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Abstract Bulky waste contains valuable raw materials, espe-
cially wood, which accounts for around 50% of the volume. Sort-
ing is very time-consuming in view of the volume and variety of
bulky waste and is often still done manually. Therefore, only
about half of the available wood is used as a material, while the
rest is burned with unsorted waste. In order to improve the ma-
terial recycling of wood from bulky waste, the project ASKIVIT
aims to develop a solution for the automated sorting of bulky
waste. For that, a multi-sensor approach is proposed including:
(i) Conventional imaging in the visible spectral range; (ii) Near-
infrared hyperspectral imaging; (iii) Active heat flow thermogra-
phy; (iv) Terahertz imaging. This paper presents a demonstrator
used to obtain images with the aforementioned sensors. Differ-
ences between the imaging systems are discussed and promis-
ing results on common problems like painted materials or black
plastic are presented. Besides that, pre-examinations show the
importance of near-infrared hyperspectral imaging for the char-
acterization of bulky waste.
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1 Introduction

The increased use of wood is a key to achieve national and interna-
tional goals in the fight against climate change and minimize the CO2
footprint [1]. In this situation, the use of waste wood as a substitute for
fresh wood is an interesting way to reduce the scarcity of wood. Waste
wood for use as a material has meanwhile become a scarce commod-
ity itself in Germany [2]. This is also because, according to national
legislation, it can only be reused as raw material if it is free of wood
preservatives and other contaminants such as PVC. The development
of new sources for ”clean” waste wood is therefore gaining importance.
Although half of the bulky waste consists of wood, only about half of
it has been used as a recycling material so far [3]. Reasons for that are
the difficult separation of impurities from wood and a huge variety of
materials.

Established methods for sorting bulky waste are manual picking and
automatic waste sorting based on heavily shredded materials, with the
cost of shredding worsening the ecological balance. A concept similar
to the system proposed here was presented in [4], but for the sorting of
building rubble that is not as homogeneous as bulky waste.

Thus, the project ASKIVIT (Altholzgewinnung aus Sperrmüll durch
künstliche Intelligenz und Bildverarbeitung im VIS-, IR- und Terahertz-
Bereich) aims at developing a solution for the automated sorting of
bulky waste. The goal is to extract wood, wood-based materials, and
non-ferrous metals based on a multi-sensor approach combined with
artificial intelligence. Conventional RGB, near-infrared hyperspectral,
and thermographic cameras, as well as a developed terahertz imaging
system, are used in this work. In the first step, the different sensors
are described and the fusion approach based on a convolutional neural
network (CNN) is motivated. Preliminary investigations are carried
out to determine the potential of near-infrared hyperspectral material
characterization using machine learning. Moreover, the benefit of a
multi-sensor approach is discussed and verified with sample images.
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2 Material and methods

In this section, the different imaging systems are described and the
fusion approach based on a CNN is motivated.

2.1 Visible imaging

Humans can characterize material from bulky waste very accurately
only by its appearance in the visible spectral range. Therefore, images
from conventional RGB cameras, that imitate the human eye, include
highly relevant information. Furthermore, RGB cameras are available
in high resolution and often by one order of magnitude more cost-
effective compared to other sensors used for material characterization
[5].

In the course of this study, a prism-based RGB line scan camera (SW-
4000T-10GE) was chosen. The built-in prism of the camera splits in-
coming light onto three spatial separated chips, each measuring one
color channel. The frame rate was set to 625 Hz. Halogen lamps were
used as a light source for visible as well as near-infrared radiation. The
later was utilized for the near-infrared imaging system.

By moving the samples on a conveyor belt, images with two spatial
axes were constructed using the push-broom method. The complete
setup including all imaging systems presented in this paper can be
seen in Figure 1.

2.2 Near-infrared hyperspectral imaging

Near infrared (NIR) hyperspectral imaging is another sensor principle
that is used in this work to characterize bulky waste. It is particularly
suitable for the detection of organic products and thus also for the iden-
tification of wood. Whereas color cameras can only view the superficial
appearance, spectral information provided by NIR hyperspectral cam-
eras shows the physical-chemical composition of the material.

As a measuring device, the camera FX17e from SPECIM is chosen.
The camera collects hyperspectral images with 224 bands ranging from
900 nm to 1700 nm. The frame rate was chosen to be 104.17 Hz, such
that the resolution was equal in both spatial axes of the image.
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Figure 1: Measurement setup including conventional RGB, NIR hyperspectral, terahertz,
and thermography imaging.

