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Abstract
We present exact, closed-form expressions for the complete RTM correction and the harmonic correction to disturbing
potential, gravity disturbance, gravity anomaly, and height anomaly. They need to be applied in quasi-geoid modelling
whenever data points are buried inside the masses after residual terrain model (RTM) reduction and analytically downward-
continued functionals of the disturbing potential at the original locations of the data points are required. Compared to
recent work of the authors published in this journal, no Taylor series enter the expressions and numerical instabilities of the
harmonic downward continuation from the RTM surface to the Earth’s surface are avoided as are inaccuracies in the free-air
upward continuation from the Earth’s surface to the RTM surface caused by a lack of precise information about higher-order
derivatives of the disturbing potential. The new expressions can easily be implemented in any existing RTM software package
and do not require additional computational resources. For two test areas located in western Norway and the Auvergne in
France, we compute the complete RTM correction and the harmonic correction to the afore-mentioned functionals of the
disturbing potential. Overall, all harmonic corrections are non-negative with maximum values of 1.54m2/s2, 263.0µGal,
263.9µGal, and 15.7m (Norway) and 1.55m2/s2, 263.3µGal, 263.3µGal, and 15.8cm (Auvergne) for disturbing potential,
gravity disturbance, gravity anomaly, and height anomaly, respectively. Themedians are 0.02m2/s2, 33.6µGal, 33.7µGal, and
0.3cm (Norway) and 0.01m2/s2, 19.2µGal, 19.2µGal, and 0.1cm (Auvergne).We also show that the nth Taylor polynomials
used in the recent work of the authors published in this journal may have large remainders depending on the topography in
the vicinity of the evaluation point no matter how n is chosen. Finally, we show that the commonly used expression for the
harmonic correction to gravity anomaly introduced in 1981 is almost exact, though it was derived along a completely different
line of reasoning. The errors do not exceed 49µGal in both test areas. Moreover, the errors have a negligible impact on the
computed height anomalies in one-centimetre quasi-geoid modelling, as the mean error does not exceed a few µGal in both
test areas.
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1 Introduction

The residual terrain model (RTM) reduction was introduced
in Forsberg and Tscherning (1981) as a method to deal
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with topography in gravity field modelling. Basically, the
RTM reduction aims at removing from the data the contribu-
tion of short-wavelengths topographic signals relative with
respect to a smooth mean elevation surface, here referred to
as the RTM surface. In this way, unwanted high-frequency
topographic signals present in the data are largely removed
depending among others on the quality and resolution of the
topographic information (i.e. digital elevation model and/or
bathymetry model, mass density model). After application
of the RTM reduction, stations above the RTM surface are
essentially in free-air while stations below the RTM surface
are buried inside themasses. The latter implies that the RTM-
reduced geopotential functionals at stations located below the
RTMsurface represent values inside themasses. Before these
RTM-reduced internal geopotential functionals are used in
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quasi-geoidmodelling, Forsberg and Tscherning (1981) sug-
gested to apply a correction, referred to as the harmonic
correction,which provides analytically downward-continued
functionals at the original location of the data points.

The expression for the harmonic correction to grav-
ity anomaly suggested in Forsberg and Tscherning (1981),
though very simple to evaluate, was known to be an
approximation, which at that time was sufficient as no high-
resolution, precise digital elevation models were available.
Forsberg and Tscherning (1981) did not derive expressions
for the harmonic correction to other functionals of the dis-
turbing potential. However, as far as disturbing potential and
height anomaly are concerned, they argued that the corre-
sponding harmonic corrections are likely very small andmay
be neglected in most cases. Since then, many attempts were
made to address the problem of the harmonic correction (cf.
Klees et al. 2022 for a review).

Recently, Klees et al. (2022) provided for the first time
expressions for the harmonic correction to disturbing poten-
tial and height anomaly and improved expressions for the
radial derivative of the disturbing potential. Using topo-
graphic data over a part of western Norway and the Auvergne
in France, they computed and analysed the harmonic correc-
tion to these functionals. In fact, their expressions for the
harmonic correction are also approximations, as they were
based on nth Taylor polynomials. Based on an estimated
upper bound of the remainders of the nth Taylor polynomi-
als, ibid. suggested the choice n = 2 for disturbing potential
and height anomaly and n = 1 for the radial derivative of
the disturbing potential. Using the new expressions, they
showed that in areas of strong topographic variations (e.g.
around the Norwegian fjords), the differences with respect
to the harmonic correction to gravity anomaly inForsberg and
Tscherning (1981) can be as large as 100mGal. Moreover,
as these differences do not average out over the data area,
they may introduce significant long-wavelength errors in the
computed quasi-geoid model. They also showed that the har-
monic correction to disturbing potential and height anomaly
only need to be applied in areas of strong topographic varia-
tions with peak values of 1m2/s2 (disturbing potential) and
0.1m (height anomaly) in the Norway and Auvergne test
areas, whereas in the flat and hilly parts of these areas, they
are mostly below 0.1m2/s2 (disturbing potential) and 0.01m
(height anomaly).

The approach suggested in Klees et al. (2022) allows to
compute the complete RTM correction (i.e. the sum of RTM
reduction and harmonic correction) to any linear functional
of the disturbing potential. It involves four steps (cf. Fig. 1):

1. Masses inside the volume �+ are removed, and the func-
tional is corrected for the effect this has.

2. The functional obtained in step 1 is upward-continued in
free air from its original location on the Earth’s surface to
the RTM surface along the ellipsoidal normal.

3. Masses are added to the volume �− to obtain a constant
mass density in �−, and the functional from step 2 is
corrected accordingly.

4. The functional obtained in step 3 is downward-continued
analytically from the RTM surface to the original location
on the Earth’s surface along the ellipsoidal normal pro-
viding an analytically downward-continued functional at
the original location. This functional is ready to be used
in quasi-geoid modelling.

