
Citation: Knierim, M.T.; Bleichner,

M.G.; Reali, P. A Systematic

Comparison of High-End and

Low-Cost EEG Amplifiers for

Concealed, Around-the-Ear EEG

Recordings. Sensors 2023, 23, 4559.

https://doi.org/10.3390/s23094559

Academic Editor: Fow-Sen Choa

Received: 27 March 2023

Revised: 3 May 2023

Accepted: 4 May 2023

Published: 8 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Systematic Comparison of High-End and Low-Cost EEG
Amplifiers for Concealed, Around-the-Ear EEG Recordings
Michael Thomas Knierim 1,* , Martin Georg Bleichner 2,3 and Pierluigi Reali 4

1 Institute of Information Systems & Marketing, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
2 Neurophysiology of Everyday Life Group, Department of Psychology, University of Oldenburg,

26129 Oldenburg, Germany; martin.georg.bleichner@uol.de
3 Research Center for Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
4 Department of Electronics Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;

pierluigi.reali@polimi.it
* Correspondence: michael.knierim@kit.edu; Tel.: +49-721-608-48385

Abstract: Wearable electroencephalography (EEG) has the potential to improve everyday life through
brain–computer interfaces (BCI) for applications such as sleep improvement, adaptive hearing aids,
or thought-based digital device control. To make these innovations more practical for everyday use,
researchers are looking to miniaturized, concealed EEG systems that can still collect neural activity
precisely. For example, researchers are using flexible EEG electrode arrays that can be attached around
the ear (cEEGrids) to study neural activations in everyday life situations. However, the use of such
concealed EEG approaches is limited by measurement challenges such as reduced signal amplitudes
and high recording system costs. In this article, we compare the performance of a lower-cost open-
source amplification system, the OpenBCI Cyton+Daisy boards, with a benchmark amplifier, the
MBrainTrain Smarting Mobi. Our results show that the OpenBCI system is a viable alternative for
concealed EEG research, with highly similar noise performance, but slightly lower timing precision.
This system can be a great option for researchers with a smaller budget and can, therefore, contribute
significantly to advancing concealed EEG research.

Keywords: concealed EEG; cEEGrids; Auditory ERP; timing test; Smarting Mobi; OpenBCI

1. Introduction

Wearable electroencephalography (EEG) offers promising application potentials for
brain–computer interfaces (BCI) to improve everyday life, for example, in the form of sleep
improvement [1], seizure detection [2], adaptive hearing aids [3], or thought-based control
of digital or robotic devices [4,5]. To realize these innovations, scholars are increasingly
turning to miniaturized, and less visible EEG systems (so-called transparent, or concealed
EEG) that are still capable of reliably capturing neural activity at the millisecond scale [6],
and that approach usability in everyday life situations [7–9]. These researchers use custom-
made in- or around-the-ear EEG systems [2,9], or, alternatively, ready-to-use flex-printed
EEG electrode arrays that can be attached around the ear (“cEEGrids” [10]). Thereby, they
collect high quality EEG signals related to auditory attention, for example to study whether
they can detect attentiveness to sounds in everyday situations [7,8,11]. By using these
ear-EEG solutions, researchers can overcome some of the major limitations of traditional
cap-based EEG, in particular the cumbersome setup procedures (which include repeated
hair washing) and the unpleasant aesthetics (who wants to wear a swim cap filled with gel
and connected to 32–64 electrodes in everyday life?).