2.3 Active heat flow thermography

Like the recording of RGB and NIR hyperspectral images, thermogra-
phy is a camera-based sensor technology. In contrast to the first two
methods mentioned, the samples in thermography do not have to be
illuminated during the measurement, but are heated in advance. A
detector that is sensitive in the thermal infrared range (wavelength:
approx. 3 µm to 14 mm) records the thermal radiation that the samples
emit on the basis of Planck’s law. The radiation intensity depends on
the temperature of the samples and their emissivity. In order to be able
to make statements about material parameters beyond the emissivity,
the samples are heated with infrared radiators as they were transported
by the conveyor belt.

The infrared camera is a Geminis 327k ML from IRCAM (Erlangen,
Germany) having a dual-band HgCdTe detector (the 1st sensitivity
band: 3.7 – 5 µm; the 2nd sensitivity band: 8 – 9.4 µm) with 640 x 512
pixel. Only the 2nd band was used in order to avoid parasitic sig-
nals from direct irradiation by the infrared heater into the camera. A
frame rate of 100 Hz and a 25 mm lens were used. The camera was
arranged in such a way that the width of the conveyor belt filled the
image along the long edge. The distance between the camera and the
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heater amounted to 0.6 m.
The infrared heater consists of two Carbon Twin-Tube Emitters from

Heraeus Noblelight having a length of 0.7 m and a power of 6000 W/m
each. The peak wavelength of their radiation spectrum was 2 µm. The
heaters were placed about 0.28 m above the conveyor belt. Given the
velocity of the conveyor belt of 0.108 m/s, the energy per area deposited
in the samples is

EA =
6000 W

m
0.108 m

s
= 55.56

kJ
m2 . (1)

The increase in temperature on the sample surface as a result of heat-
ing by the radiant heater depends on the underlying thermophysical
parameters. Therefore, structured samples can obtain a characteristic
temperature pattern that allows a look underneath the sample surface.

2.4 Terahertz imaging

Terahertz radiation is electromagnetic radiation between far infrared
and millimeter waves. Due to the capability of terahertz waves to pen-
etrate through most of the dielectric materials, such as plastics, paper,
foams, or upholstery, the differences in the refractive index may be ob-
served in 3D [6]. Opposed to X-ray radiation, terahertz is non-ionizing.
Therefore, it enables safe 3D imaging on complex structures, which are
common for bulky waste.

For this application, a terahertz camera was developed as a line scan
camera with 12 emitters and 12 receivers, which operate in the W-band
(75 – 110 GHz or approx. 2.7 – 4 mm wavelength). A synthetic aperture
radar (SAR) design for the terahertz imaging system was chosen [7].
The received signal (amplitude and phase) depends on the refractive
index and spatial position of the sample structure. The aim of this
system is to provide additional 3D information on overlapping and
complex features of pre-crashed bulky waste.

144 effective aperture elements (12 emitter and 12 receiver combina-
tions) are scanned for all frequencies Nf that are used to scan the scene
within the W-band. The data acquisition algorithm obtains measured
reference, receiver, and encoder signals. The data acquisition time as
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Figure 2: Terahertz measurement on a sample with various materials (left), and two re-
constructed terahertz images at various distances to the array to obtain reflec-
tion and shadow images, respectively.

well as the resolution depends on the number of frequency points Nf
and the covered bandwidth, respectively. Each set of complex Nf x144
data has to be reconstructed in a defined reconstruction volume in or-
der to obtain a 3D image, which can be later observed at each recon-
struction plane (referenced as a distance to the imaging array).

The used reconstruction algorithm is based on matched filter ap-
proach [8]. For the given sample shown in the photograph on the left
of Figure 2, the reconstruction volume of 80 x 40 x 10 cm was chosen
with corresponding 800 x 400 x 50 voxels. The reconstruction was made
from 134 line scans, i.e. on average, one picture was taken every 6 mm
with a speed of 0.30 m/s.

