veriability . 59

v

Contents

5. Comparison of Concrete Eiciency 67
5.1. Garbled-Circuit-Based OPRF . 67

5.1.1. Implementing the Garbling Scheme 67

5.1.2. Implementing the Protocol Parties 70

5.2. The 2HashDH Protocol . 72

5.3. Lattice-based OPRF . 73

5.4. Benchmarks . 74

5.4.1. Running Time . 75

5.4.2. Network Trac . 75

6. Conclusion 77

Bibliography 79

A. Appendix 89
A.1. Implementing the Hash to Curve Algorithm 89

A.2. Advanced Encryption Standard . 90

A.2.1. Key expansion . 91

A.2.2. Add Round Key . 91

A.2.3. Sub Bytes . 92

A.2.4. Shift Rows . 92

A.2.5. Mix Columns . 92

A.3. Naor-Pinkas-OT . 92

A.4. Actively Secure Garbled Circuits . 93

A.4.1. Cut-and-Choose . 93

A.4.2. Authenticated Garbling . 93

A.5. Acronyms . 94

vi

List of Figures

1.1. Sketch of the Oblivious Pseudo-Random Function (OPRF) Functionality. . 1

1.2. Usual Authentication With Password and Salt. 2

2.1. The Hiding Experiment. 13

2.2. The Binding Experiment. 13

2.3. Sketch of the Universal Composability Security Experiment. 14

2.4. Sketch of the 1-Out-of-2 Oblivious Transfer (OT) Functionality. 16

2.5. The Ideal Functionality F ′
OT

From [Can+02]. 17

2.6. The Ideal Functionality FMOT From [Cho+13]. 18

2.7. Our Ideal Functionality FOT. 19

2.8. The Garbled Circuit Protocol. 20

2.9. The Simulation-Based Privacy Game From [BHR12, Fig. 5]. 23

2.10. The Simulation-Based Obliviousness Game From [BHR12, Fig. 5]. 24

2.11. The Authenticity Game From [BHR12, Fig. 5]. 24

2.12. The Procedures for Garbling a Function 𝑓 27

2.13. The Ideal Functionality FAUTH From [Can00]. 28

2.14. The Ideal Functionality FRO. 28

2.15. The Ideal Functionality F ∗
OPRF

From [JKX18]. 31

3.1. The Ideal Functionality FOPRF Inspired by [JKX18]. 34

3.2. Our GC-OPRF Construction in the FOT, FRO, FAUTH-Hybrid Model. . . . 36

3.3. Reduction on the Privacy Property of the Garbling Scheme. 50

3.4. Reduction on the PRF Property. 52

3.5. The Simulator Sim Part I. Simulation of Messages From FOPRF. 53

3.6. The Simulator Sim Part II. Simulation of Protocol Messages and the First

Random Oracle 𝐻1. 54

3.7. The Simulator Sim Part III. Simulation of FOT. 55

3.8. The Simulator Sim Part IV. Simulation of the Second Random Oracle 𝐻2. 56

4.1. The Ideal Functionality FVOPRF Inspired by [BKW20; JKX18]. 58

4.2. Our Veriable VGC-OPRF Construction Part I. 60

4.3. Our Veriable VGC-OPRF Construction Part II. 61

4.4. The Major Changes to Get a Simulator Sim for FVOPRF. 64

5.1. Overview of GC-OPRF. 70

5.2. Overview of 2HashDH. 72

5.3. Overview of the Benchmark Results . 74

5.4. Comparison of the Measured Running Times. 75

5.5. Comparison of the Measured Network Trac. 76

vii

List of Figures

A.1. Hash to Curve Algorithm. 89

A.2. Simplied Shallue-van de Woestijne-Ulas Mapping. 90

A.3. The Ideal Functionality FPre From [WRK17]. 94

viii

1. Introduction

A Pseudo-Random Function (PRF) is a function F : {0, 1}𝑚 × {0, 1}𝑛 → {0, 1}𝑙 , where F
takes a key 𝑘 ∈ {0, 1}𝑚 and an input value 𝑥 ∈ {0, 1}𝑛 and outputs a value 𝑦 ∈ {0, 1}𝑙 , and
where𝑚,𝑛, 𝑙 ∈ N are parameters that depend on the security parameter _ ∈ N. If the key
is chosen uniformly at random, the output of the function must be indistinguishable from

a uniformly random value. However, such a conventional PRF must be evaluated by a

single party, which knows 𝑘 as well as 𝑥 . In certain settings, a stronger primitive might

be desirable. Imagine two parties where one party holds 𝑘 and the other party holds 𝑥 . If

the two parties want to compute a pseudo-random value but hide their inputs from each

other, a normal PRF is no solution. One party would need to send its input to the other

party in order to evaluate the PRF. This problem can be tackled by using an Oblivious

Pseudo-Random Function (OPRF). An OPRF for a certain PRF consists of two parties that

interact to jointly compute an output of the PRF. One party called the server holds the key

𝑘 of the PRF and the other party called the user holds the input value 𝑥 . In the end, the

user learns the output value 𝑦 = F𝑘 (𝑥), but nothing about the key 𝑘 . The server obtains no
additional information from the interaction. In particular, it learns nothing about the user’s

input 𝑥 . The just described notion of OPRF notion is also called strong OPRF. For certain

applications, it might be too restrictive. Instead of demanding that the user learns only the

output value 𝑦 = F𝑘 (𝑥) but nothing about the key 𝑘 , one can demand the following: The

user learns nothing about the key 𝑘 that would help in calculating further PRF outputs

𝑦′ = F𝑘 (𝑥′) for 𝑥 ≠ 𝑥′. This is called a weak or relaxed OPRF. An OPRF is called veriable,

if the server can prove to the user, that the “right” key 𝑘 was used. More precisely, the

server convinces the user that the same server key was used in all interactions with the

client. Figure 1.1 depicts the general idea behind an OPRF execution.

User(𝑥) Server(𝑘)

OPRF

𝑥 𝑘

F𝑘 (𝑥)

Figure 1.1.: Sketch of the Oblivious Pseudo-Random Function (OPRF) Functionality.

Motivation Conventional PRFs are a very useful and well-established building block.

They can be used e.g. for digital signatures and message authentication [BG90], checking

the correctness of memory [Blu+91], tracing sources of data leakage [CFN94], and many

1

1. Introduction

more. However, there are scenarios in which the additional possibility to evaluate the PRF

obliviously between two parties is benecial. Consider for example a typical password

authentication on a website. Nowadays, most websites avoid storing the password of a

client in the clear. Instead, a random value, the so-called “salt”, is generated. The user’s

password and the salt are hashed and only the hash value and the salt are stored by the

webserver. To authenticate itself, the user sends the password to the server, who in turn

recomputes the hash and compares it to the stored value. This is depicted in Figure 1.2.

U(𝑝𝑤) S

𝑠
$← {0, 1}_

Register 𝑝𝑤

ℎ ← 𝐻 (𝑝𝑤 ‖ 𝑠)
store (ℎ, 𝑠)

ℎ
?

= 𝐻 (𝑝𝑤 ‖ 𝑠)

Login 𝑝𝑤

success?

Figure 1.2.: Usual Authentication With Password and Salt.

Clearly, the user has to send its password over the network every time the user wants

to authenticate itself to the server. If an adversary can eavesdrop on this authentication,

the cleartext password allows the adversary to try the password at another service, where

the user likely has used a similar password. Even if the communication is secured via

a Transport Layer Security (TLS) channel, the password might get stolen, e.g., as TLS-

certicates of servers can get stolen. This problem can be avoided by using OPRFs.

The idea to use an OPRF for password-authentication lies at the heart of a construction,

calledOPAQUE [JKX18]. OPAQUE is an asymmetric Password Authenticated Key Exchange

(aPAKE) that allows a user to authenticate itself to a server using a password. If the

authentication is successful, an ephemeral session key is exchanged. The whole interaction

only requires the user to send its password in the clear once, at the rst registration.

Roughly speaking, the gist of OPAQUE is to let the user receive a pseudo-random value

𝑦 = F𝑘 (𝑥), where the key 𝑘 comes from the server and the input 𝑥 to the PRF is the user’s

password. This pseudo-random value is then employed by the user to decrypt further

information from the server, i.e., asymmetric keys for an authenticated key exchange that

were generated at registration.

Additionally, there is a plethora of other interesting applications for OPRFs, including

private set intersection [JL09], password-protected secret sharing [JKK14; Jar+16], secure

keyword search [Fre+05], secure data de-duplication [KBR13], and privacy-preserving

lightweight authentication mechanisms [Dav+18].

As OPRFs are often used as building blocks to solve more complex cryptographic tasks,

it would be desirable to have a security analysis that takes composition into account. The

2

Universal Composability (UC) model by Canetti [Can01] oers such security guarantees.

That means in particular that security proofs in the UC-model remain meaningful, even if

the analyzed protocol is used in arbitrary contexts and might be executed in parallel or

with correlated inputs. Over the last years, several works investigated the security of OPRF

protocols in that model. To the best of our knowledge, Jarecki, Kiayias, and Krawczyk

[JKK14] were the rst to dene an ideal veriable OPRF functionality in the UC-model.

Subsequent works [Jar+16; JKX18; BKW20] enhanced and modied the denition. Jarecki

et al. [Jar+16] and Jarecki, Krawczyk, and Xu [JKX18] dispensed with the veriability

property.

Realization via Garbled Circuits The above described strong OPRF functionality can actu-

ally be seen as a problem in the eld of Multi-Party Computation (MPC). The goal of an

OPRF is to securely compute the two-party functionality

(𝑘, 𝑥) ↦→ (⊥, F𝑘 (𝑥)),

where ⊥ denotes that the server receives no output. One of the most famous protocols

to solve this task is Yao’s garbled circuits [Yao86]. Garbled circuits are a vivid eld of

research. The main idea is that two parties, Alice and Bob, want to compute a commonly

known boolean circuit 𝐶 on two input strings 𝑥,𝑦 ∈ {0, 1}∗, where 𝑥 is only known to

Alice and 𝑦 is only known to Bob. At the end of the protocol, both parties should learn

the output of 𝐶 (𝑥,𝑦), i.e., the circuit evaluated on the two input strings. However, Alice

should “not learn anything” about 𝑦 and similarly, Bob should not learn anything about 𝑥 .

To the best of our knowledge, the apparent idea to realize an OPRF by using garbled

circuits was rst described by Pinkas et al. [Pin+09]. However, we believe that a second

look at the idea is benecial for several reasons:

• OPRFs are usually used as a building block to build more powerful cryptographic

protocols, see [JL09; JKK14; Jar+16; Fre+05; KBR13; Dav+18]. While e.g. [LP07]

consider security of garbled circuits in the simulation-based model of [Can98], we

prefer a treatment in the more current Universal Composability (UC) framework of

[Can01]. UC security oers strong security guarantees under composition. We can

also rely on more recent work on the formulation of an idealized OPRF functionality

by [Jar+16; JKX18]. We even argue – without formal proof – why the construction

of [Pin+09] does not satisfy the OPRF notion of [JKX18], i.e., does not UC-realize

their ideal OPRF functionality.

• The recent advantages in the eld of MPC brought further improvements on the

concrete eciency of garbled circuits, most notably, the work of [ZRE15]. This

allows for even more ecient implementations of the mentioned OPRF protocol

than described by [Pin+09].

• Pinkas et al. [Pin+09] do not consider veriability of the OPRF. We adapt ideas from

[Alb+21] to achieve a veriable OPRF.

Another point that makes an OPRF construction from garbled circuits interesting is

the fast progress in the eld of quantum computing over the last years. Recently, Arute

3

1. Introduction

et al. [Aru+19] claimed that they reached quantum supremacy for the rst time. This

means they computed a problem on a quantum computer that would have taken a sig-

nicantly larger amount of time on a classical computer. Some researches suggest that

practical quantum computing could be possible in the next two decades [Mos18; Bau+16].

Even if these estimates were over-optimistic, they make further progress in this eld of

research conceivable. Quantum computers pose serious threats to classical cryptographic

constructions because the seminal work of Shor [Sho94] shows that the discrete logarithm

problem and the integer factorization problem can be solved eciently by a quantum com-

puter. Therefore, it is necessary to further investigate post-quantum secure cryptographic

building blocks, i.e., building blocks that are secure against adversaries using quantum

computers.

Büscher et al. [Büs+20] showed that garbled circuits are secure in the presence of

adversaries, using quantum computers – so-called quantum adversaries. Intuitively, this

is because garbled circuits rely on symmetric cryptography and Oblivious Transfer (OT)

and quantum adversaries have no substantial advantage over conventional computers in

breaking those primitives. Thus, garbled circuits are promising for providing a way of

achieving post-quantum secure OPRFs. Over the last decades, several works improved the

eciency of garbled circuits dramatically, see Section 2.6. It is therefore an interesting

research question, whether a garbled-circuit-based OPRF will perform comparably or even

better than constructions that are directly based on presumably post-quantum secure

assumptions, as the lattice-based construction by Albrecht et al. [Alb+21].

1.1. Contribution

In this work, we construct the rst garbled-circuit-based OPRF that is secure under uni-

versal composition [Can01]. We argue informally why the garbled-circuit-based OPRF by

[Pin+09] does not UC-realize ideal OPRF functionalities like [Jar+16; JKX18] and show

how to overcome their limitation by introducing a further programmable random-oracle

as in [JKX18]. We implemented the protocol and compared its concrete eciency to the

OPRF protocols of [JKX18] and [Alb+21].

Technical Overview From a high point of view, our protocol follows the idea of Pinkas

et al. [Pin+09] that can be sketched as follows: If the server and the user participate in a

secure two-party computation, where the jointly computed circuit is a PRF, the resulting

protocol is an OPRF. However, we additionally introduced two hash functions. The rst

hash function allows the user to hash an input string of arbitrary length to the input size

of the PRF. The second hash function is applied to the output of the garbled circuit and

to the original user input. Both hash functions will be modeled as random oracles. The

random oracles are crucial for the security proof, as both allow the simulator in the proof

to obtain information about the current simulated execution. But even more importantly,

we will need to program the second random oracle in certain situations. Roughly speaking,

this is because ideal OPRF functionalities in the style of [JKX18] compare the outputs of

the OPRF protocol with truly random values. But the UC-framework requires that the

compared output values are indistinguishable, even if the OPRF is used as a building block

in bigger contexts. That “bigger context” is modeled in the UC-framework by the so-called

4

1.1. Contribution

“environment” machine. But if the environment somehow knew the input 𝑥 and the key 𝑘 ,

merely computing a PRF as F𝑘 (𝑥) is completely deterministic. Thus, the simulator in the

proof must be able to “adjust” the output, so it still “looks like the random output” of the

ideal functionality. That can be done by programming the second random oracle. We will

elaborate further on this in Section 3.4.

An execution of our protocol can be sketched as follows:

• The server chooses a uniformly random key 𝑘 .

• The user hashes its input 𝑝 and receives ℎ = 𝐻1(𝑝). It then requests a garbled circuit

from the server by sending Garble to the server.

• The server garbles the circuit of a PRF and creates input labels for its key as well as

for each possible input bit of the user. The server sends the garbled circuit, the key

labels, and additional information that is needed to evaluate the circuit to the user.

• The user and the server jointly execute a 1-out-of-2 OT for each input bit of the user.

The user sends the respective bit as choice bit and the server sends the two possible

labels as the message. The user obtains only the labels for his input ℎ.

• The user evaluates the garbled circuit on the labels for his input ℎ and the labels for

the server’s key 𝑘 . It receives an output 𝑦 and hashes 𝐻2(𝑝,𝑦) = 𝜌 . The user outputs
𝜌 .

This is also depicted graphically in Figure 5.1. We prove that the protocol from above

UC-realizes an ideal OPRF functionality. We use a slightly simplied version of the

functionality from [JKX18] for our proof. This means for instance, that our protocol can be

used directly to instantiate the Password-Protected Secret Sharing protocol from [Jar+16].

To achieve veriability, we use a technique proposed by Albrecht et al. [Alb+21]. We

assume that the server publishes a commitment 𝑐 on his key as “identicator” of its key.

Now, we do not only garble the circuit of a PRF but a circuit that outputs the PRF output

only if the “right key is used”. The circuit takes the user’s input and the commitment 𝑐

as inputs from the user. The server provides its key and the opening information for 𝑐 as

input to the circuit. The new circuit calculates the PRF output, but only if the provided

commitment correctly opens to 𝑘 . As this verication of the commitment is “hard-wired”

into the garbled circuit, the user still learns no additional information about 𝑘 . But it can

be sure that the received output is from the server that can open 𝑐 .

Concrete Eiciency For the implementation, we used a C++ framework, called the EMP-
Toolkit from Wang, Malozemo, and Katz [WMK16]. We answer the question of how well

our OPRF performs in comparison to the current state-of-the-art protocol, called 2HashDH,
by [JKK14; Jar+16; JKX18] and the lattice-based protocol by Albrecht et al. [Alb+21]. We

assess the eciency of the implementation in terms of running time and communication

cost, i.e., the amount of data that has to be sent over the network. We performed our

experiments on a conventional consumer laptop and did not take network latency into

account. Our experiments show a noticeable gap in running time to the lattice-based

construction of [Alb+21]. Our construction is over 110 times faster than the lattice-based

5

1. Introduction

protocol. As we explain in Section 5.3, this comparison has to be taken with a grain of salt.

The experiments further show that 2HashDH by [JKK14; Jar+16; JKX18] is still about 50

times faster than our construction and requires less than 100 B of communication. This is

not surprising as the protocol merely needs to exchange two points of an elliptic curve.

However, with a running time of about 65ms and trac of about 250 kB our protocol is

still in a reasonable eciency range.

Implications of the Results Our experiments show that even though we employed the

“generic” garbled circuit protocol, the resulting construction was still signicantly more

ecient than a special-purpose protocol based on lattices. This is somewhat surprising as

garbled circuits allow to evaluate any boolean circuit privately. The main reason for this

might be that garbled circuits are a matured cryptographic tool that was optimized several

times, see Section 2.6, while Albrecht et al. [Alb+21] claim that their protocol is the rst

lattice-based Veriable Oblivious Pseudo-Random Function (VOPRF). However, to reach a

reasonable range of eciency, there still seems to be a long way to go for lattice-based

OPRFs.

Contrarily, it is plausible that our garbled-circuit-based construction is secure in the

presence of adversaries with quantum computers, i.e., post-quantum secure, if an appro-

priate post-quantum secure OT protocol is chosen. The post-quantum security of garbled

circuits was formally proven by Büscher et al. [Büs+20], which makes the post-quantum

security of our protocol conceivable, even though we left a formal proof to future work.

Considering the benchmark results, we see garbled-circuit-based OPRFs as promising

candidates for practically ecient OPRFs that are secure in the presence of adversaries

with quantum computers.

1.2. RelatedWork

First, we give a quick overview of other OPRF constructions in the literature. We divided

them into three categories, depending on the underlying techniques of the protocols.

1.2.1. Diie-Hellman-Based OPRFs

It is a well-known fact that a PRF can be constructed from a Pseudo-Random Generator

(PRG) by using a tree construction, see for instance [BS20]. However, as this construction is

not necessarily ecient, it is rather of theoretical interest. More ecient PRF constructions

rely on the computational hardness of certain problems. We will rst focus on PRFs that

assume the hardness of variations of the Die-Hellman assumption. To the best of our

knowledge, there are three such PRF constructions for which there is an associated OPRF

protocol in the literature.

We start with the PRF, introduced by [Jar+16; JKK14; JKX18]. It is the most important

of the Die-Hellman-based PRFs for this work. The underlying PRF can be formulated as

𝑓 2HashDH
𝑘

(𝑥) = 𝐻2(𝑝, 𝐻1(𝑥)𝑘),
where 𝐻1 : {0, 1}∗ → G and 𝐻2 : {0, 1}∗ × G→ {0, 1}𝑛 are modeled as random oracles

and G is a group of prime order 𝑞 for which a “one-more” version of the Decisional

6

1.2. Related Work

Die-Hellman Assumption (DDH) assumption holds. The corresponding OPRF protocol,

presented in [Jar+16; JKK14; JKX18] uses a technique which is sometimes referred to as

“blinded exponentiation”. This technique was rst used in the context of blind signature,

see [Cha83]. The main idea is that the user chooses some random 𝑟 ∈ Z𝑞 and sends 𝑔𝑟 to

the server. In turn, the server calculates 𝑏 B (𝑔𝑟)𝑘 and sends it back to the user. As the

user knows 𝑟 , it can calculate 𝑏1/𝑟 = 𝑔𝑘 . Thus, it received 𝑔𝑘 without revealing the actual
value of 𝑔 to the server. By combining this idea with the two random oracles, one gets

the protocol 2HashDH, depicted in Figure 5.2. This protocol is extremely ecient and the

security is analyzed by [Jar+16; JKK14; JKX18] in the UC-framework by [Can01]. There is

an ongoing eort to standardize this protocol by the Crypto Forum Research Group. See

[Dav+22] for the current draft.

Another PRF was introduced by Naor and Reingold [NR04, Construction 4.1]. It is

dened as follows: Let 𝑝, 𝑞 be primes such that 𝑞 | 𝑝 − 1. Let 𝑛 ∈ N, 𝑘 = (𝑎0, . . . , 𝑎𝑛) ∈ Z𝑛+1𝑞

and 𝑔 ∈ Z𝑝 be an element of order 𝑞. The Naor-Reingold PRF with key 𝑘 on input

𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 is dened as

𝑓 NR
𝑘
(𝑥) = 𝑔𝑎0·

∏𝑛
𝑖=1 𝑎

𝑥𝑖
𝑖 .

Freedman et al. [Fre+05] proposed a constant-round OPRF protocol for the Naor-

Reingold PRF that uses OT and the idea of blinded exponentiation, similar to [Jar+16;

JKX18].

The third PRF, introduced by Dodis and Yampolskiy [DY05, Sec. 4.2] is dened as

follows: Let G = 〈𝑔〉 be a cyclic group of order 𝑞 and 𝑘 ∈ Z∗𝑞 be uniformly random. The

Dodis-Yampolskiy PRF on input 𝑥 ∈ Z∗𝑞 is dened as

𝑓 DY
𝑘
(𝑥) = 𝑔1/(𝑥+𝑘) .

The security of the PRF is based on the so-called Decisional 𝑞-Die-Hellman Inversion

Problem (𝑞-DHI). Jarecki and Liu [JL09] and Belenkiy et al. [Bel+08] gave protocols to

obliviously evaluate the above PRF. Both protocols employ a homomorphic encryption

scheme, e.g. Paillier [Pai99].

All three Die-Hellman-Based OPRFs share the limitation that Shor’s algorithms

[Sho94] will render them insecure if suciently strong quantum computers become

available. Additionally, the security proofs of [JL09; Bel+08] and [Fre+05] do not consider

composition. In particular, they do not analyze their protocols in the UC-model of Canetti

[Can01], as [Jar+16; JKK14; JKX18] and we do in our work.

1.2.2. MPC-Based OPRFs

The second category of OPRF protocols relies on techniques fromMulti-Party Computation

(MPC).

Pinkas et al. [Pin+09] argue that it is possible to realize an OPRF by using Yao’s garbled

circuits, see Section 2.6.3. Garbled circuits allow two parties to jointly evaluate any boolean

circuit, while the input of each party is hidden from the respective other party. If the

7

1. Introduction

calculated circuit is a description of a PRF, the resulting output is the desired pseudo-

random value. The privacy requirement for the OPRF is satised as the garbled circuit

protocol guarantees the privacy of the inputs. Pinkas et al. [Pin+09] do not give a formal

proof of security. However, they refer to the general proof for garbled circuit security

in the presence of active adversaries of Lindell and Pinkas [LP07]. The simulation-based

proof of [LP07] uses the framework of Canetti [Can98] that even considers composition

to a certain extent. Albrecht et al. [Alb+21] sketch an idea of how to achieve veriability

from a garbled-circuit-based OPRF.

Kolesnikov et al. [Kol+16] choose a dierent MPC-based approach. They use ecient OT

extensions, see [Ish+03], to instantiate something close to an OPRF protocol. The security

notion they dene is called batched, related-key OPRF (BaRK-OPRF). This notion is very

similar to usual OPRFs. However, there are certain dierences. The word “batched” means

that the user can query pseudo-random output for𝑚 ∈ N dierent input values 𝑟1, . . . , 𝑟𝑚 .

Each pseudo-random answer will be calculated using a dierent PRF key. “Related key”

means that each PRF key is comprised of two components (𝑘∗, 𝑘𝑖) and for every batch of

input values 𝑟1, . . . , 𝑟𝑚 , i.e., for one protocol execution the rst component of the PRF key

stays the same. Therefore, all pseudo-random outputs were calculated under related keys.

Kolesnikov et al. [Kol+16] observe that an OT of random messages can be interpreted

as a very simple OPRF. Concretely, if an OT-sender sends uniformly random messages

𝑚0,𝑚1 ∈ {0, 1}_ via OT and the receiver chooses one of them via a choice bit 𝑏 ∈ {0, 1},
the performed protocol is an OPRF for the PRF

𝐹 : {0, 1}2_ × {0, 1} → {0, 1}_; 𝐹(𝑚0,𝑚1) (𝑏) =𝑚𝑏 .

They improve the OT extension protocols from Ishai et al. [Ish+03] and Kolesnikov

and Kumaresan [KK13] and achieve an ecient OT extension protocol for 1-out-of-𝑛 OT

for exponentially large 𝑛 ∈ N. By combining this with the above idea, one gets an OPRF

with input domain {1, . . . , 𝑛}. They analyze the security of their protocol in the UC-model

of [Can01], as we did for our construction. A further similarity between our protocols

is that both rely only on the security of OT and symmetric cryptography. In contrast

to BaRK-OPRF, our construction does not enforce keys to be related. Server’s can use

completely independent keys for dierent OPRF executions.

1.2.3. OPRFs from Post-Quantum Assumptions

To the best of our knowledge, there are two OPRF constructions that directly rely on

presumably post-quantum secure assumptions in the literature. Presumably post-quantum

secure means that it is currently not believed by the cryptographic community, that a

quantum computer is signicantly more ecient in breaking those assumptions than

a conventional computer. This distinguishes the post-quantum secure assumptions as

e.g. Short Integer Solution (SIS), Learning With Errors (LWE), or the problem to nd

isogenies between supersingular elliptic curves from integer factorization or Discrete

Logarithm (DLOG).

In fact, both constructions claim that they are even veriable OPRFs. The rst construc-
tion was proposed by Albrecht et al. [Alb+21]. It relies on the hardness of the decision

8

1.3. Outline

version of the Ring-LWE assumption and the one-dimensional version of the SIS assump-

tion, which was introduced by [BV15]. In contrast to our construction, their construction

only needs two rounds of communication. However, the concrete eciency is clearly

worse, as relatively large parameters must be chosen.

The second construction was proposed by Boneh, Kogan, and Woo [BKW20] and is

based on the hardness of certain isogeny problems. However, the construction was recently

“broken” by Basso et al. [Bas+21]. They found that certain assumptions on isogenies made

by [BKW20] did actually not hold. Basso et al. [Bas+21] further argue that there is no

straightforward way to x the construction. In conclusion, there is only the lattice-based

construction from [Alb+21] left that directly relies on post-quantum secure assumptions.

However, there might be another possibility to achieve post-quantum secure OPRF, i.e.,

to use one of the MPC-based constructions. The rough idea would be to instantiate the

protocol with a post-quantum secure OT protocol, as the rest of the security relies on

symmetric encryption. This method might suce, as quantum computers appear to have

no substantial advantage in breaking symmetrical cryptography, see e.g. [BNS19; Amy+16].

While the security of the protocol from [Alb+21] provably holds in the Quantum-accessible

Random Oracle Model (QROM) [Bon+11], i.e., in the presence of adversaries that can send

superposition queries to the random oracle, we leave it to future work to formally prove

the post-quantum security of one of the MPC-based constructions.

1.3. Outline

First, in Chapter 2 we will recall necessary denitions and introduce important techniques

that we will apply later. Then we present and discuss our construction in Chapter 3.

Of particular interest in that section might be the proof of security in the UC-model,

which can be found in Section 3.5. In Chapter 4, we discuss which changes must be

applied to our construction and to the security proof to achieve a VOPRF. We discuss

the implementation of our protocol and the comparison of eciency to other OPRFs in

Chapter 5. We summarize our results and propose directions for future work on the topic

in Chapter 6. Finally, in Appendix A, we present some techniques that are not necessary

to understand this work, but that might be of interest to some readers.

9

2. Preliminary

2.1. Notation

We write _ for the security parameter. We always assume that all algorithms take _

as implicit parameter. We call a probabilistic Turing machine Probabilistic Polynomial

Time (PPT), if its running time is bounded by a polynomial in _. By 𝑥
$← 𝑆 we denote

that 𝑥 is chosen uniformly at random from the set 𝑆 . We write 𝑦 ← 𝐴 if the randomized

algorithm 𝐴(𝑥) outputs 𝑦 on input 𝑥 . We write 𝑥 ‖ 𝑦 for the concatenation of the strings 𝑥

and 𝑦. We use O(·), 𝑜 (·), Θ(·), Ω(·), and 𝜔 (·) for asymptotic notation. We say a function

is negligible in _, if it asymptotically falls faster than the inverse of any polynomial in _.

Particularly when describing simulators, we use 〈·〉 for records, made by the simulator.

We will use ∃〈𝑥〉 (or @〈𝑦〉) to express that the simulator goes through its records and

checks if there is a matching record 〈𝑥〉 (or there is no matching record 〈𝑦〉). Whenever

the behavior of an ideal functionality on the receipt of a certain message is not explicitly

dened, we assume that the functionality ignores the message.

Ausführlicher

2.2. Pseudo-Random Functions

A Pseudo-Random Function is function that produces “random looking” output values.

More precisely, the function is indexed by a key 𝑘 , sometimes called “seed”. If the key

is chosen uniformly at random, the function maps input values to output values in such

a way, that it is indistinguishable whether the output values come from the pseudo-

random function or from a truly random function. In that sense, one could see a PRF as a

Pseudo-Random Generator “with random access” to the generated pseudo-random values.

However, it is possible to construct a PRF from a PRG [BS20]. The security is dened via a

PPT distinguisherD that either gets oracle access to F(𝑘, ·) for some randomly chosen key

𝑘 ∈ {0, 1}𝑚 or to a truly random function RF. The goal of D to tell those situations apart.

Denition 1 (Pseudo-Random Function) [KL15, Def. 3.25] Let 𝑛 B 𝑛(_) and𝑚 B 𝑚(_) be
polynomial in _. Let F : {0, 1}𝑚 × {0, 1}𝑛 → {0, 1}𝑛 be a function family such that there is

a polynomial-time algorithm that takes 𝑘 ∈ {0, 1}𝑚 and 𝑥 ∈ {0, 1}𝑛 and outputs F(𝑘, 𝑥).
We say PRF is a pseudo-random function if the advantage dened as

Adv
PRF
F (D, _) B |∗| Pr

𝑘
$←{0,1}𝑚

[
DF(𝑘, ·) (1_) = 1

]
− Pr

RF
$←{𝑓 :{0,1}𝑛→{0,1}𝑛}

[
DRF(·) (1_) = 1

]
is negligible for every PPT distinguisher D, where the rst probability is taken over

uniform choices of 𝑘 ∈ {0, 1}𝑚 and the randomness of D and the second probability is

taken over uniform choices of RF ∈ {𝑓 : {0, 1}𝑛 → {0, 1}𝑛} and the randomness of D. �

11

2. Preliminary

Denition 2 (Pseudo-Random Permutation) [KL15, Sec. 3.5.1] Let𝑛 B 𝑛(_) and𝑚 B 𝑚(_)
be polynomial in _. Let F : {0, 1}𝑚 × {0, 1}𝑛 → {0, 1}𝑛 be a function family such that there

is a polynomial-time algorithm that takes 𝑘 ∈ {0, 1}𝑚 and 𝑥 ∈ {0, 1}𝑛 and outputs F(𝑘, 𝑥).
Let Perm𝑛 denote the set of all permutations of length 𝑛. We say F is a pseudo-random

permutation if the advantage dened as

Adv
PRP
F (D, _) B |∗| Pr

𝑘
$←{0,1}𝑚

[
DF(𝑘, ·) (1_) = 1

]
− Pr

RP
$←Perm𝑛

[
DRP(·) (1_) = 1

]
is negligible for every PPT distinguisher D, where the rst probability is taken over

uniform choices of 𝑘 ∈ {0, 1}𝑚 and the randomness of D and the second probability is

taken over uniform choices of RP ∈ Perm𝑛 and the randomness of D. �

2.3. Commitment Schemes

Intuitively, a commitment scheme allows to create a value 𝑐 , called the commitment on a

message that hides the message but allows to only open the commitment to the original

message. The commitment is opened by using the so-called opening information, which
should be kept secret until the commitment has to be opened.

For the sake of simplicity, we will assume in this work that the messages, the commit-

ments and the opening information are bit strings.