However, while these concealed EEG approaches represent an intriguing development,
their use is somewhat limited due to the inherent measurement challenges. As the electrode
space is reduced (compared to conventional EEG), the recorded signal amplitudes are also
reduced (the effects of interest are on the order of a few microvolts) [3]. Therefore, the
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amplifiers used need to show high recording sensitivity to enable data collection with
these miniaturized EEG electrode designs. As a result, the amplification systems used to
date have mostly been high-end products with high costs [12]. This high cost, in turn, is a
major limitation to the widespread adoption of concealed EEG designs. For this reason,
previous research has, for instance, attempted to study whether around-the-ear cEEGrid
electrodes can also be used with lower-cost open-source amplification systems, such as the
OpenBCI Cyton+Daisy boards [12]. The authors of [12] found a general suitability of the
OpenBCI amplifiers to collect large-effect neural activity changes in the frequency domain,
such as the increase in occipital Alpha frequency power during eye closure (the Berger
effect [13]), or a decrease in Alpha band power with increasing task difficulty [12] which
were in line with previous work using high-end amplifiers [10,14]. However, these authors
did not directly compare the performance of the OpenBCI amplifiers with that of a high-end
amplifier, nor did they evaluate the aforementioned critical performance factors (timing
accuracy and signal-to-noise ratio—SNR), which are essential for several applications (e.g.,
auditory evoked potential detection). Furthermore, previous research has also reported
low input-referred noise (~1 µVpp) and low power consumption (5 mW/channel) for the
OpenBCI Cyton+Daisy [15]. In addition, this OpenBCI amplifier has shown a high SNR
compared to clinical-grade amplifiers [16] and the usability of this amplifier for event-
related potential (ERP) research with classical cap-EEG [15,16]. Nevertheless, it remains to
be investigated whether the system can be reliably used for the more challenging recording
situation with concealed EEG designs.

In this article, we provide a thorough comparison of the Cyton+Daisy boards (Open-
BCI, New York, NY, USA) with a benchmark amplifier, the Smarting Mobi (MBrainTrain,
Belgrade, Serbia). To this end, we conducted three studies to assess the temporal accuracy
of both systems, their performance in a typical laboratory study design, and finally a direct
comparison of signal quality through simultaneous data recording with both amplifiers on
the same participant. In doing so, we focus on concealed EEG recordings with the around-
the-ear cEEGrid electrodes because they are readily available and don’t require custom
fabrication for individual subjects. Initially, with the default settings of both systems, we
found large differences in temporal precision, with high timing variation in the OpenBCI
Cyton+Daisy, which would greatly reduce the ability to record time-domain features (ERPs).
However, by correcting the Bluetooth dongle buffer settings and, most importantly, by
developing a timestamp correction algorithm (provided with the article), the temporal
precision of this low-cost amplifier was significantly improved, approaching the precision
of the Smarting Mobi. In addition to the temporal accuracy, frequency and time domain
comparisons of the amplifiers in the two recording setups with human participants show
highly comparable recordings. This confirms the applicability of the OpenBCI system for
these challenging EEG recordings, a finding that we believe provides a valuable foundation
for further advancing research on concealed EEG.

2. Materials and Methods

As reference for a concealed EEG recording method, we use the so-called cEEGrids—
a ‘flexible printed Ag/AgCl electrode system consisting of ten electrodes arranged in a
c-shape to fit around the ear’ [10] (see Figure 1) in this work. While they are not the only
available option for concealed EEG (see e.g., [9,17,18] for in-ear EEG approaches), we focus
on the around-ear method as the electrodes are readily available, can be used without per-
sonalization or customization, and come with multiple electrodes which allows recording
signals across a range of positions on the head. Because of these multiple positions, the
cEEGrids allow characterizing known EEG phenomena by providing additional informa-
tion (e.g., the strength of an effect or feature morphologies on different positions around
the ear [3]). At the same time, it should be highlighted, that these cEEGrids—much like
other ear-EEG solutions—only capture a subset of neural information when compared to
traditional cap EEG [3]. Specifically, they capture sources close to the ear region well (e.g.,
from the auditory cortex [6,19,20]). More distant sources (e.g., from anterior or central brain
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regions) are harder to observe [3]. The cEEGrids have been repeatedly reported to enable
comfortable, high-quality and multiple-hour EEG recordings in field settings [7,8,10,11].
The recording quality is primarily realized by the possibility of using the cEEGrids with
a gel enclosed by the adhesive [10]. This property is also essential for our signal qual-
ity comparisons as dry electrodes are typically much more prone to irregular recording
artefacts [21]. The electrodes’ application around the ear is realized in about five minutes
(including light cleaning of the skin with alcohol or an abrasive gel) [22]. The electrodes can
be re-used numerous times after cleaning the gel residue and re-applying a double-sided
adhesive. For thorough application instructions we refer the reader to [22].
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Figure 1. Two cEEGrid electrodes showing the electrode positions for left and right ear.