The reconstructed images show good results from the reflection of
the objects (middle) as well as from the shadow image (right). The
metal reflects most of the radiation, whereas shaped metals show
prominent shapes due to scattering from the surfaces which are not
parallel to the scanner imaging plane. A piece of a CD (as well as
metallic markers) shows the strongest reflection due to conductive ma-
terials and a parallel face toward the scanner. Wood and cardboard
reflect part of the radiation. The chosen rubber mat has a stripped
structure, which reflects a big part of terahertz radiation giving a good
contrast for shadow images of the wood. Upholstery and plastics are
the most transparent in the terahertz range, therefore only tiny changes
in the image can be recognized. This is important for the characteriza-
tion of material composites, as terahertz radiation enables the detection
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of wood and metal underneath upholstery or plastic.
The terahertz images in Chapter 3.2 were obtained using 0.108 m/s

conveyor belt speed. The line scans were obtained every
6 ms. The chosen reconstruction volume was 80 x 55 x 18 cm with
1600 x 550 x 80 voxels in x, y, z directions correspondingly.

2.5 Sensor data fusion approach

The characterization of materials can be solved by a broad variety of
classification methods, including classical and machine learning meth-
ods [9, 10]. Senecal et al. showed that using a CNN optimized for
multispectral data can result in very high classification accuracy if the
data set is large enough [11]. However, multispectral datasets are often
very limited in size. Therefore, it is a key point in our project to en-
able fast data recording to capture a dataset sufficient in size. This is
done by using the setup described in the previous sections. The benefit
of CNN architectures is that they can use much of the spatial and all
spectral information at the same time, and therefore make use of the
spectral differences between the materials early. The relevant spatial
and spectral features are learned by the network automatically and si-
multaneously, which is hard to reproduce by a classical feature design.

To combine the information of the proposed sensor modalities, a fu-
sion technique together with a registration is necessary. In this way,
the strength of each imaging system can be used to achieve a classifica-
tion result better than using one technology individually. Lately, early
fusion methods based on deep learning e.g. CNNs show very promis-
ing results on multispectral datasets like EuroSAT [12]. In early fusion,
data from various sensors is registered and merged before classifica-
tion [13].

In our project, the registration is done by using a marker-based regis-
tration approach. For the registration of RGB, NIR, and thermographic
cameras, AruCo markers [14] are introduced supported by a similar
marker for the Terahertz spectrum. With this marker-based approach,
the image registration is robust and accurate, even if sensors show sig-
nificantly different intensities on the same object. After registration, the
preprocessed data from all sensors will be given into a CNN, which is
currently under development. The CNN will implicitly perform an
early fusion and classify the material perceived by the sensors.

29



L. Roming et al.

3 Results and discussion

After describing the setup, preliminary results of NIR hyperspectral
imaging will be presented. Moreover, recordings from all imaging sys-
tems will be shown and discussed.

3.1 Preliminary results of NIR hyperspectral imaging

Hyperspectral image analysis is state of the art for material characteri-
zation used for sorting applications. Therefore, pre-examinations have
been carried out based on NIR hyperspectral data combined with a
common classifier, namely partial least squares discriminant analysis
(PLS-DA). The samples to be analyzed are different objects appearing
in bulky waste. The objects were divided into six classes, namely wood,
upholstery, rubber, plastic, metal, and ceramic. Each class can include
slightly different types of material. The class wood for example in-
cluded particle board, old varnished window scantlings, high-density
fiberboard, and plywood.

Hyperspectral images of the samples were acquired using the FX17e
camera and the setup described in section 2.2. Eight images of differ-
ent sample collections were chosen for training from which 105 pixels
were randomly selected. From another eight images, 104 pixels were
extracted for testing. A single pixel contains 224 values, each repre-
senting the reflectance of the material at a different wavelength. As a
preprocessing step, standard normal variate (SNV) correction was per-
formed [15]. Additionally, outliers that differ more than five standard
deviations from the mean have been removed from training data in
order to improve the classification model.

In the spectral plot of Figure 3 the intensity over wavelengths for
different materials is visualized. The intensity values can be negative
due to SNV correction. Several spectra are drawn on top of each other
for each class, making the variance of the data visible. It can be seen
that the spectral data varies very little within each class and, by looking
at the course of the spectra, the classes are visually distinguishable
from each other.

The classification performance of the PLS-DA model is evaluated on
test data with a confusion matrix (on the right of Figure 3). The overall
accuracy on test data is 0.64. In the confusion matrix, it can be seen that
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Figure 3: Measured spectra (left) of different materials after SNV correction and outlier
removal. And confusion matrix (right) of PLS-DA classifier trained and tested
on NIR hyperspectral data.

plastic is falsely classified as upholstery in most cases. A reason for that
might be that the two materials are not linearly separable. However, the
material wood (including particle board, varnished wood, fiberboard,
and plywood) is classified correctly with a probability of 0.79. This
confirms the assumption, that NIR hyperspectral imaging gives highly
relevant information for detecting waste wood in bulky waste.