Denition 3 (Commitment Scheme) [BS20, Sec. 8.12] A Commitment Scheme consists

of two ecient algorithms COM = (Commit,Unveil). For 𝑛, 𝑙, 𝑡 ∈ Θ(_), the Commit
algorithm takes a message𝑚 ∈ {0, 1}𝑛 and outputs (𝑐, 𝑟) ∈ {0, 1}𝑙 × {0, 1}𝑡 . We call 𝑐 the

commitment on𝑚 and 𝑟 the opening information. TheUnveil algorithm takes a commitment

𝑐 ∈ {0, 1}𝑙 , a message𝑚 ∈ {0, 1}𝑛 and the opening information 𝑟 ∈ {0, 1}𝑡 and outputs

either 0 or 1, where we interpret output 1 as “𝑐 correctly opens to message𝑚”.

We require a commitment scheme to have correctness. By that we mean

∀𝑚 ∈ {0, 1}𝑛 : ∀(𝑐, 𝑟) $← Commit(𝑚) : Pr [Unveil(𝑐, 𝑘, 𝑟) = 1] = 1.

The commitment should not reveal any information about the committed message. One

could also say that the commitment should hide the message from anyone who is not in

possession of the opening information. We formalize this in the following denition. We

dene the security over a security experiment where the adversary A plays against a

challenger C.

Denition 4 (Hiding) [BS20, Sec. 8.12] Let COM = (Commit,Unveil) be a commitment

scheme. COM is computationally hiding if for every PPT adversary A we have

Adv
Hiding
COM (A, _) B Pr

[
Exp

Hiding
COM,A (_) = 1

]
≤ negl(_),

where Exp
Hiding
COM,A (_) is the experiment depicted in Figure 2.1 and negl(·) is some negligible

function and the probability is taken over the randomness of C and A. �

12

2.4. Universal Composability

Exp
Hiding
COM,A (_)

• A sends two messages𝑚0,𝑚1 ∈ {0, 1}𝑛 to C.

• The challenger chooses a bit 𝑏 ∈ {0, 1} uniformly at random. The challenger

computer (𝑐, 𝑟) ← Commit(𝑚𝑏) and sends 𝑐 to A.

• A takes the input 𝑐 and outputs a guess 𝑏′ ∈ {0, 1}.

• The experiment outputs 1 i 𝑏 = 𝑏′.

Figure 2.1.: The Hiding Experiment.

Exp
Binding
COM,A (_)

• A outputs (𝑐,𝑚0, 𝑟0,𝑚1, 𝑟1).

• The experiment outputs 1 i it holds that

– Unveil(𝑐,𝑚0, 𝑟0) = 1,

– Unveil(𝑐,𝑚1, 𝑟1) = 1,

– 𝑚0 ≠𝑚1.

Figure 2.2.: The Binding Experiment.

Additionally to the hiding property, we require that no ecient adversary should be

able to lie about the message on which he committed. In other words, it should be hard for

an adversary to rst commit on some message and later open the commitment to another

message. We will formalize this notion in the next denition.

Denition 5 (Binding) [BS20, Sec. 8.12] Let COM = (Commit,Unveil) be a commitment

scheme. A COM is computationally binding if for every PPT adversary A that outputs a

5-tuple (𝑐,𝑚0, 𝑟0,𝑚1, 𝑟1) with 𝑐 ∈ {0, 1}𝑙 ,𝑚0,𝑚1 ∈ {0, 1}𝑛 , 𝑟0, 𝑟1 ∈ {0, 1}𝑡 , we have

Adv
Binding
COM (A, _) B Pr

[
Exp

Binding
COM,A (_) = 1

]
≤ negl(_),

where Exp
Binding
COM,A (_) is the experiment depicted in Figure 2.2 and negl(·) is some negligible

function and the probability is taken over the randomness of A. �

There are also statistical and perfect variants of the notions of hiding and binding but

we will not need them in this work.

2.4. Universal Composability

Often, cryptographic protocols are not used in isolation but are combined to serve a

greater functionality. However, the security of protocols is not always conserved under

13

2. Preliminary

composition. A classical result is for example that the parallel composition of two zero-

knowledge protocols is in general not a zero-knowledge protocol [GK90]. Universal
Composability, introduced by Canetti [Can01] is a notion of security that solves this

problem. The original paper by Canetti [Can01] was revisited several times. In the

following, we always refer to the version from 2020 [Can00]. Protocols that are secure in

the UC model can be composed and preserve their security. This is stated more formally

in the composition theorem from Canetti [Can00, Theo. 22].

The rough idea of the UC-security experiment is to compare an ideal world with the real

world, similar to a “stand-alone” simulation-based proofs. This is conceptually visualized

in Figure 2.3.

A 𝜋

Real

E

𝑐≈ S F

Ideal

E

Figure 2.3.: Sketch of the Universal Composability Security Experiment.

In the ideal world, we do not regard the actual protocol but rather an idealized function-

ality F. The gist is however, that all interactions between parties are orchestrated by a

so-called environment machine E. The environment machine can be thought of as the

“bigger context” of the protocol execution, e.g., when the protocol is used as subroutine in

another protocol. In contrast to a normal distinguisher in a stand-alone security notion,

the environment can adaptively interact with the protocol parties.

In the real world, the environment machine E interacts with the real-world adversary

A and with the real protocol parties of a protocol 𝜋 .

In the ideal world, the protocol parties are replaced by “Dummy-Parties”. These parties

do nothing except forwarding all input directly to F.
Additionally, the idealized functionality F and the environment E interact with a

simulator S, who plays the role of the real-world adversary. The job of S is to simulate

an execution of 𝜋 for E that looks like the real-world execution. If no PPT environment

machine can tell both worlds apart, the protocol 𝜋 UC-emulates (or UC-realizes) the ideal

functionality F. We will dene this more formally (but still simplied) in the following.

First, we dene the notion of UC-emulation. This notion will in turn allow us to dene the

realization of an ideal functionality.

Denition 6 (UC-Emulation) [Can00, Def. 1] Let EXEC𝜋,A,E (𝑧) denote the random variable

over the local random choices of all parties of 𝜋 , of E and ofA that describes an output of

E on input 𝑧 ∈ {0, 1}∗ when running protocol 𝜋 with adversary A. Let EXEC𝜋,A,E denote
the probability ensemble {EXEC𝜋,A,E (𝑧)}𝑧∈{0,1}∗ .

14

2.4. Universal Composability

We say a protocol 𝜋 UC-emulates an protocol 𝜙 , if for all PPT adversaries A there is an

PPT simulator S, such that for all environment machines E it holds that

EXEC𝜋,A,E
𝑐≈ EXEC𝜙,S,E .

If this is the case, we write 𝜋 ≥ 𝜙 . �

This notion captures more general situations than just the real-ideal comparison men-

tioned above. One can e.g. give two protocols 𝜋, 𝜙 with 𝜋 ≥ 𝜙 , where 𝜋 and 𝜙 are

both “real-world” protocols. We now dene what we mean exactly by realizing an ideal

functionality.

Denition 7 (UC-Realization of a Functionality) [Can00, Def. 2] Let IDEALF denote the
protocol that consist of a machine F, the ideal functionality, and 𝑚 Dummy-Parties

D1, . . . ,D𝑚, where𝑚 is the number of parties that interact with F. The Dummy-Parties

only relay input to F and relay output from F to E and ignore all backdoor-tape messages.

We say a protocol 𝜋 UC-realizes a functionality F, if 𝜋 UC-emulates IDEALF.

We like to emphasize here that security in the UC-model is always dened relatively to

an ideal functionality. Consequently, care must be taken, when F is specied.

Security in the UC model is a strong notion. However, even some very simple func-

tionalities can not be achieved in the UC model without additional assumptions. The

most famous result is the impossibility of bit-commitments in the plain model. Without

additional assumptions, like a Common Reference String (CRS) or a Public-Key Infrastruc-

ture (PKI), there exists no protocol that UC-emulates the bit-commitment functionality

Fcom [CF01, Theorem 6].

As mentioned in Section 1.2.1, [Jar+16; JKX18] dened ideal functionalities, describing

the desired security of OPRFs in the UC model. They also constructed protocols that

UC-realize the ideal functionalities. We will discus them in Section 2.7.

The Dummy Adversary Canetti [Can00] also shows, that Denition 7 can be simplied by

using the Dummy Adversary. Instead of considering all PPT adversaries A, it is sucient

to consider only the most simple adversary possible. The Dummy Adversary D takes all

messages it receives from the environment E and forwards them without any change to

the concerned protocol party. The other way around, if the D receives messages from any

protocol party, it forwards them directly to the environment.

This sounds contradictory on the rst glance, as we restrict ourselves to a very special

adversary. However, the intuition for this fact is simple. The goal of the environment is to

distinguish whether it is “talking” to the adversary and a real protocol execution of 𝜋 or

to the simulator and the ideal protocol execution with F. Now if A would not forward

a message to E, that can only make E’s task harder as its view of the interaction is “not

complete”. Analogously, if the adversary interacts with any party without the environment

knowing, or if the adversary does not interact with a party even though E instructed him

to do so, this does only make the task harder for E. Canetti [Can00, Claim 11] proves this

formally.

15

2. Preliminary

2.5. Oblivious Transfer

Oblivious Transfer (OT), introduced in 1981 by Rabin [Rab05], is fundamental for many

cryptographic tasks, including Yaos’s garbled circuits. OT allows a sender to transfer one

of two messages to a receiver. The receiver can choose whether it wants the rst or the

second message. The security guarantee for the sender is that the receiver does not learn

anything about the message that was not chosen. The security guarantee for the receiver

is that the sender does not learn anything about the choice of the receiver. This is sketched

graphically in Figure 2.4. The above describe protocol is also known as 1-out-of-2 OT. In

more generality, one can dene a 1-out-of-𝑚 OT, where the sender sends𝑚 ∈ N messages

𝑥1, . . . , 𝑥𝑚 . One can also distinguish between “bit-OT”, where the messages of the sender

are single bits 𝑥0, 𝑥1 ∈ {0, 1} and “string-OT”, where the messages are bit strings length

𝑥0, 𝑥1 ∈ 𝑏𝑖𝑡𝑠𝑡𝑟 . In the case of garbled circuits, OT allows the garbling party to provide the

evaluating party with the necessary input labels without learning which input bits the

evaluating party actually chooses. That means, we need to perform 𝑛 ∈ N executions of a

1-out-of-2 string-OT protocol, one for each of the 𝑛 input bits of the circuit. As we are

interested in universally composable OTs, we briey recall two ideal functionalities for

UC-secure OT and discuss their dierences before we dene the functionality we will use

in this work.

Receiver(𝑏) Sender(𝑥0, 𝑥1)

OT

𝑏 𝑥0, 𝑥1

𝑥𝑏

Figure 2.4.: Sketch of the 1-Out-of-2 OT Functionality.

The rst functionality F ′
OT

is introduced by Canetti et al. [Can+02] and used e.g. by Peik-

ert, Vaikuntanathan, and Waters [PVW08]. It considers one sender and one receiver. We

present the functionality (for the special case of 1-out-of-2 OT) in Figure 2.5. With this func-

tionality, each sender-receiver pair requires its own CRS. Additionally, this functionality

does not inform the adversary explicitly if the messages are sent to functionality.

The second functionality FMOT is used e.g. by Choi et al. [Cho+13]. They claim that

it was introduced by Canetti [Can00], however we couldn’t nd a version of [Can00],

where this functionality appeared. Thus, we present the ideal functionality FMOT for

multi-session OT as dened by [Cho+13] in Figure 2.6. In contrast to the rst functionality,

the adversary is explicitly informed, whenever a message is sent to the functionality. This

is done by (Send, 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 〉) messages from the ideal functionality to the adversary.

A second dierence seems to be the ability of the adversary to delay messages. Con-

cretely, the result of the OT is only transferred to the receiver 𝑃 𝑗 after the adversary sent

(Received, 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 〉, 𝑃 𝑗) to the functionality. However, in the UC-Framework the

16

2.6. Garbled Circuits

adversary is always able to delay messages. Thus, this messages is more a syntactical

dierence in the two functionalities. The last dierence is the number of parties. The

second functionality in Figure 2.6 allows for up to 𝑛 parties. This might seem more suited

for our case on the rst glance. By employing the second functionality, one does only

need to generate one CRS for all OT executions. But the subtle problem that occurs is that

the number of parties 𝑛 needs to be xed at the beginning of the protocol execution. In

contrast, in our OPRF scenario we allow (honest) parties to join the protocol at any time.

If we would want to use FMOT in such a dynamic context we would need to instantiate

a new protocol instance –and thus generate a new CRS– whenever more that 𝑛 parties

join the execution. To avoid those problems, we rather opt to use a “single sender – single

receiver” functionality, like Figure 2.5. Note, that the generation of a new CRS for every

OT execution is not problematic as we are in the Ranom Oracle Model (ROM). We can

just generate a CRS for the OT execution by “hashing” the session id and the prex of the

protocol execution using the random oracle.

For the sake of clarity, we augment the original F ′
OT

functionality from [Can00] with

explicit message allowing the sender to delete execution. We stress again that this does

not give the adversary additional power but rather makes properties of the UC-framework

more explicit. We describe our functionality FOT in Figure 2.7.

Functionality F ′
OT

F ′
OT

proceeds as follows, interaction and running with an oblivious transfer sender 𝑇 , a

receiver 𝑅 and an adversary 𝑆 .

• Upon receiving a message (Sender, 𝑠𝑖𝑑, 𝑥0, 𝑥1) from 𝑇 , where each 𝑥 𝑗 ∈ {0, 1}𝑚,
record (𝑥0, 𝑥1). (The lengths of the strings𝑚 is xed and known to all parties.)

• Upon receiving a message (Receiver, 𝑠𝑖𝑑, 𝑖) from 𝑅, where 𝑖 ∈ {0, 1} send (𝑠𝑖𝑑, 𝑥𝑖)
to𝑇 and 𝑠𝑖𝑑 to 𝑆 and halt. If no (Sender, . . .) message was sent, then send nothing

to 𝑅.

Figure 2.5.: The Ideal Functionality F ′
OT

From [Can+02].

2.6. Garbled Circuits

2.6.1. Boolean Circuits

A boolean circuit is model of computation like the Turing machine. They can be seen as a

mathematical abstraction of actual electrical circuits that are used to build processors. We

dene them as follows:

Denition 8 (Boolean Circuit) [AB09, Def. 6.1], [BHR12, Sec. 2.3] For 𝑛,𝑚 ∈ N, a boolean
circuit 𝐶 with 𝑛 inputs and𝑚 outputs is a directed acyclic graph. It contains 𝑛 nodes with

no incoming edges; called the input nodes and𝑚 nodes with no outgoing edges, called the

output nodes. All other nodes are called gates. In our case, they are labeled with either

17

2. Preliminary

Functionality FMOT

FMOT interacts with parties 𝑃1, . . . , 𝑃𝑛 and an adversary Sim and proceeds as follows:

• Upon receiving a message (Send, 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 〉, 〈𝑥0, 𝑥1〉) from 𝑃𝑖 , where each

𝑥 𝑗 ∈ {0, 1}𝑚 , record 〈𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 , 𝑥0, 𝑥1〉. Reveal (Send, 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 〉) to the

adversary. Ignore further (Send, . . .) messages from 𝑃𝑖 with the same 𝑠𝑠𝑖𝑑 .

• Upon receiving a message (Receive, 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 〉, 𝑏) from 𝑃 𝑗 , where 𝑏 ∈ {0, 1}
record the tuple 〈𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 , 𝑏〉 and reveal (Receive, 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 〉) to the adver-

sary. Ignore further (Receive, . . .) messages from 𝑃 𝑗 with the same 𝑠𝑠𝑖𝑑 .

• Upon receiving a message (Sent, 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 〉, 𝑃𝑖) from the adversary, ignore

the message if 〈𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 , 𝑥0, 𝑥1〉 or 〈𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 , 𝑏〉 is not recorded; Otherwise re-
turn (Sent, 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 〉) to 𝑃𝑖 ; Ignore further (Sent, 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 〉, 𝑃𝑖) mes-

sages from the adversary.

• Upon receiving a message (Received, 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 〉, 𝑃 𝑗) from the adver-

sary ignore the message if 〈𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 , 𝑥0, 𝑥1〉 or 〈𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 , 𝑏〉 is not

recorded; Otherwise return (Received, 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 〉,𝑚𝑏) to 𝑃 𝑗 ; Ignore further
(Received, 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝑃𝑖, 𝑃 𝑗 〉, 𝑃 𝑗) messages from the adversary.

Figure 2.6.: The Ideal Functionality FMOT From [Cho+13].

𝑋𝑂𝑅 or 𝐴𝑁𝐷 . For a gate 𝑔,𝐺 (𝑔) ∈ {𝑋𝑂𝑅,𝐴𝑁𝐷} yields the function corresponding to the

label. Gates have always two inputs and arbitrary fan-out. �

Further, [BHR12] use the convention that all wires of the circuit are numbered. If 𝑞 ∈ N
is the number of gates then 𝑟 = 𝑛 + 𝑞 is the number of wires. The number of the outgoing

wire(s) of a gate serves as number of the gate. Further, they assume that the numbering is

ordered in the following sense. Let 𝐴 : Gates→Wires give the rst input wire of a gate

and 𝐵 : Gates → Wires give the second input wire of a gate. Then it holds that for all

𝑔 ∈ Gates that 𝐴(𝑔) < 𝐵(𝑔) < 𝑔. By using this convention, the evaluation of the circuit

can be dened as follows:

Denition 9 (Circuit Evaluation) A boolean circuit is evaluated by iterating over all gates

𝑔 ∈ Gates in their order and setting 𝑎 B 𝐴(𝑔), 𝑏 B 𝐴(𝑔), 𝑥𝑔 B 𝐺 (𝑔) (𝑥𝑎, 𝑥𝑏). The output
of the circuit is 𝑥𝑛+𝑞−𝑚+1 ‖ . . . ‖ 𝑥𝑛+𝑞 . �

Note that 𝑥𝑎 and 𝑥𝑏 are well-dened, as the circuit is ordered.

2.6.2. Yao’s Garbled Circuits

Garbled Circuits were introduced by Andrew Yao. According to [BHR12], the original

idea stems from an oral presentation of [Yao86]. Later, several works as e.g. Goldreich,

Micali, and Wigderson [GMW87] and Beaver, Micali, and Rogaway [BMR90] described

the protocol in more detail. Since their emergence, they went from a purely theoretical

18

2.6. Garbled Circuits

Functionality FOT

FOT proceeds as follows, interaction and running with an oblivious transfer sender 𝑆 , a

receiver 𝑅 and an adversary A.

• Upon receiving a message (OT-Send, 𝑠𝑖𝑑, (𝑥0, 𝑥1)) from 𝑆 , where each 𝑥 𝑗 ∈ {0, 1}𝑚 ,
record 〈𝑠𝑖𝑑, 𝑥0, 𝑥1〉. Reveal (OT-Send, 𝑠𝑖𝑑) to the adversary. Ignore further

(OT-Send, . . .) messages from 𝑆 with the same 𝑠𝑖𝑑 .

• Upon receiving a message (OT-Receive, 𝑠𝑖𝑑, 𝑏) from 𝑅, where 𝑏 ∈ {0, 1} record
the tuple 〈𝑠𝑖𝑑, 𝑏〉 and reveal (OT-Receive, 𝑠𝑖𝑑) to the adversary. Ignore further

(OT-Receive, . . .) messages from 𝑅 with the same 𝑠𝑖𝑑 .

• Upon receiving a message (OT-Sent, 𝑠𝑖𝑑) from the adversary, ignore the message

if 〈𝑠𝑖𝑑, 𝑥0, 𝑥1〉 or 〈𝑠𝑖𝑑, 𝑏〉 is not recorded; Otherwise return (OT-Sent, 𝑠𝑖𝑑) to 𝑆 ;
Ignore further (OT-Sent, 𝑠𝑖𝑑, . . .) messages from the adversary.

• Upon receiving a message (OT-Received, 𝑠𝑖𝑑) from the adversary ignore

the message if 〈𝑠𝑖𝑑, 𝑥0, 𝑥1〉 or 〈𝑠𝑖𝑑, 𝑏〉 is not recorded; Otherwise return

(OT-Received, 𝑠𝑖𝑑, 𝑥𝑏) to 𝑅; Ignore further (OT-Received, 𝑠𝑖𝑑, . . .) messages from

the adversary.

Figure 2.7.: Our Ideal Functionality FOT.

construct to a practically interesting and powerful cryptographic tool. Garbled Circuits

allow two parties, Alice and Bob, to jointly evaluate a boolean circuit. The circuit takes a

secret input from Alice and a secret input from Bob. After the execution, both parties (or

only one of them) learns the output.

From a abstract point of view, the protocol works as follows: Alice encodes her input

and the boolean circuit in a way, such that Bob can evaluate the circuit on the encoded

input, but learns nothing about the input. Alice sends the encoded input and circuit to

Bob. Then she encodes the possible input bits for Bob. Bob uses an OT protocol to get his

encoded input from Alice, while Alice learns nothing about the input of Bob. Bob then

evaluates the circuit and gets an encoded output. Both parties get the result by decoding

this output.

More precisely, Alice “garbles” the boolean circuit. This means, she assigns random bit

strings of length proportional to the security parameter for each possible input bit. These

so-called labels hide the actual inputs. Next, she encrypts for every gate of the boolean

circuit the output of the gate with the corresponding input labels as keys. This means, she

performs one encryption for each row of the truth table of the gate. Finally, she permutes

the order of the rows, so the order of the ciphertexts does not reveal information on the

outcome of the gate. After that, she sends the garbled circuit to Bob, together with the

input labels for her input. Then, Alice and Bob perform a 1-out-of-2 OT for each input bit

of Bob. With the OTs, Bob gets the labels for his input bits, while Alice learns nothing

about his input. Now Bob can evaluate the circuit gate by gate, as he has the garbled

circuit and both sets of input labels. Again, he proceeds gate by gate. He tries to decrypt

19

2. Preliminary

the output label of a gate by using the input labels. For one row, the decryption will work

and Bob receives the output label of the gate. In the textbook-version, the encryption must

ensure that decrypting with wrong keys can be detected by Bob. Eventually, Bob gets the

output labels from evaluating the output gates. Now, he can e.g. send the output labels

back to Alice. Alice knows the mapping of the output labels to actual output values and

thus, learns the result of the computation. This is depicted in Figure 2.8.

Alice(𝑥) Bob(𝑦)

(𝐹, 𝑒, 𝑑) ← Garble(C)

𝑋 ← Encode(𝑒, 𝑥)

𝑌 [0] ← Encode(𝑒, 0𝑛)

𝑌 [1] ← Encode(𝑒, 1𝑛) (𝐹, 𝑋)

OT

𝑌 [0], 𝑌 [1] 𝑦

𝑌 [𝑦]

𝑍 = Eval(𝐹, 𝑋,𝑌)

𝑧 = Decode(𝑑, 𝑍)

𝑍

Figure 2.8.: The Garbled Circuit Protocol.

The original construction oers only passive security. This means that the protocol is

secure as long as both parties follow the protocol description but try to gain additional

information. If both parties follow the protocol, they cannot learn anything more from the

transaction, than the output. Obviously, this holds no longer, if the garbling party Alice

deviates from the protocol. The garbler could for example simply garble a dierent circuit,

even one that leaks information on the evaluators input.

There are several possibilities to transform a passively secure garbled circuit protocol

into an actively secure one. The most common technique is called cut-and-choose. It was
rst used in the context of blind signatures by Chaum [Cha83] and was later adapted to

the garbled circuit setting by Mohassel and Franklin [MF06] and Lindell and Pinkas [LP07].

The idea is to garble the circuit many times with independent randomness. The evaluator

then randomly challenges the garbler to “reveale” some of the circuits, i.e., showing the

used randomness in the generation, to prove that the garbling was done correctly. The

evaluator accepts the garbling only if all of the checks were successful. Wang, Ranellucci,

and Katz [WRK17] introduced a technique called authenticated garbling. The approach is

to combine authenticated secret sharing (i.e. Bendlin et al. [Ben+11]) with garbled circuits

to achieve active security. Finally, Goldreich, Micali, and Wigderson [GMW87] introduced

a generic approach to transform any passively secure protocol into an actively secure one.

However, as this approach is very generic, it is likely too inecient for our purposes.

20

2.6. Garbled Circuits

Several works improved the eciency of garbled circuits. First, Beaver, Micali, and

Rogaway [BMR90] introduced the point-and-permute technique. By assigning two addi-

tional bits to a ciphertext, the evaluator can directly identify the entry in the truth table,

which has to be decrypted. Therefore, the number of decryptions per gates is reduced

from four to one, as the evaluator does not have to try decrypting every row of the truth

table. Naor, Pinkas, and Sumner [NPS99] and Pinkas et al. [Pin+09] further reduced the

number of necessary encryptions to garble the circuit. The most notable advances are

the techniques called free-xor and half-gates. Free-xor was introduced by Kolesnikov and

Schneider [KS08] and allows to garble a circuit in such a way, that xor-gates cost no

additional encryption. This is particularly useful as common circuits, like e.g. Advanced

Encryption Standard (AES) contain a much bigger number of xor-operations than and-

operations. Half-gates [ZRE15] reduces the number of encryptions needed to encode

an and-gate from four encryptions to only two. Recently, Rosulek and Roy [RR21] even

enhanced the half-gates technique, circumventing the lower bound proven in [ZRE15].

They introduce a technique called slicing and dicing. With that technique xor-gates are still

free and and-gates cost 1.5_ + 5 bits per gate, where _ is the security parameter. Free-xor

and half-gates can be combined to oer very ecient garbling.

Over the years, several frameworks were developed to facilitate the real-world imple-

mentation of garbled circuits. The rst implementation was the Fairplay library [Mal+04].

As this library is relatively old, it is merely of historical interest. Other libraries like Kreuter,

shelat, and Shen [KsS12] do not feature the optimizations provided by half-gates [ZRE15].

Therefore we will use the emp-toolkit library by Wang, Malozemo, and Katz [WMK16]

in this work. This C++ library oers a method to implement garbled circuits that are

passively and actively secure. Additionally, most recent optimizations like free-xor and

half-gates are implemented. The downside is that the framework is barely documented.

2.6.3. Garbling Schemes

Bellare, Hoang, and Rogaway [BHR12] dened an elegant abstraction of the above de-

scribed protocol and gave a thorough analysis of security properties oered by variants of

these algorithms. In their work, the use the side-information function Φ. Given a circuit 𝑓 ,

this functions outputs certain information about the circuit. Depending on the desired

level of security, one can dene Φ dierently. E.g. Φ(𝑓) = 𝑓 would mean that all parties

learn the whole description of the circuit. In a more restrictive setting, one could also

demand e.g. that Φ(𝑓) = 𝑛, where 𝑛 is the number of input bits of 𝑓 . However, in this

work we will always assume the rst case, i.e. that the circuit description is public. We

render their denition here:

Denition 10 (Garbling Scheme) [BHR12, Sec. 3.1] A garbling scheme is a tuple G =

(Gb, En,De, Ev, ev), where Gb is probabilistic and the remaining algorithms are deter-

ministic. Let 𝑓 ∈ {0, 1}∗ be a description of the function we want to garble. The function

ev(𝑓 , ·) : {0, 1}𝑛 → {0, 1}𝑚 denotes the actual function, we want to garble. (𝑛 and𝑚 must

be eciently computable from 𝑓 .) On input 𝑓 and a security parameter _ ∈ N, algorithm
Gb returns a triple of strings (𝐹, 𝑒, 𝑑) ← Gb(1_, 𝑓). String 𝑒 describes an encoding function,
En(𝑒, ·), that maps an initial input 𝑥 ∈ {0, 1}𝑛 to a garbled input 𝑋 = En(𝑒, 𝑥). String 𝐹

21

2. Preliminary

describes a garbled function, Ev(𝐹, ·), that maps each garbled input 𝑋 to a garbled output

𝑌 = Ev(𝐹, 𝑋). String 𝑑 describes a decoding function, De(𝑑, ·), that maps a garbled output

𝑌 to a nal output 𝑦 = De(𝑑,𝑌). �

The security properties dened in [BHR12] are privacy, obliviousness, and authenticity.
Intuitively, privacy means that no ecient adversary can calculate anything from the

garbled circuit 𝐹 , the input labels 𝑋 and the decoding information 𝑑 that the adversary

could not have calculated from the output value 𝑦 and the side-information Φ(𝑓) alone. In
particular, the adversary cannot “break” the garbling scheme to get the input value of one

of the parties. Obliviousness is a related notion. The intuition is that no ecient adversary

can calculate anything from the garbled circuit 𝐹 and the input labels 𝑋 that the adversary

could have calculated from the side-information Φ(𝑓).
Note here, that in contrast to privacy, the adversary is not given the decoding information

𝑑 . Consequently, the adversary should not be able to produce an output just from the

garbled circuit 𝐹 and the input labels 𝑋 . This is reected in the fact that the simulator in

the security experiment Figure 2.10 will not get the output value 𝑦 ← ev(𝑓 , 𝑥). The last
notion is authenticity. The idea behind this notion is that the only output one should be

able to produce using the garbled circuit is 𝑦 = De(𝑑, Ev(𝐹, 𝑋)).
Bellare, Hoang, and Rogaway [BHR12] gave a game-based security denition, as well as

a simulation based security denition for the rst two properties. As Zahur, Rosulek, and

Evans [ZRE15] use the simulation-based notions, we will only render the simulation-based

denitions and the denition of authenticity here.

Denition 11 (Privacy) [BHR12, Sec. 3.4] For a simultor S, we dene the advantage of
adversary A in the security experiment dened in Figure 2.9, as

Adv
prv.sim,Φ,S
G (A, _) B 2 Pr [PrvSimAG,Φ,S = 1] − 1.

A garbling scheme has privacy if for every PPT adversary A there is a simulator S such

that

Adv
prv.sim,Φ,S
G (A, _) ≤ negl(_),

for a negligible function negl(·). �

Denition 12 (Obliviousness) [BHR12, Sec. 3.5] For a simulator S, we dene the advantage
of adversary A in the security experiment dened in Figure 2.10, as

Adv
obv.sim,Φ,S
G (A, _) B 2 Pr [ObvSimAG,Φ,S = 1] − 1.

A garbling scheme has obliviousness if for every PPT adversary A there is a simulator S
such that

Adv
obv.sim,Φ,S
G (A, _) ≤ negl(_),

for a negligible function negl(·). �

22

2.6. Garbled Circuits

Game PrvSimG,Φ,S

• The challenger C chooses a bit 𝑏 ∈ {0, 1} uniformly at random.

• A sends a function 𝑓 : {0, 1}𝑛 → {0, 1}∗ and input 𝑥 ∈ {0, 1}𝑛 to C.

• If 𝑥 ∉ {0, 1}𝑛 the challenger sends ⊥ to A.

Else if 𝑏 = 1 the challenger sets (𝐹, 𝑒, 𝑑) ← Gb(1_, 𝑓) and 𝑋 ← En(𝑒, 𝑋).
Else the challenger calculates 𝑦 ← ev(𝑓 , 𝑥) and simulates (𝐹, 𝑋,𝑑) ←
S(1_, 𝑦,Φ(𝑓)).
Finally, C sends (𝐹, 𝑋,𝑑) to A.

• A outputs a bit 𝑏′

• The game outputs 𝑏′
?

= 𝑏.

Figure 2.9.: The Simulation-Based Privacy Game From [BHR12, Fig. 5].

Denition 13 (Authenticity) [BHR12, Sec. 3.6] We dene the advantage of adversaryA in

the security experiment dened in Figure 2.11, as

Adv
aut
G (A, _) B Pr [AutAG = 1] .

A garbling scheme has authenticity if for every PPT adversary A it holds that

Adv
aut
G (A, _) ≤ negl(_),

for a negligible function negl(·). �

2.6.4. Free-Xor

The technique proposed in Kolesnikov and Schneider [KS08] is one of the most important

advances on eciency of garbled circuits. The technique allows to calculate a garbled

circuit in such a way that xor-gates come with no additional data, i.e., encrypted gate

labels that have to be sent over the network. The gist of [KS08] is the following: If one

denes the input labels of a xor-gate as 𝑋 [1] = 𝑋 [0] ⊕ Δ and 𝑌 [1] = 𝑌 [0] ⊕ Δ, where
Δ is some secret constant known to the garbling party and 𝑋 [0], 𝑌 [0] are random labels

and one denes 𝑍 [0] = 𝑋 [0] ⊕ 𝑌 [0], the evaluating party can calculate the output of the

xor-gate locally. This is because we have for 𝑏1, 𝑏2 ∈ {0, 1}

𝑋 [𝑏1] ⊕𝑌 [𝑏2] = 𝑍 [𝑏1 ⊕ 𝑏2],

and the evaluating party can compute the xor of the two input labels without further

information from the garbling party. Kolesnikov and Schneider [KS08] argue that even

though the labels are not chosen independently anymore in the above case, the garbling is

still secure. This technique is particularly useful as some the circuit description of some

“real-world” functions contain a relatively high amount of xor-gates. For example, AES

can be realized with 28216 gates from which 55% are xor-gates [Pin+09].

23

2. Preliminary

Game ObvSimG,Φ,S

• The challenger C chooses a bit 𝑏 ∈ {0, 1} uniformly at random.