Klees et al. (2022) used truncated Taylor series for the free-
air upward continuation of step 2 and the analytic downward
continuation of step 4, respectively. For each remainder, they
provided upper bounds based on the exterior gravity field of
a homogeneous mean Earth sphere. However, we will show
in Appendix B using a simple example that the upper bounds
provided in Klees et al. (2022) are not really upper bounds
everywhere. In particular, in deep, narrow valleys, they may
underestimate the magnitude of the remainders significantly.
Consequently, some results and conclusions presented in
Klees et al. (2022) became wrong and need to be corrected.
Moreover, we also show in Appendix B that this problem is
not solved by just increasing the order n of the Taylor poly-
nomials. Therefore, we need another approach for step 2 and
step 4, which does not involve Taylor series.

In this paper, we will provide exact, closed-form expres-
sions for the complete RTM correction to disturbing poten-
tial, gravity disturbance, gravity anomaly, andheight anomaly.
They are easy to implement in any existing RTM soft-
ware package and do not require additional computational
resources. In Sect. 2, we will derive the exact, closed-form
expression for disturbing potential. A key quantity arising
in this expression is the harmonic downward continuation
of the gravitational field of the masses added to volume �−
(cf. Fig. 1) to the location of a data point, which, after step 3,
is buried in the masses. An exact, closed-form expression for
this harmonic downward continuation is derived in Sect. 3.
The results of Sects. 2 and 3 are combined in Sect. 4 providing
the final exact, closed-form expression for the complete RTM
correction to disturbing potential and also its radial deriva-
tive. Likewise, exact, closed-form expressions are provided
for gravity disturbance, gravity anomaly, and height anomaly
using their relation with the disturbing potential. In Sect. 5,
the new expressions will be applied to the two test areas
already considered in Klees et al. (2022). Moreover, we will
identify the results and conclusions in Klees et al. (2022)
which are wrong due to the underestimation of the magni-
tude of the remainders of the nth Taylor polynomials used in
step 2 and step 4 of the complete RTM correction approach.
In Sect. 6, we close with a summary and some final remarks.
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Fig. 1 Mass distribution of the Earth before (a) and after (b) RTM reduction

2 Exact, closed-form expression for the
complete RTM correction to disturbing
potential

To derive the new expression for the complete RTM cor-
rection to disturbing potential, we start with the four-step
procedure suggested in Klees et al. (2022), but use a more
compact notation for a better readability.

Let T be the disturbing potential, P a point on the
Earth’s surface, and Q the intersection of the ellipsoidal
normal through P and the RTM surface (cf. Fig. 1). If P
is located above the RTM surface, the complete RTM cor-
rection reduces to the RTM reduction introduced in Forsberg
and Tscherning (1981). After RTM reduction, the point P is
hanging in free-air inside the harmonic domain of the RTM-
reduced disturbing potential. Here, we are only interested in
points P , which are located below the RTM surface. These
points are buried in the masses, which were added to the
volume �− in step 3. We denote by V+ the gravitational
potential of the masses in �+ and by V− the gravitational
potential of the masses added to volume�− (cf. Fig. 1). Note
that if our data area does not contain water surfaces, �− is
mass-free before step 3 (cf. Fig. 2 and Table 1 in Klees et al.
(2022)). Then, the masses added to�− in step 3 are identical

Fig. 2 Computation of V−,HDC
P

to the masses in �− after step 3. The four-step procedure in
Klees et al. (2022) proceeds as follows:
Step 1: Move the masses in �+ to infinity and correct TP for
the gravitational effect this has:

T+
P := TP − V+

P . (1)

Step 2: Upward continue in free-air T+
P of Eq. (1) to the point

Q on the RTM surface along the ellipsoidal normal through
P:

T+
Q := T+

P + δT UC
P→Q. (2)

Step 3: Add mass to the volume �− so that the mass density
equals some pre-selected value and correct T+

Q of Eq. (2) for
the gravitational effect this has:

T red
Q := T+

Q + V−
Q . (3)

Step 4: Downward-continue harmonically T red from point Q
on the RTM surface to point P on the Earth’s surface along
the ellipsoidal normal through P:

T red,HDC

P := T red
Q + δT HDC

Q→P. (4)

Note that the upper index “UC” in Eq. (2) and “HDC” in
Eq. (4) means “free-air upward continuation” and “harmonic
downward continuation”, respectively. When combining
Eqs. (1)–(4), we can write T red,HDC

P as the difference between
TP and the complete RTM correction, denoted (T )cRTMP :

T red,HDC

P := TP − (T )cRTMP ,

(T )cRTMP := V+
P − V−

Q − (δT UC
P→Q + δT HDC

Q→P). (5)

We find it important to mention that due to step 4, T red,HDC

P is
different from T red

P , the value of T red at P inside the masses.
Remember that after step 3, T red is actually harmonic outside
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Table 1 Statistics of the complete RTM correction to gravity anomaly, Eq. (37), and height anomaly, Eq. (39) for the Norway test area (222, 892
evaluation points) and the Auvergne test area (95, 360 evaluation points). Only evaluation points located below the RTM surface were included

Test area Unit Range Percentiles

Min Max 25% 50% 75% 95%

Norway (�g)cRTMP mGal − 377.2 92.0 − 45.1 − 23.6 − 11.8 − 3.8

(ζ )cRTMP m − 0.577 1.159 0.335 0.501 0.644 0.844

Auvergne (�g)cRTMP mGal − 163.5 0.0 − 16.1 − 9.9 − 4.2 − 0.9

(ζ )cRTMP m − 0.716 2.128 − 0.308 − 0.062 0.028 0.179

the RTM surface (“actually” means we ignore that the DEM
is just an approximation to the Earth’s surface and the den-
sity of the masses in �+ and of the masses in �− (if there
are any), are not exactly known). In step 4, T red is harmoni-
cally downward-continued from point Q on the RTM surface
through the masses to point P on the Earth’s surface, which
gives T red,HDC

P .
Using the definition of the RTM reduction according to

Forsberg and Tscherning (1981),

(T )RTMP := V+
P − V−

P , (6)

Equation (5) is re-written as

(T )cRTMP = (T )RTMP −
[
V−

Q − V−
P + (δT UC

P→Q + δT HDC
Q→P)

]
. (7)

The term in brackets on the right-hand side of Eq. (7) is the
exact expression for the harmonic correction, denoted (T )harmP .
Hence, we may write

(T )cRTMP = (T )RTMP − (T )harmP , (8)

with

(T )harmP = V−
Q − V−

P + (δT UC
P→Q + δT HDC

Q→P). (9)

V−
P , which does not appear in the expression for the complete

RTM correction appears by construction in the RTM reduc-
tion in Eq. (6) and the harmonic correction of Eq. (9). Note
that V−

P is the gravitational potential of the masses added to
volume �− in step 3, evaluated at P . Though P is located
inside the masses after step 3, P is also a point located on
the boundary of the harmonic domain of the gravitational
potential of the masses added to volume �−.