3.2 Comparison of sensor modalities

After showing the potential of hyperspectral material characterization
in the near-infrared range, this section will focus on the comparison of
the presented imaging systems. Therefore, four sample quantities were
chosen and images were recorded using the setup shown in Figure 1.
The results can be seen in Figure 4.

Sample 1 contains old varnished window scantlings, and Sample 2
are pieces of red and black rubber mats. Samples 3 and 4 are wood
chips partially covered with foam and metal pieces, correspondingly.
RGB and NIR hyperspectral data contain multiple channels, each repre-
senting a different wavelength. The corresponding images are in color
or rather false color in the case of NIR hyperspectral data (selected
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Figure 4: Various samples acquired by various sensor modalities. Each row shows a cor-
responding imaging technology from top to bottom: RGB, NIR hyperspectral,
thermographic, and terahertz imaging.
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wavelengths are 1100 nm, 1300 nm, and 1500 nm). In the terahertz pic-
tures, the given number defines the visualized plane from the whole
reconstruction volume by the distance of the plane to the imaging ar-
ray. The distance is chosen such that the features relevant to the un-
derlying comparison are visible. The sample carrier is approximately
680 mm away from the terahertz imaging array.

The RGB image of Sample 1 shows the paint color and surface but
does not reveal the wood structure. The same applies to the NIR
pseudo-RGB image, but it is less affected by the paint. The thermo-
graphic and terahertz images show the wood texture with its charac-
teristic annual ring pattern under the paint so that this sample can
be clearly identified as wood with help of thermography or terahertz.
The terahertz image shows the upper plane that is 599 mm below the
imaging array, which leads to a sample thickness of approx. 8 cm.

Sample 2 shows a common problem of sorting black polymers. It is
not readily recycled in conventional plastic sorting facilities due to the
high absorption of black pigments to radiation in NIR or visible wave-
length range [16]. The red rubber chips in Figure 4 are clearly visible
in the RGB image, while the black ones are hardly recognizable on the
background of the black sample carrier. This also applies to the NIR
pseudo-RGB image. In thermography, however, red and black rubber
both have a significantly improved sensitivity and can therefore be eas-
ily distinguished from the background. The terahertz image contains
information about the height of the visible mats encoded in the recon-
structed volume. The image is blurred out due to the scattering of the
texture of the black mats.

Samples 3 and 4 show foam and metal on wood chips, respectively.
NIR pseudo-RGB images are again less influenced by the paint color
of the material in comparison to the RGB images. Foam and metal
are distinguishable from wood chips in almost all images. Terahertz
images show strong reflection from metals, whereas wood chips absorb
most of the radiation. In thermography, metal appears darker than
wood because it absorbs the radiation from the radiant heater less and
has a higher heat capacity and lower emissivity than wood. In contrast
to that, foam appears very bright due to its low thermal capacity.
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4 Conclusions and outlook

A novel approach for bulky waste material characterization has been
presented. Different sensor modalities including visible, NIR hyper-
spectral, thermography, and terahertz imaging are exploited to achieve
a better classification result than using a single technology individu-
ally. Regarding terahertz imaging, a synthetic aperture radar system
was developed, which is specifically designed for sorting applications.
The system aims to provide additional 3D information on overlapping
and complex features of pre-crashed bulky waste.

All four imaging systems were brought together to build a demon-
strator acquiring data using RGB, NIR, thermography, and terahertz
imaging techniques in one attempt. The recorded and post-processed
images showed promising results on common problems like painted
materials or black plastic. The presented thermography and terahertz
images reveal the wood texture with its characteristic annual ring pat-
tern under the paint. Besides that, thermography showed good sensi-
tivity for plastic regardless of color.

Pre-examinations on NIR hyperspectral data have shown that waste
wood is distinguishable from plastic and upholstery. Furthermore, us-
ing a PLS-DA six different materials from the used set of bulky waste
samples were classified with an accuracy of 0.64.

Whereas the PLS-DA estimated the class of each pixel separately, a
CNN is able to make use of the spatial and spectral information at the
same time. Therefore, a CNN performing a patch-wise classification on
all sensor modalities will be part of future work. With an even larger
dataset, the goal is to reach a high classification accuracy on a huge
variety of different materials from bulky waste. With thermographic
and terahertz imaging it might be even possible to look underneath
overlapping material.
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