• A sends a function 𝑓 : {0, 1}𝑛 → {0, 1}∗ and input 𝑥 ∈ {0, 1}𝑛 to C.

• If 𝑥 ∉ {0, 1}𝑛 the challenger sends ⊥ to A.

Else if 𝑏 = 1 the challenger sets (𝐹, 𝑒, 𝑑) ← Gb(1_, 𝑓) and 𝑋 ← En(𝑒, 𝑋).
Else the challenger simulates (𝐹, 𝑋) ← S(1_,Φ(𝑓)).
Finally, C sends (𝐹, 𝑋) to A.

• A outputs a bit 𝑏′

• The game outputs 𝑏′
?

= 𝑏.

Figure 2.10.: The Simulation-Based Obliviousness Game From [BHR12, Fig. 5].

Game AutG

• A sends a function 𝑓 : {0, 1}𝑛 → {0, 1}∗ and input 𝑥 ∈ {0, 1}𝑛 to C.

• If 𝑥 ∉ {0, 1}𝑛 the challenger sends ⊥ to A.

The challenger sets (𝐹, 𝑒, 𝑑) ← Gb(1_, 𝑓) and 𝑋 ← En(𝑒, 𝑋).
C sends (𝐹, 𝑋) to A.

• A sends 𝑌 to C

• The game outputs 1 i (De(𝑑,𝑌) ≠ ⊥ and 𝑌 ≠ Ev(𝐹, 𝑋).

Figure 2.11.: The Authenticity Game From [BHR12, Fig. 5].

24

2.6. Garbled Circuits

2.6.5. Half-Gates

Zahur, Rosulek, and Evans [ZRE15] proposed an optimization to Yao’s garbled circuits

that reduces the cost of each and-gate by half. This huge improvement is particularly

interesting as it can be combined with the free-xor optimization technique. The key idea

is to split a single and-gate into two “half-gates” that are easier to handle.

To understand the technique, one has to consider the following. Let’s assume we want

to garble a gate 𝑐 = 𝑎∧𝑏. We further assume that the free-xor technique as in Section 2.6.4

is used. Then we have labels 𝐶 , 𝐶 ⊕ 𝑅, 𝐴, 𝐴 ⊕ 𝑅, 𝐵, and 𝐵 ⊕ 𝑅 for this gate, where 𝑅 is

the free-xor oset and 𝐴, 𝐵, 𝐶 , are the labels encoding zero. If we assume that the garbler

(somehow) already knows the value of 𝑎, it would be easy to garble the gate. If 𝑎 = 0 the

garbler could just garble a gate that outputs constant 0 and for 𝑎 = 1 the garbler could

garble an “identitiy” gate, i.e., a gate that always outputs 𝑏. So the garbler has to produce

two encryptions:

𝐻 (𝐵) ⊕ 𝐶
if 𝑎 = 0 : 𝐻 (𝐵 ⊕ 𝑅) ⊕ 𝐶
if 𝑎 = 1 : 𝐻 (𝐵 ⊕ 𝑅) ⊕ 𝐶 ⊕ 𝑅

This is the rst “half-gate”. For the second “half-gate”, we adapt this idea to the evaluator

side. Consider again an and-gate 𝑐 = 𝑎 ∧ 𝑏. But this time, we assume that the evaluator

(somehow) already knows the bit 𝑎. If the evaluator knows the value of 𝑎, it can behave

dierently in evaluating the circuit. For 𝑎 = 0, the evaluator has to receive the label 𝐶 , as

the output is always zero. If 𝑎 = 1, the output of the gate depends on the value of 𝑏. It is

sucient for the evaluator to learn the label Δ B 𝐶 ⊕ 𝐵. By adding either 𝐵 or 𝐵 ⊕ 𝑅 to Δ,
the evaluator will receive the right output label, i.e., either 𝐶 or 𝐶 ⊕ 𝑅. This means, the

“half gate” of the evaluator is comprised of two encryptions

𝐻 (𝐴) ⊕ 𝐶
𝐻 (𝐴 ⊕ 𝑅) ⊕ 𝐶 ⊕ 𝐵.

One can further use optimization from garbled-row-reduction [NPS99] to reduce the

number of encryptions for each of the “half-gates” to just one. To nally put those two

halves together, we use the fact that for any 𝑟 ∈ {0, 1} we have

𝑐 = 𝑎 ∧ 𝑏
= 𝑎 ∧ ((𝑟 ⊕ 𝑟)𝑏)
= (𝑎 ∧ 𝑟) ⊕ (𝑎 ∧ (𝑟 ⊕ 𝑏)) .

If we let the garbler choose a uniformly random value 𝑟 ∈ {0, 1}, we can regard the

and-gate (𝑎 ∧ 𝑟) as the garbler’s “half-gate”. Obviously, 𝑟 is known to the garbler. We can

further regard (𝑎 ∧ (𝑟 ⊕ 𝑏)) as the evaluator’s “half-gate”, if we can transfer the value of

(𝑟 ⊕ 𝑏) to the evaluator. This can be done via the choice bit of the point-and-permute

technique, see [BMR90]. Intuitively, (𝑟 ⊕ 𝑏) does not leak any information about 𝑏 to the

evaluator, as 𝑏 is masked by the uniformly random value 𝑟 . The xor-gate that is used to

combine the two halves is free.

25

2. Preliminary

We recall the details in Figure 2.12. For this gure, we adhered to the notation of [ZRE15]

and denote by 𝑥 the vector (𝑥0, . . . , 𝑥𝑛), for some 𝑛 ∈ N. Further, NextIndex is a stateful
procedure that simply increments an internal counter. Zahur, Rosulek, and Evans [ZRE15]

show that their scheme satises the simulation-based notions of obliviousness and privacy,

see Section 2.6.3.

2.7. Security of OPRFs

2.7.1. Simulation-Based Security

Freedman et al. [Fre+05] dened the security of OPRF using the real-world/ideal-world

paradigm. They dene two notions of OPRF, namely strong-OPRF and relaxed-OPRF (later

also called weak OPRF). The rst denition requires, that the user learns nothing about

the server’s key. Though this is the intuitive property that we want from an OPRF, this

denition is to strong to capture some ecient protocols. For example, if the user receives

a value from the server and nally applies a hash function to that value to obtain the

nal PRF output, the client obviously learned more about the server’s that just the PRF

output. It learned the hash-preimage of the PRF output. E.g. the constructions from Jarecki,

Krawczyk, and Xu [JKX18] and Jarecki et al. [Jar+16] or Kolesnikov et al. [Kol+16] do

not satisfy the strong-OPRF notion because of their application of a hash function. Thus,

[Fre+05] dene a relaxed version of OPRF. [Fre+05] give a brief denition of relaxed-OPRF.

We work out the details in the following:

Denition 14 (Relaxed-OPRF) [Fre+05, Def. 6] A two party protocol 𝜋 between a user U
and a server S is said to be a relaxed-OPRF if there exists some PRF familiy 𝑓𝑘 , such that 𝜋

correctly realizes the following functionality:

• Inputs: User holds an input 𝑥 ∈ X and server a key 𝑘 ∈ K ,

• Output: User outputs 𝑓𝑘 (𝑥) and server outputs nothing,

and if the following properties hold:

• User privacy: There exists a PPT machine Sim such that for every key 𝑘 ∈ K and

every input 𝑥 ∈ X it holds that

{𝑣 | 𝑣 = viewS〈S(𝑘),U(𝑥)〉𝜋 }_
𝑐≈ {𝑣 | 𝑣 ← Sim(1_, 𝑘)}_ .

• Server privacy: We demand that for anymalicious PPT adversaryA playing the role of

the client there exists a PPT simulator Sim such that for all inputs ((𝑥1, 𝑥2, . . . , 𝑥𝑛),𝑤)
it holds that

{(𝑣, 𝑓𝑘 (𝑥1), 𝑓𝑘 (𝑥2), . . . , 𝑓𝑘 (𝑥𝑛) | 𝑘
$← K, 𝑣 = outA 〈S(𝑘),A(𝑤)〉}

𝑐≈ {(Sim(𝑓𝑘 (𝑤)), 𝑓𝑘 (𝑥1), 𝑓𝑘 (𝑥2), . . . , 𝑓𝑘 (𝑥𝑛)) | 𝑘
$← K},

where S is a honest server and viewP〈A(𝑥),B(𝑦)〉𝜋 denotes the view of party P ∈
{A,B} when protocol 𝜋 is executed between A with input 𝑥 and party B with input 𝑦

and outP〈A(𝑥),B(𝑦)〉𝜋 denotes the output of that interaction. Ist das wirklich richtig?
Liest sich komisch. �

26

2.7. Security of OPRFs

Gb(1_, 𝑓) :
𝑅

$← {0, 1}_−1 ‖ 1
for 𝑖 in Inputs(𝑓) do
𝑊 0

𝑖

$← {0, 1}_

𝑊 1

𝑖 B𝑊 0

𝑖 ⊕ 𝑅
𝑒𝑖 B𝑊 0

𝑖

// In topological order

for 𝑖 ∉ Inputs(𝑓) do
{𝑎, 𝑏} B GateInputs(𝑓 , 𝑖)
if 𝑖 ∈ XorGates(𝑓) :
𝑊 0

𝑖 B𝑊 0

𝑎 ⊕𝑊 0

𝑏

else
(𝑊 0

𝑖 ,𝑇𝐺𝑖 ,𝑇𝐸𝑖) B GbAnd(𝑊 0

𝑎 ,𝑊
0

𝑏
)

𝐹𝑖 B (𝑇𝐺𝑖 ,𝑇𝐸𝑖)
endif
𝑊 1

𝑖 B𝑊 0

𝑖 ⊕ 𝑅
for 𝑖 ∈ Outputs(𝑓) do
𝑑𝑖 B lsb(𝑊 0

𝑖)
return (𝐹, 𝑒, ˆ𝑑)

Ev(𝐹, 𝑋) :
for 𝑖 ∈ Inputs(𝐹) do
𝑊𝑖 B 𝑋𝑖

// In topological order

for 𝑖 ∉ Inputs(𝐹) do
{𝑎, 𝑏} B GateInputs(𝐹, 𝑖)
if 𝑖 ∈ XorGates(𝐹) :
𝑊𝑖 B𝑊𝑎 ⊕𝑊𝑏

else
𝑠𝑎 B lsb(𝑊𝑎), 𝑠𝑏 B lsb(𝑊𝑏)
𝑗 B NextIndex()
𝑗 ′ B NextIndex()
(𝑇𝐺𝑖 ,𝑇𝐸𝑖) B 𝐹𝑖

𝑊𝐺𝑖

$← 𝐻 (𝑊𝑎, 𝑗) ⊕ 𝑠𝑎𝑇𝐺𝑖

𝑊𝐸𝑖

$← 𝐻 (𝑊𝑏, 𝑗
′) ⊕ 𝑠𝑏 (𝑇𝐸𝑖 ⊕𝑊𝑎)

𝑊𝑖 B𝑊𝐺𝑖 ⊕𝑊𝐸𝑖

endif

for 𝑖 ∈ Outputs(𝐹) do
𝑌𝑖 B𝑊𝑖

return 𝑌

private GbAnd(𝑊 0

𝑎 ,𝑊
0

𝑏
) :

𝑝𝑎 B lsb(𝑊 0

𝑎), 𝑝𝑏 B lsb(𝑊 0

𝑏
)

𝑗 B NextIndex(), 𝑗 ′ B NextIndex()
// First Half-Gate

𝑇𝐺
$← 𝐻 (𝑊 0

𝑎 , 𝑗) ⊕ 𝐻 (𝑊 1

𝑎 , 𝑗) ⊕ 𝑝𝑏𝑅
𝑊 0

𝐺

$← 𝐻 (𝑊 0

𝑎) ⊕ 𝑝𝑎𝑇𝐺
// Second Half-Gate

𝑇𝐸
$← 𝐻 (𝑊 0

𝑏
, 𝑗 ′) ⊕ 𝐻 (𝑊 1

𝑏
, 𝑗 ′) ⊕𝑊 0

𝑎

𝑊 0

𝐸

$← 𝐻 (𝑊 0

𝑏
, 𝑗 ′) ⊕ 𝑝𝑏 (𝑇𝐸 ⊕𝑊 0

𝑎)
// combine halves

𝑊 0 B𝑊 0

𝐺 ⊕𝑊
0

𝐸

return (𝑊 0,𝑇𝐸,𝑇𝐺)

En(𝑒, 𝑥) :
for 𝑒𝑖 ∈ 𝑒 do
𝑋𝑖 B 𝑒𝑖 ⊕ 𝑥𝑖𝑅

return 𝑋

De(ˆ𝑑,𝑌) :
for 𝑑𝑖 ∈ ˆ𝑑 do
𝑦𝑖 B 𝑑𝑖 ⊕ lsb(𝑌𝑖)

return 𝑦

Figure 2.12.: The Procedures for Garbling a Function 𝑓 .

27

2. Preliminary

Functionality FAUTH

• Upon invocation, with input (Send,𝑚𝑖𝑑, 𝑅,𝑚) from 𝑆 , send backdoor message

(Sent,𝑚𝑖𝑑, 𝑆, 𝑅,𝑚) to the adversary.

• Upon receiving backdoor message (ok,𝑚𝑖𝑑): If not yet generated output, then

output (Sent,𝑚𝑖𝑑, 𝑆, 𝑅,𝑚) to 𝑅.

Figure 2.13.: The Ideal Functionality FAUTH From [Can00].

Functionality FRO

Upon receipt of a message 𝑥 ∈ 𝐴, if there is a record 〈𝑥,𝑦〉, return 𝑦. Else draw 𝑦∗ ∈ 𝐵
uniformly at random. Record 〈𝑥,𝑦∗〉 and return 𝑦∗.

Figure 2.14.: The Ideal Functionality FRO.

2.7.2. Universally Composable OPRFs

2.7.2.1. Authenticated Channels

In this work we will use the notion of authenticated channels. Intuitively, this means that

a sender of a message can be sure that only the intended receiver (or no one, in case the

message is lost) can receive a message. Additionally, a sender can be sure that the message

was not altered by an adversary. We demand that those requirements do only hold as long

as both parties follow the protocol.

Canetti [Can00] dene authenticated communication via the ideal functionality depicted

in Figure 2.13.

2.7.2.2. The UC Framework and RandomOracles

A random oracle is an (over-) idealization of a hash function. Assuming the existence

of a random oracle often allows to prove security of cryptographic objects, that are are

more ecient than their “plain-model” counterparts. In a real-world implementation,

the random oracle will be replaced by a cryptographic hash function. While there are

examples, where this replacement does not preserve security (see [CGH98]), the random

oracle model is still regarded as a useful heuristic. A random oracle 𝐻 : 𝐴 → 𝐵 maps

elements from set 𝐴 to elements of set 𝐵. It can be queried by all parties. If the random

oracle receives an input query 𝑥 ∈ 𝐴 for the rst time, it draws a uniformly random output

value 𝑦 ∈ 𝐵 and outputs this value. The oracle also stores the tuple 〈𝑥,𝑦〉. If the random
oracle receives the query 𝑥 again, it outputs 𝑦 and does not draw a new value.

In the UC-framework, the random oracle is modeled as an ideal functionality. We

describe such a functionality in Figure 2.14. However, for the sake of convenience, we will

notate the random oracle in our work like a “conventional hash function” and not like an

ideal functionality.

28

2.7. Security of OPRFs

2.7.2.3. OPRF in the UC Model

We recall the security notion dened in [JKX18]. The security is dened in the UC-

framework, see Section 2.4. We describe the ideal functionality F ∗
OPRF

in Figure 2.15. We

will write F ∗
OPRF

to distinguish this functionality, from the slightly simplied functionality

FOPRF, we are going to introduce in Section 3.2.

The intuition of the functionality is that users interact with servers in several sessions.

A session is indexed by an id 𝑠𝑖𝑑 an belongs to one user and one server. An honest server

uses the same key for the whole session 𝑠𝑖𝑑 . The user can request an output of the PRF by

interacting with the server in a subsession, identied by 𝑠𝑠𝑖𝑑 . The user starts the request

of an output F𝑘 (𝑥) by sending (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S′, 𝑥) to F ∗
OPRF

. S′ denotes the server from
which the user wants to get the output. In other words, the user species the function

𝑓𝑘 (·) from which the output should be taken, only that the user doesn’t know the value 𝑘

but rather species the server that holds 𝑘 . As we assume that a server only holds one 𝑘

for every session 𝑠𝑖𝑑 , the ideal functionality denotes its internal function as F𝑠𝑖𝑑,S(·). The
function is seen as an initially empty table and gets lazily lled with randomly drawn

values.

A server can consent to the interactionwith the user by sending (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′)
to F ∗

OPRF
. Finally, the adversary can send (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, 𝑖) to F ∗

OPRF
to indicate

that the user U can receive the requested output. However, F ∗
OPRF

gives the adversary

the means to tamper with the output by specifying an identity 𝑖 . This 𝑖 indicates from

which function F𝑠𝑖𝑑,𝑖 (·) the output should actually be chosen. If the adversary sends

(RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S′), where S′ is the server from the user’s (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S′, 𝑥)
message, the interaction yields exactly the output that the user requested. But if 𝑖 ≠ S′,
the request is “detoured” and the user receives an output from a dierent table, namely

F𝑠𝑖𝑑,𝑖 (·). The identity 𝑖 does not need to correspond to an existing protocol party, but can

by any identity label, e.g. any bit string of a predened length.

The above might give the impression that F ∗
OPRF

undermines the security of OPRF proto-

cols realizing F ∗
OPRF

. If the adversary can arbitrarily detour queries, it could e.g. answer all

queries with just one function F𝑠𝑖𝑑,S(·). This problem is solved via the ticket counter tx(·).
With this counter, FOPRF keeps track of the number of OPRF outputs that a server generates

and the number of OPRF output from that server that is used as output. Everytime the server

consents to giving OPRF output by sending (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S), the counter tx(S)
is incremented. If an output from S is delivered to a user by a (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S)
message, the counter tx(S) is decremented. If the counter is zero but an output is request

by a (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) message, F ∗
OPRF

ignores this message.

F ∗
OPRF

also allows oine evaluation of functions, by sending (OfflineEval, 𝑠𝑖𝑑, 𝑖, 𝑥) to
F ∗
OPRF

. This is possible in four cases:

1. If the server 𝑖 is corrupted. This models the fact that the adversary learns the PRF

key 𝑘 by corrupting a server. When the adversary knows 𝑘 , it can evaluate F𝑘 (·) at
arbitrary points.

2. If the server itself wants to evaluate the function, it can do that, as it knows its own

key.

29

2. Preliminary

3. A real-world adversary can just makeup random output values. This is reected

by the fact that the adversary can send oine evaluation requests for identities 𝑖

that are not an existing party. For the “virtual corrupt identities”, the adversary can

arbitrarily often query output values.

4. If the server is compromised, we are in a similar situation as in the case of corruption.

Note, that F ∗
OPRF

models several users and several servers, interacting with each other.

This is rather unusual for a UC-functionality as it makes the security analysis more

complicated. However, modeling the functionality with only one user and one sender

has a drawback. The 2HashDH by [Jar+16; JKK14] relies on two hash functions. More

formally speaking, 2HashDH UC-realizes F ∗
OPRF

in the 𝑅𝑂-hybrid model. Now, if dierent

users would want to query pseudo-random values from the same server and thus, the

same function F𝑘 (·), it would not be possible, as the random oracles 𝐻 𝑠𝑖𝑑
1
, 𝐻 𝑠𝑖𝑑

2
are dierent

for every session and thus the PRF F𝑘 (𝑥) = 𝐻 𝑠𝑖𝑑
2
(𝑥, (𝐻 𝑠𝑖𝑑

1
(𝑥))𝑘), too.

30

2.7. Security of OPRFs

Functionality F ∗
OPRF

Public Parameters: PRF output-length 𝑙 , polynomial in the security parameter _.

Conventions: For every 𝑖, 𝑥 , value F𝑠𝑖𝑑,𝑖 (𝑥) is initially undened, and if undened value

F𝑠𝑖𝑑,𝑖 (𝑥) is referenced then F ∗
OPRF

assigns F𝑠𝑖𝑑,𝑖 (𝑥)
$← {0, 1}𝑙 .

Initialization:
On (Init, 𝑠𝑖𝑑) from S, if this is the rst Init message for 𝑠𝑖𝑑 , set tx = 0 and send

(Init, 𝑠𝑖𝑑, S) to A. From now on, use tag “S” to denote the unique entity which sent

the Init message for session id 𝑠𝑖𝑑 . Ignore all subsequent Init messages for 𝑠𝑖𝑑 .

Server Compromise:
On (Compromise, 𝑠𝑖𝑑, S) from A, mark S as Compromised. If S is corrupted, it is

marked as Compromised from the beginning. Note: Message (Compromise, 𝑠𝑖𝑑, S)
requires permission from the environment.

Oine Evaluation:
On (OfflineEval, 𝑠𝑖𝑑, 𝑖, 𝑥) from P ∈ {S,A}, send (OfflineEval, 𝑠𝑖𝑑, F𝑠𝑖𝑑,𝑖 (𝑥)) to P if

any of the following hold: (i) S is corrupted, (ii) P = S and 𝑖 = S, (iii) P = A and 𝑖 ≠ S,
(iv) P = A and S is as marked Compromised.

Evaluation:

• On (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S′, 𝑥) from P ∈ {U,A}, send (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, P, S′) to A.

On prfx from A, ignore this message if prfx was used before. Else record

〈𝑠𝑠𝑖𝑑, P, 𝑥, prfx〉 and send (Prefix, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, prfx) to P.

• On (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) from S, send (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S) to A.

On prfx′ from A, send (Prefix, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, prfx′) to S. If there is a record

〈𝑠𝑠𝑖𝑑, P, 𝑥, prfx〉 for P ≠ A and prfx ≠ prfx′, change it to 〈𝑠𝑠𝑖𝑑, P, 𝑥,OK〉. Else
set tx + +.

• On (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, P, 𝑖) from A, ignore this message if there is no

record 〈𝑠𝑠𝑖𝑑, P, 𝑥, prfx〉 or if (𝑖 = S, tx = 0 and prfx ≠ OK). Else send

(EvalOut, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, F𝑠𝑖𝑑,𝑖 (𝑥)) to P and if (𝑖 = S and prfx ≠ OK) then set tx − −.

Figure 2.15.: The Ideal Functionality F ∗
OPRF

From [JKX18].

31

3. Construction

3.1. Adversarial Model

For the sake of clarity, we formulate the assumptions about our adversaries:

We will implement an OPRF with garbled circuits. As “textbook versions” of garbled

circuits oer only security against passive, i.e., semi-honest adversaries, we will restrict

our construction to these adversaries. This means, the adversary follows the protocol

honestly but tries to learn additional information from its view on the protocol execution.

Further, we will restrict ourselves to a model of static corruption. This means the adversary

can only at the start of the protocol choose to gain control over certain parties. If a party is

corrupted, we assume that the adversary learns the party’s input, the content of the party’s

random tape, and all messages received by the party. The adversary can send messages in

the name of a corrupted party as long as the messages adhere to the protocol.

3.2. Security Notion

Wewill not use exactly the same formulation of the ideal OPRF functionality F ∗
OPRF

, dened

in Section 2.7. We’ll use a slightly simplied version, described in Figure 3.1. Note, that

FOPRF does not capture adaptive compromise, as we only assume static corruption. For

the sake of simplicity, we also omit the prexes used in F ∗
OPRF

.

3.3. Themain construction

Let𝑚,𝑛 ∈ Ω(_) and 𝐹 : {0, 1}𝑚×{0, 1}𝑛 → {0, 1}𝑛 be a PRF, with the additionally property
that for every 𝑘 ∈ {0, 1}𝑚 it holds that 𝐹𝑘 (·) : {0, 1}𝑛 → {0, 1}𝑛 is a permutation. In our

real-world implementation, described in Chapter 5, we instantiate this function with AES.

We will garble the circuit 𝐶 that describes 𝐹 to construct our OPRF.

The user runs with its password 𝑝𝑤 ∈ {0, 1}∗ as input. The password is hashed to an 𝑛

bit value, so we can use it as input to C. Our construction involves two hash functions

𝐻1 : {0, 1}∗ → {0, 1}𝑛 and 𝐻2 : {0, 1}∗ × {0, 1}𝑚 → {0, 1}𝑙 , where 𝑙 ∈ Ω(_). We will model

these hash functions as random oracles. The server takes no input. Initially, for each

session, it chooses a key 𝑘 ∈ {0, 1}𝑚 uniformly at random. The PRF, that is computed by

the OPRF protocol is

F𝑘 (𝑝𝑤) B 𝐻2(𝑝𝑤, C𝑘 (𝐻1(𝑝𝑤))) .
In our description of the protocol, the server garbles the circuit and the user evaluates the

circuit. The user starts an execution of the protocol by hashing its input 𝑝𝑤 . The obtained

value 𝑥 = 𝐻1(𝑝𝑤) will be used as the user’s input to the circuit. The user then requests

33

3. Construction

Functionality FOPRF

Initialization:
For each value 𝑖 and each session 𝑠𝑖𝑑 , an empty table 𝑇𝑠𝑖𝑑 (𝑖, ·) is initially undened.

Whenever 𝑇𝑠𝑖𝑑 (𝑖, 𝑥) is referenced below while it is undened, draw 𝑇𝑠𝑖𝑑 (𝑖, 𝑥)
$← {0, 1}𝑙 .

On (Init, 𝑠𝑖𝑑) from S, if this is the rst Init message for 𝑠𝑖𝑑 , set tx(S) = 0 and send

(Init, 𝑠𝑖𝑑, S) to A. From now on, use “S” to denote the unique entity which sent the

Init message for 𝑠𝑖𝑑 . Ignore all subsequent Init messages for 𝑠𝑖𝑑 .

Oine Evaluation:
On (OfflineEval, 𝑠𝑖𝑑, 𝑖, 𝑥) from P ∈ {S,A}, send (OfflineEval, 𝑠𝑖𝑑,𝑇𝑠𝑖𝑑 (𝑖, 𝑥)) to P if

any of the following hold: (i) S is corrupted and 𝑖 = S, (ii) P = S and 𝑖 = S, (iii) P = A
and 𝑖 ≠ S.

Online Evaluation:

• On (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑝𝑤) from P ∈ {U,A}, record 〈𝑠𝑠𝑖𝑑, S, P, 𝑝𝑤〉 and send

(Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, P, S) to A.

• On (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) from S, increment tx(S) or set to 1 if previously

undened, send (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S) to A.

• On (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, P, 𝑖) from A, retrieve 〈𝑠𝑠𝑖𝑑, S, P, 𝑝𝑤〉, where P ∈ {U,A}.
Ignore this message if at least one of the following holds:

– There is no record 〈𝑠𝑠𝑖𝑑, S, P, 𝑝𝑤〉.
– 𝑖 = S but tx(S) = 0.

– S is honest but 𝑖 ≠ S.

Send (EvalOut, 𝑠𝑖𝑑,𝑇𝑠𝑖𝑑 (𝑖, 𝑝𝑤)) to P. If 𝑖 = S set tx(𝑖) − −.

Figure 3.1.: The Ideal Functionality FOPRF Inspired by [JKX18].

34

3.4. Some Remarks on the Construction

a garbled circuit from the server by sending (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) to the server. The server

will proceed by calculating the garbled circuit, using half-gates, as described in Figure 2.12.

In particular, it encodes its own key as input for the circuit. It sends the garbled circuit,

the input labels of the key, and the decoding information to the user. The user and the

server perform 𝑛 parallel 1-out-of-2-OTs in order to equip the user with the wire labels

for its desired input 𝑥 = 𝐻1(𝑝𝑤). Next, the user can evaluate the garbled circuit on the

encoded inputs𝑋 and𝐾 and receives an output label𝑌 . This label can be decoded to obtain

the output value of the circuit 𝑦. Finally, the user hashes its input and the output of the

circuit again to obtain the output 𝜌 = 𝐻2(𝑝𝑤,𝑦). We describe the OPRF more precisely in

Figure 3.2. We denote by𝑚𝑖𝑑 the session id of each FAUTH session, i.e., each sent message.

We assume that𝑚𝑖𝑑 contains the session id 𝑠𝑖𝑑 and the subsession id 𝑠𝑠𝑖𝑑 as a substring.

When we talk about the labels generated by Gb, we will write 𝑋 [0] (or 𝑋 [1], rsp.) to
denote that the label is an encoding of 0 (or 1, rsp.). When 𝑏 ∈ {0, 1}𝑛 , we will also write

𝑋 [𝑏] to denote the string of labels 𝑋 [𝑏1] ‖ . . . ‖𝑋 [𝑏𝑛].

3.4. Some Remarks on the Construction

In the following, we give some remarks on the construction and explain decisions on the

protocol design.

Who garbles? We believe that the above-described approach could easily be adapted

to feature switched roles of garbler and evaluator. More precisely, we believe that it’s

also possible to construct a similar OPRF protocol where the user garbles the circuit and

the server evaluates the circuit. However, we decided to let the server garble the circuit

because our construction only has passive security. If the protocol would be implemented

in a real-world scenario, it is a more realistic assumption that a server behaves in an

honest-but-curious way than to assume that a user behaves that way. A server might be

maintained by a company that would fear economic damage if malicious behavior of their

servers is uncovered, while arbitrary users on the internet are likely to behave maliciously.

Nonetheless, we would always recommend using protocols that feature security against

active adversaries for real-world scenarios. If it would be possible to achieve an actively

secure OPRF protocol from garbled circuits, it might even be benecial to switch roles. If

the user has to “invest” computation time on the creation of a garbled circuit, it decreases

the thread of Denial of Service (DOS) attacks on the server.

On the Need for the Second Hash Function One might ask why we need a second hash

function 𝐻2 in the denition of our pseudo-random function F𝑘 (𝑥) = 𝐻2(C𝑘 (𝐻1(𝑥))). On
the rst glance it even seems to weaken our results, as the construction in Figure 3.2 is

only a weak OPRF, see Section 2.7. One could conclude that if the user would not have to

hash the output of the garbled circuit, we would achieve a strong OPRF, as the user does

not learn anything more than the PRF output, instead of learning the 𝐻2 pre-image of the

actual output. The pseudo-randomness would follow from the fact that C is a PRF. That

would lead to the OPRF described by Pinkas et al. [Pin+09]. The problem with this lies in

the denition of the ideal functionality, see Figure 2.15, and the strong notion of universal

35

3. Construction

S on (Init, 𝑠𝑖𝑑) from E
If this is the rst (Init, 𝑠𝑖𝑑) message from E
𝑘

$← {0, 1}𝑚, record 〈𝑘, 𝑠𝑖𝑑〉

U on (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑝𝑤) from E
𝑥

$← 𝐻1(𝑝𝑤)
send (Send,𝑚𝑖𝑑, S, (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)) to FAUTH

S on (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) from E
if already received (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) :

goto GarbleCircuit

else
ignore this message

S on (Sent,𝑚𝑖𝑑,U, S, (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)) from FAUTH
if already received (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) :

GarbleCircuit :

if @〈𝑘, 𝑠𝑖𝑑〉 :
ignore this message

(𝐹, 𝑒, 𝑑) ← Gb(1_, C)
(𝑋 [0𝑛] ‖ 𝐾) B En(𝑒, 0𝑛 ‖ 𝑘)
(𝑋 [1𝑛] ‖ 𝐾) B En(𝑒, 1𝑛 ‖ 𝑘)
send (Send,𝑚𝑖𝑑 ′,U, (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑)) to FAUTH
for 𝑖 ∈ {1, . . . , 𝑛} :

send (OT-Send, (𝑠𝑠𝑖𝑑, 𝑖), (𝑋𝑖 [0], 𝑋𝑖 [1])) to FOT
else

ignore this message

U on (Sent,𝑚𝑖𝑑, S,U, (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑))) from FAUTH
if already received (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑝𝑤) :

wait for (OT-Sent, (𝑠𝑠𝑖𝑑, 1)), . . . , (OT-Sent, (𝑠𝑠𝑖𝑑, 𝑛)) from FOT
for 𝑖 ∈ {1, . . . , 𝑛} :

send (OT-Receive, (𝑠𝑠𝑖𝑑, 𝑖), 𝑥𝑖) to FOT
else

ignore this message

U on (OT-Received, (𝑠𝑠𝑖𝑑, 1), 𝑋1), . . . , (OT-Received, (𝑠𝑠𝑖𝑑, 𝑛), 𝑋𝑛) from FOT
if already received (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑)) :
𝑌 B Ev(𝐹, 𝑋 ‖ 𝐾)
𝑦 B De(𝑑,𝑌)
𝜌

$← 𝐻2(𝑝𝑤,𝑦)
output (EvalOut, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝜌) to E

else
ignore this message

Figure 3.2.: Our GC-OPRF Construction in the FOT, FRO, FAUTH-Hybrid Model.

36

3.4. Some Remarks on the Construction

composability. We argue in an informal way, why the Pinkas et al. [Pin+09] OPRF protocol

does not UC-realize the ideal functionality FOPRF from Figure 2.15.