In Klees et al. (2022), the effect of the free-air upward
continuation (UC) from point P to point Q in step 2, δT UC

P→Q,
and the effect of the harmonic downward continuation (HDC)
from point Q to point P in step 4, δT HDC

Q→P, were considered
separately. For each effect, a nth Taylor polynomial about P
(δT UC

P→Q) and Q (δT HDC
Q→P) was used. In Appendix B, we have

chosen a simple mass configuration to demonstrate that the
remainder of each nth Taylor polynomial used in Klees et al.

(2022) may introduce errors in the computed complete RTM
correction, which are much larger than the upper bounds in
Klees et al. (2022) suggest and also much larger than the
measurement error. This applies in particular to the effect
of the harmonic downward continuation, δT HDC

Q→P, at points
P located in deep, narrow valleys, i.e. at locations where
the complete RTM corrections attain large magnitudes. The
remainder of the harmonic downward continuation in step
4 does not decrease when increasing n. Moreover, in deep,
narrow valleys, the upward continuation in step 2may also be
proneof errors, because derivatives of the disturbingpotential
may differ significantly from their nominal values.

We will show that Taylor series for the upward continu-
ation of step 2 and the harmonic downward continuation of
step 4 can be avoided completely. To do so, we exploit the
superposition principle of gravitating masses, which allows
the combination of step 2 and step 4 into a single step,
and provides closed-form expressions for the complete RTM
correction. Key are three observations. First, the upward con-
tinuation of step 2 is done in free-air in the gravitational field
T+ (cf. Eq. (2)). Second, the point P is located on the bound-
ary of the harmonic domain of T+ as T+ is the disturbing
potential before masses are added to volume �−. Third, the
disturbing potential after step 3, i.e. after masses has been
added to volume �−, T red = T+ + V−, is harmonic outside
the RTM surface. Hence, the continuity of T+ across the
boundary of the harmonic domain allows us to write

T red,HDC

P = T+
P + V−,HDC

P , (10)

where V−,HDC
P is the harmonic downward continuation of the

gravitational potential V− from its upper harmonic domain
through the masses to point P . Using Eq. (10), the effect of
the harmonic downward continuation of step 4, δT HDC

Q→P, can
be written as

δT HDC
Q→P = T red,HDC

P − T red
Q = T+

P + V−,HDC
P − T red

Q

= T+
P + V−,HDC

P − (T+
Q + V−

Q )

= (T+
P − T+

Q ) + V−,HDC
P − V−

Q

= −δT UC
P→Q + V−,HDC

P − V−
Q . (11)
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In Eq. (11), we move δT UC
P→Q to the left-hand side, which pro-

vides an expression for the joint effect of the free-air upward
continuation of step 2 and the harmonic downward continu-
ation of step 4:

δT HDC
Q→P + δT UC

P→Q = V−,HDC
P − V−

Q . (12)

Equation (12) is the first main result of this paper. The sum
appears in both the expression for the complete RTM correc-
tion and the harmonic correction. Therefore, with Eq. (12)
we may write for the complete RTM correction, (T )cRTMP ,
Eq. (8), and the harmonic correction, (T )harmP , Eq. (9) at points
P located below the RTM surface:

(T )cRTMP = V+
P − V−,HDC

P , (13)

(T )harmP = V−,HDC
P − V−

P . (14)

Equation (13) consists of two terms. The term V+
P is the

gravitational potential at P of the masses in �+. The term
V−,HDC
P is the harmonic downward continuation to point P

of the exterior gravitational potential of the masses added to
volume �−, where “exterior” refers to the region above the
RTM surface.

The harmonic correction to disturbing potential of Eq. (14)
also comprises two terms, one of them is V−,HDC

P , which
already appeared in Eq. (13). The other one, V−

P , is the grav-
itational potential at P of the masses added to volume �−.
Note that P is located on the lower boundary of the harmonic
domain of V−.

V+
P and V−

P are computed when computing the RTM
reduction (cf. Eq. (6)). To do so, the volumes �+ and �−
are discretized using rectangular prisms and/or tesseroids.
For prisms, a closed-form expression exists (cf. Nagy et al.
2001, 2002). For tesseroids, a truncated Taylor series is used
(cf. Heck and Seitz 2007; Grombein et al. 2013).

3 The computation of V−,HDC
P

V−,HDC
P plays a key role in the complete RTM correction and

the harmonic correction according to Eqs. (13) and (14). In
principle, it could be computed using an nth Taylor polyno-
mial about Q. However, as shown in Appendix B, this does
not provide an accurate enough approximation to V−,HDC

P ,
in particular not in deep, narrow valleys, no matter how n is
chosen. Finding a suitable, preferably closed-form expres-
sion for V−,HDC

P is not straightforward and requires some
additional considerations.

Suppose we cut out from �− a cylinder of radius R and
height �h = hQ − hP, and a symmetry axis identical to the
line Q − P (cf. Fig. 2). The volume cut out in this way is
denoted �−

h , the remaining volume is denoted δ�−, and the

volume of the cylinder is denoted �c. Then,

�− = δ�− + �−
h = δ�− + �c + (�−

h − �c). (15)

The difference �ε := �−
h −�c is the volume between i) the

top of the cylinder and the RTM surface, and ii) the bottom
of the cylinder and the Earth’s surface (cf. Fig 2). We find
it important to mention here that we can make this differ-
ence arbitrarily small by choosing a small enough radius R.
Now, according to the superposition principle of gravitating
masses, we can write V−,HDC

P as the sum of the contribution
of the masses in δ�− and �−

h , i.e.