The cEEGrids are then connected to the two amplifiers compared in this study: the
OpenBCI Cyton+Daisy, and the MBrainTrain Smarting Mobi 24 (see Figure 2). The OpenBCI
amplifier comes in two configurations: either as the standalone Cyton amplifier (with
8 recording channels) or extended to the Cyton+Daisy configuration with 16 recording
channels. In the eight-channel configuration, EEG data can be recorded with a sampling
frequency of 250 Hz. This temporal resolution is reduced to 125 Hz in the 16-channel version
due to limitations in the wireless packet transmission bandwidth. It is possible to also collect
data with 250 Hz for the Cyton+Daisy configuration when data is not directly streamed
to a recording computer, but instead stored on an SD card. Data from the Cyton+Daisy
can be streamed to a computer using an RFDuino Bluetooth 4.0 Low Energy (BLE) radio
transceiver. Due to low power consumption and the option to pair the Cyton+Daisy with
battery sizes up to 1000 mAh, this amplifier system allows continuous recordings for over
12 h, which enables full-day data collections (e.g., to conveniently monitor neural activity
in field study settings that span an entire day). Importantly, all of the OpenBCI components
(hardware and software) are open-source and the amplifiers come with a much lower price
than high-end systems like the Smarting Mobi. For the higher price, the Smarting Mobi
features certain advantages like a higher sampling frequency of 500 Hz, up to 22 recording
electrodes, and very low input-referred noise (<1 µVpp). Data from the Smarting Mobi can
be streamed to a computer or portable device using a BlueSoleil Bluetooth Dongle Class I
(Type BS002) with the Bluetooth v2.1 + EDR transmission protocol. Furthermore, in contrast
to the OpenBCI amplifiers, the Smarting Mobi uses an active ground electrode (driven
right leg—DRL) configuration. Other than that, the two amplifiers share many similarities
like an amplification gain of up to factor 24, and a resolution of 24 bits. Additionally,
both amplifiers are fitted with three-axis accelerometer sensors to observe head movement
during recordings. Table 1 summarizes the features of both amplifiers.
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Table 1. Amplifier specifications in comparison.

Characteristic OpenBCI Cyton OpenBCI
Cyton+Daisy Smarting Mobi 24

Recording Channels
(excluding REF and GND) 8 16 22

Sampling Frequency 250 Hz 125 Hz 500 or 250 Hz

SD Card Recording Yes No

Data Transmission RFDuino Bluetooth Dongle—4.0 Low Energy (BLE) radio
transceiver

BlueSoleil Bluetooth Dongle Class
I with Bluetooth v2.1 + EDR

Recording Duration (Power) >12 h ~4 h

Configurability All Hardware and Software API for online data processing

REF/GND Configuration Passive CMS/DRL

Input-referred noise ~1 µVpp <1 µVpp

Com. Mode Rejection Ratio ~110 dB >110 dB

Max. Amplification ×24

Resolution 24 bit

Movement Sensor three-axis accelerometers

While these specifications are available from the respective user manuals, we wanted
to put both systems to the test in a challenging EEG recording scenario: concealed ear-
EEG where high temporal precision and low noise are essential. Therefore, we pursued
three studies that are reported below. All studies used the same technical setup (i.e., the
same hardware/software combination). As main recording device, a Microsoft Surface
Laptop 3 was used running Windows 10 Home (Version 10.0.19042), NeuroBS Presentation
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Version 22.1 for the presentation of the audio stimuli, Smarting Streamer Version 3.4.3 for
the recording with the Smarting Mobi amplifier, and the OpenBCI LSL Python interface
(https://github.com/openbci-archive/OpenBCI_LSL, accessed on 10 June 2021), executed
in JetBrains PyCharm 2020.2 running Python Version 3.6.0. Finally, LabRecorder Version
1.14.0 was used to collect all data streams using the LabStreamingLayer (LSL) protocol
(https://github.com/sccn/labstreaminglayer, accessed on 10 June 2021).

3. Timing Test

As a first step, we decided to test the timing precision of the two amplifiers in a highly
controlled setup. By feeding a consistent voltage-modulated signal (i.e., a square wave
generated through the integrated sound card of a PC) into the amplifiers repeatedly, the
actual timing precision can be assessed by having a clear ground-truth metric without any
biological, or behavioral signal contaminations from human study participants. Our timing
tests were closely aligned with the procedure in [23], thereby focusing on the temporal
precision between the presentation of a physical stimulus and the recorded event markers.