For a newly queried value, FOPRF draws a fresh output value uniformly at random. This

means that the OPRF output of the real protocol must be indistinguishable from a truly

random function for every environment. Indeed, we assume that the garbled circuit is a

PRF so the output of the circuit should be indistinguishable from random values. But this

does not hold if the PRF key is known. Let’s imagine an environment that corrupted a

server. That means the environment knows the key 𝑘 of that server. Next, the environment

could query a value 𝐻1(𝑥) = ℎ and as the description of the garbled circuit C is public, the

environment can calculate 𝑦 = C𝑘 (ℎ). Now the environment can start a protocol execution

between an honest user with input 𝑥 and the corrupted server with key 𝑘 . In the ideal

world, the functionality FOPRF will draw a uniformly random value as output for the user.

However, that output will be independent of the output 𝑦 that the environment calculated

beforehand, making it easy to distinguish the real and the ideal world. So a simulator

needs some way to manipulate the output accordingly. One might think of programming

the RO for 𝐻1. However, this does not seem to suce, as 𝐻1(𝑥) can only be programmed

once, while an environment could easily repeat the above experiment for several corrupted

servers with dierent keys but with the same input 𝑥 . The solution we use is to introduce

the second hash function 𝐻2. This hash function allows the simulator to program the

output of the circuit to t the outputs generated by FOPRF.

On the Need for Authenticated Channels In the proof of security in Section 3.5, we assume

authenticated channels. This is necessary, as otherwise, we could not rely on the semi-

honest nature of messages sent to the simulator. By assuming that all parties behave

honest-but-curious, we do explicitly not mean the adversary. In this model, the adversary

could still send e.g. malformed circuits in lieu of the honestly generated circuit from the

server. To really get to a setting where the simulator can be sure of all the messages being

benign, we must make this additional assumption.

One could argue that the assumption of authenticated channels renders our construction

impractical for many settings. For instance, if the OPRF is used for password-based

authentication, as we discussed in Chapter 1, one might not necessarily expect to already

have an authenticated channel. But in fact, authenticated channels are already established

in many practical scenarios! Typically, a user would connect to a server over a TLS

channel, and thus, at least the server is authenticated via digital certicates. A user can

also authenticate itself to the server with a certicate. We even expect the security of

our construction holds if only the server authenticates itself. This does guarantee that

the garbled circuit was actually generated by the party with which the user intends to

communicate.

If the server implements an OPRF protocol for its own password-based authentication

mechanism, our protocol is still useful. Imagine for example a typical internet forum.

Users will connect to the website via Hypertext Transfer Protocol Secure (HTTPS) but

then use a username and password to log in to their forum account. The big security

benet is that the user’s password is protected even if the server is compromised should

be motivation enough to use a protocol like OPAQUE [JKX18]. Clearly, a protocol that

37

3. Construction

assumes authenticated channels cannot be used to establish a TLS session. But TLS relies

mostly on a PKI and certicates instead of password-based authentication.

3.5. Proving Security

In order to prove thatGC-OPRF actually UC-emulatesFOPRF in theFOT, FRO, FAUTH-hybrid
model, we have to compare the views of two protocol executions. More precisely, for every

adversaryA we must specify a simulator Sim such that for every environment E we have:

EXECIDEALF
OPRF

,Sim,E
𝑐≈ EXECGC-OPRF,A,E,

where IDEALFOPRF denotes the ideal protocol execution.
As discussed in Section 2.4, we will only consider a Dummy-AdversaryA. We construct

the simulator as in Figures 3.5 to 3.8. For the sake of readability, we split the description of

Sim into four gures. We denote parties with a hat, e.g. P̂, if it is clear from the context

that they are corrupted. We write ∃〈𝑟 〉 as shorthand for “Sim checks if a record 〈𝑟 〉 exists”.

Some Intuition on the Simulator Before we give a formal proof, we like to give some

intuition on the simulator in Figures 3.5 to 3.8. First, note that in the formulation of

the UC security experiment in Section 2.4, the simulator Sim replaces the adversary A.

That means all messages the environment sends to A will be received by Sim. We also

assume that the real-world adversaryA is a dummy adversary, as elaborated in Section 2.4.

Nonetheless, we write in Figures 3.5 to 3.8 as if there was a party “A”. By this we mean

the messages Sim receives from E addressed to A or messages that Sim sends to E acting

as A.

As always in the UCmodel, the simulator answers all queries addressed to ideal function-

alities that were present in the real world. As we are working in the FOT, FRO, FAUTH-hybrid
model, Sim has to simulate FOT and FAUTH. Remember that a random oracle is strictly

speaking an ideal functionality, too. We just do not notate it like that for the sake of

convenience for the reader. Thus, Sim must also answer queries to the random oracles 𝐻1,

and 𝐻2. In the ideal world of the UC security experiment all honest parties just forward

the input they receive from the environment E to the ideal functionality. If they receive

output from the ideal functionality, they forward this output to E. However, the adversary
can send messages on behalf of corrupted parties, meaning the adversary gets instructed

to do so by the environment.

From a high viewpoint, the simulator can be summarized as follows: For honest servers,

the simulator chooses internally a PRF key 𝑘 and follows the protocol exactly as a real

server would do with key 𝑘 . For an honest user, the simulator requests a garbled circuit

from the server and simulates the request of input labels via OT. Note here, that Sim
does not know the input of the user. It can simulate the messages anyway as Sim does

also act as FOT. Then Sim receives a garbled circuit and input labels but for every input

𝑥𝑖 ∈ {0, 1} bit, Sim receives both labels 𝑋𝑖 [0] and 𝑋𝑖 [1], again because Sim simulates FOT.
Sim requests an output for the user from FOPRF. Now, FOPRF makes the user output some

uniformly random value, and Sim programs 𝐻2(𝑝,𝑦) accordingly. As we will see, correct
programming is non-trivial.

38

3.5. Proving Security

𝐻2 must be programmed because the output of a user in the real world is always the

output of 𝐻2(𝑝,𝑦) for some values 𝑝 and 𝑦. However, in the ideal world, the output for

honest users is generated by the ideal functionality FOPRF. Hence, the simulator must

ensure that the output generated by FOPRF and 𝐻2(𝑝,𝑦) coincide for values of 𝑝 and 𝑦

that can occur in an execution of the protocol. Sim can query output from FOPRF but this
has to be done carefully as FOPRF maintains a ticket counter that ensures that not more

PRF values can be received than server executions were performed. Especially, Sim must

somehow identify a server holding the key 𝑘 that mapped 𝑝 to 𝑦 = C𝑘 (𝐻1(𝑝)). We argue

in the following, why Sim has to do this.

Let’s assume Sim would always choose the same server identity 𝑖 to receive its out-

put from. Clearly, FOPRF would ignore the requests of Sim as soon as E would query

(Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S′, 𝑥) from a server S′ ≠ 𝑖 forwhich E also sent (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S′).
This is, because (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S′) increments the ticket counter tx(S′) of FOPRF
by one. In contrast, if Sim queries output from FOPRF by sending (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, 𝑖)
that decrements the ticket counter tx(𝑖) of 𝑖 and not S′. Remember, that FOPRF ignores a
RcvCmplt request when a ticket counter tx(𝑖) would be decremented below 0 for some 𝑖 .

One might be tempted to try the other extreme instead. What happens if the simulator

uses a completely new identity 𝑖 for each and every new query? We will call this 𝑖 a

“corrupt virtual identity”. By that we mean the following: Sim can query PRF output for

a server identity 𝑖 from FOPRF if this 𝑖 is no identity of an actual server of the session.

See OineEval point (iii) in Figure 3.1. These corrupt virtual identities do not have a

ticket counter. By using sending (OfflineEval, 𝑠𝑖𝑑, 𝑖, 𝑥) to FOPRF, the simulator receives

the entry 𝑇𝑠𝑖𝑑 (𝑖, 𝑥) from FOPRF’s table. This identity 𝑖 must not correspond to an actually

existent server in that session 𝑠𝑖𝑑 . Why can’t Sim create a new such corrupt virtual identity

for every 𝐻2 query it receives? Consider the following counter example:

E chooses a corrupted server S∗ with key 𝑘 ∈ {0, 1}𝑚 . The circuit C is publicly known,

so E can precompute C𝑘 (𝑥0) = 𝑦0 and C𝑘 (𝑥1) = 𝑦1 where 𝑥0 = 𝐻1(𝑚0) and 𝑥1 = 𝐻1(𝑚1)
for two messages𝑚0,𝑚1 ∈ {0, 1}∗. Now E lets A query 𝐻2(𝑚0, 𝑦0) from Sim. Note that

there was no protocol execution so far and hence, Sim has not received nor calculated a

garbled circuit (𝐹, 𝐾,𝑑). As we assumed in the beginning, Sim now creates a new “virtual

corrupt identity”. In other words, Sim creates a new identity 𝑖 for which no prior queries

to FOPRF exist. Now, Sim sends (OfflineEval, 𝑠𝑖𝑑, 𝑖,𝑚0) to FOPRF. As 𝑖 is no identity

of an actual server, FOPRF will answer with (OfflineEval, 𝑠𝑖𝑑, 𝜌0 B 𝑇𝑠𝑖𝑑 (𝑖,𝑚0)). Like
we assumed in the begining, Sim programs 𝐻2(𝑚0, 𝑦0) B 𝜌0. Now E repeats this for

𝐻2(𝑚1, 𝑦1). Sim will query (OfflineEval, 𝑠𝑖𝑑, 𝑖′,𝑚1) to FOPRF for 𝑖′ ≠ 𝑖 and will receive

(OfflineEval, 𝑠𝑖𝑑, 𝜌1 B 𝑇𝑠𝑖𝑑 (𝑖′,𝑚1)) and set 𝐻2(𝑚1, 𝑦1) B 𝜌1. Next, suppose E starts a

protocol execution between the server S∗ and an honest user U with input 𝑚𝑏 , where

𝑏 ∈ {0, 1} is a secret bit, only E knows. As S∗ is corrupted, E will send a garbled circuit

(𝐹, 𝐾,𝑑) and input labels 𝑋1 [0], 𝑋1 [1], . . . , 𝑋𝑛 [0], 𝑋𝑛 [1] to Sim. Sim has no information

about 𝑥𝑏 , as the honest U’s input is “protected” by the security of the OT protocol, see

Figure 2.7, and the privacy of the garbled circuit, see Denition 11. However, Sim must

produce an output for U by sending some message (RcvCmplt, . . .) to FOPRF, because an
honest user in the real worldwould also output something after receiving the garbled circuit

and the labels. Sim could create an new “virtual corrupt identity” 𝑖′′. However, FOPRF’s
answer 𝑇𝑠𝑖𝑑 (𝑖′′,𝑚𝑏) would be dierent from 𝜌𝑏 with high probability, as 𝑇𝑠𝑖𝑑 (𝑖′′,𝑚𝑏) is a

39

3. Construction

uniformly random value. Alternatively, Sim could go through all prior 𝐻2(·, ·) queries and
check for each query (𝛼, 𝛽) if 𝛽 = De(𝑑, Ev(𝐹, 𝑋 [𝐻1(𝛼)] ‖ 𝐾)). Intuitively, that indicates
that the key 𝐾 “maps” 𝐻1(𝛼) to 𝛽 , i.e., C𝑘 (𝐻1(𝛼)) = 𝛽 if 𝐾 encodes 𝑘 . Sim would nd that

it already received a query 𝐻2(𝑚𝑏, 𝑦𝑏), such that 𝑦𝑏 = De(𝑑, Ev(𝐹, 𝑋 [𝐻1(𝑚𝑏)] ‖ 𝐾)). The
problem is, that Sim would also nd the second query 𝐻2(𝑚1−𝑏, 𝑦1−𝑏) for which it holds

that 𝑦1−𝑏 = De(𝑑, Ev(𝐹, 𝑋 [𝐻1(𝑚1−𝑏)] ‖ 𝐾)). In that case, Sim must guess 𝑏. Because if

𝑏 = 0, the result must be queried as (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, 𝑖) and if 𝑏 = 1, the result must

be queried as (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, 𝑖′). If Sim guesses wrong, E can distinguish this

protocol execution from an real execution. Because if we denote by 〈U(𝑚𝑏), S∗〉U the output

of U on input𝑚𝑏 when interacting with server S∗, E sees that 𝐻2(𝑚𝑏, 𝑦𝑏) ≠ 〈U(𝑚𝑏), S∗〉U.
As Sim has no information about 𝑏 this happens with probability 1/2. This example makes

clear, why care must be taken when programming the random oracle 𝐻2.

Our strategy for programming 𝐻2(𝑝,𝑦) is the following: If Sim receives a query, it looks

up the corresponding 𝐻1 query 𝐻1(𝑝) = ℎ. If no such query exists, Sim can safely set

𝐻2(𝑝,𝑦) to a uniformly random value. If such a query exists, Sim knows the input value ℎ

for the circuit. Now, it checks if there either was an honest server or a corrupted server,

such that 𝑦 = C𝑘 (ℎ) holds for the key 𝑘 of one of the servers. For an honest server, Sim
requests the output value from FOPRF by sending a RcvCmpltmessage and for a corrupted

server, Sim requests the output value from FOPRF with an OfflineEval message.

Proof Strategy In the ideal world the environment can control the execution by sending

messages to the parties in the following ways:

• Honest user U: The environment E sends (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑝𝑤) messages to U. User
U transmits this message to FOPRF and outputs (EvalOut, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝜌) to E.

• Honest server S:

– E sends (Init, 𝑠𝑖𝑑) to S. Server S transmits this message to FOPRF who sends

(Init, 𝑠𝑖𝑑, S) to A. Im Realen wird die Nachricht einfach ignoriert, oder?

– E sends (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) to S. Server S forwards this message to

FOPRF. The functionality FOPRF forwards this message to A.

• Dummy adversary A:

– The environment can send (Send,𝑚𝑖𝑑, S, (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)), and (OT-Receive, (𝑠𝑠𝑖𝑑, 𝑖), 𝑥𝑖)
to A. The adversary A acts as corrupted user

ˆU and forwards these messages

to Sim. A sends all responses it receives to E.
– The environment can send (Send,𝑚𝑖𝑑,U, (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑)), and (OT-Send, (𝑠𝑠𝑖𝑑, 𝑖), (𝑋𝑖 [0], 𝑋𝑖 [1]))
to A. The adversary A acts as corrupted server

ˆS and A forwards these mes-

sages to Sim. Again, A sends all responses it receives to E.
– The environment can send (OT-Sent, (𝑠𝑠𝑖𝑑, 𝑖)), (OT-Received, (𝑠𝑠𝑖𝑑, 𝑖)) , and
(ok,𝑚𝑖𝑑) to A. The adversary A will send these messages to Sim, acting as

adversary.

The view of the environment E is comprised of all messages that E receives as a reaction

to one of the messages above. The following messages form the view of the environment:

40

3.5. Proving Security

• (EvalOut, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝜌) from U as response to an (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑝𝑤) message.

• (Sent,𝑚𝑖𝑑,U, S, (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)) fromA whenA acts as server and receives this

message, formatted as being sent from a user via FAUTH.

• (Sent,𝑚𝑖𝑑, S,U, (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑)) from A when A acts as user and receives this

message, formatted as being sent from a server via FAUTH.

• (OT-Send, (𝑠𝑠𝑖𝑑, 𝑖)) from A when a server sends two messages to Sim, who acts as

FOT.

• (OT-Receive, (𝑠𝑠𝑖𝑑, 𝑖)) from A when a user sends a choice bit to Sim, who acts as

FOT.

• (OT-Sent, 𝑠𝑖𝑑) from A when A acts as server and sent (OT-Send, 𝑠𝑖𝑑, (𝑋0, 𝑋1)) to
Sim before. Sim acts as FOT.

• (OT-Received, 𝑠𝑖𝑑, 𝑥𝑏) from A when A acts as user and sent (OT-Receive, 𝑠𝑖𝑑, 𝑏)
to Sim before. Sim acts as FOT.

• Responses to 𝐻1(·) and 𝐻2(·, ·) queries from A.

Our goal in the following proof is to argue, why the above-described view of the

environment in the ideal world is computationally indistinguishable from the view of the

environment in the real world. We construct a simulator such that each message in the

real world, has a directly corresponding message in the ideal world. Loosely speaking,

the simulator creates messages that “look the same” as in the real world. For instance,

Sim sends a message (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) that is formatted exactly like a (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)
message sent by the user in the real world. Further, Sim ensures that the messages

are sent in the same circumstances, i.e., at the same time. For example, Sim will send

(Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) when an honest user is invoked by E with (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑝𝑤), as
this is how the real-world user would react. The main idea is that the view in the real

world is indistinguishable from the view in the ideal world, if each message in the real

world is indistinguishable from its corresponding message in the ideal world.

We cannot analyze the protocol with a single distinction of cases in the style of “(1) both

parties are honest, (2) only user is corrupted, (3) only server is corrupted, (4) both parties

are corrupted.” This is because the ideal functionality Figure 3.1 – and also Figure 2.15 from

[JKX18] – handles multiple users interacting with multiple servers. Therefore, we will only

consider one simulator Sim that has to keep records of messages it gets to “dynamically”

decide for each message which situation Sim must simulate.

Formal Proof

Theorem 1. Let the garbling scheme G = (Gb, En,De, Ev, ev) have privacy, as dened in
Denition 11.Let C denote the boolean circuit of a PRF. Then GC-OPRF UC-realizes FOPRF
in the FOT, FAUTH, FRO-hybrid model.

Proof. As explained above, we will argue for each message that E receives why it is

indistinguishable for E whether the message comes from a real protocol execution or the

ideal execution with the simulator.

41

3. Construction

Responses to OTmessages

• (OT-Send, (𝑠𝑠𝑖𝑑, 𝑖)) from A when a server sends two messages to Sim:

This message is exactly formatted as a OT-Send message from the functional-

ity FOT. Further, Sim behaves exactly like FOT in sending those messages. Con-

cretely, on a message (OT-Send, (𝑠𝑠𝑖𝑑, 𝑖), (𝑋𝑖 [0], 𝑋𝑖 [1])), Sim stores the labels and

informs the adversary that two labels were sent – but not which labels – by sending

(OT-Send, (𝑠𝑠𝑖𝑑, 𝑖)) to A. This is exactly the behavior of FOT, as described in Fig-

ure 2.7. Therefore, E cannot distinguish whether this message comes from the real-

or the ideal execution.

• (OT-Receive, (𝑠𝑠𝑖𝑑, 𝑖)) from A when a user sends a choice bit to Sim:

A similar comparison as above shows, that Sim behaves exactly like the original FOT.
That means, on a message (OT-Receive, (𝑠𝑠𝑖𝑑, 𝑖), 𝑏), Sim stores the choice bit 𝑏 and

informs the adversary that a choice bit was received, but not which bit. Therefore, E
cannot distinguish whether this message comes from the real or the ideal execution.

• (OT-Sent, 𝑠𝑖𝑑) from A when A acts as server and sent (OT-Send, 𝑠𝑖𝑑, (𝑋0, 𝑋1)) to
Sim before:

Again, Sim behaves like FOT when creating those messages. Namely, upon receiving

a message (OT-Sent, 𝑠𝑖𝑑) from the adversary, Sim ignores the message if 〈𝑠𝑖𝑑, 𝑥0, 𝑥1〉
or 〈𝑠𝑖𝑑, 𝑏〉 is not recorded; Otherwise Sim sends (OT-Sent, 𝑠𝑖𝑑) to ˆS. Therefore, E
cannot distinguish whether this message comes from the real or the ideal execution.

• (OT-Received, 𝑠𝑖𝑑, 𝑥𝑏) from A when A acts as user and sent (OT-Receive, 𝑠𝑖𝑑, 𝑏)
to Sim before:

These are the only messages on which Sim behaves sometimes dierently than

FOT. The messages are received by Sim when the adversary “allows the delivery” of

OT-messages to the OT-receiver. If Sim recorded a choice bit 𝑥𝑖 ≠ ⊥, it means that

A sent (OT-Receive, (𝑠𝑠𝑖𝑑, 𝑖), 𝑥𝑖) before and Sim answers the query like FOT would

do. In particular, those queries do not stem from the simulation of a protocol run

with an honest user.

Sim does behave dierently than FOT in the case when there are 𝑛 OT-Received

messages (OT-Received, (𝑠𝑠𝑖𝑑, 1)), . . . , (OT-Received, (𝑠𝑠𝑖𝑑, 𝑛)) with the same value

𝑠𝑠𝑖𝑑 , see line 71 in Figure 3.7. The condition means that a complete set of input labels

were sent via OT. If further a record 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑)〉 exists with the same 𝑠𝑠𝑖𝑑 ,

all information for one OPRF execution was exchanged between server and user. We

stress that we assume in this proof that a corrupted server will never send a modied

circuit 𝐹 ′ ≠ 𝐹 , modied decoding information 𝑑′ ≠ 𝑑 , or a modied encoded key

𝐾′ ≠ 𝐾 , where 𝐹, 𝐾,𝑑 are the outputs of Gb and En. Otherwise, the adversary could

easily garble a dierent circuit than 𝐹 without the user noticing it. This weakness

is inherent to “textbook” garbled circuit constructions, see Section 2.6. Further, we

know that these labels belong to an interaction with an honest user, as no value

𝑥𝑖 ≠ ⊥ was recorded. In the real protocol, a user would evaluate the garbled circuit

42

3.5. Proving Security

and output the result as soon as it received all necessary input labels via FOT. Thus,
the simulator must also produce an output for honest users. The simulator retrieves

the server identity S connected to 𝑠𝑖𝑑 . Sim sends (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S, S) to
FOPRF. The functionality FOPRF will ignore this message in any of the three following

cases:

1. There is no record 〈𝑠𝑠𝑖𝑑, S, P, 𝑝〉.
2. 𝑖 = S but tx(S) = 0.

3. S is honest but 𝑖 ≠ S.

The ignore condition of Item 1 cannot occur, as Sim found a record 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑)〉.
Sim does only create this record, if a corresponding 〈Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑〉 record was

found. That record in turn is only created when an (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) message

was received from FOPRF. We argue in Lemma 1 why the condition of Item 2 occurs

at most with negligible probability. The third condition in Item 3 can indeed occur.

However, as we assume passive corruption and authenticated channels, a real-world

user would also ignore a message (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑)) that is not from the designated

server.

If the RcvCmpltmessage is not ignored in line 74 in Figure 3.7, the ideal functionality

will choose a random values 𝜌 according to its internal random function associated

to S as output for U and U will output 𝜌 . We will examine the distribution of 𝜌 in

the paragraph “Honest User Output” on Page 45.

Responses to Protocol Messages

• (Sent,𝑚𝑖𝑑,U, ˆS, (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)) fromA whenA acts as server and receives this

message, formatted as being sent from a user via FAUTH:
Sim simulates the behavior of FAUTH, meaning it informs A that a message is being

sent via FAUTH and waits for the delivery until A sent (ok,𝑚𝑖𝑑). The message

(Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) is sent by Sim as a reaction to an (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, ˆS) message

from FOPRF, because a real user would also start a protocol execution by requesting a

garbled circuit from
ˆS. Themessage itself contains only the session- and subsession id,

it is identical in both executions. Thus, we see that E’s view on the (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)
message in the real world is is indistinguishable from this message created by Sim.

• (Sent,𝑚𝑖𝑑, S, ˆU, (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑)) from A when A acts as user and receives this

message, formatted as being sent from a server via FAUTH:
This message is created by Sim, when Sim received a (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) mes-

sage. If the user of the subsession is corrupted, Sim also expects a (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)
message from the user, as in a real execution, the server only starts garbling a circuit

when it received both messages. In a subession with an honest user, Sim can simulate

a (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) message itself. The garbled circuit 𝐹 and the decoding infor-

mation 𝑑 are calculated in the same way in both worlds, using Gb(1_, C). The only
dierence is the encoded key 𝐾 . In the ideal world, 𝐾 is an encoding of a random

value 𝑘 , which is chosen for the honest server S by Sim. In the real world, 𝐾 is an

43

3. Construction

encoding of the PRF-key 𝑘 of that server. However, in both cases, 𝑘 is a uniformly

random value in {0, 1}𝑚 and in both experiments, 𝑘 is encoded via Enc. Therefore,
the two experiments are distributed identically.

Responses of the RandomOracles:

• 𝐻1(·) queries:
In the real world, a random oracle chooses a uniformly random output for every

fresh query and stores this random value as “hash” of the input. On further queries,

that stored value is returned. The simulator answers the calls to 𝐻1 exactly, as a real

random oracle would do, with uniformly random values ℎ ∈ {0, 1}𝑛 .

• 𝐻2(·, ·) queries:
In the following, we will only argue why the simulated 𝐻2 is indistinguishable from

the original 𝐻2 in the real execution. As we’ve seen at the beginning of Section 3.5,

the random oracle 𝐻2 must also be compared to the user’s output. We defer this

discussion to the next paragraph. We distinguish the following cases:

Case 1: There is no record 〈𝐻1, 𝑝, ℎ〉 found: The random oracle is programmed with a

uniformly random value. In this case, Sim behaves like the real random oracle.

Case 2: Records 〈𝐻1, 𝑝, ℎ〉 and 〈S, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑), 𝑋 [0𝑛], 𝑋 [1𝑛]〉 exist, such thatDe(𝑑, Ev(𝐹, 𝑋 ‖ 𝐾)) =
𝑦: In that case, the value 𝑦 was calculated with the garbled circuit of an honest

server, with overwhelming probability. That means the simulator can query

FOPRF for the correct output value by choosing an unused subsession id 𝑠𝑠𝑖𝑑′

and calling (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′, 𝑝) and (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′,A, S). If the ideal func-
tionality does not answer, Sim aborts. Remember that FOPRF does only ignore

(RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, P, 𝑖) messages in one of the following three cases:

a) There is no record 〈𝑠𝑠𝑖𝑑, S, P, 𝑝〉.
b) 𝑖 = S but tx(S) = 0.

c) S is honest but 𝑖 ≠ S.

We prove in Lemma 1 that the condition in Item 2 happens at most with negligi-

ble probability. Further, the rst and the third abort condition Item 1 and Item 3

can not occur in this case, as Sim itself sends the message (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′, S, 𝑝)
to FOPRF just before sending (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′,A, S).
𝐻2(𝑝,𝑦) is then programmed to the output 𝜌 of FOPRF. This is, by the denition

of FOPRF, a uniformly random value.

Case 3: There is a record 〈𝐻1, 𝑝, ℎ〉 but no record 〈S, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑), 𝑋 [0𝑛], 𝑋 [1𝑛]〉
exists, such that De(𝑑, Ev(𝐹, 𝑋 ‖ 𝐾)) = 𝑦: In that case, Sim checks the keys of

all corrupted parties 𝑘 ˆS. Note that Sim knows those keys as we assume static

corruption only and that the adversary learns all the randomness of a corrupted

party. If there is such a corrupted server with key 𝑘𝑆 such that C𝑘𝑆 (ℎ) = 𝑦, the
simulator can use its ability to oine evaluate PRFs from corrupted parties.

Thus, Sim will program 𝐻2(𝑝,𝑦) to the output of the oine evaluation. This

44

3.5. Proving Security

will, again, be a uniformly random value 𝜌 ∈ {0, 1}𝑙 . If no such key exists

𝐻2(𝑝,𝑦) is set to a uniformly random value, as from a real random oracle.

HonestUserOutput (EvalOut, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝜌) fromU as response to an (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑝𝑤)
message:

In the real world, 𝜌 is calculated as 𝜌 = 𝐻2(𝑝,De(𝑑, Ev(𝐹, 𝑋 ‖ 𝐾))), where (𝐹, 𝐾,𝑑) was
generated by the server and 𝑋 are the labels received via OT for 𝑥 = 𝐻1(𝑝). In the ideal

world, 𝜌 is chosen uniformly at random by FOPRF if a fresh (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑝) message

was sent. Remember that FOPRF keeps an internal table𝑇𝑠𝑖𝑑 (𝑖, ·) for possible server IDs 𝑖 . If
an honest user with input 𝑝 interacts with S, the functionality FOPRF will send 𝜌 = 𝑇𝑠𝑖𝑑 (S, 𝑝)
as output for the honest user. The simulator must produce the same output 𝜌 for 𝐻2(𝑝,𝑦)
if 𝑦 = C𝑘 (𝐻1(𝑝)) holds for S’s key 𝑘 . We therefore have to compare the output of 𝐻2 with

the outputs of FOPRF. We distinguish the following cases in simulation of 𝐻2:

Case 1: There is no record 〈𝐻1, 𝑝, ℎ〉 found: Sim only needs to program the random oracle,

if 𝑝 and 𝑦 do occur in a protocol execution. More precisely, if 𝑦 = C𝑘 (𝐻1(𝑝)) holds
for some server’s key 𝑘 . That is because in this case FOPRF can eventually output a

value 𝜌 as the output of an honest user with input 𝑝 interacting with a server with

key 𝑘 . In other words, if there is a server with key 𝑘 such that 𝑘 “maps” 𝐻1(𝑝) to
𝑦, then there can be a protocol execution that leads to a query 𝐻2(𝑝,𝑦) where Sim
must program 𝐻2. We will call a query (𝑝,𝑦) relevant if there is a server with key 𝑘 ,

such that 𝑦 = C𝑘 (𝐻1(𝑝)). In the following, we bound the probability for the event

that (𝑝,𝑦) becomes relevant, when 𝐻1(𝑝) is not determined yet.

Let 𝑡 ∈ N be the number of servers in the protocol execution. Let 𝑘1, . . . , 𝑘𝑡 be the

keys used by the servers and let 𝑛 ∈ Ω(_) be the output length of C. We assumed

in the beginning that C𝑘𝑖 (·) is a permutation for every 𝑖 ∈ {1, . . . , 𝑡}. Thus, if we
choose some uniformly random input 𝑥 ∈ {0, 1}𝑛, we get that C𝑘𝑖 (𝑥) ∈ {0, 1}𝑛 is
uniformly random. If 𝐻1(𝑝) is not queried yet, we have for every 𝑖 ∈ {1, . . . , 𝑡} and
every 𝑦 ∈ {0, 1}𝑛:

Pr [C𝑘𝑖 (𝐻1(𝑝)) = 𝑦] ≤
1

2
𝑛
,

where the probability is taken over the random output of 𝐻1. This follows from the

fact that C𝑘𝑖 (·) is a permutation.

We have for every tuple (𝑝,𝑦) ∈ {0, 1}∗ × {0, 1}𝑛 where 𝐻1(𝑝) was not queried yet:

Pr [(𝑝,𝑦) becomes relevant] = Pr

[
𝑡∨
𝑖=1

(C𝑘𝑖 (𝐻1(𝑝)) = 𝑦)
]

≤
𝑡∑︁
𝑖=1

Pr [C𝑘𝑖 (𝐻1(𝑝)) = 𝑦]

= 𝑡 Pr [C𝑘1 (𝐻1(𝑝)) = 𝑦]

≤ 𝑡

2
𝑛
,

45

3. Construction

where the probability is taken over the randomness of 𝐻1(𝑝). As 𝑡 is polynomial in

_ and we assume 𝑛 ∈ Ω(_), a tuple (𝑝,𝑦) becomes relevant at most with negligible

probability if 𝐻1(𝑝) was not queried yet. Thus, Sim can assign a uniformly random

value to 𝐻2(𝑝,𝑦).

Case 2: Records 〈𝐻1, 𝑝, ℎ〉 and 〈S, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑), 𝑋 [0𝑛], 𝑋 [1𝑛]〉 exist, such thatDe(𝑑, Ev(𝐹, 𝑋 [ℎ] ‖ 𝐾)) =
𝑦:

In this case, the value ℎ is the output of the random oracle 𝐻1 on input 𝑝 . The tuple

(𝑝,𝑦) is relevant, because the key of an honest server produces the output 𝑦, when

the input ℎ is provided to the circuit. Sim knows to which server the key belongs, as

the record 〈S, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑), 𝑋 [0𝑛], 𝑋 [1𝑛]〉 explicitly contains the server id S. The
simulator Sim sends (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′, S, 𝑝) to FOPRF for a new subsession id 𝑠𝑠𝑖𝑑′. That
means, Sim initiates a new protocol execution and requests itself the output value

𝜌 = 𝑇𝑠𝑖𝑑 (S, 𝑝) from FOPRF. Next, Sim can safely send the (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′,A, S)
message, without decreasing the ticket counter of S below 0. Intuitively, this is

because the key of an honest server and the input labels of an honest user are hidden

from E. We prove that in Lemma 1. The random oracle 𝐻2(𝑝,𝑦) is programmed to

the answer 𝜌 of FOPRF. The programming ensures that E will get the same output

𝜌 = 𝐻2(𝑝,𝑦) when invoking an execution of the protocol between a honest user with

input 𝑝 and the honest server that generated (𝐹, 𝐾,𝑑).

Case 3: There is a record 〈𝐻1, 𝑝, ℎ〉 but no record 〈S, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑), 𝑋 [0𝑛], 𝑋 [1𝑛]〉 exists,
such that De(𝑑, Ev(𝐹, 𝑋 ‖ 𝐾)) = 𝑦:
In that case, the value ℎ is the output of the random oracle 𝐻1 on input 𝑝 , but no

honest server key maps ℎ to 𝑦 = C𝑘 (ℎ). Thus, Sim checks the keys of all corrupted

server 𝑘 ˆS. If one of the keys 𝑘 ˆS is such that C𝑘Ŝ (ℎ) = 𝑦 holds, Sim will use its

ability to oine evaluate corrupted server’s tables𝑇𝑠𝑖𝑑 (ˆS, ·). The simulator Sim sends

(OfflineEval, 𝑠𝑖𝑑, Ŝ, 𝑝) to FOPRF and receives the answer (OfflineEval, 𝑠𝑖𝑑, 𝜌) from
FOPRF. Note, that Sim will always receive an answer in this case, as

ˆS is the identity

of a corrupted server.