V−,HDC
P =

(
V−,HDC
P

)
δ�− +

(
V−,HDC
P

)
�−
h

. (16)

Because P is locatedon theboundaryof theharmonic domain
of the masses in δ�−, the first term on the right-hand side of
Eq. (16) is

(
V−,HDC
P

)
δ�− =

(
V−
P

)
δ�− = V−

P −
(
V−
P

)
�−
h

. (17)

Note that
(
V−
P

)
�−
h

is the gravitational potential at point P

of the masses which were cut out. Using Eqs. (41) and (43)
in Appendix A, it is

(
V−
P

)
�−
h

=
(
V−
P

)
�c

+
(
V−
P

)
�ε

= Vz<0(R,�h,−�h) +
(
V−
P

)
�ε

, (18)
(
V−,HDC
P

)
�−
h

=
(
V−,HDC
P

)
�c

+
(
V−,HDC
P

)
�ε

= Vz>0(R,�h,−�h) +
(
V−,HDC
P

)
�ε

. (19)

Inserting Eqs. (17)–(19) in Eq. (16), we find

V−,HDC
P =V−

P +Vz>0(R,�h,−�h)−Vz<0(R,�h,−�h)

+
((

V−,HDC
P

)
�ε

−
(
V−
P

)
�ε

)
. (20)

However, according to Eqs. (41) and (43) in Appendix A, it
is

Vz>0(R,�h,−�h)−Vz<0(R,�h,−�h)=2πGρ�h2

(21)

independent of R. Hence,

V−,HDC
P =V−

P +2πGρ�h2+
{(

V−,HDC
P

)
�ε

−
(
V−
P

)
�ε

}
.

(22)
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The size of the term {·} on the right-hand side of Eq. (22) is
controlled by the size of R. In particular,

(
V−,HDC
P

)
�ε

−
(
V−
P

)
�ε

→ 0, R → 0. (23)

Hence, we can make this term arbitrarily small by choosing
a sufficiently small R. At the same time, the right-hand side
of Eq. (21) does not depend on R. Hence, when choosing a
sufficiently small R, Eq. (22) is actually equal to

V−,HDC
P = V−

P + 2πGρ�h2 (24)

and can be considered as being exact. Equation (24) is the
second main result of this paper.

4 Exact, closed-form expressions

Using Eq. (24), we obtain the following expression for the
complete RTM correction to disturbing potential, Eq. (13),
and the harmonic correction to disturbing potential, Eq. (14):

(T )cRTMP = V+
P − V−

P − 2πGρ�h2, (25)

(T )harmP = 2πGρ�h2. (26)

Both equations are of closed-form and, as explained in
Sect. 3, actually exact.

Following the same line of reasoning, we can easily find
exact, closed-form expressions for the complete RTM cor-
rection and harmonic correction to the radial derivative of
the disturbing potential. With

∂r Vz>0(R,�h,−�h) − ∂r Vz<0(R,�h,−�h) = −4πGρ�h.

(e.g. Kadlec 2011 with the remark that in Eq. 2.52 of ibid. it
must read −h2 instead of h2), which is also independent of
R, we find

(∂r T )cRTMP = ∂r V
+
P − ∂r V

−
P + 4πGρ�h, (27)

(∂r T )harmP = −4πGρ�h. (28)

To find similar expressions for the complete RTM correc-
tion and the harmonic correction to gravity disturbance, δg,
gravity anomaly, �g, and height anomaly, ζ is straightfor-
ward. First, we remember the relationship between these
functionals and the disturbing potential (we use the spher-
ical approximation for convenience):

δg = −∂r T , (29)

�g = −∂r T − 2

r
T , (30)

ζ = 1

γ
T , (31)

where r is the spherical distance to and γ the normal gravity
at the telluroid point associated with the evaluation point.
Second, we define

δg+
P := −∂r V

+
∣∣∣
P
, δg−

P := −∂r V
−
∣∣∣
P
, (32)

�g+
P := −∂r V

+
∣∣∣
P

− 2

r
V+
P , �g−

P := −∂r V
−
∣∣∣
P

− 2

r
V−
P

(33)

ζ+
P := 1

γ
T+
P , ζ−

P := 1

γ
T−
P . (34)

Then, using Eqs. (25)–(28), we find:

(δg)cRTMP =
(
δg+

P − δg−
P

)
− 4πGρ�h, (35)

(δg)harmP = 4πGρ�h, (36)

(�g)cRTMP =
(
�g+

P − �g−
P

)
− 4πGρ�h

(
1 − �h

r

)
, (37)

(�g)harmP = 4πGρ�h
(
1 − �h

r

)
, (38)

(ζ )cRTMP =
(
ζ+
P − ζ−

P

)
− 2πGρ

γ
�h2, (39)

(ζ )harmP = 2πGρ

γ
�h2. (40)

We find it important to mention that in each of the Eqs. (35),
(37), and (39) the term in brackets on the right-hand side is
equal to the corresponding RTM reduction. In practice, only
the expressions for the completeRTMcorrection are relevant.
However, the expressions for the harmonic corrections are
of interest if one is interested in the error of the harmonic
corrections to gravity anomaly and gravity disturbance in
Forsberg and Tscherning (1981) and (Klees et al. 2022) or
in the magnitude of the harmonic correction to disturbing
potential and height anomaly.