3.1. Protocol

Using the EEG amplifiers as oscilloscopes, we adapted the protocol from [23] to a
desktop PC, which allowed us to evaluate and quantify the temporal precision of the
amplifiers using audio signals. The core part of this timing test protocol is that the signal
on the audio jack is fed directly into the EEG amplifiers, whose signals are transmitted
through the Bluetooth dongle and recorded by the corresponding desktop PC. This setup
can measure the time between the programmatic start of the playback of a sound, marked
by a stimulus event marker, and the actual playback onset of the sound, as indicated by
the audio jack voltage fluctuations, with EEG sampling rate precision (here: 125 to 500 Hz
sampling rate, resulting in 8 ms to 2 ms precision). To prevent possible damage to the
amplifier and a clipped signal, the volume is set to a medium level (35%). Additionally,
capacitors (ZSU 100 nF 20% 50 V RM2.54) were integrated in the circuit to prevent accidental
power surges from damaging the amplifiers.

To record the signal, the stimulus presentation application (NeuroBS Presentation)
plays a sound and sends out an LSL marker indicating the intended playback time, which
is recorded in the EEG acquisition file. The sound signal is picked up from the headphone
jack and is recorded on a single EEG channel using a cable connection. Both amplifiers
are connected to the recording PC at the same time (see Figure 3). The signal data is
transmitted to the PC using the respective, proprietary Bluetooth dongles of each device
manufacturer. We used the integrated sound card of the PC to produce a periodic square
wave signal (10 Hz frequency, 5 ms duration) for the timing tests. This setup allowed us to
quantify the delay between the generation of each square wave and its detection by the
tested EEG amplifiers. The same number of trials were presented for each recording (~400)
in a single block.

Multiple meaningful configurations are possible for comparing the timing in the two
amplifiers, which is why we ran the timing test in three configuration pairs.

Configuration 1: First, recordings were collected using the typical recording parame-
ters in each amplifier, as they are used in the physiological evaluation study (i.e., sampling
frequencies of 500 Hz for the Smarting Mobi and 125 Hz for the 16-channel Bluetooth
recording with the OpenBCI Cyton+Daisy). These data can show how the amplifiers would
perform in their default configurations.

Configuration 2: To more directly assess possible timing differences, we collected a set
of recordings in which both amplifiers were set to the highest common sampling frequency
of 250 Hz. For the Smarting Mobi, this can be set up in the Smarting Streamer Application.
For the OpenBCI LSL Python interface, a higher sampling rate can be used when data is
only collected using an eight-channel OpenBCI Cyton setup.

Configuration 3: We learned that the regular OpenBCI Dongle configuration is con-
sidered insufficiently precise for ERP studies by the manufacturer due to the FTDI buffer

https://github.com/openbci-archive/OpenBCI_LSL
https://github.com/sccn/labstreaminglayer
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latency timer being set to an inadequately long interval (16 ms) by default. Therefore,
the manufacturer recommends lowering this setting to 1 ms (https://docs.openbci.com/
Troubleshooting/FTDI_Fix_Windows/, Last accessed on 15 March 2023). The third set
of recordings was, therefore, collected after changing this buffer setting, one set with the
regular sampling frequencies (Smarting Mobi: 500 Hz and OpenBCI Cyton+Daisy: 125 Hz),
and one set with the highest common sampling frequency (250 Hz).

Sensors 2023, 23, x FOR PEER REVIEW 5 of 24 
 

 

Version 1.14.0 was used to collect all data streams using the LabStreamingLayer (LSL) pro-
tocol (https://github.com/sccn/labstreaminglayer, accessed on 10 June 2021). 

3. Timing Test 
As a first step, we decided to test the timing precision of the two amplifiers in a highly 

controlled setup. By feeding a consistent voltage-modulated signal (i.e., a square wave 
generated through the integrated sound card of a PC) into the amplifiers repeatedly, the 
actual timing precision can be assessed by having a clear ground-truth metric without any 
biological, or behavioral signal contaminations from human study participants. Our tim-
ing tests were closely aligned with the procedure in [23], thereby focusing on the temporal 
precision between the presentation of a physical stimulus and the recorded event markers. 