Sim programs 𝐻2(𝑝,𝑦) to the output 𝜌 of the oine evaluation. E will get the same

𝜌 as output from an execution of the protocol between a user with input 𝑝 and the

corrupted server with key 𝑘 ˆS.

If there are multiple such keys, i.e., the condition in line 101 of Figure 3.8 is true, Sim
aborts. This happens at most with negligible probability, as we prove in Lemma 2.

If no such key exists 𝐻2(𝑝,𝑦) is set to a uniformly random value, as in this case 𝑦

does not correspond to some protocol execution, i.e., (𝑝,𝑦) is not relevant. �

Lemma 1. Let the garbling scheme G = (Gb, En,De, Ev, ev) have privacy, as dened in
Denition 11. When interacting with the simulator in Figures 3.5 to 3.8, for each server S
the probability that a (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, P, S) message for P ∈ {U,A} is sent when the
ideal functionality’s ticket counter tx(S) is 0, is negligible. That means, only with negligible
probability FOPRF ignores a RcvCmplt message because the ticket counter is 0.

46

3.5. Proving Security

Proof. The ticket counter tx(S) is only increased by (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) messages

from S to FOPRF, i.e., by invocations of the server by E. The counter is decreased by

(RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) messages from Sim to FOPRF. The simulator from Figures 3.5

to 3.8 sends (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) messages in two cases. We will regard them sepa-

rately:

Case 1: Sim received a query𝐻2(𝑝,𝑦) and has records 〈𝐻1, 𝑝, ℎ〉 and 〈S, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑), 𝑋 [0], 𝑋 [1]〉
such thatDe(𝑑, Ev(𝐹, 𝑋 [ℎ] ‖ 𝐾)) = 𝑦, i.e., the condition in line 85 in Figure 3.8 is true:

As Sim found the record 〈S, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑), 𝑋 [0𝑛], 𝑋 [1𝑛]〉, we can be sure that a

(SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) messages was sent by E to Sim. This means the counter

tx(S) was increased at least once before the circuit was garbled. This holds, because

Sim does only store the record 〈S, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑), 𝑋 [0𝑛], 𝑋 [1𝑛]〉 when it received

a (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) message from FOPRF.
Next, we know that De(𝑑, Ev(𝐹, 𝑋 [ℎ] ‖ 𝐾)) = 𝑦 holds. If that holds, Sim can safely

assume that the server S that created (𝐹, 𝐾,𝑑) is the server for which Simmust query

an OPRF output 𝜌 = 𝑇𝑠𝑖𝑑 (S, ℎ) value from FOPRF. We argue in Lemma 2 that another

key 𝑘′ ≠ 𝑘 could lead to the same result 𝑦 with at most negligible probability.

The (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) messages in line 74 of Figure 3.7 are only sent to

produce an output of honest users. If the user is corrupted, that implies that there

cannot be a message (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) produced by Sim in response to an

(OT-Received, (𝑠𝑠𝑖𝑑, 𝑖)) message, in line 74 of Figure 3.7.

If the user is honest, we show in Lemma 3 that the situation we currently argue about,

i.e., Sim received a query𝐻2(𝑝,𝑦) and has records 〈𝐻1, 𝑝, ℎ〉 and 〈S, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑), 𝑋 [0], 𝑋 [1]〉
such that De(𝑑, Ev(𝐹, 𝑋 [ℎ] ‖ 𝐾)) = 𝑦, happens at most with negligible probability.

In conclusion, sending (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′,A, S) in line 89 of Figure 3.8 as a con-

sequence of a 𝐻2(𝑝,𝑦) query will decrease the ideal functionality’s counter tx(S) by
one. Another (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) is sent in line line 74 of Figure 3.7 at most

with negligible probability. Querying the same tuple 𝐻2(𝑝,𝑦) again won’t result in

a second (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′,A, S) message in line 89 of Figure 3.8, as the output

of 𝐻2(𝑝,𝑦) is already dened. Thus, the counter is only decreased by one if it was

increased at least by one before with a (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) message to FOPRF.

Case 2: Sim received all 𝑛 messages (OT-Received, (𝑠𝑠𝑖𝑑, 𝑖)) a garbling (𝐹, 𝐾,𝑑) for a sub-
session 𝑠𝑠𝑖𝑑 , where all the recorded OT-requests 𝑥𝑖 are ≠ ⊥, i.e., the condition in line

71–73 of Figure 3.7 is true:

We know that the user already received a garbling (𝐹, 𝐾,𝑑), as either the clause in line
72 or the clause in line 73 of Figure 3.7 is true. We assume passive adversaries, which

implies that a (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) message was already sent to FOPRF. Else,
the server would not have created the garbling (𝐹, 𝐾,𝑑). This means, the counter

tx(S) is only decreased by one with a (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) message in line 74

of Figure 3.7 if it is increased at least once before by a (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)
message to FOPRF.

47

3. Construction

We argue why there cannot be another (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, P, S) message with P ∈
{U,A} for the same 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑 and label S. There cannot be another (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S)
message sent in line line 74 of Figure 3.7 for the same subsession 𝑠𝑠𝑖𝑑 . This holds,

because we argue about the case where Sim simulates the behavior of an honest user.

Sim only sends (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) once, at the moment when all 𝑛 input la-

bels are received by the user. If Sim receives further labels for the same 𝑠𝑠𝑖𝑑 that will

not trigger a second (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) message for this 𝑠𝑠𝑖𝑑 . Remember that

there are only two situations in which Sim sends (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, P, S) with P ∈
{U,A}. The rst one is the situation where all 𝑛 messages (OT-Received, (𝑠𝑠𝑖𝑑, 𝑖))
were received. This is the situation we currently reason about. The second one is

when an 𝐻2(𝑝,𝑦) is received and it turns out that the corresponding key 𝑘∗ belongs
to an honest server. We argue why the second situation can happen at most with

negligible probability. All recorded OT-requests 𝑥𝑖 are ≠ ⊥. Thus, the corresponding
(OT-Receive, (𝑠𝑠𝑖𝑑, 𝑖)) messages were simulated by Sim for an honest user. But the

(RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′,A, S) messages in line 89 of Figure 3.8 are only sent if the

subsession is executed with an honest server. Again, it follows from Lemma 3 that

the (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′,A, S) messages in line 89 of Figure 3.8 is sent at most with

negligible probability. �

Lemma 2. For𝑚,𝑛, 𝑙 ∈ Ω(_) let the function F : {0, 1}𝑚 × {0, 1}𝑛 → {0, 1}𝑙 be PRF. Let
𝑡 ∈ N be polynomial in _. For every 𝑥 ∈ {0, 1}𝑛 and uniformly random and independently
drawn keys 𝑘1, . . . , 𝑘𝑡 ∈ {0, 1}𝑚 , there are at most with negligible probability in _ indices
𝑖, 𝑗 ∈ {1, . . . , 𝑡} with 𝑖 ≠ 𝑗 such that F𝑘𝑖 (𝑥) = F𝑘 𝑗 (𝑥).

Proof. We start with the simpler case that the rst index is 𝑖 = 1. In other words, we

bound the probability that there is a key in 𝑘2, . . . , 𝑘𝑡 , such that F𝑘1 (𝑥) = F𝑘 𝑗 (𝑥). For

𝑥 ∈ {0, 1}𝑛, we consider the following sequence of hybrid experiments: In the rst

experiment 𝐸1, the experiment chooses uniformly random keys 𝑘2, . . . , 𝑘𝑡 ∈ {0, 1}𝑚 and

outputs 1 i there is one 𝑗 ∈ {2, . . . , 𝑡} such that F𝑘1 (𝑥) = F𝑘 𝑗 (𝑥). 𝐸2 is dened as

above, except that the second value F𝑘2 (𝑥) is replaced by a uniformly random value

𝑦2 ∈ {0, 1}𝑙 . Now, for every 𝑟 ∈ {3, . . . 𝑡}, we dene the experiments 𝐸𝑟 as follows: The

experiment chooses uniformly random values 𝑦2, . . . , 𝑦𝑟 ∈ {0, 1}𝑙 and uniformly random

keys 𝑘𝑟+1, . . . , 𝑘𝑡 ∈ {0, 1}𝑚 . The experiment outputs 1 i F𝑘1 (𝑥) = 𝑦 𝑗 for 𝑗 ∈ {2, . . . , 𝑟 } or
F𝑘1 (𝑥) = F𝑘 𝑗 (𝑥) for 𝑗 ∈ {𝑟+1, . . . , 𝑡}. Finally, 𝐸𝑡 is the experiment, where all values𝑦2, . . . , 𝑦𝑡
are uniformly random. We get by a union-bound that 𝐸𝑡 outputs 1 with probability

Pr [𝐸𝑡 = 1] = Pr

[
𝑡∨
𝑗=2

(𝑦 𝑗 = F𝑘1 (𝑥))
]
≤ (𝑡 − 1)

2
𝑙

,

where the probability is taken over the random choices of 𝑦2, . . . , 𝑦𝑡 . Note, that F𝑘1 (𝑥)
is constant here. Assume, by way of contradiction, that the probability that experiment

𝐸1 outputs 1 with a noticeable probability. Then there is an index 𝑁 ∈ {1, . . . , 𝑡 − 1}
such that the dierence Δ B |Pr [𝐸𝑁 = 1] − Pr [𝐸𝑁+1 = 1] | is noticeable. We construct a

distinguisher D for the PRF security experiement, see Denition 1. D proceeds as the

48

3.5. Proving Security

experiment 𝐸𝑁 but instead of using 𝑘𝑁 to calculate F𝑘𝑁 (𝑥), the distinguisher D queries 𝑥

from its PRF oracle and receives an output 𝑦∗. If the oracle answers with a PRF output

𝑦∗, the output of D is exactly distributed as in 𝐸𝑁 . If the oracle answers with a truly

random output, the output of D is distributed as in 𝐸𝑁+1. Thus, by our assumption, D has

a noticble advantage Δ in the PRF experiment, which is a contradiction to F being a PRF.

This concludes the hybrid argument.

Above, we bound the probability that there is another key whose output collides with

𝑘1. With a completely analogous reduction, we get a similar inequality for every 𝑘1, . . . , 𝑘𝑡 .

Hence, we have for all 𝑥 ∈ {0, 1}𝑛 that the probability that there are 𝑖, 𝑗 ∈ {1, . . . , 𝑡} with
𝑖 ≠ 𝑗 such that F𝑘𝑖 (𝑥) = F𝑘 𝑗 (𝑥) is

Pr

[
𝑡∨
𝑖=1

(
𝑡∨

𝑗=1; 𝑗≠𝑖

F𝑘𝑖 (𝑥) = F𝑘𝑖 (𝑥)
)]
≤ 𝑡 (𝑡 − 1)

2
𝑙
+ negl(_).

Lemma 3. Let the garbling scheme G = (Gb, En,De, Ev, ev) have privacy, as dened in
Denition 11. Let C be the boolean circuit of a PRF, as dened in Denition 1. Suppose
the adversary A initiates an OPRF execution between an honest server and an honest user
with input 𝑝 . The adversary A can at most with negligible probability send a request
𝐻2(𝑝,𝑦) ∈ {0, 1}𝑛 such that C𝑘 (𝐻1(𝑝)) = 𝑦, where 𝑘 ∈ {0, 1}𝑚 is the key of the honest server.

Proof. Without loss of generality, we can assume that A requested ℎ = 𝐻1(𝑝) for the user
input 𝑝 ∈ {0, 1}∗. Further, we assume that A received a garbled circuit, an encoded key

, and decoding information (𝐹, 𝐾,𝑑), that were created by Sim in simulating an honest

server. We know, A received no labels for the user input ℎ, as Sim simulated the OT for

an honest user.

Assume, by way of contradiction, that A calculates output 𝑦 ∈ {0, 1}𝑛 such that

De(𝑑, Ev(𝐹, 𝑋 [ℎ] ‖ 𝐾)) = 𝑦 with noticeable probability 𝑃 . First, we construct an adversary

B that plays the privacy experiment as in Figure 2.9 and communicates with A as if B
was the simulator. As we assume that the garbling scheme has privacy, we will get the

existence of a simulator SimPRF for the privacy experiment. We will use this simulator

SimPRF and the adversary B to construct a second adversary BPRF that will have noticeable
success probability in distinguishing the PRF C from a truly random function, which is a

contradiction to our assumption that C satises Denition 1 of a PRF.

B plays the UC-security experiment with A. Let 𝑡 ∈ N be the number of subsessions

that A invokes between an honest server and an honest user. The adversary B initially

chooses an index 𝑖∗ ∈ {1, . . . , 𝑡} uniformly at random. B behaves like our normal simulator

from Figures 3.5 to 3.8, except whenA initiates a subsession between an honest server and

an honest user. If that session is the 𝑖∗th of those sessions, B behaves as follows: When

B receives an (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) message and a (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S) message

from FOPRF, B must simulate the honest server. It chooses a uniformly random key

𝑘 ∈ {0, 1}𝑚 and a uniformly random value 𝑥′ ∈ {0, 1}𝑛 . The second value 𝑥′ can be

seen as a “mock” input to the privacy challenger Cprivacy. Note that 𝑥′ and the actual

hash value 𝑥 = 𝐻1(𝑝) are chosen independently. B answers queries to 𝐻1(𝑝) as usual by
choosing 𝑥 ∈ {0, 1}𝑛 uniformly at random and storing 〈𝐻1, 𝑝, 𝑥〉. The adversary B sends

49

3. Construction

(𝑥′, 𝑘, C) to Cprivacy. The privacy challenger chooses 𝑏 ∈ {0, 1} uniformly at random. If

𝑏 = 1, it calculates (𝐹, 𝑒, 𝑑) ← Gb(1_, C) and (�̃� , 𝐾) = En(𝑒, 𝑥′ ‖ 𝑘). If 𝑏 = 0, it calculates

𝑦′ = ev(C, 𝑥′ ‖ 𝑘) = C𝑘 (𝑥′). Next, Cprivacy runs the simulator SimPRF on input 𝑦′. The

simulator SimPRF outputs (𝐹, �̃� , 𝐾, 𝑑). In both cases 𝑏 = 1 and 𝑏 = 0, the challenger Cprivacy

sends (𝐹, �̃� , 𝐾, 𝑑) to B. Now, B uses this garbled circuit to simulate the honest server.

That means, B sends (𝐹, 𝐾,𝑑) to A, formatted as if U sent it to S via FAUTH. Note that �̃�
is not sent to A as our actual OPRF simulator from Figures 3.5 to 3.8 would also not do

that. Finally, B checks for ever 𝐻2 query (𝑝,𝑦∗) from A, if 𝑦∗ = C𝑘 (𝐻1(𝑝)) holds. Only if

that is the case, B outputs 1, else it outputs 0. We depicted the reduction in Figure 3.3.

Cprivacy B A
𝑝

𝑥
$← {0, 1}𝑛

𝐻
1 (𝑝) = 𝑥

Eval
via FOPRF

Sndr
Com

plet
e via

FOPRF

𝑘
$← {0, 1}𝑚

𝑥′
$← {0, 1}𝑛

𝑥
′, 𝑘, C

Case 𝑏 = 1:

(𝐹, 𝑒, 𝑑) ← Gb(1_, C)
(�̃� , 𝐾) = En(𝑒, 𝑥 ‖ 𝑘)

Case 𝑏 = 0:

𝑦′ = C𝑘 (𝑥′)
(𝐹, �̃� , 𝐾, 𝑑) ← SimPRF(𝑦′) (𝐹, 𝑋, 𝐾,𝑑)

do nothing with �̃� (𝐹, 𝐾,𝑑)

𝑦∗

output 1 i 𝑦∗ = C𝑘 (𝑥)

Figure 3.3.: Reduction on the Privacy Property of the Garbling Scheme.

In the case where the challenger Cprivacy chose 𝑏 = 1, the view of A is identically

distributed as in a normal OPRF execution with our simulator Sim. That holds, because

𝑘 ∈ {0, 1}𝑚 is also chosen uniformly at random and 𝐹 and𝑑 are also calculated as (𝐹, 𝑒, 𝑑) ←

50

3.5. Proving Security

Gb(1_, C). The calculation of those values is completely independent of the value 𝑥′. The
encoded key is calculated as (�̃� , 𝐾) = En(𝑒, 𝑥′ ‖ 𝑘), but the value of 𝐾 does only depend

on 𝑒 and not on 𝑥′. With probability 1/𝑡 , the adversary B chooses the right index 𝑖∗ of the
execution, where A succeeds in calculating 𝑦∗ such that 𝑦∗ = C𝑘 (𝐻1(𝑝)) holds. By our

assumption, this means that B outputs 1 with probability 𝑃/𝑡 , which is noticeable. Now,

the privacy of the garbling scheme guarantees us that a simulator SimPRF exists that makes

B output 1 with noticeable probability 𝑃 ′ in the case 𝑏 = 0. We now show in a second

reduction that we can build an adversary BPRF that uses SimPRF andA as subroutines and

that distinguishes between a PRF and a truly random function with noticeable probability.

Like B above, the adversary BPRF plays the UC-security experiment with A. The

adversary BPRF chooses an index 𝑖∗ ∈ {1, . . . , 𝑡} uniformly at random, where 𝑡 ∈ N is

the number of subsession of honest users with honest servers. For the 𝑖∗th subsession,

when BPRF receives an (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) message and a (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S)
message from FOPRF, the adversary BPRF must simulate the honest server. BPRF chooses a
uniformly random value 𝑥 ∈ {0, 1}𝑛 and sends 𝑥 to to PRF challenger CPRF. The challenger

CPRF chooses a bit 𝑏
′ ∈ {0, 1} uniformly at random. If 𝑏′ = 1, the challenger calculates

𝑦 = C𝑘 ′ (𝑥), for some uniformly random 𝑘′ ∈ {0, 1}𝑚 . If 𝑏′ = 0, the challenger CPRF sets

𝑦 = RF(𝑥) where RF ∈ {𝑓 : {0, 1}𝑛 → {0, 1}𝑛} is chosen uniformly at random. CPRF sends

𝑦 to BPRF. The adversary BPRF calls SimPRF on input 𝑦 and receives (𝐹, �̃� , 𝐾, 𝑑) as output.
BPRF simulates a message to A as if the honest user sent (𝐹, 𝐾,𝑑) to the honest server via

FAUTH. The adversary A answers with a value 𝑦. Now, BPRF checks for every 𝐻2 query

(𝑝,𝑦) if 𝑦 = C𝑘 (𝐻1(𝑝)) holds. Only if that is true, BPRF outputs 1, else it outputs 0. We

depicted the reduction in Figure 3.4.

Suppose thatBPRF chose the correct index 𝑖∗, i.e., the subsession in whichA is successful

in sending the query (𝑝,𝑦). That happens with probability 1/𝑡 . In case 𝑏′ = 1, the view of

SimPRF is exactly distributed as in the privacy experiment withB above. By our assumption

on SimPRF, the environment A has noticeable probability 𝑃 ′ to send a query (𝑝,𝑦) such
that 𝑦 = C𝑘 (𝐻1(𝑝)). That means, the overall success probability of BPRF in this case

is 𝑃 ′/𝑡 , which is noticeable. In case 𝑏′ = 0, the value 𝑦 ∈ {0, 1}𝑛 is uniformly random.

That means in particular that SimPRF’s output (𝐹, �̃� , 𝐾, 𝑑) is stochastically independent of

C𝑘 (𝐻1(𝑝)). In that case, the input (𝐹, 𝐾,𝑑) givesA information-theoretically no advantage

in guessing C𝑘 (𝐻1(𝑝)). Consequently, A outputs (𝑝,𝑦) such that 𝑦 = C𝑘 (𝐻1(𝑝)) at most

with probability 2
−𝑛
. This is a contradiction to the PRF probability, as BPRF outputs 1 with

noticeable probability in the case 𝑏′ = 1. In conclusion, no such simulator SimPRF can

exists, which is a contradiction to the assumed privacy of the garbling scheme. Thus, the

assumed adversary A cannot exist. �

51

3. Construction

CPRF BPRF A
𝑝

𝑥
$← {0, 1}𝑛

𝐻
1 (𝑝) = 𝑥

Eval
via FOPRF

Snd
rCo

mple
te v

ia FOPRF

𝑥
$← {0, 1}𝑛

𝑥

Case 𝑏 = 1:

𝑘′
$← {0, 1}𝑚
𝑦 = C𝑘 ′ (𝑥)

Case 𝑏 = 0:

RF
$← {𝑓 : {0, 1}𝑛 → {0, 1}𝑛}

𝑦 = RF(𝑥)
𝑦

(𝐹, �̃� , 𝐾, 𝑑) ← SimPRF(𝑦)(𝐹, 𝐾,𝑑)

𝑦

output 1 i 𝑦 = C𝑘 (𝑥)

Figure 3.4.: Reduction on the PRF Property.

52

3.5. Proving Security

Initialization

1 : for all corrupted servers 𝑆 with key 𝑘𝑆 :

2 : record 〈𝑘𝑆 , 𝑆〉

On (Init, 𝑠𝑖𝑑, S) from FOPRF
3 : If this is the rst (Init, S, 𝑠𝑖𝑑) message from FOPRF
4 : 𝑘

$← {0, 1}𝑚 ; record 〈S, 𝑠𝑖𝑑, 𝑘〉

On (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) from FOPRF
5 : // simulate sending (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) on behalf of U to S via FAUTH
6 : send (Sent,𝑚𝑖𝑑,U, S, (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)) to A .
7 : record 〈Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑〉
8 : on (ok,𝑚𝑖𝑑) from A if S is corrupted :

9 : send (Sent,𝑚𝑖𝑑,U, S, (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)) to S

10 : if U is honest and ∃〈SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑〉 :
11 : goto label SimulateGarbling

On (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S) from FOPRF
12 : if U is corrupted and @〈receivedGarble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑〉 :
13 : record 〈SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑〉
14 : elseif U is honest and @〈Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑〉 :
15 : record 〈SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑〉
16 : else
17 : SimulateGarbling :

18 : // simulate receiving (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) from U via FAUTH
19 : send (Sent,𝑚𝑖𝑑, Û, S, (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)) to A .
20 : on (ok,𝑚𝑖𝑑) from A :

21 : search for recorded tuple〈S, 𝑠𝑖𝑑, 𝑘〉
22 : if @〈S, 𝑠𝑖𝑑, 𝑘〉 :
23 : 𝑘

$← {0, 1}𝑚 ; record 〈S, 𝑠𝑖𝑑, 𝑘〉
24 : (𝐹, 𝑒, 𝑑) ← Gb(1_, C)
25 : (𝑋 [0𝑛] ‖ 𝐾) B En(𝑒, 0𝑛 ‖ 𝐾); (𝑋 [1𝑛] ‖ 𝐾) B En(𝑒, 1𝑛 ‖ 𝐾)
26 : // simulate sending (F,K,d) from S to Û via FAUTH
27 : send (Sent,𝑚𝑖𝑑, S, Û, (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑))) to A
28 : on (ok, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) from A :

29 : send (Sent,𝑚𝑖𝑑, S, ˆU, (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑))) to ˆU

30 : record 〈S, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑), 𝑋 [0𝑛], 𝑋 [1𝑛]〉
31 : // simulate sending labels 𝑋 [0], 𝑋 [1] via FOT.
32 : for 𝑖 = 1, . . . , 𝑛 :

33 : record 〈(𝑠𝑠𝑖𝑑, 𝑖), (𝑋𝑖 [0], 𝑋𝑖 [1])〉
34 : send (OT-Send, (𝑠𝑠𝑖𝑑, 𝑖)) to A

Figure 3.5.: The Simulator Sim Part I. Simulation of Messages From FOPRF.

53

3. Construction

On (Send,𝑚𝑖𝑑, S, (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)) from A on behalf of Û

35 : if @〈SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑〉 :
36 : record 〈receivedGarble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑〉
37 : else
38 : goto label SimulateGarbling

On (Send,𝑚𝑖𝑑,U, (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑)) from A on behalf of
ˆS to U

39 : // Simulator gets message (𝐹, 𝐾,𝑑) from Ŝ to U via FAUTH
40 : send (Sent,𝑚𝑖𝑑, Ŝ,U, (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑))) to A
41 : on (ok,𝑚𝑖𝑑) from A :

42 : if @〈Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑〉 :
43 : ignore this message

44 : record 〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑)〉
45 : // simulator requesting OT labels

46 : for 𝑖 = 1, . . . , 𝑛 :

47 : send (OT-Receive, (𝑠𝑠𝑖𝑑, 𝑖)) to A
48 : record 〈(𝑠𝑠𝑖𝑑, 𝑖),⊥〉

On a query 𝑝 to 𝐻1(·)
49 : if ∃〈𝐻1, 𝑝, ℎ〉 :
50 : return ℎ
51 : else
52 : ℎ

$← {0, 1}𝑛

53 : record 〈𝐻1, 𝑝, ℎ〉
54 : return ℎ

Figure 3.6.: The Simulator Sim Part II. Simulation of Protocol Messages and the First

Random Oracle 𝐻1.

54

3.5. Proving Security

On (OT-Send, (𝑠𝑠𝑖𝑑, 𝑖), (𝑋𝑖 [0], 𝑋𝑖 [1])) from A to FOT on behalf of Ŝ

55 : record 〈Ŝ, (𝑠𝑠𝑖𝑑, 𝑖), (𝑋𝑖 [0], 𝑋𝑖 [1])〉
56 : send (OT-Send, (𝑠𝑠𝑖𝑑, 𝑖)) to A .
57 : ignore further (OT-Send, (𝑠𝑠𝑖𝑑, 𝑖), . . .) messages

On (OT-Sent, (𝑠𝑠𝑖𝑑, 𝑖)) from A to FOT
58 : if @〈Ŝ, (𝑠𝑠𝑖𝑑, 𝑖), (𝑋𝑖 [0], 𝑋𝑖 [1])〉 :
59 : ignore this message

60 : else

61 : send (OT-Sent, (𝑠𝑠𝑖𝑑, 𝑖)) to Ŝ

62 : ignore further (OT-Sent, (𝑠𝑠𝑖𝑑, 𝑖)) messages

On (OT-Receive, (𝑠𝑠𝑖𝑑, 𝑖), 𝑥𝑖) from A to FOT on behalf of
ˆU

63 : record 〈(𝑠𝑠𝑖𝑑, 𝑖), 𝑥𝑖〉
64 : send (OT-Receive, (𝑠𝑠𝑖𝑑, 𝑖)) to A
65 : ignore further (OT-Receive, (𝑠𝑠𝑖𝑑, 𝑖)) messages

On (OT-Received, (𝑠𝑠𝑖𝑑, 𝑖)) from A to FOT
66 : if @〈S, (𝑠𝑠𝑖𝑑, 𝑖), (𝑋𝑖 [0], 𝑋𝑖 [1])〉 or @〈(𝑠𝑠𝑖𝑑, 𝑖), 𝑥𝑖〉 :
67 : ignore this message

68 : elseif 𝑥𝑖 ≠ ⊥
69 : send (OT-Received, (𝑠𝑠𝑖𝑑, 𝑖), 𝑋𝑖 [𝑥𝑖]) to Û

70 : else
71 : if ∀𝑟 ∈ {1, . . . , 𝑛} \ {𝑖}∃〈OT-Received, 𝑠𝑠𝑖𝑑, 𝑟 〉
72 : and (∃〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑)〉
73 : or ∃〈S, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑), 𝑋 [0𝑛], 𝑋 [1𝑛]〉) :
74 : send (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S) to FOPRF
75 : else
76 : record 〈OT-Received, 𝑠𝑠𝑖𝑑, 𝑖〉

Figure 3.7.: The Simulator Sim Part III. Simulation of FOT.

55

3. Construction

On a new query (𝑝,𝑦) to 𝐻2(·, ·)
77 : if ∃〈𝐻2, 𝑝,𝑦, 𝜌〉 :
78 : return 𝜌
79 : else
80 : if @〈𝐻1, 𝑝, ℎ = 𝐻1(𝑝)〉 :
81 : 𝜌

$← {0, 1}𝑙 and record 〈𝐻2, 𝑝,𝑦, 𝜌〉
82 : return 𝜌
83 : else
84 : // check all simulated honest server S:

85 : if ∃〈S, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑), 𝑋 [0𝑛], 𝑋 [1𝑛]〉, s.t. De(𝑑, Ev(𝐹, 𝑋 [ℎ] ‖ 𝐾)) = 𝑦 :
86 : // De(𝑑, Ev(𝐹, 𝑋 [ℎ] ‖ 𝐾)) means C𝑘 (ℎ) for the garbled 𝑘
87 : choose a new 𝑠𝑠𝑖𝑑 ′

88 : send (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑 ′, S, 𝑝) to FOPRF
89 : send (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑 ′,A, S) to FOPRF
90 : if FOPRF does not answer :
91 : output fail and abort
92 : else
93 : receive (EvalOut, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑 ′, 𝜌) from FOPRF
94 : record 〈𝐻2, 𝑝,𝑦, 𝜌〉
95 : return 𝜌
96 : else

97 : // check all corrupt server 𝑆 with key 𝑘𝑆 :

98 : if @〈𝑘𝑆 , 𝑆〉 s.t. C𝑘𝑆 (ℎ) = 𝑦 :
99 : 𝜌

$← {0, 1}𝑙 and record 〈𝐻2, 𝑝,𝑦, 𝜌〉
100 : return 𝜌
101 : elseif there are multiple 𝑘𝑆 : C𝑘

𝑆
(ℎ) = 𝑦 :

102 : output fail and abort
103 : else

104 : retrieve 〈𝑘𝑆 , 𝑆〉
105 : send (OfflineEval, 𝑠𝑖𝑑, 𝑆, 𝑝) to FOPRF
106 : receive (OfflineEval, 𝑠𝑖𝑑, 𝜌) from FOPRF
107 : record 〈𝐻2, 𝑝,𝑦, 𝜌〉
108 : return 𝜌

Figure 3.8.: The Simulator Sim Part IV. Simulation of the Second Random Oracle 𝐻2.

56

4. Verifiability

An OPRF is said to have veriability if the user can – roughly speaking – be sure that a

server does not switch keys between several OPRF evaluations with the user. Thus, the

outputs that the user received are all sampled from a xed PRF 𝐹𝑘 (·) where 𝑘 is the xed

key of the server. To make this notion even useful, we must relax our requirements on

the passively secure parties. If all parties always follow the protocol, the same server will

always choose the same key. Therefore, we have that every passively secure OPRF is also

a VOPRF.

We will assume in this section that corrupted servers may decide to choose a new key

𝑘′ ∈ {0, 1}𝑚 at will. By this, we consider strictly stronger adversaries as in Section 3.5. We

still require that the adversaries behave honestly in garbling the circuit. That means we

assume that every circuit 𝐹 that is sent by a corrupted server to a user is calculated as

(𝐹, 𝑒, 𝑑) ← Gb(1_,VC), whereVC is the circuit of the protocol description.

4.1. Adapting the Construction

In this section, we introduce the ideal functionality FVOPRF that captures the above security
requirement rigorously. FVOPRF is depicted in Figure 4.1. The main dierence to the

ideal functionality FOPRF in Figure 3.1 is the message (Param, S, 𝜋) from the adversary

A to FVOPRF. The adversary A can send this message for a server identity S to set the

identicator of that server. An identicator is some information that is published by the

server as “ngerprint” of its key. A client will use this identicator to specify from which

server it queries output. That means for the ideal functionality that FVOPRF keeps a table
params of all server identities and their associated identicators. Note that the adversary is
even allowed to choose the identicator for an honest server. If the adversary later allows

the delivery of an output value to a user by sending (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, P, 𝜋) to FVOPRF,
the adversary has to specify the identicator 𝜋 of the server from whose table𝑇𝑠𝑖𝑑 (S, ·) the
output should be taken. In other words, instead of specifying a server id 𝑖 like in FOPRF
of Figure 3.1, the adversary A species 𝜋 to receive an output from a certain server. The

mechanism for oine evaluation is adapted accordingly such that an indenticator has to

be specied to receive the output of an oine evaluation.

Albrecht et al. [Alb+21] sketch an idea to construct a veriable OPRF with garbled

circuits. Their idea can be directly applied to our construction:

Let 𝐻3 : {0, 1}∗ → {0, 1}_ be a third hash function. In an initialization phase, the

server draws an uniformly random value 𝑟 ∈ {0, 1}_ and publishes the “ngerprint”

ℎ𝑘 = 𝐻3(𝑘 ‖ 𝑟).
Now the denition of the protocol is changed in that the circuit jointly calculated by

both parties will no longer be just a PRF, but will be the following function:

57

4. Veriability

Functionality FVOPRF

For each value 𝑖 and each session 𝑠𝑖𝑑 , an empty table 𝑇𝑠𝑖𝑑 (𝑖, ·) is initially undened.