Remember that Eq. (38) is actually an exact expression for
the harmonic correction to gravity anomaly. It differs from the
harmonic correction to gravity anomaly suggested in Fors-
berg andTscherning (1981) by just the term−4πGρ �h2

r . For
the Norway and Auvergne test areas (see Sect. 5), extreme
tesseroid heights do not exceed 2000 m. Then, the term
4πGρ �h2

r has a magnitude not exceeding 0.14mGal when
assuming a mass density ρ = 2670 kg/m3. This result is
very astonishing because the harmonic correction to grav-
ity anomaly in Forsberg and Tscherning (1981) was derived
along a completely different line of reasoning.
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5 Application to the Norway and Auvergne
test areas

We apply the expressions for the complete RTM correction
and the harmonic correction to theNorway andAuvergne test
areas. For details about these areas including statistics of the
topography, we refer to Klees et al. (2022). Whereas (Klees
et al. 2022) used a low-resolution and a high-resolution RTM
surface, we will present the results for the low-resolution
RTM surface, which (Klees et al. 2022) called RTM36.
RTM36 mimics a reference gravity field complete to degree
300. It was computed as by applying a spherical Gaussian
lowpass filter to the high-resolution DEM, which was trun-
cated at its half width of 36′. We find it important to mention
that for the Norway test area, the evaluation points are the
nodes of an 18′′ × 18′′ grid, which formed a subgrid of the
DEM, whereas for the Auvergne test area, the evaluation
points are identical to the gravity stations.

Figure 3 shows a geographic rendition, Fig. 4 the his-
tograms, and Table 1 some statistics of the complete RTM
correction to gravity anomaly and height anomaly for the
Norway and Auvergne test areas. Only evaluation points
below the RTM surface have been included (222, 892 for the
Norway test area, which corresponds to 28% of all points;
95, 360 for the Auvergne test area, which corresponds to
71% of all points). The corrections have large peak mag-
nitudes of 377.2mGal and 1.159m (Norway test area) and
163.5mGal and 2.128m (Auvergne test area). The different
topographic regimes in both test areas explain the differences
in the complete RTM correction both in terms of spatial pat-
tern, distribution, and range. The bi-model distribution of the
complete RTM correction to height anomaly in the Auvergne
test area can be explained by the distinguished topography
with rather flat regions left to a line from south-west to north-
east and moderate to high mountain ranges right to that line
(cf. Fig. 6 in Klees et al. (2022)).

We do not show corresponding information for gravity
disturbances and disturbing potential. The reasonwhywe left
out the results for gravity disturbances is that the complete
RTM correction does not differ much from that for gravity
anomalies as the histogramof the differences inFig. 5 reveals.
In both test areas, the maximum difference is 48 µGal, and
the median is below 1 µGal. The complete RTM correction
to disturbing potential is not shown as it is actually a scaled
complete RTM correction to height anomaly.

Figures 6 and 7 show a geographic rendition and the
histograms of the harmonic correction to gravity anomaly
and height anomaly, respectively, for the Norway and the
Auvergne test areas. Table 2 complements this information
with some statistics of the harmonic corrections to dis-
turbing potential, gravity disturbance, gravity anomaly, and
height anomaly. All harmonic corrections are non-negative.
Moreover, peak values of the harmonic correction to grav-

ity anomaly and height anomaly are comparable in both test
areas (263.9mGal and 15.7cm in theNorway test area versus
263.3mGal and 15.8cm in the Auvergne test area). However,
there are significant differences in the distribution of the har-
monic corrections with overall larger values in the Norway
test area compared to the Auvergne test area (cf. Fig. 7). For
instance, the 95% percentiles are 161mGal and 5.9cm in the
Norway test area compared to 72.7mGal and 1.2cm in the
Auvergne test area.

The majority (60% in the Norway test area and 89% in
the Auvergne test area) of the harmonic corrections to height
anomaly do not exceed 0.5cm. Only 25% (Norway) and
6% (Auvergne) are larger than 1cm, and only 5% are larger
than 5.9cm (Norway) and 1.2cm (Auvergne). Values of sev-
eral centimetres are only attained at a relatively low number
of points. For instance, among the 222, 892 (Norway) and
95, 360 (Auvergne) evaluation points located below theRTM
surface, there are only 13, 818 (Norway) and 651 (Auvergne)
evaluation pointswith corrections exceeding 5cm, and2, 461
(Norway) and 188 (Auvergne) evaluation points with correc-
tions exceeding 10cm.

Differences between the harmonic correction to gravity
anomaly and gravity disturbance are small as one can expect
when comparing Eq. (38) with Eq. (36). The maximum dif-
ference is 49µGal, and only 10% exceed 10µGal in both
test areas. These differences are at the same time identical to
the approximation error of the harmonic correction to grav-
ity anomaly in Forsberg and Tscherning (1981). The mean
approximation error is just 3µGal (Norway) and 0.9µGal
(Auvergne). Basically, a nonzero mean error of the harmonic
correction to gravity anomaly in Forsberg and Tscherning
(1981) may cause a bias in the computed height anoma-
lies. The magnitude of the bias depends on the area covered
by the biased gravity anomaly dataset. However, seen the
small magnitude of the mean error, one can expect negligible
biases if one aims at a one-centimetre quasi-geoidmodel. For
instance, assuming that the size of the area is 500× 500 km2,
a bias of 3µGal causes a maximum height anomaly error of
less than 1mm (cf. Klees and Slobbe 2018). In reality, the
bias is even smaller as it only occurs at stations which are
located below the RTM surface.

6 Rectification of the results in Klees et al.
(2022)

The harmonic correction to gravity disturbance and disturb-
ing potential published in Klees et al. (2022) were computed
using nth Taylor polynomials for step 2 and step 4 of the four-
step procedure with n = 1 for gravity disturbance and n = 2
for disturbing potential. The upper bounds of the remainders
of the nth Taylor polynomials provided in Klees et al. (2022)
were estimated using a homogeneous spherical Earth. These
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Fig. 3 Complete RTM correction to gravity anomaly and height anomaly in the Norway and Auvergne test areas. Shown are only the evaluation
points which are located below the RTM surface
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Fig. 4 Histograms of the
complete RTM correction to
gravity anomaly and height
anomaly in the Norway and
Auvergne test areas

Fig. 5 Histogram of the
differences between the
complete RTM correction to
gravity anomaly and gravity
disturbance at evaluation points
located below the RTM surface

upper bounds appeared to underestimate themagnitude of the
remainders. Therefore, the statistics of the harmonic correc-
tion to gravity disturbance and disturbing potential in Klees
et al. (2022) are not correct. This concerns in particular the
extreme values and, correspondingly, the range. The largest
errors are attained in deep, narrow valleys, which are numer-
ous in the Norway test area and less frequent in the Auvergne
test area. The same applies to the complete RTM correction
in Klees et al. (2022), because ibid. computed it as sum of
RTM reduction and harmonic correction. Here, we provide
a rectification of the main results and conclusions in Klees
et al. (2022):