Whenever 𝑇𝑠𝑖𝑑 (𝑖, 𝑥) is referenced below while it is undened, draw 𝑇𝑠𝑖𝑑 (𝑖, 𝑥)
$← {0, 1}𝑙 .

Initialization:

• On (Init, 𝑠𝑖𝑑) from S, if this is the rst Init message for 𝑠𝑖𝑑 , set tx(S) = 0 and

send (Init, 𝑠𝑖𝑑, S) to A. From now on, use “S” to denote the unique entity which

sent the Init message for 𝑠𝑖𝑑 . Ignore all subsequent Init messages for 𝑠𝑖𝑑 .

• On (Param, S, 𝜋) from A if params[S] is undened then set params[S] = 𝜋 .

Oine Evaluation:

On (OfflineEval, 𝑠𝑖𝑑, 𝑐, 𝑝) from P ∈ {S,A}, send (OfflineEval, 𝑠𝑖𝑑,𝑇𝑠𝑖𝑑 (𝑖, 𝑝)) to P if

there is no entry params[𝑖] = 𝑐 and P = A or if there is an entry params[𝑖] = 𝑐 and any

of the following hold: (i) S is corrupted, (ii) P = S.

Online Evaluation:

• On (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑝) from P ∈ {U,A}, record 〈𝑠𝑠𝑖𝑑, S, P, 𝑝〉 and send

(Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, P, S) to A.

• On (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) from S, increment tx(S), send

(SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S) to A.

• On (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, P, 𝜋) from A, retrieve 〈𝑠𝑠𝑖𝑑, S, P, 𝑝〉 (where P ∈ {U,A}).
Ignore this message if one of the following holds:

– There is no record 〈𝑠𝑠𝑖𝑑, S, P, 𝑝〉.
– If there exists an honest server S such that params[S] = 𝜋 , but tx(S) = 0.

– S′ is honest but 𝜋 ≠ S′.

Send (Eval, 𝑠𝑖𝑑,𝑇𝑠𝑖𝑑 (𝑖, 𝑝)) to P. If params[S] = 𝜋 decrement tx(S).

Figure 4.1.: The Ideal Functionality FVOPRF Inspired by [BKW20; JKX18].

58

4.2. Proving Veriability

VC((ℎ𝑘 , 𝑥), (𝑘, 𝑟))
𝑦 B C𝑘 (𝑥)

𝑏 B (ℎ𝑘
?

= 𝐻3(𝑘, 𝑟))
𝑣 B ((1 − 𝑏) · ⊥) + (𝑏 · 𝑦)

C𝑘 is still a boolean circuit that calculates a permutation 𝐹 that is a PRF as dened in

Denition 1. The server now has to provide its secret key 𝑘 and its random value 𝑟 to the

garbled circuit and the client has to provide its input and the ngerprint ℎ𝑘 of the server

from which he wants to retrieve the result. The circuit does not only compute the output

of the PRF but does also check if the key has the claimed ngerprint. Only if that is true,

the PRF result is output.

We can express this idea even a bit more generalized, by saying that the server calculates

a commitment (𝑐, 𝑟) ← Commit(𝑘) as an “ngerprint” or identicator, where 𝑟 is the

opening information of the commitment 𝑐 . So the circuit that will be garbled is the

following:

VC((𝑐, 𝑥), (𝑘, 𝑟))
𝑦 B C𝑘 (𝑥)
𝑏 B Unveil(𝑐, 𝑘, 𝑟)
𝑣 B ((1 − 𝑏) · ⊥) + (𝑏 · 𝑦)

If the commitment 𝑐 can be opened to the value 𝑘 using the decommitment information 𝑟 ,

the PRF output is returned. Else, an error symbol ⊥ is returned.

Applying this idea to Figure 3.2, we get the protocol depicted in Figures 4.2 to 4.3. Un-

usually for the UC-framework, we do not work in the FCom-hybrid model. This is because

we need the fact that we can express the unveil algorithm Unveil as a boolean circuit. We

require that COM = (Commit,Unveil) is computationally hiding and computationally

binding. For the sake of simplicity, we assume that Commit outputs values in {0, 1}_ . We

denote the labels for the input (𝑘, 𝑟) as 𝐾𝑅 and the labels for the input (𝑐, 𝑥) as 𝐶𝑋 . There
are only three major dierences in this construction to the GC-OPRF construction from

Figure 3.2. The rst is of course, that the server now garbles the boolean circuitVC above.

The second is that the server creates a commitment 𝑐 when it receives an initialization

message. The third is the hash function 𝐻2(·, ·, ·). The user also hashes the commitment of

the server by sending a (𝑝,𝑦, 𝑐) to 𝐻2.

4.2. Proving Verifiability

In huge parts, the simulator for this proof works analogously to the simulator in Figures 3.5

to 3.8 for proving that GC-OPRF in Figure 3.2 UC-emulates FOPRF. Therefore we will only
elaborate on the dierences. We depicted the routines with the essential dierences in

Figure 4.4. To make it easier for the reader to spot the dierences between Figure 4.4 and

the simulator from Figures 3.5 to 3.8, we marked all the lines that contain essential changes

between the two simulators with a gray background.

59

4. Veriability

S on (Init, 𝑠𝑖𝑑) from E
If this is the rst (Init, 𝑠𝑖𝑑) message from E
𝑘

$← {0, 1}𝑚

(𝑐, 𝑟) $← Commit(𝑘)
record 〈S, 𝑐, 𝑟, 𝑘〉
// Send identicator to U via FAUTH
send (Send,𝑚𝑖𝑑,U, (Init, 𝑐)) to FAUTH

U on (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑝) from E
𝑥

$← 𝐻1(𝑝)
send (Send,𝑚𝑖𝑑, S, (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)) to FAUTH

S on (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) from E
if already received (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) :

goto GarbleCircuit

else
ignore this message

S on (Sent,𝑚𝑖𝑑,U, S, (Garble, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑)) from FAUTH
if already received (SndrComplete, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑) :

GarbleCircuit :

if @〈S, 𝑐, 𝑟, 𝑘〉 :
ignore this message

(𝐹, 𝑒, 𝑑) ← Gb(1_,VC)
(𝐶𝑋 [0] ‖ 𝐾𝑅) B En(𝑒, 0_+𝑛 ‖ 𝑘 ‖ 𝑟)
(𝐶𝑋 [1] ‖ 𝐾𝑅) B En(𝑒, 1_+𝑛 ‖ 𝑘 ‖ 𝑟)
send (Send,𝑚𝑖𝑑 ′,U, (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾𝑅,𝑑)) to FAUTH
for 𝑖 ∈ {1, . . . , _ + 𝑛} :

send (OT-Send, (𝑠𝑠𝑖𝑑, 𝑖), (𝐶𝑋𝑖 [0],𝐶𝑋𝑖 [1])) to FOT
else

ignore this message

Figure 4.2.: Our Veriable VGC-OPRF Construction Part I.

60

4.2. Proving Veriability

U on (Sent,𝑚𝑖𝑑, S,U, (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾𝑅,𝑑)) from FAUTH
if already received (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑝𝑤) :

wait for (OT-Sent, (𝑠𝑠𝑖𝑑, 1)), . . . , (OT-Sent, (𝑠𝑠𝑖𝑑, _ + 𝑛)) from FOT
for 𝑖 ∈ {1, . . . , _} :

send (OT-Receive, (𝑠𝑠𝑖𝑑, 𝑖), ℎ𝑖) to FOT
for 𝑖 ∈ {_ + 1, . . . , _ + 𝑛} :

send (OT-Receive, (𝑠𝑠𝑖𝑑, 𝑖), 𝑥𝑖) to FOT
else

ignore this message

U on {(OT-Received, (𝑠𝑠𝑖𝑑, 𝑖),𝐶𝑋𝑖)}𝑖=1,...,_+𝑛 from FOT
if already received (𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾,𝑑)) :

𝑌 B Ev(𝐹,𝐶𝑋 ‖ 𝐾𝑅)
𝑦 B De(𝑑,𝑌)
if 𝑦 = ⊥ :

abort
𝜌

$← 𝐻2(𝑝𝑤,𝑦)
output (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, 𝜌) to E

else
ignore this message

Figure 4.3.: Our Veriable VGC-OPRF Construction Part II.

61

4. Veriability

Not depicted are obvious changes, as e.g. that the simulator now has to garble the

adapted circuitVC and that input labels are also created for the inputs 𝑐 and 𝑟 .

The rst major dierence is that Sim now has to react dierently on (Init, 𝑠𝑖𝑑, S)
messages from FVOPRF. These messages are sent to Sim, when a new honest server is

initialized by the environment. In that case, Sim draws a uniformly random key 𝑘 and

commits to this key. The ideal functionality allows the adversary to choose the identicator

𝑐 of a server, so Sim records the key and the commitment-randomness corresponding to

this server and sends (Param, S, 𝑐) to FVOPRF. Finally, this 𝑐 is also output as the output of

the honest server S. Sim keeps records 〈hon, 𝑐, 𝑘, 𝑟 〉 for all identicators of honest servers.
A second dierence is the reaction on an (Init, 𝑐) messages from A on behalf of

some corrupted server
ˆS. In this case, Sim just forwards the adversary’s choice of an

identicator 𝑐 to FVOPRF and records this identicator 𝑐 . Sim keeps records 〈corr, 𝑐, ˆS〉 for
all identicators of corrupted servers.

We also changed the response of the simulator to receiving a complete set of input labels

via (OT-Received, (𝑠𝑠𝑖𝑑, 1)), . . . , (OT-Received, (𝑠𝑠𝑖𝑑, _ +𝑛)). As before, if the requests of
the labels were just simulated by Sim, i.e., 〈(𝑠𝑠𝑖𝑑, 𝑖)⊥〉 for all 𝑖 ∈ {1, . . . , _+𝑛}, it means that

Sim must produce an output for the honest user. The simulator now uses the additional

power of the garbled circuit that allows Sim to check if the encoded key 𝐾 and the encoded

opening information 𝑅 can be opened to the commitment 𝑐 . The simulator Sim If the

garbled circuit 𝐹 does not output ⊥, the simulator Sim request output from FVOPRF via
(RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,U, S, 𝑐). Else, Sim makes U abort the execution.

Finally, we consider the changes in responses on 𝐻2 queries. The most notable change

is that 𝑐 is now a third argument to the hash function. This allows Sim to send RcvCmplt

andOfflineEvalmessages with 𝑐 as identicator to FVOPRF. Sim keeps a list of honest and

a list of corrupted servers, i.e., their identicators. If 𝑐 is in the list of honestly initialized

servers, Sim knows the corresponding key 𝑘 and can validate C𝑘 (ℎ) = 𝑦. This can be seen

in line 32 Figure 4.4. This case is analogous to the case Figure 3.8 line 85, where Sim nds

the key of an honest server.

If 𝑐 is in the list of corrupted servers, Sim does not know the corresponding key to

𝑐 . Remember that we assume that A may choose dierent keys in this chapter. As the

server is corrupted, Sim cannot safely call (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,A, 𝑐) for this server as
there might have been a corresponding (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑,A, 𝑐) message generated

as a result of all labels being received via OT. But in that case, Sim can safely send a

(OfflineEval, 𝑠𝑖𝑑, 𝑐, 𝑝) message, as the server is corrupted. This does not inuence the

ticket counter of the server.

The proof of indistinguishability between EXECIDEALF
VOPRF

,Sim,E and EXECVGC-OPRF,A,E
now works in many parts analogously to the proof in Section 3.5. We will only elaborate

on the important dierence and argue, why the output of an honest user in the ideal world

is indistinguishable from the output of an honest user in the real world. We start with the

dierences in the proof:

• The most important dierence in the proof is that the commitment 𝑐 now has to

be taken into account. The intuition is the following. As the commitment scheme

COM is computationally hiding, it is safe for the simulator to send (Init, 𝑐) for a
simulated 𝑘 and a commitment (𝑐, 𝑟) ← Commit(𝑘) on that key to a potentially

62

4.2. Proving Veriability

corrupted U. An adversary A that can calculate some information about the key

𝑘 with (𝑐, 𝑑) ← Commit(𝑘) would break the computationally hiding property of

COM.

• A similar statement to Lemma 1 can be proven by using the computationally hid-

ing property of the commitment scheme. The main idea is that if A provokes

that Sim sends (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′,A, 𝑐) in line 34 of Figure 4.4, then the server

with identicator 𝑐 must be an honest server. If A is able to make Sim send

(RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑐) in line 20 in Figure 4.4, we are in an OPRF execution with

an honest user. By a similar reduction, we receive a statement like Lemma 3, which

says that for an honest server and an honest user, A can at most with negligible

probability query 𝐻2(𝑝,𝑦, 𝑐) such that 𝑐 is a commitment on the key 𝑘 of the honest

server and C𝑘 (𝐻1(𝑝)) = 𝑦. Because if the server is honest, A can at most with

negligible probability calculate 𝑦. The adversaryA knows two pieces of information

that depend on 𝑘 . The rst is 𝑐 . But if this would help A in calculating 𝑦, we could

construct an adversary against the hiding property of COM, see Denition 4. The

second piece of information is the garbling (𝐹, 𝐾𝑅,𝑑). If that would helpA, we could

construct an adversary against the privacy of the garbling scheme, see Denition 11.

AsA does not have any information on 𝑘 , the best chance to compute𝑦 = C𝑘 (𝐻1(𝑝))
is by guessing, as C is a PRF as dened in Denition 1.

Honest User Output As already discussed in Section 3.5, in the real world, 𝜌 is calculated

as 𝜌 = 𝐻2(𝑝,De(𝑑, Ev(𝐹,𝐶𝑋 ‖ 𝐾𝑅)), 𝑐), where (𝐹, 𝐾𝑅,𝑑) was generated by the server and

𝐶𝑋 are the labels received via OT for 𝑥 = 𝐻1(𝑝) and the identicatior commitment 𝑐 . In

the ideal world, 𝜌 is chosen uniformly at random by FVOPRF if a fresh (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑝)
message was sent. If an honest user with input 𝑝 interacts with S, the functionality FVOPRF
will send 𝜌 = 𝑇𝑠𝑖𝑑 (S, 𝑝) as output for the honest user. The simulator must produce the

same output 𝜌 for 𝐻2(𝑝,𝑦, 𝑐) if 𝑦 = C𝑘 (𝐻1(𝑝)) and Unveil(𝑐, 𝑘, 𝑟) = 1 holds for S’s key 𝑘
and opening information 𝑟 . Therefore, we have to compare the output of 𝐻2 with the

outputs of FVOPRF. We distinguish the following cases in simulation of 𝐻2:

Case 1: There is no record 〈𝐻1, 𝑝, ℎ〉 found: Sim only needs to program the random oracle, if

𝑝 , 𝑦, and 𝑐 do occur in a protocol execution. More precisely, if 𝑦 = C𝑘 (𝐻1(𝑝)) holds
for some key 𝑘 , where Unveil(𝑐, 𝑘, 𝑟) = 1 holds for some opening information 𝑟 . That

is, because in this case FVOPRF can eventually output a value 𝜌 as the output of an

honest user with input 𝑝 and identicator 𝑐 interacting with a server with key 𝑘 and

opening information 𝑟 . We will call a query (𝑝,𝑦, 𝑐) relevant if there is a key 𝑘 and an

opening information 𝑟 , such that 𝑦 = C𝑘 (𝐻1(𝑝)) Unveil(𝑐, 𝑘, 𝑟) = 1. In the following,

we bound the probability for the event that (𝑝,𝑦, 𝑐) becomes relevant, when 𝐻1(𝑝)
is not determined yet.

All keys 𝑘1, . . . , 𝑘𝑡 of honest servers are chosen independently. However, this time we

also have to consider maliciously chosen keys from corrupted servers. The adversary

A could choose keys
ˆ𝑘1, . . . , ˆ𝑘𝑠 that are somehow correlated. However, that does not

aect the following statement: Let 𝑡 ∈ N be the number of servers in the protocol

execution. Let 𝑘1, . . . , 𝑘𝑡 be the uniformly random and independently drawn keys

63

4. Veriability

On (Init, S, 𝑠𝑖𝑑) from FVOPRF
1 : If this is the rst (Init, S, 𝑠𝑖𝑑) message from FVOPRF
2 : 𝑘

$← {0, 1}𝑚

3 : (𝑐, 𝑟) ← Commit(𝑘)

4 : record 〈hon, 𝑐, 𝑘, 𝑟 〉

5 : send (Param, S, 𝑐) to FVOPRF
6 : send (Init, 𝑐) as message from S to U

On a new query (𝑝,𝑦, 𝑐) to 𝐻2(·, ·, ·)
25 : if ∃〈𝐻2, 𝑝,𝑦, 𝑐, 𝜌〉 :
26 : return 𝜌
27 : else
28 : if @〈𝐻1, 𝑝, ℎ = 𝐻1(𝑝)〉 :
29 : 𝜌

$← {0, 1}𝑙 and record 〈𝐻2, 𝑝,𝑦, 𝑐, 𝜌〉
30 : return 𝜌
31 : else

32 : if ∃〈hon, 𝑐, 𝑘, 𝑟 〉 and C𝑘 (ℎ) = 𝑦 :

33 : send (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑 ′, 𝑝) to FVOPRF
34 : send (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑 ′,A, 𝑐) to FVOPRF
35 : if FVOPRF does not answer :
36 : output fail and abort
37 : else
38 : receive (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑 ′, 𝜌) from FVOPRF
39 : record 〈𝐻2, 𝑝,𝑦, 𝑐, 𝜌〉
40 : return 𝜌

41 : elseif ∃〈corr, 𝑐, Ŝ〉

42 : send (OfflineEval, 𝑠𝑖𝑑, 𝑐, 𝑝) to FVOPRF
43 : receive (OfflineEval, 𝑠𝑖𝑑, 𝜌) from FVOPRF
44 : record 〈𝐻2, 𝑝,𝑦, 𝑐, 𝜌〉
45 : return 𝜌
46 : else

47 : 𝜌
$← {0, 1}𝑙 and record 〈𝐻2, 𝑝,𝑦, 𝑐, 𝜌〉

48 : return 𝜌

On (Send,𝑚𝑖𝑑,U, (Init, 𝑐)) from A on behalf of Ŝ

7 : send (Send,𝑚𝑖𝑑, ˆS,U, (Init, 𝑐)) to A

8 : on (ok,𝑚𝑖𝑑) from A :

9 : record 〈corr, 𝑐, Ŝ〉

10 : send (Param, Ŝ, 𝑐) to FVOPRF

On (OT-Received, (𝑠𝑠𝑖𝑑, 𝑖)) from A to FOT
11 : if @〈(𝑠𝑠𝑖𝑑, 𝑖), (𝐶𝑋𝑖 [0],𝐶𝑋𝑖 [1])〉 or @〈(𝑠𝑠𝑖𝑑, 𝑖), 𝑥𝑖〉 :
12 : ignore this message

13 : elseif 𝑥𝑖 ≠ ⊥
14 : send (OT-Received, (𝑠𝑠𝑖𝑑, 𝑖),𝐶𝑋 [𝑥𝑖]) to Û

15 : else
16 : if ∀𝑡 ∈ {1, . . . , 𝑛} \ {𝑖}∃〈OT-Received, 𝑠𝑠𝑖𝑑, 𝑡〉 :
17 : and (∃〈𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾𝑅,𝑑)〉 :
18 : or ∃〈S, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, (𝐹, 𝐾𝑅,𝑑),𝐶𝑋 [0𝑛],𝐶𝑋 [1𝑛]〉) :
19 : if De(𝑑, Ev(𝐹,𝐶 [𝑐] ‖𝑋 [0] ‖ 𝐾𝑅)) ≠ ⊥ :

20 : send (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑, S, 𝑐) to FVOPRF
21 : else

22 : ignore this message

23 : else
24 : record 〈OT-Received, 𝑠𝑠𝑖𝑑, 𝑖〉

Figure 4.4.: The Major Changes to Get a Simulator Sim for FVOPRF.

64

4.2. Proving Veriability

used by the – honest or corrupted– servers. Let C be the PRF function calculated by

VC and let 𝑛 ∈ Ω(_) be the output length of C. We assumed in the beginning that

C𝑘𝑖 (·) is a permutation. Thus, if we choose some uniformly random input 𝑥 ∈ {0, 1}𝑛 ,
we get that C𝑘𝑖 (𝑥) ∈ {0, 1}𝑛 is uniformly random. If 𝐻1(𝑝) is not queried yet, we

have for every 𝑖 ∈ {1, . . . , 𝑡} and every 𝑦 ∈ {0, 1}𝑛:

Pr [C𝑘𝑖 (𝐻1(𝑝)) = 𝑦] ≤
1

2
𝑛
,

where the probability is taken over the random output of 𝐻1. Thus, we get by a

union-bound that the probability for a key to make (𝑝,𝑦, 𝑐) relevant is at most 𝑡2−𝑛 ,
which is negligible.

Case 2: Records 〈𝐻1, 𝑝, ℎ〉 and 〈hon, 𝑐, 𝑘, 𝑟 〉 exist, such that C𝑘 (ℎ) = 𝑦:
In this case, the value ℎ is the output of the random oracle 𝐻1 on input 𝑝 . As the

commitment scheme COM is correct, we have that Unveil(𝑐, 𝑘, 𝑟) = 1, because Sim
calculated 𝑐 and 𝑟 as (𝑐, 𝑟) ← Commit(𝑘), see Denition 3. The tuple (𝑝,𝑦, 𝑐) is
relevant, because the key of an honest server produces the output𝑦, when the input ℎ

is provided to the circuit, and the circuit does not output⊥, becauseUnveil(𝑐, 𝑘, 𝑟) = 1.

Thus, Sim programs 𝐻2(𝑝,𝑦, 𝑐). The simulator Sim sends (Eval, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′, S, 𝑝) to
FVOPRF for a new subsession id 𝑠𝑠𝑖𝑑′. That means, Sim initiates a new protocol

execution and requests itself the output value 𝜌 = 𝑇𝑠𝑖𝑑 (S, 𝑝) from FVOPRF. We argued

in Section 4.2 why a similar statement to Lemma 1 holds. Thus, Sim can safely send

the (RcvCmplt, 𝑠𝑖𝑑, 𝑠𝑠𝑖𝑑′,A, 𝑐) message, without decreasing the ticket counter of S
to 0. The random oracle 𝐻2(𝑝,𝑦, 𝑐) is programmed to the answer 𝜌 of FVOPRF. The
programming ensures that E will get the same output 𝜌 = 𝐻2(𝑝,𝑦, 𝑐) when invoking

an execution of the protocol between an honest user with input 𝑝 and the honest

server with identicator 𝑐 .

Case 3: There are records 〈𝐻1, 𝑝, ℎ〉 and 〈corr, 𝑐, ˆS〉:
In that case, the value ℎ is the output of the random oracle 𝐻1 on input 𝑝 , but 𝑐 is the

identicator of a corrupted server. The simulator Sim sends (OfflineEval, 𝑠𝑖𝑑, 𝑆, 𝑝)
to FVOPRF and receives the answer (OfflineEval, 𝑠𝑖𝑑, 𝜌) from FVOPRF. Sim programs

𝐻2(𝑝,𝑦, 𝑐) to the output 𝜌 of the oine evaluation. Sim does not check if the key

𝑘 on which 𝑐 is a commitment does even output 𝑦. In fact, Sim does not even

know that key, as A just sent (Param, ˆS, 𝑐) to Sim. But Sim knows that sending

(OfflineEval, 𝑠𝑖𝑑, 𝑐, 𝑝) will not aect the ticket counter. And if for some key 𝑘 and

some opening information 𝑟 withUnveil(𝑐, 𝑘, 𝑟) = 1 it would hold that𝑦 ≠ 𝑦′ = C𝑘 (ℎ),
it would mean that the tuple (𝑝,𝑦, 𝑐) is not relevant, i.e., there will be no real-

world execution of the protocol, where an honest user would request (𝑝,𝑦, 𝑐). An
honest user would query the 𝐻2(𝑝,𝑦′, 𝑐) instead. In that case, Sim has unnecessarily

programmed 𝐻2. But as the programming was done with a uniformly random value,

the output of 𝐻2 is still indistinguishable from a uniformly random value.

Contrarily, if 𝑐 is actually a commitment on a key 𝑘 such that A knows opening

information 𝑟 such that Unveil(𝑐, 𝑘, 𝑟) = 1 and 𝑦 = C𝑘 (ℎ), the oracle 𝐻2(𝑝,𝑦, 𝑐) is

65

4. Veriability

programmed to the right 𝜌 . That is because the commitment scheme is computation-

ally binding. That means, A can at most with negligible probability nd another

key 𝑘′ and opening information 𝑟 ′ such that Unveil(𝑐, 𝑘′, 𝑟 ′) = 1. That means for an

OPRF execution between an honest user with input 𝑝 and a corrupted server, the

server can send a garbling (𝐹, 𝐾𝑅′, 𝑑) at most with negligible probability such that

⊥ ≠ De(𝑑, Ev(𝐹,𝐶𝑋 ‖ 𝐾𝑅′)), where 𝐶𝑋 are the labels for 𝑐 and ℎ = 𝐻1(𝑝) and 𝐾𝑅′
are the labels for 𝑘′ and 𝑟 ′.

Case 4: If 𝑐 is never “registered” as identicator via a (Param, S, 𝑐) message, 𝐻2(𝑝,𝑦, 𝑐) is set
to a uniformly random value. In this case, no user received a (Init, 𝑐) message. Thus,

no honest real-world user will input this 𝑐 to the random oracle 𝐻2.

66

5. Comparison of Concrete Eiciency

As we were interested in the concrete eciency of our construction, we implemented it and

compared it to other OPRF protocols. For the implementation, we leveraged a C++ frame-

work, called EMP-Toolkit [WMK16]. Further, we implemented a version of the state-of-the-

art OPRF protocol, 2HashDH, by [JKK14; Jar+16; JKX18]. Finally, we also compared the two

former protocols to the lattice-based protocol of Albrecht et al. [Alb+21]. This protocol was

already implemented by [Alb+21]. The main goal was to compare the concrete eciency

of dierent OPRFs on the same computer. All source code described below can be found

in the GitHub repository github.com/SebastianFaller/OPRF-Garbled-Circuits. The

benchmark results refer to the version of commit ad35dbf01dc8bf4f09f2bd839aa36bda042675e6.

Update to latest commit before deadline.

5.1. Garbled-Circuit-Based OPRF

We will introduce our implementation in two steps. First, we present the implementation

of a generic garbling scheme reminiscent of the formal denition from Section 2.6.3. The

source code for the garbling scheme was written in collaboration with the supervisors of

the thesis.

5.1.1. Implementing the Garbling Scheme

The EMP-Toolkit is a framework that oers various routines for the ecient calculation of

garbled circuits and other cryptographic building blocks, such as hashing and symmetric

encryption. To the best of our knowledge, almost all relevant garbled circuit optimizations,

including Free-XOR [KS08] and Half-Gates [ZRE15], are implemented. Only the newly

published Three-Halves technique from Rosulek and Roy [RR21] is not yet implemented.

As an example of usage, we showed how garbling of a certain circuit can be realized in

C++ using EMP-Toolkit.

EMP-Toolkit processes circuits that are described in Bristol Format [Arc+]. Bristol

Format is a specication of how to encode algebraic or boolean circuits. EMP-Toolkit

already has a description of AES in Bristol Format built-in.

EMP-Toolkit allows to load a circuit from a Bristol Format le via the class BristolFormat.

This can be done by using the constructor of the class. The statement BristolFormat cf(

circuit_filename.c_str()); constructs a Bristol Format circuit object named cf when given a

path to the le as string circuit_filename. We’d like to emphasize that this is not the garbled

circuit yet, but rather a description of the plain boolean circuit. EMP-Toolkit denes the

type HalfGateGen<T>. By creating an object of this type, the programmer determines:

67

github.com/SebastianFaller/OPRF-Garbled-Circuits

5. Comparison of Concrete Eciency

• With which optimizations the circuit will be calculated. HalfGateGen is the class that

implements “Half-Gates” but there is e.g. a class PrivacyFreeGen that implements a

garbling scheme that is even more ecient but has no privacy.

• Where is the garbled circuit written to. This is done via the type parameter T. EMP-

Toolkit has several input-output classes that can be specied as a type parameter.

For instance, if T is NetIO, the garbled circuit is directly sent over the network. If

FileIO is chosen, the circuit is written to a le on the machine. We like to note here

that solving this problem via C++ Templates might not be an optimal choice, as it

is elusive to programmers which types might be used as type parameters without

thoroughly knowing the framework. Further, it disallows dynamic changing of the

desired behavior at runtime. A better solution would have been the “strategy” design

pattern [Gam10].

To generate a garbling we also have to assign random labels to all input bits. The basic

unit of computation in EMP-Toolkit is the type block. By default, all garbling routines

oer 128 bits of security, so a block has 128 bits. That means each input label will be one

block of pseudo-random data. We generate these blocks by using EMP-Toolkit’s PRG:

prg.random_block(input, n); lls the block- array input with 𝑛 pseudo-random blocks of data.

The same has to be done for the output labels. Afterwards the circuit can be garbled by

using cf.compute(output, input_1, input_2);, where input_1, input_2, and output are the above

calculated arrays.

The listing in Listing 5.1 shows the whole code for garbling a circuit. Note that the listing

also shows how further values as the encoding information and decoding information are

computed.

1 void garble(IOType* io, vector<block>* encoding_info, vector<bool>* decoding_info, const

string& circuit_filename) {

2 HalfGateGen<IOType>::circ_exec = new HalfGateGen<IOType>(io);

3 BristolFormat cf(circuit_filename.c_str());

4 encoding_info->resize(cf.n1+cf.n2+1);

5 decoding_info->resize(cf.n3);

6 block* input_1 = new block[cf.n1];

7 block* input_2 = new block[cf.n2];

8 block* output = new block[cf.n3];

9 PRG prg;

10 prg.random_block(input_1, cf.n1);

11 prg.random_block(input_2, cf.n2);

12 //garble the circuit

13 cf.compute(output, input_1, input_2);

14 //write decoding info

15 for(int i=0; i<cf.n3; i++) {

16 (*decoding_info)[i] = getLSB(output[i]);

17 }

18 //write encoding info

19 (*encoding_info)[0] = ((HalfGateGen<IOType>*) HalfGateGen<IOType>::circ_exec)->delta;

20 for (int i=0; i<cf.n1; i++) {

21 (*encoding_info)[i+1] = input_1[i];

22 }

23

68

5.1. Garbled-Circuit-Based OPRF

24

25 for (int i=0; i<cf.n2; i++) {

26 (*encoding_info)[cf.n1+1+i] = input_2[i];

27 }

28 //Clean up

29 delete HalfGateGen<IOType>::circ_exec;

30 delete[] input_1;

31 delete[] input_2;

32 delete[] output;

33 }

34

Listing 5.1: Garbling a Circuit Using EMP-Toolkit

Similar to the above listing, one can implement a whole garbling interface, inspired

by the formal denition from Section 2.6.3. We get the interface in Listing 5.2. The

function void garble(...) is as described above. This function corresponds to the function

(𝐹, 𝑒, 𝑑) = Gb(1_, 𝑓) of Section 2.6.3.

The function void encode(...) takes a vector input of boolean values as argument. This

vector contains all input bits that shall be encoded. The vector encoding_info contains the

encoding information that was output by void garble(...). The nal labels will be stored

in the vector encoded_input. This function corresponds to the function 𝑋 = En(𝑒, 𝑥) of
Section 2.6.3.

The function void evaluate(...) takes an object for handling input and output as the

rst argument. The garbled circuit itself – meaning 𝐹 in terms of Section 2.6.3 – will be

read from this object. The function also takes some input labels encoded_input and a string

circuit_filename that points to the Bristol format description of the circuit as argument.

The circuit will be evaluated on the specied input labels and will be stored in the vector

encoded_output. This function corresponds to the function 𝑌 = Ev(𝐹, 𝑋) of Section 2.6.3.

The function void decode(...) takes the encoded_output that was calculated by void evaluate

(...) and the decoding_info calculated by void garble(...) and stores the nal output as

vector of boolean values in output. This function corresponds to the function 𝑦 = De(𝑑,𝑌)
of Section 2.6.3.

1 template <class IOType>

2 void garble(IOType* io, vector<block>* encoding_info, vector<bool>* decoding_info, const

string& circuit_filename)

3 }

4 void encode(vector<emp::block>* encoded_input, const vector<bool>& input, const vector<

emp::block>& encoding_info);

5

6 template <class IOType>

7 void evaluate(IOType* io, vector<block>* encoded_output, const vector<block>&

encoded_input, const string& circuit_filename);

8 }

9

10 void decode(vector<bool>* output, const vector<emp::block>& encoded_output, const vector

<bool>& decoding_info);

11

12

Listing 5.2: Garbling Scheme Interace

69

5. Comparison of Concrete Eciency

5.1.2. Implementing the Protocol Parties

We employed the above scheme to implement the protocol parties for GC-OPRF. We used

AES as concrete instantiation for the circuit C in our implementation. An overview of the

protocol ow can be found in Figure 5.1.

U(𝑝) S

ℎ
$← 𝐻1(𝑝)

𝑘
$← {0, 1}𝑚

Garble

(𝐹, 𝑒, 𝑑) ← Gb(1_, C)
𝐾 ← En(𝑒, 𝑘)
𝑋 [0] ← En(𝑒, 0𝑛)
𝑋 [1] ← En(𝑒, 1𝑛)(𝐹, 𝐾,𝑑)

OT

𝑋 [0], 𝑋 [1]ℎ

𝑋 [ℎ]

𝑌 = Ev(𝐹, 𝐾 ‖𝑋 [ℎ])
𝑦 = De(𝑑,𝑌)
𝜌

$← 𝐻2(𝑝,𝑦)

Figure 5.1.: Overview of GC-OPRF.

We modeled the protocol by creating a class for the user and a class for the server.

The user has four member functions that allow interaction with the server. The func-

tion bool* eval(string pwd, int ssid) hashes the password of the user using SHA3 and

returns the input bits for the circuit as bool*. The function void receiveLabels(bool*

choices, block* encoded_user_input) uses EMP-Tool’s OT interface to exchange the labels

for the user input. For the sake of simplicity, we did not implement a provably UC-

secure OT protocol but retreated to use the already implemented Naor-Pinkas OT [NP01]

from EMP-Toolkit. We describe the protocol for the interested reader in Appendix A.3.

With void receiveKeyAndDecoding(block* encoded_key, bool* decoding_info), the user receives

the labels for the key and the decoding information via OT. Note that in contrast to

the actual protocol description in Figure 3.2, the garbling of the circuit 𝐹 is sent af-
ter the key labels and the decoding information 𝐾,𝑑 . This is because EMP-Tool con-

sumes the garbled circuit directly from the network interface when the circuit is eval-

uated. Finally, uint8_t* onLabelsReceived(int ssid, const block* encoded_user_input, const

block* encoded_key, const bool* decoding_info) evaluates the circuit, decodes the output and

hashes the output with SHA3. This is depicted in Listing 5.3. Note that certain constants

as ip_addr and AES_KEY_SIZE are dened elsewhere. We will not go into the details of each

called function, as they are simply using the garbled circuit scheme, described above, and

the hash function SHA3.

70

5.1. Garbled-Circuit-Based OPRF

1 NetIO user_io(ip_addr, port); // User is the OT-Receiver.

2 User<NetIO> u(sid, &user_io);

3

4 bool* current_h = u.eval(password, ssid);

5

6 // Receive garbled encoded key and decoding info

7 block encoded_key[AES_KEY_SIZE];

8 bool decoding_info[AES_INPUT_SIZE];

9 u.receiveKeyAndDecoding(encoded_key, decoding_info);

10

11 // Request labels via OT for H_1(password)

12 block labels[AES_INPUT_SIZE];

13 u.receiveLabels(current_h, labels);

14

15 // Evalute the circuit and hash the output

16 uint8_t* output = u.onLabelsReceived(ssid, labels, encoded_key, decoding_info);

17

Listing 5.3: User Execution of GC-OPRF

To create a server, one needs to choose a uniformly random key. The most important

method of the server is void onGarble(int ssid, vector<block>* encoded_ones, vector<block>*

encoded_zeroes). This function creates a garbled circuit, decoding information, and input

labels. Note that we rst use the EMP class MemIO to garble the circuit. This is again because

the garbling routines produce direct output to the network interface when the circuit is

garbled. Letting this output go to local memory instead of the network interface facilitates

the sending of the remaining data.

1 void onGarble(int ssid, vector<block>* encoded_ones, vector<block>* encoded_zeroes){

2 //Write garbled circuit to memory first, so other data is sent first

3 MemIO* mem_io = new MemIO();

4 vector<block> encoding_info;

5 vector<bool> decoding_info;

6 garble(mem_io, &encoding_info, &decoding_info, circuit_filename);

7

8 vector<bool> input_zeros(AES_INPUT_SIZE, false);

9 //append key

10 input_zeros.insert(input_zeros.end(), key.begin(), key.end());

11 encode(encoded_zeroes, input_zeros, encoding_info);

12 vector<block> encoded_key = vector<block>(encoded_zeroes->begin() + AES_INPUT_SIZE,

encoded_zeroes->begin() + (AES_INPUT_SIZE+AES_KEY_SIZE));

13

14

15 encoded_zeroes->resize(AES_INPUT_SIZE);

16

17 vector<bool> input_ones(AES_INPUT_SIZE, true);

18 encode(encoded_ones, input_ones, encoding_info);

19

20 // Send everything to the user

21 sendKeyAndDecoding(encoded_key, decoding_info);

22

23 sendLabelsOverOT(*encoded_zeroes, *encoded_ones);

24

25 sendGarbledCircuitFromMem(mem_io);

71

5. Comparison of Concrete Eciency

26 }

27

Listing 5.4: Server’s response to a Garble message

5.2. The 2HashDH Protocol

For the implementation of the 2HashDH protocol from [Jar+16; JKK14] we relied on the

OPENSSL library [OPENSSL] in version 1.1.1. OPENSSL is a commercial-grade open-

source library for cryptography and secure communication and is already installed on

most Linux systems. In particular, we used the algorithms for elliptic curve cryptography

to instantiate the 2HashDH protocol. The protocol is depicted on a high level in Figure 5.2.

Note that we will use additive group notation in this chapter.

U(𝑥) S
ℎ

$← 𝐻1(𝑥) 𝑘
$← Z𝑞

𝑟
$← Z𝑞 𝑎 B 𝑟 · ℎ

𝑏 B 𝑘 · 𝑎
𝑦 = (1/𝑟) · 𝑏
𝑧 = 𝐻2(𝑥,𝑦)

Figure 5.2.: Overview of 2HashDH.

A slightly simplied listing of the code for the 2HashDH user can be seen in Listing 5.5.

Note that we still used EMP-Toolkit for the network communication. This dependency

could easily be removed to make our implementation more portable.

The user starts by initializing a group. We decided to use the NIST P256 curve [Sta19],

as it oers 128 bits of security, which is comparable to the garbled circuit implementation

of EMP-Toolkit. The group is initialized by EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1).

Usually in OPENSSL, one also needs to specify a pointer to the BN_CTX structure, which can

be described as a buer for certain calculations. Next, by calling EC_GROUP_get_curve(), one

gets the parameters of the elliptic curve. In particular, we are interested in the order of

the underlying eld, as we will need this value later to invert the blinding value r. The

rst important step of the protocol is to hash the input string pwd to a point on the elliptic

curve. Note that this is by far the most involved part of the protocol. We will elaborate on

it in Appendix A.1. After receiving a point g of the password, the user chooses a random

blinding value by calling BN_rand_range(r, field_order). With EC_POINT_mul(ec_group, a, NULL

, g, r, bn_ctx), the product 𝑟 · 𝑔 is calculated, using additive group notation. The resulting

point is then sent to the server. The server will execute similar code to multiply the received

point with its key and send it back. Now the user calculates the inverse of 𝑟 ∈ F with
BN_mod_inverse(oneOverR, r, field_order, bn_ctx) and multiplies this with the received point

from the server by calling EC_POINT_mul(ec_group, y, NULL, b, oneOverR, bn_ctx). Finally, the

resulting point is hashed using SHA3.

72

5.3. Lattice-based OPRF

1 // Create group object for NIST P256 curve

2 EC_GROUP* ec_group = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);

3 BN_CTX* bn_ctx = BN_CTX_new();

4 EC_GROUP_precompute_mult(ec_group, bn_ctx);

5 // 32 byte for field element and one for encoding byte

6 const int ec_point_size_comp = 33;

7

8 // order needed to create and invert r

9 BIGNUM* field_order = BN_new();

10 EC_GROUP_get_curve(ec_group, field_order, NULL, NULL, bn_ctx);

11

12 EC_POINT* g = hash_to_curve(pwd, ec_group, bn_ctx);

13

14 BIGNUM* r = BN_new();

15 //Choose random r

16 BN_rand_range(r, field_order);

17 EC_POINT* a = EC_POINT_new(ec_group);

18 // a = g*r

19 EC_POINT_mul(ec_group, a, NULL, g, r, bn_ctx);

20

21 uint8_t buf[ec_point_size_comp];

22 // Convert point to raw binary data

23 EC_POINT_point2oct(ec_group, a, POINT_CONVERSION_COMPRESSED, buf, ec_point_size_comp,

bn_ctx);

24

25 user_io.send_data(buf, ec_point_size_comp);

26

27 // Receive b from server

28 EC_POINT* b = EC_POINT_new(ec_group);

29 user_io.recv_data(buf, ec_point_size_comp);

30 BIGNUM* oneOverR = BN_new();

31 BN_mod_inverse(oneOverR, r, field_order, bn_ctx);

32 EC_POINT* y = EC_POINT_new(ec_group);

33 // y = (1/r)*b

34 EC_POINT_mul(ec_group, y, NULL, b, oneOverR, bn_ctx);

35

36 // Hash the resulting point

37 EC_POINT_point2oct(ec_group, y, POINT_CONVERSION_COMPRESSED, buf, ec_point_size_comp,

bn_ctx);

38 uint8_t hashTwo[32]; // 32 bytes sha3 output

39

40 sha3_256(hashTwo, buf, ec_point_size_comp);

41

Listing 5.5: User for 2HashDH

5.3. Lattice-based OPRF

To get a plausibly post-quantum secure OPRF-protocol as another comparison to our

construction, we chose the lattice-based OPRF from Albrecht et al. [Alb+21]. In their work,

Albrecht et al. [Alb+21] implemented a proof of concept of their protocol in SageMath

73

5. Comparison of Concrete Eciency

Protocol Avg. Runtime [ms] Network Trac [kB]

Our work 66.05 ± 7.69 241.541

2HashDH [JKX18] 1.39 ± 0.48 0.066

Albrecht et al. [Alb+21] 7406.008 ± 54.890 513.254 ± 0.170

Figure 5.3.: Overview of the Benchmark Results

[Ste05]. For the sake of simplicity, all zero-knowledge proofs were left out in the imple-

mentation. We benchmarked this SageMath implementation. However, the comparison to

our protocol can only be seen as a rough estimate of actual eciency. On the one hand,

an implementation of the protocol in C++ as we wrote for our construction and 2HashDH

would lead to signicantly better performance. That is because SageMath is an interpreted

language, based on Python, while C++ is compiled. On the other hand, the performance

impact of zero-knowledge proofs in a lattice-based setting can be enormous. Albrecht et al.

[Alb+21, Sec 5.3] estimate that using the state-of-the-art lattice-based zero-knowledge

proof from [Yan+19] would result in more than 2
40
bits of communication. Another point

that makes this comparison less reliable is the estimation of lattice parameters. In gen-

eral, it is considered a non-trivial task to choose appropriate lattice parameters in order

to achieve a required security level. We opted to choose similar parameters as for the

National Institute of Standards and Technology (NIST) post-quantum competition algo-

rithm NewHope [Alk+16, Protocol 3] as both claim a security level of 128 bits, which is the

same security level we have for the 2HashDH implementation and the implementation of

our construction. Namely, we let the lattice dimension 𝑛 = 1024, chose the prime modulus

𝑞 as a 14 bit prime and let the rounding modulus 𝑝 = 3. Note, that this parameter choice is

likely over-optimistic and should not be considered for real-world implementations of the

protocol. Albrecht et al. [Alb+21] estimate the parameters for their scheme themselves

and their estimations are far more pessimistic. They suggest 𝑛 = 16384, a prime modulus

𝑞 with around 256 bit and a rounding modulus that is polynomial in _. We tried these

parameters for our benchmarks but SageMath would abort the execution of even a single

protocol instance i.e., one exchanged PRF value, with a failure message. We believe that

the test laptop for our benchmarks does not have enough memory. Therefore, we retreated

to the smaller parameters, mentioned above.

5.4. Benchmarks

We tested the three implementations on an Intel Core i5-5200U CPU @ 2.20GHz × 4 on the

local network interface. We measured the running time in milliseconds that each program

needs from the invocation of an OPRF session until the user calculated the output. The

server used the same PRF key for all executions. We also measured the amount of data

that the protocols exchange over the network, meaning data sent from user to server and

vice-versa. We summarized the results in Figure 5.3.

74

5.4. Benchmarks

Garbled-Circuit-OPRF 2HashDH
0

10

20

30

40

50

60

70

Av
g

Ru
nt

im
e

[m
s]

 (n
 =

 1
00

0
ru

ns
)

66.05 ± 7.69

1.39 ± 0.48

(a) Running times of GC-OPRF and 2HashDH

[JKX18].

Garbled-Circuit-OPRF 2HashDH Lattice-Based without ZK
0

1000

2000

3000

4000

5000

6000

7000

Av
g

Ru
nt

im
e

[m
s]

 (n
 =

 1
00

0
ru

ns
)

66.05 ± 7.69 1.39 ± 0.48

7406.01 ± 54.89

(b) Running Times of GC-OPRF, 2HashDH

[JKX18], and [Alb+21].

Figure 5.4.: Comparison of the Measured Running Times.

5.4.1. Running Time

We depicted the results for the running time measurement in Figure 5.4. We measured

an average running time of 66.05ms for our own GC-OPRF protocol, with a standard

deviation of 7.69ms. We measured an average running time of 1.39ms for 2HashDH, with

a standard deviation of 0.48ms. With under two milliseconds, the 2HashDH protocol by

[JKX18] was about 50 times faster than our construction. This is not surprising as the

protocol merely needs to exchange two points of an elliptic curve. We found a noticeable

dierence in running time to the lattice-based construction of [Alb+21]. We measured an

average running time of 7559.70ms for the [Alb+21] protocol, with a standard deviation

of 184.61ms. Our construction is over 110 times faster than the lattice-based protocol. We

like to note here that the dierence might get slightly smaller when the communication

goes over a high-latency Wide Area Network (WAN). This is because the protocol from

[Alb+21] requires only two rounds of communication, while our construction requires

four rounds.

5.4.2. Network Traic

We depicted the results for the network trac measurement in Figure 5.5. Our construction

sends 241.541 kB of data over the network. 2HashDH by [JKX18] sends only two points

on the NIST P256 curve, which is exactly 66 B. We measured about 513.474 kB of network

trac with a standard deviation of 96 kB for the lattice-based protocol by [Alb+21]. Note

that the network trac of our GC-OPRF implementation and of 2HashDH are constant

values, while there are slight variations in the measurement for the protocol of

[Alb+21]. This is because the transmitted value in the protocol is a random element in a

cyclotomic ring modulo some prime number. SageMath automatically compresses those

elements if possible which leads to a varying size.

75

5. Comparison of Concrete Eciency

Garbled-Circuit-OPRF 2HashDH Lattice-Based without ZK
0

100

200

300

400

500

Ne
tw

or
k

Tr
af

fic
 [k

B]
 (n

 =
 1

00
0

ru
ns

)

241.54 ± 0.00

0.07 ± 0.00

513.25 ± 0.17

Figure 5.5.: Comparison of the Measured Network Trac.

The measured network trac for ourGC-OPRF implementation matches our theoretical

estimates. We estimated around 230 kB of trac for our construction as follows: According

to [Arc+], the employed AES circuit has 6400 and-gates. Each and-gate requires two

ciphertexts to be transmitted. The used ciphertext in EMP-Toolkit is 128 bit long. Thus,

we have 32 B of data of each and-gate. This makes 6400 · 32 B = 204 800 B. Additionally,

we have 128 executions of a Naor-Pinkas OT. This OT protocol is DLOG-based and

EMP-Toolkit implements a variant with elliptic curves. EMP-Toolkit uses the same NIST

P-256 elliptic curve for OT as we did for 2HashDH. However, they do represent a group

element uncompressed as 65 B of data. We reduced this cost to 33 B in our 2HashDH

implementation by using a compressed representation from OPENSSL [OPENSSL]. One

does not need to store an x- and a y-coordinate for a point on an elliptic curve. It is

sucient to store the x-coordinate and the sign. A single 1-out-of-2 OT requires the

transfer of three group elements and two ciphertexts (see our description of Naor-Pinkas

OT in Appendix A.3). Again, a ciphertext is 128 bit, i.e., 16 B long. All OT executions sum

up to 128(3 · 65 B + 2 · 16 B) = 29 056 B. In total, we have 204 800 B + 29 056 B = 233 856 B.

We assume that the dierence to the actually measured value comes from meta-data and

other overhead produced by EMP-Toolkit.

76

6. Conclusion

In this work, we investigated the security of a garbled-circuit-based OPRF in the UC-

framework [Can01]. To realize an ideal OPRF functionality in the style of Jarecki, Krawczyk,

and Xu [JKX18], we augmented the “straightforward” construction of Pinkas et al. [Pin+09]

with a second hash function. This second hash function was modeled as random oracle

and allowed the simulator in the proof to “program” the output of the random oracle to

the values that the ideal functionality outputs. The resulting protocol is secure against

passive adversaries.

We further used a technique proposed by Albrecht et al. [Alb+21] to make our OPRF

veriable. We changed to garbled circuit such that the user now provides a commitment

on the key of the server. The server provides the key and the opening information to the

circuit. Only if the commitment correctly opens to the key of the server, the garbled circuit

outputs a pseudo-random value.

We implemented a prototype of our protocol and the state-of-the-art OPRF protocol

2HashDH by [Jar+16; JKK14; JKX18]. We compared the two implementations to a simplied

implementation of the lattice-based OPRF¸ by Albrecht et al. [Alb+21]. The experiments

showed that our construction is signicantly faster than the lattice-based protocol. We

also found that our construction is not as ecient as the DLOG-based 2HashDH protocol.

Nonetheless, the eciency is still in a reasonable range with a running time of around

65ms and around 250 kB network trac. This indicates, that circuit-based OPRF protocols

might be a promising candidate for post-quantum secure OPRFs.

FutureWork Our security proof holds only for passive, i.e., honest-but-curious adversaries.

This is a common assumption in cryptography, but it does arguably not capture realistic

scenarios. Hence, a proof considering active adversaries is desirable.

We also expect that there is space for improvement concerning the choice of the circuit

that is calculated by the garbling scheme. In our work, we assumed the circuit to be a PRF.

But then the actual PRF that is calculated by the OPRF protocol is 𝑓𝑘 (𝑥) = 𝐻2(𝑝, F𝑘 (𝐻1(𝑝))),
where F is a PRF. One could suspect that modeling𝐻2 as a random oracle already introduces

enough entropy to the output of the function. But we leave it for future work if weaker

assumptions on the circuit are sucient to still achieve a secure protocol.

Additionally, we believe that more experimental insight would be benecial. It would be

good to also take network latency into account for the experiments. This means concretely,

that the protocols should also be tested over a Local Area Network (LAN) and a WAN. It

would also be interesting to compare our protocols with the batched, related-key OPRF of

Kolesnikov et al. [Kol+16], as this protocol is also circuit-based and relies on OT.

Besides, we argued that circuit-based OPRF are promising candidates for post-quantum

secure OPRFs. To strengthen this claim, it would be desirable to also implement our

protocol using a – presumably – post-quantum secure OT protocol, e.g., [PVW08]. This

77

6. Conclusion

would show if the “price” for post-quantum security is still in a reasonable range. Such a

construction would need to be proven secure in the QROM model.

Finally, it would be interesting to see if our construction’s necessity to program the

random oracle is inherent to UC-secure OPRFs. Hesse [Hes20] showed that aPAKE cannot

be achieved without a programmable random oracle. As Jarecki, Krawczyk, and Xu [JKX18]

carved out the close connection between aPAKE and OPRF, it is an intriguing question if

one can by connecting both works show that UC-secure OPRFs require a programmable

random oracle.

78

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Ap-
proach. First Edition. Cambridge University Press, 2009. isbn: 978-0-521-

42426-4.

[Alb+21] Martin R. Albrecht et al. “Round-Optimal Veriable Oblivious Pseudorandom

Functions from Ideal Lattices”. In: PKC 2021: 24th International Conference
on Theory and Practice of Public Key Cryptography, Part II. Ed. by Juan Garay.

Vol. 12711. Lecture Notes in Computer Science. Virtual Event: Springer,

Heidelberg, Germany, May 2021, pp. 261–289. doi: 10.1007/978-3-030-

75248-4_10.

[Alk+16] Erdem Alkim et al. “Post-quantum Key Exchange - A New Hope”. In: USENIX
Security 2016: 25th USENIX Security Symposium. Ed. by Thorsten Holz and

Stefan Savage. Austin, TX, USA: USENIX Association, Aug. 2016, pp. 327–

343.

[Amy+16] Matthew Amy et al. “Estimating the Cost of Generic Quantum Pre-image

Attacks on SHA-2 and SHA-3”. In: SAC 2016: 23rd Annual International
Workshop on Selected Areas in Cryptography. Ed. by Roberto Avanzi and

Howard M. Heys. Vol. 10532. Lecture Notes in Computer Science. St. John’s,

NL, Canada: Springer, Heidelberg, Germany, Aug. 2016, pp. 317–337. doi:

10.1007/978-3-319-69453-5_18.

[Arc+] David Archer et al. ’Bristol Fashion’ MPC Circuits. url: https://homes.esat.
kuleuven.be/~nsmart/MPC/ (visited on 02/04/2022).

[Aru+19] Frank Arute et al. “Quantum Supremacy Using a Programmable Supercon-

ducting Processor”. In: Nature 574.7779 (7779 Oct. 2019), pp. 505–510. issn:
1476-4687. doi: 10.1038/s41586-019-1666-5.

[Bas+21] Andrea Basso et al. “Cryptanalysis of an Oblivious PRF from Supersingular

Isogenies”. In: Advances in Cryptology – ASIACRYPT 2021. Ed. by Mehdi

Tibouchi and Huaxiong Wang. Lecture Notes in Computer Science. Cham:

Springer International Publishing, 2021, pp. 160–184. isbn: 978-3-030-92062-

3. doi: 10.1007/978-3-030-92062-3_6.

[Bau+16] Bela Bauer et al. “Hybrid Quantum-Classical Approach to Correlated Ma-

terials”. In: Physical Review X 6.3 (Sept. 21, 2016), p. 031045. doi: 10.1103/

PhysRevX.6.031045.

[Bel+08] Mira Belenkiy et al. Delegatable Anonymous Credentials. Cryptology ePrint

Archive, Report 2008/428. https://eprint.iacr.org/2008/428. 2008.

79

https://doi.org/10.1007/978-3-030-75248-4_10
https://doi.org/10.1007/978-3-030-75248-4_10
https://doi.org/10.1007/978-3-319-69453-5_18
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1007/978-3-030-92062-3_6
https://doi.org/10.1103/PhysRevX.6.031045
https://doi.org/10.1103/PhysRevX.6.031045
https://eprint.iacr.org/2008/428

Bibliography

[Ben+11] Rikke Bendlin et al. “Semi-homomorphic Encryption and Multiparty Com-

putation”. In: Advances in Cryptology – EUROCRYPT 2011. Ed. by Kenneth G.

Paterson. Vol. 6632. Lecture Notes in Computer Science. Tallinn, Estonia:

Springer, Heidelberg, Germany, May 2011, pp. 169–188. doi: 10.1007/978-

3-642-20465-4_11.

[BG90] Mihir Bellare and Sha Goldwasser. “New Paradigms for Digital Signa-

tures and Message Authentication Based on Non-Interactive Zero Knowl-

edge Proofs”. In: Advances in Cryptology – CRYPTO’89. Ed. by Gilles Bras-

sard. Vol. 435. Lecture Notes in Computer Science. Santa Barbara, CA, USA:

Springer, Heidelberg, Germany, Aug. 1990, pp. 194–211. doi: 10.1007/0-

387-34805-0_19.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. “Foundations of gar-

bled circuits”. In: ACM CCS 2012: 19th Conference on Computer and Com-
munications Security. Ed. by Ting Yu, George Danezis, and Virgil D. Gligor.

Raleigh, NC, USA: ACM Press, Oct. 2012, pp. 784–796. doi: 10.1145/2382196.

2382279.

[BKW20] Dan Boneh, Dmitry Kogan, and Katharine Woo. “Oblivious Pseudorandom

Functions from Isogenies”. In: Advances in Cryptology – ASIACRYPT 2020,
Part II. Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12492. Lecture Notes

in Computer Science. Daejeon, South Korea: Springer, Heidelberg, Germany,

Dec. 2020, pp. 520–550. doi: 10.1007/978-3-030-64834-3_18.

[Blu+91] Manuel Blum et al. “Checking the Correctness of Memories”. In: 32nd Annual
Symposium on Foundations of Computer Science. San Juan, Puerto Rico: IEEE

Computer Society Press, Oct. 1991, pp. 90–99. doi: 10.1109/SFCS.1991.

185352.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. “The Round Complexity

of Secure Protocols (Extended Abstract)”. In: 22nd Annual ACM Symposium
on Theory of Computing. Baltimore, MD, USA: ACM Press, May 1990, pp. 503–

513. doi: 10.1145/100216.100287.

[BNS19] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. “Quan-

tum Security Analysis of AES”. In: IACR Transactions on Symmetric Cryptol-
ogy 2019.2 (2019), pp. 55–93. issn: 2519-173X. doi: 10.13154/tosc.v2019.

i2.55-93.

[Bon+11] Dan Boneh et al. “Random Oracles in a Quantum World”. In: Advances in
Cryptology – ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun Wang.

Vol. 7073. Lecture Notes in Computer Science. Seoul, South Korea: Springer,

Heidelberg, Germany, Dec. 2011, pp. 41–69. doi: 10.1007/978-3-642-25385-

0_3.

[Bri+10] Eric Brier et al. “Ecient Indierentiable Hashing into Ordinary Elliptic

Curves”. In: Advances in Cryptology – CRYPTO 2010. Ed. by Tal Rabin.

Vol. 6223. Lecture Notes in Computer Science. Santa Barbara, CA, USA:

80

https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/0-387-34805-0_19
https://doi.org/10.1007/0-387-34805-0_19
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1109/SFCS.1991.185352
https://doi.org/10.1109/SFCS.1991.185352
https://doi.org/10.1145/100216.100287
https://doi.org/10.13154/tosc.v2019.i2.55-93
https://doi.org/10.13154/tosc.v2019.i2.55-93
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3

Springer, Heidelberg, Germany, Aug. 2010, pp. 237–254. doi: 10.1007/978-

3-642-14623-7_13.

[BS20] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptogra-
phy. Jan. 2020. url: https://crypto.stanford.edu/~dabo/cryptobook/
BonehShoup_0_5.pdf.

[Büs+20] Niklas Büscher et al. “Secure Two-Party Computation in a Quantum World”.

In: ACNS 20: 18th International Conference on Applied Cryptography and
Network Security, Part I. Ed. by Mauro Conti et al. Vol. 12146. Lecture Notes

in Computer Science. Rome, Italy: Springer, Heidelberg, Germany, Oct. 2020,

pp. 461–480. doi: 10.1007/978-3-030-57808-4_23.

[BV15] Zvika Brakerski andVinodVaikuntanathan. “Constrained Key-Homomorphic

PRFs from Standard Lattice Assumptions - Or: How to Secretly Embed a

Circuit in Your PRF”. In: TCC 2015: 12th Theory of Cryptography Conference,
Part II. Ed. by Yevgeniy Dodis and Jesper Buus Nielsen. Vol. 9015. Lecture

Notes in Computer Science. Warsaw, Poland: Springer, Heidelberg, Germany,

Mar. 2015, pp. 1–30. doi: 10.1007/978-3-662-46497-7_1.

[Can+02] Ran Canetti et al. “Universally composable two-party and multi-party secure

computation”. In: 34th Annual ACM Symposium on Theory of Computing.
Montréal, Québec, Canada: ACM Press, May 2002, pp. 494–503. doi: 10.

1145/509907.509980.

[Can00] Ran Canetti. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. Cryptology ePrint Archive, Report 2000/067. https :

//eprint.iacr.org/2000/067. 2000.

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for Crypto-

graphic Protocols”. In: 42nd Annual Symposium on Foundations of Computer
Science. Las Vegas, NV, USA: IEEE Computer Society Press, Oct. 2001, pp. 136–

145. doi: 10.1109/SFCS.2001.959888.

[Can98] Ran Canetti. Security and Composition of Multi-party Cryptographic Protocols.
Cryptology ePrint Archive, Report 1998/018. https://eprint.iacr.org/

1998/018. 1998.

[CF01] Ran Canetti and Marc Fischlin. “Universally Composable Commitments”. In:

Advances in Cryptology – CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. Lecture

Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,

Germany, Aug. 2001, pp. 19–40. doi: 10.1007/3-540-44647-8_2.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. “Tracing Traitors”. In: Advances in
Cryptology – CRYPTO’94. Ed. by Yvo Desmedt. Vol. 839. Lecture Notes in

Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,

Aug. 1994, pp. 257–270. doi: 10.1007/3-540-48658-5_25.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. “The Random Oracle Method-

ology, Revisited (Preliminary Version)”. In: 30th Annual ACM Symposium on
Theory of Computing. Dallas, TX, USA: ACM Press, May 1998, pp. 209–218.

doi: 10.1145/276698.276741.

81

https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.1007/978-3-642-14623-7_13
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_5.pdf
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_5.pdf
https://doi.org/10.1007/978-3-030-57808-4_23
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1145/509907.509980
https://doi.org/10.1145/509907.509980
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/1998/018
https://eprint.iacr.org/1998/018
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1145/276698.276741

Bibliography

[Cha83] David Chaum. “Blind Signature System”. In:Advances in Cryptology – CRYPTO’83.
Ed. by David Chaum. Santa Barbara, CA, USA: Plenum Press, New York,

USA, 1983, p. 153.

[Cho+13] Seung Geol Choi et al. “Ecient, Adaptively Secure, and Composable Obliv-

ious Transfer with a Single, Global CRS”. In: PKC 2013: 16th International
Conference on Theory and Practice of Public Key Cryptography. Ed. by Kaoru

Kurosawa and Goichiro Hanaoka. Vol. 7778. Lecture Notes in Computer

Science. Nara, Japan: Springer, Heidelberg, Germany, Feb. 2013, pp. 73–88.

doi: 10.1007/978-3-642-36362-7_6.

[Dav+18] Alex Davidson et al. “Privacy Pass: Bypassing Internet Challenges Anony-

mously”. In: Proceedings on Privacy Enhancing Technologies 2018.3 (July 2018),
pp. 164–180. doi: 10.1515/popets-2018-0026.

[Dav+22] Alex Davidson et al. Oblivious Pseudorandom Functions (OPRFs) Using Prime-
Order Groups. Internet-draft draft-irtf-cfrg-voprf-09. Internet Engineering
Task Force / Internet Engineering Task Force, Feb. 8, 2022. 63 pp. url: https:

//datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-09.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Berlin Heidel-

berg: Springer-Verlag, 2002. isbn: 978-3-540-42580-9. doi: 10.1007/978-3-

662-04722-4.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. “A Veriable Random Function

with Short Proofs and Keys”. In: PKC 2005: 8th International Workshop on
Theory and Practice in Public Key Cryptography. Ed. by Serge Vaudenay.

Vol. 3386. Lecture Notes in Computer Science. Les Diablerets, Switzerland:

Springer, Heidelberg, Germany, Jan. 2005, pp. 416–431. doi: 10.1007/978-3-

540-30580-4_28.

[Faz+20] Faz-Hernandez et al. Internet Draft: Hashing to Elliptic Curves. Apr. 27, 2020.
url: https://tools.ietf.org/id/draft-irtf-cfrg-hash-to-curve-

07.html (visited on 02/04/2022).

[Fre+05] Michael J. Freedman et al. “Keyword Search and Oblivious Pseudorandom

Functions”. In: TCC 2005: 2nd Theory of Cryptography Conference. Ed. by Joe

Kilian. Vol. 3378. Lecture Notes in Computer Science. Cambridge, MA, USA:

Springer, Heidelberg, Germany, Feb. 2005, pp. 303–324. doi: 10.1007/978-

3-540-30576-7_17.

[Gam10] Erich Gamma, ed. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. 38. printing. Addison-Wesley Professional Computing Series. Boston,

Mass.: Addison-Wesley, 2010. XV, 395 S. : Ill., graph. Darst. isbn: 978-0-201-

63361-0.

[GK90] OdedGoldreich andHugoKrawczyk. “On the Composition of Zero-Knowledge

Proof Systems”. In: Automata, Languages and Programming. Ed. by Michael S.

Paterson. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,

1990, pp. 268–282. isbn: 978-3-540-47159-2. doi: 10.1007/BFb0032038.

82

https://doi.org/10.1007/978-3-642-36362-7_6
https://doi.org/10.1515/popets-2018-0026
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-09
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-09
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://tools.ietf.org/id/draft-irtf-cfrg-hash-to-curve-07.html
https://tools.ietf.org/id/draft-irtf-cfrg-hash-to-curve-07.html
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/BFb0032038

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play any Mental

Game or A Completeness Theorem for Protocols with Honest Majority”.

In: 19th Annual ACM Symposium on Theory of Computing. Ed. by Alfred

Aho. New York City, NY, USA: ACM Press, May 1987, pp. 218–229. doi:

10.1145/28395.28420.

[Hes20] Julia Hesse. “Separating Symmetric andAsymmetric Password-Authenticated

Key Exchange”. In: SCN 20: 12th International Conference on Security in
Communication Networks. Ed. by Clemente Galdi and Vladimir Kolesnikov.