• Klees et al. (2022) reported maximum errors of the
harmonic correction to gravity anomaly suggested in
Forsberg and Tscherning (1981) as large as the har-
monic correction itself in extreme cases. This result is
wrong. In reality, the error of the harmonic correction
to gravity anomaly suggested in Forsberg and Tschern-
ing (1981) is much smaller. Assuming a mass density
in �− of 2670kg m3 and setting r in Eq. (38) equal to
the mean radius of the Earth, r = 6371 km, the error in
µGal is− 35.15�h2[km], where�h is the tesseroid height.
Hence, this error is very small. The harmonic correction
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Fig. 6 Harmonic correction to gravity anomaly and height anomaly in the Norway and Auvergne test areas
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Fig. 7 Histograms of the
harmonic correction to gravity
anomaly and height anomaly in
the Norway and Auvergne test
areas

Table 2 Statistics of the harmonic correction to disturbing potential,
Eq. (26), gravity disturbance, Eq. (36), gravity anomaly, Eq. (38), and
height anomaly, Eq. (40) for the Norway test area (222, 892 evaluation
points) and the Auvergne test area (95, 360 evaluation points). Note that

the harmonic correction to gravity anomaly in Forsberg and Tscherning
(1981) is identical to the harmonic correction to gravity disturbance,
Eq. (36)

Test area Unit Range Percentiles

Min Max 25% 50% 75% 95%

Norway (T )harmP m2s−2 0.0 1.54 0.00 0.02 0.10 0.58

(δg)harmP mGal 0.0 263.0 14.3 33.6 68.4 161.0

(�g)harmP mGal 0.0 263.9 14.3 33.7 68.4 161.0

(ζ )harmP cm 0.0 15.7 0.0 0.3 1.1 5.9

Auvergne (T )harmP m2s−2 0.0 1.55 0.00 0.01 0.02 0.12

(δg)harmP mGal 0.0 263.3 8.0 19.2 31.3 72.7

(�g)harmP mGal 0.0 263.3 8.0 19.2 31.3 72.7

(ζ )harmP cm 0.0 15.8 0.0 0.1 0.2 1.2

in Forsberg and Tscherning (1981) is exact for gravity
disturbances.

• Klees et al. (2022) reported harmonic corrections to grav-
ity disturbance which may be negative at some locations.
In reality, all harmonic corrections are non-negative.

• Klees et al. (2022) reported large nonzeromean errors for
the harmonic correction to gravity anomaly suggested in
Forsberg andTscherning (1981), in particular for theNor-
way test area, which may bias the computed quasi-geoid

model. This result is wrong. In reality, the mean errors
for the harmonic correction to gravity anomaly suggested
in Forsberg and Tscherning (1981) are very small in the
Norway and Auvergne test areas, not exceeding a few
µGal. The corresponding bias in the computed quasi-
geoid model is negligible if one aims at a one-centimetre
quasi-geoid model.
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7 Summary and final remarks

We derived exact, closed-form expressions for the complete
RTM correction and the harmonic correction to disturbing
potential, gravity disturbance, gravity anomaly, and height
anomaly using the four-step procedure suggested in Klees
et al. (2022). The derivationwasmotivated by the fact that the
expressions in Klees et al. (2022), which were based on the
use of nth Taylor polynomials, appeared to be poor approx-
imations for particular evaluation points and topographies.
Particularly, the harmonic downward continuation in step 4
appeared to be unstable in some cases, which rendered the
use of any nth Taylor polynomial useless, and required a
Taylor-series-free approach. Key towards the new expres-
sions was the observation that the free-air harmonic upward
continuation in step 2 and the harmonic downward continu-
ation in step 4 cancel out each other to a large extent; what
is left is identical to a harmonic downward continuation in
the gravitational field of the masses added to volume �−.
For this harmonic downward continuation, we derived exact,
closed-form expressions for the disturbing potential and its
radial derivative using the superposition principle of gravitat-
ing masses. This leads to surprisingly simple expressions for
the complete RTM correction and the harmonic correction
to disturbing potential, gravity disturbance, gravity anomaly,
and height anomaly. Astonishing is the observation that the
harmonic correction to gravity anomaly introduced in Fors-
berg and Tscherning (1981) is almost exact, with maximum
errors in the two test areas not exceeding 49µ Gal. Even
more, it is exact if interpreted as the harmonic correction to
gravity disturbance. The new expressions for the complete
RTM correction and the harmonic correction to disturbing
potential, gravity disturbance, gravity anomaly and height
anomaly are easy to implement in any existing RTM soft-
ware package and do not require more resources than the
computation of the harmonic correction to gravity anomaly
suggested in Forsberg and Tscherning (1981).
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Fig. 8 Mass configuration

Appendix A

Here,weverify the expressions for the completeRTMcorrec-
tion and the harmonic correction derived in Sect. 4 using two
synthetic mass distributions for which closed-form expres-
sions for all relevant quantities of the four-step procedure in
Klees et al. (2022) are known. Without loss of generality, we
set the disturbing potential equal to the gravitational poten-
tial of the mass distribution and assume that the volume �+
is free of masses, i.e. V+ = 0 and ∂r V+ = 0.

First, we verify the expressions for the complete RTMcor-
rection and the harmonic correction to disturbing potential.
The mass distribution is given by a large cylinder (radius Rl ,
height hl , and constant mass density ρ) with a small cylinder
(radius Rs < Rl , height hs < hl , and constant mass density
ρ) cut out. The small cylinder represents �−. The two cylin-
ders share the same symmetry axis and are aligned along the
top (see Fig. 8). In step 3 of the four-step procedure, the vol-
ume �− is filled with masses, which corresponds to putting
back the small cylinder. Hence, T red is identical to the grav-
itational potential of the large cylinder. We use well-known
expressions for the gravitational potential of a homogeneous
cylinder for points located on the symmetry axis, which can
be found in, e.g. Heiskanen and Moritz (1967) and (Kadlec
2011). In the following, we need to know the expression for
the gravitational potential of a homogeneous cylinder (radius
R, height h, constant mass density ρ) at three selected points
on the symmetry axis: above the cylinder, inside the cylinder,
and below the cylinder. We choose the symmetry axis as the
z-axis, put the origin z = 0 at the top of the cylinder, and
assume that the positive z-axis points upwards (cf. Fig 9).
Then (cf. Kadlec (2011)),

Vz>0(R, h, z) = Gρπ
[
p − h2 + h(lh − 2z)

]
, (41)

V−h<z<0(R, h, z) = Gρπ
[
p − h2 + h(lh − 2z) − 2z2

]
,

(42)
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Vz<−h(R, h, z) = Gρπ
[
p + h2 + h(lh + 2z)

]
, (43)

where

lh =
√
R2 + (h + z)2, (44)

l0 =
√
R2 + z2, (45)

p = R2 ln
( lh + h + z

z + l0

)
+ z(lh − l0). (46)

Moreover, due to the continuity of the gravitational potential
inR3, it is

V (R, h, 0)= lim
z→0+ Vz>0(R, h, z)

= lim
z→0− V−h<z<0(R, h, z), (47)

V (R, h,−h)= lim
z→−h+ V−h<z<0(R, h, z)

= lim
z→−h− Vz<−h(R, h, z). (48)

Point P and point Q are located on the symmetry axis with
zP = −hs and zQ = 0, respectively. It is (remember that in
our example there are no masses in�+, i.e. V+ = 0 ⇒ T =
T+):

TP = V−hl<z<0(Rl , hl ,−hs) − V (Rs, hs,−hs), (49)

V+
P = 0, (50)

T+
P = TP, (51)

T+
Q = V (Rl , hl , 0) − V (Rs, hs, 0), (52)

T red
Q = V (Rl , hl , 0), (53)

T red
P = V−hl<z<0(Rl , hl ,−hs), (54)

V−
Q = V (Rs, hs, 0), (55)

V−
P = V (Rs, hs,−hs) (56)

T red,HDC

P = Vz>0(Rl , hl ,−hs). (57)

Note that T red,HDC

P is the harmonic downward continuation of
T red from above the large cylinder to point P . From these
equations, we can compute the complete RTMcorrection and
the harmonic correction as

(T )cRTMP = TP − T red,HDC

P , (58)

(T )harmP = V+
P − V−

P − (T )cRTMP . (59)

Equations (58) and (59) now need to be compared with the
corresponding equations derived in Sect. 4, which for the
given mass configuration are

(T )cRTMP = −V−
P − 2πGρ�h2, (60)

(T )harmP = 2πGρ�h2. (61)

Table 3 Key quantities of the four-step procedure for the computation
of the complete RTM correction and harmonic correction to disturbing
potential. All units in m2 s−2. Rl = 5000 m, hl = 2000 m, ρ =
2670 kg/m3, G = 6.67426 · 10−11 m3kg−1s−2

Rs = 1000 Rs = 500 Rs = 500
hs = 500 hs = 500 hs = 1500

TP = T+
P 9.483780 9.744851 9.603535

T+
Q 8.806841 9.067912 8.926596

V−
Q 0.442402 0.181331 0.322647

V−
P 0.442402 0.181331 0.322647

T red
Q 9.249243 9.249243 9.249243

T red,HDC
P 10.206102 10.206102 12.445464

V−,HDC
P 0.722322 0.461251 2.841929

(T )cRTMP , Eq. (58) −0.722322 −0.461251 −2.841929

(T )cRTMP , Eq. (60) −0.722322 −0.461251 −2.841929

(T )harmP , Eq. (59) 0.279920 0.279920 2.519282

(T )harmP , Eq. (61) 0.279920 0.279920 2.519282

The results are shown in Table 3. They confirm that the
expressions for the complete RTM correction and the har-
monic correction to disturbing potential of Sect. 4 are correct.

Next, we verify the expressions for the complete RTM
correction and harmonic correction to the radial derivative
of the disturbing potential. We consider a synthetic Earth,
which is a homogeneous sphere of radius R and gravitational
constant GM . The gravitational potential of the synthetic
Earth is set equal to the disturbingpotential. TheRTMsurface
is assumed to be the surface r = R + h, where r is the
radial distance from the centre of mass of the synthetic Earth.
Hence, the volume�− is a spherical shell with inner radius R
and outer radius R + h. In step 3 of the four-step procedure
of Sect. 2, we fill the mass-free volume �− with mass of
density ρ. Let the total mass in �− be denoted M−. There
are no masses in �+, i.e. ∂r V+ = 0 ⇒ ∂r TP = ∂r T+

P . Note
that rP = R and rQ = R + h. Using afore-mentioned mass
distributions, the following expressions apply:

∂r T
+
P = ∂r TP − ∂r V

+ = ∂r TP = GM

R2 , (62)

∂r T
+
Q = ∂r T

+
P + (∂r T )UC

P→Q = GM

(R + h)2
, (63)

∂r T
red
Q = ∂r T

+
Q + ∂r V

−
Q = G(M + M−)

(R + h)2
, (64)

∂r T
red,HDC
P = ∂r T

red
Q + (∂r T )HDCQ→P = G(M + M−)

R2 , (65)

(∂r V )
−,HDC
P = GM−

R2 . (66)

Using these expressions, we can compute the complete
RTM correction, (∂r T )cRTMP and the harmonic correction,
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Table 4 Key quantities of the four-step procedure for the computa-
tion of the complete RTM correction and harmonic correction to the
radial derivative of the disturbing potential. GM = 3, 986, 004418 ·
1014 m3s−2, R = 6, 371, 000 m, ρ = 2670 kg/m3

h = 4000 h = 2000 h = 500

∂r TP = ∂r T
+
P 9.820250 9.820250 9.820250

∂r T
+
Q 9.807931 9.814088 9.818709

∂r T
−
Q 0.008952 0.004477 0.001120

∂r T red
Q 9.816883 9.818565 9.819829

∂r T
red,HDC
P 9.829214 9.824731 9.821370

∂r V
−,HDC
P 0.008963 0.004480 0.001120

(∂r T )cRTMP , Eq. (67) −0.008963 −0.004480 −0.001120

(∂r T )cRTMP , Eq. (69) −0.008963 −0.004480 −0.001120

(∂r T )harmP , Eq. (68) 0.008963 0.004480 0.001120

(∂r T )harmP , Eq. (70) 0.008963 0.004480 0.001120

(∂r T )harmP as

(∂r T )cRTMP = (∂r V )+P − (∂r V )
−,HDC
P = −(∂r V )

−,HDC
P ,

(67)

(∂r T )harmP = (∂r V )
−,HDC
P − ∂r V

−
P = (∂r V )

−,HDC
P . (68)

Note that in the last equation, we used the fact that ∂r V
−
P =

0. Remember that the radial derivative of the gravitational
potential of a homogeneous spherical shell is continuous in
R3 and zero inside the spherical shell.