Vol. 12238. Lecture Notes in Computer Science. Amal, Italy: Springer, Hei-

delberg, Germany, Sept. 2020, pp. 579–599. doi: 10.1007/978-3-030-57990-

6_29.

[Ish+03] Yuval Ishai et al. “Extending Oblivious Transfers Eciently”. In: Advances
in Cryptology – CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729. Lecture Notes in

Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,

Aug. 2003, pp. 145–161. doi: 10.1007/978-3-540-45146-4_9.

[Jar+16] Stanislaw Jarecki et al. Highly-Ecient and Composable Password-Protected
Secret Sharing (Or: How to Protect Your Bitcoin Wallet Online). Cryptology
ePrint Archive, Report 2016/144. https://eprint.iacr.org/2016/144.

2016.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. “Round-Optimal

Password-Protected Secret Sharing and T-PAKE in the Password-OnlyModel”.

In: Advances in Cryptology – ASIACRYPT 2014, Part II. Ed. by Palash Sarkar

and Tetsu Iwata. Vol. 8874. Lecture Notes in Computer Science. Kaoshiung,

Taiwan, R.O.C.: Springer, Heidelberg, Germany, Dec. 2014, pp. 233–253. doi:

10.1007/978-3-662-45608-8_13.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. “OPAQUE: An Asymmetric

PAKE Protocol Secure Against Pre-computation Attacks”. In: Advances in
Cryptology – EUROCRYPT 2018, Part III. Ed. by Jesper Buus Nielsen and

Vincent Rijmen. Vol. 10822. Lecture Notes in Computer Science. Tel Aviv,

Israel: Springer, Heidelberg, Germany, Apr. 2018, pp. 456–486. doi: 10.1007/

978-3-319-78372-7_15.

[JL09] Stanislaw Jarecki and Xiaomin Liu. “Ecient Oblivious Pseudorandom Func-

tion with Applications to Adaptive OT and Secure Computation of Set Inter-

section”. In: TCC 2009: 6th Theory of Cryptography Conference. Ed. by Omer

Reingold. Vol. 5444. Lecture Notes in Computer Science. Springer, Heidelberg,

Germany, Mar. 2009, pp. 577–594. doi: 10.1007/978-3-642-00457-5_34.

[KBR13] Sriram Keelveedhi, Mihir Bellare, and Thomas Ristenpart. “DupLESS: Server-

Aided Encryption for Deduplicated Storage”. In: USENIX Security 2013: 22nd
USENIX Security Symposium. Ed. by Samuel T. King. Washington, DC, USA:

USENIX Association, Aug. 2013, pp. 179–194.

83

https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/978-3-540-45146-4_9
https://eprint.iacr.org/2016/144
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-642-00457-5_34

Bibliography

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. “Improved OT Extension for

Transferring Short Secrets”. In: Advances in Cryptology – CRYPTO 2013,
Part II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043. Lecture Notes in

Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,

Aug. 2013, pp. 54–70. doi: 10.1007/978-3-642-40084-1_4.

[KL15] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Sec-
ond Edition. Vol. Chapman & Hall/CRC cryptography and network security.

Boca Raton: CRC Press, 2015. isbn: 978-1-4665-7027-6.

[Kol+16] Vladimir Kolesnikov et al. “Ecient BatchedOblivious PRFwith Applications

to Private Set Intersection”. In: ACM CCS 2016: 23rd Conference on Computer
and Communications Security. Ed. by Edgar R. Weippl et al. Vienna, Austria:

ACM Press, Oct. 2016, pp. 818–829. doi: 10.1145/2976749.2978381.

[KS08] Vladimir Kolesnikov and Thomas Schneider. “Improved Garbled Circuit: Free

XOR Gates and Applications”. In: ICALP 2008: 35th International Colloquium
on Automata, Languages and Programming, Part II. Ed. by Luca Aceto et al.

Vol. 5126. Lecture Notes in Computer Science. Reykjavik, Iceland: Springer,

Heidelberg, Germany, July 2008, pp. 486–498. doi: 10.1007/978-3-540-

70583-3_40.

[KsS12] Benjamin Kreuter, abhi shelat, and Chih-Hao Shen. “Billion-Gate Secure

Computation with Malicious Adversaries”. In: USENIX Security 2012: 21st
USENIX Security Symposium. Ed. by Tadayoshi Kohno. Bellevue, WA, USA:

USENIX Association, Aug. 2012, pp. 285–300.

[LP07] Yehuda Lindell and Benny Pinkas. “An Ecient Protocol for Secure Two-

Party Computation in the Presence of Malicious Adversaries”. In: Advances
in Cryptology – EUROCRYPT 2007. Ed. by Moni Naor. Vol. 4515. Lecture Notes

in Computer Science. Barcelona, Spain: Springer, Heidelberg, Germany, May

2007, pp. 52–78. doi: 10.1007/978-3-540-72540-4_4.

[Mal+04] Dahlia Malkhi et al. “Fairplay - Secure Two-Party Computation System”. In:

USENIX Security 2004: 13th USENIX Security Symposium. Ed. by Matt Blaze.

San Diego, CA, USA: USENIX Association, Aug. 2004, pp. 287–302.

[MF06] Payman Mohassel and Matthew Franklin. “Eciency Tradeos for Mali-

cious Two-Party Computation”. In: PKC 2006: 9th International Conference
on Theory and Practice of Public Key Cryptography. Ed. by Moti Yung et al.

Vol. 3958. Lecture Notes in Computer Science. New York, NY, USA: Springer,

Heidelberg, Germany, Apr. 2006, pp. 458–473. doi: 10.1007/11745853_30.

[Mos18] Michele Mosca. “Cybersecurity in an Era with Quantum Computers: Will

We Be Ready?” In: IEEE Security Privacy 16.5 (Sept. 2018), pp. 38–41. issn:

1558-4046. doi: 10.1109/MSP.2018.3761723.

84

https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/11745853_30
https://doi.org/10.1109/MSP.2018.3761723

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. “Indierentiability,

Impossibility Results on Reductions, and Applications to the Random Oracle

Methodology”. In: TCC 2004: 1st Theory of Cryptography Conference. Ed. by
Moni Naor. Vol. 2951. Lecture Notes in Computer Science. Cambridge, MA,

USA: Springer, Heidelberg, Germany, Feb. 2004, pp. 21–39. doi: 10.1007/978-

3-540-24638-1_2.

[Nie+12] Jesper Buus Nielsen et al. “A New Approach to Practical Active-Secure

Two-Party Computation”. In: Advances in Cryptology – CRYPTO 2012. Ed. by
Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in Computer

Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2012,

pp. 681–700. doi: 10.1007/978-3-642-32009-5_40.

[NP01] Moni Naor and Benny Pinkas. “Ecient Oblivious Transfer Protocols”. In:

12th Annual ACM-SIAM Symposium on Discrete Algorithms. Ed. by S. Rao

Kosaraju. Washington, DC, USA: ACM-SIAM, Jan. 2001, pp. 448–457.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. “Privacy Preserving Auc-

tions and Mechanism Design”. In: Proceedings of the 1st ACM Conference
on Electronic Commerce. EC ’99. New York, NY, USA: Association for Com-

puting Machinery, Nov. 1, 1999, pp. 129–139. isbn: 978-1-58113-176-5. doi:

10.1145/336992.337028.

[NR04] Moni Naor and Omer Reingold. “Number-theoretic constructions of ecient

pseudo-random functions”. In: Journal of the ACM 51.2 (2004), pp. 231–262.

[OPENSSL] OPENSSL. Copyright © 1999-2021 The OpenSSL Project Authors. All Rights

Reserved. url: https://www.openssl.org/ (visited on 02/04/2022).

[Pai99] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes”. In: Advances in Cryptology – EUROCRYPT’99. Ed. by
Jacques Stern. Vol. 1592. Lecture Notes in Computer Science. Prague, Czech

Republic: Springer, Heidelberg, Germany, May 1999, pp. 223–238. doi: 10.

1007/3-540-48910-X_16.

[Pin+09] Benny Pinkas et al. “Secure Two-Party Computation Is Practical”. In: Ad-
vances in Cryptology – ASIACRYPT 2009. Ed. by Mitsuru Matsui. Vol. 5912.

Lecture Notes in Computer Science. Tokyo, Japan: Springer, Heidelberg,

Germany, Dec. 2009, pp. 250–267. doi: 10.1007/978-3-642-10366-7_15.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. “A Framework for

Ecient and Composable Oblivious Transfer”. In: Advances in Cryptology –
CRYPTO 2008. Ed. by David Wagner. Vol. 5157. Lecture Notes in Computer

Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2008,

pp. 554–571. doi: 10.1007/978-3-540-85174-5_31.

[Rab05] Michael O. Rabin. How To Exchange Secrets with Oblivious Transfer. Cryptol-
ogy ePrint Archive, Report 2005/187. https://eprint.iacr.org/2005/187.

2005.

85

https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1145/336992.337028
https://www.openssl.org/
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-540-85174-5_31
https://eprint.iacr.org/2005/187

Bibliography

[RR21] Mike Rosulek and Lawrence Roy. “Three Halves Make a Whole? Beating the

Half-Gates Lower Bound for Garbled Circuits”. In: Advances in Cryptology –
CRYPTO 2021, Part I. Ed. by Tal Malkin and Chris Peikert. Vol. 12825. Lecture

Notes in Computer Science. Virtual Event: Springer, Heidelberg, Germany,

Aug. 2021, pp. 94–124. doi: 10.1007/978-3-030-84242-0_5.

[Sho94] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms

and Factoring”. In: 35th Annual Symposium on Foundations of Computer
Science. Santa Fe, NM, USA: IEEE Computer Society Press, Nov. 1994, pp. 124–

134. doi: 10.1109/SFCS.1994.365700.

[Sta19] National Institute of Standards and Technology. Recommendations for Dis-
crete Logarithm-Based Cryptography: Elliptic Curve Domain Parameters. Draft
Special Publication (SP) 800-186, Comments Due: January 29, 2020 (public

comment period is CLOSED). Washington, D.C.: U.S. Department of Com-

merce, Oct. 2019. url: https://doi.org/10.6028/NIST.SP.800-186-draft.

[Ste05] William Stein. Sage Mathematical Software System. Version 9.5 released 2022-

01-30. 2005. url: https://www.sagemath.org/.

[Ula07] Maciej Ulas. Rational Points on Certain Hyperelliptic Curves over Finite Fields.
June 11, 2007. arXiv: 0706.1448 [math]. url: http://arxiv.org/abs/0706.

1448 (visited on 01/24/2022).

[WB19] Riad S. Wahby and Dan Boneh. “Fast and simple constant-time hashing

to the BLS12-381 elliptic curve”. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems 2019.4 (2019). https://tches.iacr.org/
index.php/TCHES/article/view/8348, pp. 154–179. issn: 2569-2925. doi:

10.13154/tches.v2019.i4.154-179.

[WMK16] Xiao Wang, Alex J. Malozemo, and Jonathan Katz. EMP-Toolkit: Ecient
MultiParty Computation Toolkit. emp-toolkit. 2016. url: https://github.

com/emp-toolkit/emp-tool (visited on 07/20/2021).

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. “Authenticated Garbling

and Ecient Maliciously Secure Two-Party Computation”. In: ACM CCS
2017: 24th Conference on Computer and Communications Security. Ed. by
Bhavani M. Thuraisingham et al. Dallas, TX, USA: ACM Press, Oct. 2017,

pp. 21–37. doi: 10.1145/3133956.3134053.

[Yan+19] Rupeng Yang et al. “Ecient Lattice-Based Zero-Knowledge Arguments

with Standard Soundness: Construction and Applications”. In: Advances in
Cryptology – CRYPTO 2019, Part I. Ed. by Alexandra Boldyreva and Daniele

Micciancio. Vol. 11692. Lecture Notes in Computer Science. Santa Barbara,

CA, USA: Springer, Heidelberg, Germany, Aug. 2019, pp. 147–175. doi: 10.

1007/978-3-030-26948-7_6.

[Yao86] Andrew Chi-Chih Yao. “How to Generate and Exchange Secrets (Extended

Abstract)”. In: 27th Annual Symposium on Foundations of Computer Science.
Toronto, Ontario, Canada: IEEE Computer Society Press, Oct. 1986, pp. 162–

167. doi: 10.1109/SFCS.1986.25.

86

https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.6028/NIST.SP.800-186-draft
https://www.sagemath.org/
https://arxiv.org/abs/0706.1448
http://arxiv.org/abs/0706.1448
http://arxiv.org/abs/0706.1448
https://tches.iacr.org/index.php/TCHES/article/view/8348
https://tches.iacr.org/index.php/TCHES/article/view/8348
https://doi.org/10.13154/tches.v2019.i4.154-179
https://github.com/emp-toolkit/emp-tool
https://github.com/emp-toolkit/emp-tool
https://doi.org/10.1145/3133956.3134053
https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1109/SFCS.1986.25

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. “Two Halves Make a Whole -

Reducing Data Transfer in Garbled Circuits Using Half Gates”. In: Advances
in Cryptology – EUROCRYPT 2015, Part II. Ed. by Elisabeth Oswald and

Marc Fischlin. Vol. 9057. Lecture Notes in Computer Science. Soa, Bulgaria:

Springer, Heidelberg, Germany, Apr. 2015, pp. 220–250. doi: 10.1007/978-

3-662-46803-6_8.

87

https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8

A. Appendix

In this chapter we present additional material for our thesis.

A.1. Implementing the Hash to Curve Algorithm

The 2HashDH construction described in Section 5.2 assumes the existence of a hash

function 𝐻1 : {0, 1}∗ → G, where G is the group in which the protocol operates and thus

in which calculation of discrete logarithms is hard. In our case, it will be the group of

points on the standardized elliptic curve NIST P-256 [Sta19]. The naive approach would

be to hash the input string to a bit string of a predened length 𝑙 ∈ N and then to map

the output bit string to a point on the elliptic curve. The group G has prime order and

thus, the mapping𝑚 : {0, 1}𝑙 → G cannot be bijective for 𝑙 > 1. One could interpret the

bit string as an integer and reduce it modulo the group order. Unfortunately, this is not

sucient. The proof of security for 2HashDH modeled 𝐻1 as a random oracle. Thus, the

output distribution must be “close to” uniformly random. But the described naive approach

yields a skewed distribution.

Instead, a proper hash to curve algorithm must be employed. The Internet Engineering

Task Force (IETF) proposed several algorithms in the internet draft [Faz+20]. We depict

the algorithm recommended for the NIST P-256 curve in Figure A.1.

First, the input message𝑚𝑠𝑔 is hashed using SHA256 to two eld elements 𝑢 [0] and
𝑢 [1] of the underlying eld of the elliptic curve. Each of these eld elements is mapped to

a point on the curve, using the map_to_curve algorithm. Then the two resulting points

are added, using the addition of G. In general, one must use a clear_cofactor algorithm

to make sure that the resulting point lies in a subgroup of prime order. However, as the

curve NIST P-256 already has prime order, this process can be left out in our case. We will

describe the subroutines below.

hash_to_curve(𝑚𝑠𝑔)
𝑢 B hash_to_field(𝑚𝑠𝑔, 2)
𝑄0 B map_to_curve(𝑢 [0])
𝑄1 B map_to_curve(𝑢 [1])
𝑅 B 𝑄0 +𝑄1
𝑃 B clear_cofactor(𝑅)
return 𝑃

Figure A.1.: Hash to Curve Algorithm.

89

A. Appendix

SSWU(𝑢,𝐴, 𝐵, 𝑍)
𝑡𝑣1 B inv0(𝑍 2 · 𝑢4 + 𝑍 · 𝑢2)
𝑥1 B (−𝐵/𝐴) · (1 + 𝑡𝑣1)

if 𝑡𝑣1 ?

= 0

set 𝑥1 B 𝐵/(𝑍 · 𝐴)
𝑔𝑥1 B 𝑥13 +𝐴 · 𝑥1 + 𝐵
𝑥2 B 𝑍 · 𝑢2 · 𝑥1
𝑔𝑥2 B 𝑥23 +𝐴 · 𝑥2 + 𝐵
if is_square(𝑔𝑥1)
set 𝑥 B 𝑥1 and 𝑦 B sqrt(𝑔𝑥1)

else
set 𝑥 B 𝑥2 and 𝑦 B sqrt(𝑔𝑥2)

if sgn0(𝑢) ≠ sgn0(𝑦)
set 𝑦 B −𝑦

return (𝑥,𝑦)

Figure A.2.: Simplied Shallue-van de Woestijne-Ulas Mapping.

Hash to Field The requirement on the hash to eld algorithm is to be indierentiable

from a random oracle. This is a dierent notion than indistinguishable, see [MRH04]. The

message is expanded to a suciently long string of bits by using several calls to SHA256.

The resulting bit string is divided into smaller bit strings, one for each required eld

element. Next, the bit strings are interpreted as integers and reduced modulo the prime

order of the eld.

Map to Curve The internet draft [Faz+20] recommends to use the algorithm shown in

Figure A.2. This algorithm maps a eld element 𝑢 ∈ F to a point 𝑃 = (𝑥,𝑦) ∈ G, where 𝑃
is a point on a Weierstrass curve with equation

𝑌 2 = 𝑋 3 +𝐴𝑋 + 𝐵,

with 𝐴 ≠ 0, 𝐵 ≠ 0. The algorithm is called Simplied Shallue-van de Woestijne-Ulas
mapping. It was described by Brier et al. [Bri+10] and Ulas [Ula07] and enhanced by

Wahby and Boneh [WB19]. The value 𝑍 ∈ F is a constant that depends on the curve. The

function inv0(𝑒) calculates the multiplicative inverse of 𝑒 ∈ F or outputs 0 if 𝑒 = 0. The

function is_square(𝑒) checks if 𝑒 is a square in F. If an element 𝑒 ∈ F is square, the square
root is calculated by the function sqrt(𝑒). The function sgn0(𝑒) returns 1 if 𝑒 is positive
or 𝑒 is 0. Else it returns 0.

A.2. Advanced Encryption Standard

Advanced Encryption Standard is by far the most widely used block cipher. It was stan-

dardized by the NIST as successor of the Data Encryption Standard (DES). The algorithm

90

A.2. Advanced Encryption Standard

is also called the Rijndael algorithm and was proposed by Daemen and Rijmen [DR02].

It is a block cipher and works on blocks of size 128 bits. Though Rijndael can work with

dierent key-lengths, we will present the algorithm only for a key length of 256 bits.

The algorithm performs 14 rounds to encrypt one block of data. From a high point of

view, the algorithm proceeds in the following order. We will explain each step in detail in

the coming sections.

• Key expansion (generate round keys from original key)

• Add round key

• For round 1 to round 13

– Sub bytes

– Shift rows

– Mix columns

– Add round key

• Sub bytes

• Shift rows

• Add round key

A.2.1. Key expansion

The original key 𝑘 ∈ {0, 1}256 is used to generate round keys for the 15 Add Round Key
executions – one for each round plus the initial Add RoundKey. First, the original key
is organized in words of 32 bits𝑊0, . . . ,𝑊7. These words are the rst 8 round keys. The

following round keys are dened recursively. For 𝑖 = 8, . . . , 60, we let:

𝑊𝑖 B

𝑊𝑖−8 ⊕ 𝑆 (𝑊𝑖−1 � 8) ⊕ const(𝑖), if 𝑖 ≡ 0mod 8

𝑊𝑖−8 ⊕ 𝑆 (𝑊𝑖−1) ⊕ const(𝑖), if 𝑖 ≡ 4mod 8

𝑊𝑖−8 ⊕𝑊𝑖−1, else

The value of the constant const(𝑖) depends on 𝑖 , by · � 8 we denote rotating 8 bits to

the left and 𝑆 is a so-called S-box. This S-box substitutes the bytes of a word. We will

explain it in Appendix A.2.3.

A.2.2. Add Round Key

In this step, each byte of the current state is combined via bitwise xor with the correspond-

ing byte of the round key. Note that the round keys are of the same size as the states. This

is the only step, where the key directly inuences the result.

91

A. Appendix

A.2.3. Sub Bytes

This step consist of replacing every byte by another byte, using the so-called S-box. This

S-box describes a substitution and ensures that the algorithm is non-linear. First, the

respective byte is interpreted as an element 𝑥 ∈ F
2
8 = F2 [𝑋]/(𝑋 8 + 𝑋 4 + 𝑋 3 + 𝑋 + 1). If

𝑥 ≠ 0, replace 𝑥 by 𝑥′ B 𝑥−1. Second, an ane transformation is applied to get the output

𝑦 = 𝐴𝑥 + 𝑏, for constants 𝐴 ∈ {0, 1}8×8, 𝑏 ∈ {0, 1}8, see [DR02] for the exact values of 𝐴
and 𝑏.

A.2.4. Shi Rows

For this and the next step, the bytes of the current state are arranged in a 4 × 4 matrix.

Then, the each row of the matrix is shifted by a certain oset. The rst row is not shifted.

The second row is shifted by one column to the left. The third row is shifted by two

columns to the left and nally, the fourth row is shifted by three columns to the left.

A.2.5. Mix Columns

This step is performed in all rounds, except the nal round. Again, we arrange the

bytes of the current state as a 4 × 4 matrix. A column is now interpreted as a vector

(𝑎0, 𝑎1, 𝑎2, 𝑎3)> ∈ F4
2
8
and multiplied by a constant matrix as follows:

©«
𝑏0
𝑏1
𝑏2
𝑏3

ª®®®¬ =

©«
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

ª®®®¬ ·
©«
𝑎0
𝑎1
𝑎2
𝑎3

ª®®®¬
A.3. Naor-Pinkas-OT

In this section we describe the OT protocol introduced by Naor and Pinkas [NP01]. Let

G = 〈𝑔〉 be a group of prime order 𝑞 for which the Computational Die-Hellman (CDH)

assumption holds. Let 𝐻 : G → {0, 1}_ be a random oracle. In the protocol, a sender

𝑆 interacts with a receiver 𝑅. The sender gets as input two messages 𝑀0, 𝑀1 ∈ {0, 1}_ .
The receiver gets as input 𝜎 ∈ {0, 1} and outputs𝑀𝜎 ∈ {0, 1}_ . The protocol proceeds as
follows:

• Initially, 𝑆 chooses a random value 𝐶 ∈ G (it is important that 𝑅 does not know the

discrete logarithm of 𝐶).

• 𝑅 chooses 𝑘
$← Z∗𝑞 uniformly at random and sets pk𝜎 B 𝑔𝑘 and pk

1−𝜎 B 𝐶 · (pk𝜎)−1.
𝑅 sends pk

0
to 𝑆 .

• 𝑆 calculates pk
1
= 𝐶 · (pk

1
)−1. 𝑆 chooses 𝑟0, 𝑟1

$← Z∗𝑞 uniformly at random. 𝑆 sets

𝐸0 = (𝑔𝑟0, 𝐻 (pk𝑟0
0
) ⊕ 𝑀0) and 𝐸1 = (𝑔𝑟1, 𝐻 (pk𝑟1

1
) ⊕ 𝑀1). 𝑆 sends (𝐸0, 𝐸1) to 𝑅.

• 𝑅 computes𝑀𝜎 = 𝐻 ((𝐸𝜎 [0])𝑘) ⊕ 𝐸𝜎 [1], where 𝐸𝜎 denotes the rst component of 𝐸𝜎
and 𝐸𝜎 [1] denotes the second component.

92

A.4. Actively Secure Garbled Circuits

Security. Intuitively, 𝑅’s privacy comes from the fact that pk
0
is independent of 𝜎 . 𝑆’s

privacy comes from the fact that if 𝑅 could calculate the discrete logarithm of both pk
0

and pk
1
, 𝑅 could also calculate the discrete logarithm of 𝐶 . As 𝐻 is a random oracle, an

adversary that would decrypt both𝑀0 and𝑀1 would need to calculate pk𝑟0
0
and pk𝑟1

1
. But

as CDH holds in the group, an adversary has at most negligible advantage to calculate

both of the two values, as (𝑔,𝑔𝑟𝑏 , pk𝑏, pk
𝑟𝑏
𝑏
) is a CDH-tuple if the adversary does not know

the discrete logarithm of pk𝑏 .

A.4. Actively Secure Garbled Circuits

Yao’s garbled circuits as described above are only secure if the garbling party behaves

honest-but-curious, i.e. passive adversaries. This is evident as a cheating garbler could

just garble a dierent circuit than the operator expects. Think for instance about a circuit

that outputs the evaluator’s input. As the garbling scheme oers privacy, the evaluating

party cannot know from 𝑌 = Ev(𝐹, 𝑋) that the actually encoded output 𝑌 is its own input

(without having the decoding information 𝑑).

Therefore, the evaluator must ensure that the garbled circuit he receives is indeed the

circuit he expects, e.g., the one specied by the protocol.

A.4.1. Cut-and-Choose

The one of the rst techniques in the literature that ensured the garbling of the right

circuit was “cut-and-choose”. This technique was used before in other contexts and was

rst applied to garbled circuits by Lindell and Pinkas [LP07]. The core idea is the following:

The garbler does not only garble a single version garbling of the circuit but it creates many

garblings of the same circuit, where each garbling is calculated with fresh randomness.

When the circuits are sent to the evaluator the evaluator can demand from the operator to

“open” certain gates and thus show, that the right gates was garbled. If the garbler fails to

answer one of the evaluator’s opening requests the evaluator aborts. If the garbler behaves

honestly he can answer all requests of the evaluator. On the other hand, if the garbler

altered the circuit there will be a negligibly small probability that the garbler can answer

all request correctly.

However the big downside of this approach is the eciency. To get statistical security

in the security parameter _, the garbler has to garble O(_) circuits.

A.4.2. Authenticated Garbling

Wang, Ranellucci, and Katz [WRK17] introduced a method called authenticated garbling
to ensure security of Yao’s garbled circuits against malicious adversaries. The main idea

is to use the information theoretic Message Authentication Code (MAC) from [Nie+12].

This MAC allows two parties A and B to authenticate a bit 𝑏 ∈ {0, 1}. A holds a global
key ΔA ∈ {0, 1}_ which was chosen uniformly at random. This global key will be the

same for all MACs generated by A. To authenticate a bit 𝑏 held by B, A choses a local key

93

A. Appendix

Functionality FPre

• Upon receiving ΔA from A and init from B, and assuming no values ΔA,ΔB are

currently stored, choose uniform ΔB
$← {0, 1}_ and store 〈ΔA,ΔB〉. Send ΔB to B.

• Upon receiving (random, 𝑟 , 𝑀 [𝑟], 𝐾 [𝑠]) from A and random from B, sample uni-

form 𝑠 ∈ {0, 1} and set 𝐾 [𝑟] B 𝑀 [𝑟] ⊕ 𝑟ΔB and 𝑀 [𝑠] B 𝐾 [𝑠] ⊕ 𝑠ΔA. Send

(𝑠, 𝑀 [𝑠], 𝐾 [𝑟]) to B.

• Upon receiving (AND, (𝑟1, 𝑀 [𝑟1], 𝐾 [𝑠1]), (𝑟2, 𝑀 [𝑟2], 𝐾 [𝑠2]), (𝑟3, 𝑀 [𝑟3], 𝐾 [𝑠3]))
from A and (AND, (𝑠1, 𝑀 [𝑠1], 𝐾 [𝑟1]), (𝑠2, 𝑀 [𝑠2], 𝐾 [𝑟2])) from B, verify that

𝑀 [𝑟𝑖] = 𝐾 [𝑟𝑖] ⊕ 𝑟𝑖ΔB and that 𝑀 [𝑠𝑖] = 𝐾 [𝑠𝑖] ⊕ 𝑠𝑖ΔA, for 𝑖 ∈ {1, 2}. Send cheat to
B if one of the checks fails. Otherwise, set 𝑠3 B 𝑟3 ⊕ ((𝑟1 ⊕ 𝑠1) ∧ (𝑟2 ⊕ 𝑠2)), set
𝐾 [𝑟3] B 𝑀 [𝑟3] ⊕ 𝑟3ΔB, and set𝑀 [𝑠3] B 𝐾 [𝑠3] ⊕ 𝑠3ΔA. Send (𝑠3, 𝑀 [𝑠3], 𝐾 [𝑟3]) to
B.

Figure A.3.: The Ideal Functionality FPre From [WRK17].

𝐾 [𝑏] ∈ {0, 1}_ and we let the MAC be

𝑀 [𝑏] B 𝐾 [𝑏] ⊕ 𝑏ΔA.

Let’s ignore for a moment how the two parties calculate (or exchange) these values securely.

A holds the local and the global key (𝐾 [𝑏],ΔA) and B holds the bit value 𝑏 and the MAC

𝑀 [𝑏]. If B maliciously wanted to claim a dierent bit 𝑏∗ ≠ 𝑏, he would need to guess

the local key 𝐾 [𝑏], which is only possible with negligible probability as 𝐾 [𝑏] is chosen
uniformly at random for every new bit 𝑏. We will adher to the notation of [WRK17] and

write [𝑏]B to denote the situation where B holds (𝑏,𝑀 [𝑏] = 𝐾 [𝑏] ⊕ 𝑏ΔA) and A holds

𝐾 [𝑏] (and ΔA). Symmetrically we write [𝑏]𝐴 if A holds (𝑏,𝑀 [𝑏] = 𝐾 [𝑏] ⊕ 𝑏ΔB) and B
holds a local key 𝐾 [𝑏] and global key ΔB.

Next, we note that the above scheme is XOR-homomorphic. Concretely, if e.g. A
holds two authenticated bits [𝑏]A and [𝑐]A for 𝑏, 𝑐 ∈ {0, 1}, then A can locally compute

(𝑏 ⊕ 𝑐, 𝑀 [𝑏 ⊕ 𝑐] = 𝑀 [𝑏] ⊕ 𝑀 [𝑐]) and B can locally compute 𝐾 [𝑏 ⊕ 𝑐] = 𝐾 [𝑏] ⊕ 𝐾 [𝑐] to
get [𝑏 ⊕ 𝑐]A. This XOR-homomorphism allows to combine the MAC with techniques from

secret sharing.

Roughly speaking, these MACs will be used to authenticate the garbling of each gate of

the garbled circuit.

Wang, Ranellucci, and Katz [WRK17] use the ideal functionality FPre, depicted in Fig-

ure A.3 to realize their protocol. This ideal functionality “encapsulates” the preprocessing

phase for their protocol. After exchanging the MACs and the randomness for each gate,

the protocol can be executed. We omit the details of the protocol description here.

A.5. Acronyms

PRG Pseudo-Random Generator

94

A.5. Acronyms

DES Data Encryption Standard

VOPRF Veriable Oblivious Pseudo-Random Function

OPRF Oblivious Pseudo-Random Function

PRF Pseudo-Random Function

UC Universal Composability

ZK Zero-Knowledge

MPC Multi-Party Computation

SFE Secure Function Evaluation

OT Oblivious Transfer

PAKE Password Authenticated Key Exchange

aPAKE asymmetric Password Authenticated Key Exchange

LWE Learning With Errors

DDH Decisional Die-Hellman Assumption

CDH Computational Die-Hellman

NIST National Institute of Standards and Technology

RSA Rivest Shamir Adleman

PKI Public-Key Infrastructure

CRS Common Reference String

PPT Probabilistic Polynomial Time

AES Advanced Encryption Standard

ROM Ranom Oracle Model

QROM Quantum-accessible Random Oracle Model

AKE Authenticated Key Exchange

DOS Denial of Service

PRP Pseudo-Random Permutation

MAC Message Authentication Code

IETF Internet Engineering Task Force

95

A. Appendix

LAN Local Area Network

WAN Wide Area Network

SIS Short Integer Solution

TLS Transport Layer Security

HTTPS Hypertext Transfer Protocol Secure

DLOG Discrete Logarithm

𝑞-DHI Decisional 𝑞-Die-Hellman Inversion Problem

96

	Abstract
	Zusammenfassung
	Introduction
	Contribution
	Related Work
	Diffie-Hellman-Based OPRF
	MPC-Based OPRF
	OPRF from Post-Quantum Assumptions

	Outline

	Preliminary
	Notation
	Pseudo-Random Functions
	Commitment Schemes
	Universal Composability
	Oblivious Transfer
	Garbled Circuits
	Boolean Circuits
	Yao's Garbled Circuits
	Garbling Schemes
	Free-Xor
	Half-Gates

	Security of OPRF
	Simulation-Based Security
	Universally Composable OPRFs

	Construction
	Adversarial Model
	Security Notion
	The main construction
	Some Remarks on the Construction
	Proving Security

	Verifiability
	Adapting the Construction
	Proving Verifiability

	Comparison of Concrete Efficiency
	Garbled-Circuit-Based OPRF
	Implementing the Garbling Scheme
	Implementing the Protocol Parties

	The 2HashDH Protocol
	Lattice-based OPRF
	Benchmarks
	Running Time
	Network Traffic

	Conclusion
	Bibliography
	Appendix
	Implementing the Hash to Curve Algorithm
	Advanced Encryption Standard
	Key expansion
	Add Round Key
	Sub Bytes
	Shift Rows
	Mix Columns

	Naor-Pinkas-OT
	Actively Secure Garbled Circuits
	Cut-and-Choose
	Authenticated Garbling

	Acronyms