Equations (67) and (68) need to be identical with the
expressions for the complete RTM correction to ∂r T ,
Eq. (27), and the harmonic correction to ∂r T , Eq. (28), which
are for the given mass configuration equal to (remember that
∂r V

+
P = 0)

(∂r T )cRTMP = 4πGρ�h, (69)

(∂r T )harmP = −4πGρ�h, (70)

The results in Table 4 provide the evidence, that this is indeed
so, i.e. the expressions for the complete RTM correction and
the harmonic correction to the radial derivative of the dis-
turbing potential of Sect. 4 are correct.

Appendix B

We want to demonstrate that using a Taylor series for the
harmonic downward continuation of step 4 as suggested in
Klees et al. (2022)may be unstable in some cases with higher
order terms increasing rapidly with alternating signs. More-
over, we show that using a nth Taylor polynomial with n = 1
for gravity anomaly and gravity disturbance, and n = 2
for disturbing potential and height anomaly as suggested in

Fig. 9 Computation of V−,HDC
P

Klees et al. (2022)may provide poor approximations in some
cases. This also implies that the upper bounds provided in
Klees et al. (2022) are not correct. In particular, in deep, nar-
row valleys (i.e. in areas where harmonic corrections take up
large values), they may underestimate the magnitude of the
remainder significantly. Note that the problem is not solved
automatically by computing the complete RTM correction,
simply because the harmonic downward continuation in step
4 is also part of the complete RTM correction. Combining
step 2 and step 4 also does not solve this problem, as an ana-
lytic downward continuation through the masses in �− also
appears in the sum of step 2 and step 4. The solution to this
problem, which was provided in Sect. 4 indeed solves this
problem.

We consider a single cylinder of radius R and height h
(cf. Fig. 9). As in Appendix A, the z-axis is identical to the
symmetry axis, the top of the cylinder is z = 0 and the pos-
itive z-axis points upwards. Equations (41)–(43) describe
the gravitational potential of the cylinder for points on the
symmetry axis above, inside and below the cylinder, respec-
tively. We consider the harmonic downward continuation of
the gravitational potential Vz>0(R, h, z) from a point Q on
top of the cylinder (i.e. zQ = 0) to a point P at the bottom of
the cylinder (i.e. zP = −h). The harmonic downward con-
tinuation of the gravitational potential above the top of the
cylinder to the point P is given by Vz>0(R, h, zP). Klees et al.
(2022) used the nth Taylor polynomial about z = zQ = 0 to
compute the harmonic downward continuation to point P as

VHDC,n
P = Vz>0(R, h, 0) +

n∑
m=1

1

m! lim
z→0+

(
∂mVz>0(R, h, z)

∂zm

)
(−h)m . (71)

They claim that n = 2 provides a sufficiently accurate
approximation to VHDC

P . We will show using the simple

example of a homogeneous cylinder that VHDC,n
P may dif-
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Table 5 Harmonic downward continuation of the gravitational poten-
tial of a homogeneous cylinder (radius R, height h, mass density
ρ = 2670 kg/m3) to a point P at the bottom of the cylinder (zP = −h)
using an nth Taylor polynomial about Q. Gravitational potential in units
of m2/s2

R 100 m 1000 m 2000 m 5000 m
h 2000 m 2000 m 2000 m 2000 m

VHDC,1
P 0.242 2.783 5.525 12.865

VHDC,2
P 2.478 4.786 7.108 13.697

VHDC,3
P 17.406 6.146 7.591 13.757

VHDC,5
P −878.341 5.122 7.350 13.726

VHDC,9
P −2.4752 · 107 3.862 7.373 13.728

VHDC
P 4.502 5.551 7.380 13.728

fer significantly from VHDC
P not only for n = 2, but also for

larger values of n.
Table 5 shows the results for various choices of R, h, and

n. Obviously, VHDC,n
P is a poor approximation to VHDC

P if
h/R is large (e.g. column 2 and 3 in Table 5). If the ratio h/R
decreases, the approximation error decreases with increasing
n. An analysis of the term

lim
z→0+

(
∂mVz>0(R, h, z)

∂zm

)
(−h)m (72)

in the Taylor series reveals that it comprises a factor
(
h
R

)m−1
,

which dominates this term. Hence, for a cylinder, we can
expect no convergence of VHDC,n

P if h/R > 1. On the other

hand, if h/R < 1, VHDC,n
P may provide a good approxima-

tion to VHDC
P already for moderate values n.

For practical applications, this result implies that the har-
monic downward continuation from Q on the RTM surface
to P on the Earth’s surface using a nth Taylor polynomial
does not provide a good approximation in deep, narrow val-
leys (the equivalent of h/R > 1 for a cylinder). Only if the
width of the valley is greater than twice its depth (correspond-
ing to h/R < 1 for the cylinder), the nth Taylor polynomial
may provide a reasonable (relative error on the order of a
few percent) approximation already for low n, e.g. n = 2 as
suggested in Klees et al. (2022). In general, however, a nth
Taylor polynomial should not be used for the harmonic down-
ward continuation VHDC

P . The same applies to the analytic
downward continuation of linear functionals of the disturb-
ing potential such as gravity anomalies, gravity disturbances,
and height anomalies.
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