3.1. Protocol 
Using the EEG amplifiers as oscilloscopes, we adapted the protocol from [23] to a 

desktop PC, which allowed us to evaluate and quantify the temporal precision of the am-
plifiers using audio signals. The core part of this timing test protocol is that the signal on 
the audio jack is fed directly into the EEG amplifiers, whose signals are transmitted 
through the Bluetooth dongle and recorded by the corresponding desktop PC. This setup 
can measure the time between the programmatic start of the playback of a sound, marked 
by a stimulus event marker, and the actual playback onset of the sound, as indicated by 
the audio jack voltage fluctuations, with EEG sampling rate precision (here: 125 to 500 Hz 
sampling rate, resulting in 8 ms to 2 ms precision). To prevent possible damage to the 
amplifier and a clipped signal, the volume is set to a medium level (35%). Additionally, 
capacitors (ZSU 100 nF 20% 50 V RM2.54) were integrated in the circuit to prevent acci-
dental power surges from damaging the amplifiers. 

To record the signal, the stimulus presentation application (NeuroBS Presentation) 
plays a sound and sends out an LSL marker indicating the intended playback time, which 
is recorded in the EEG acquisition file. The sound signal is picked up from the headphone 
jack and is recorded on a single EEG channel using a cable connection. Both amplifiers are 
connected to the recording PC at the same time (see Figure 3). The signal data is transmit-
ted to the PC using the respective, proprietary Bluetooth dongles of each device manufac-
turer. We used the integrated sound card of the PC to produce a periodic square wave 
signal (10 Hz frequency, 5 ms duration) for the timing tests. This setup allowed us to 
quantify the delay between the generation of each square wave and its detection by the 
tested EEG amplifiers. The same number of trials were presented for each recording (~400) 
in a single block. 

 
Figure 3. Timing test setup. The varying delay between the programmatic start of a sound playback 
and the actual onset is evaluated with a desktop PC running the Smarting Streamer and OpenBCI 

Laptop
(Playing a 10Hz 5ms Square Wave Sound 

Signal repeatedly)

Audio Cable
(Headphone Jack, 

Headphones cut off, 
soldered on Male DuPont Connectors)

Capacitors
(Z5U 100nF 20% 50V RM2.54)

Amplifiers
(OpenBCI Cyton
Smarting Mobi

Connected to REF & Chan1 for both)

USB Dongles
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Figure 3. Timing test setup. The varying delay between the programmatic start of a sound playback
and the actual onset is evaluated with a desktop PC running the Smarting Streamer and OpenBCI
LSL Python application and the NeuroBS Presentation application. A marker sent by Presentation
indicates the onset of the sound playback and is recorded by both amplifiers simultaneously alongside
the voltage fluctuations fed from the audio jack into the EEG amplifier.

Across all configurations, the cables connecting directly to the reference and first
channel pins in each amplifier were switched after every four recordings, to eliminate
possible confounding influences in the circuits. Altogether, 32 recordings were made with
400 trials per recording (eight for each configuration). The data and code for these timing
tests are available at https://github.com/MKnierim/openbci-vs-smarting-timing-test.

3.2. Data Processing
3.2.1. Regular Dejitter and Signal Peak Detection

To extract the single trial epochs from the continuous recording of the square wave
signal, the recorded data were cut between −200 ms and +800 ms after the stimulus software
marker. The timestamp of this software marker was thus set as the timing reference (t0).
Afterwards, the delay between the stimulus marker and the signal amplitude increase
(onset) was assessed. In alignment with [23], the single trial latency was defined as the time
between marker onset and the amplitude exceeding the half-maximum of the trial-averaged
response. Additionally, latency jitter was defined as the standard deviation of those single
trial latencies, and latency lag was defined as the mean of the single trial latencies (see
Figure 4).

It is important to note the inherent presence of a slight jitter in the sample time stamps
as the timestamping itself usually does not happen exactly in regular intervals but on a
somewhat random schedule (dictated by the perils of the hardware, drivers, and operating
systems). To remove this jitter, the XDF file importer (e.g., the Python interface pyxdf
which we used here—https://github.com/xdf-modules/pyxdf, accessed 10 June 2021)
uses a robust linear interpolation method (i.e., adjusting the timestamps with a linear

https://docs.openbci.com/Troubleshooting/FTDI_Fix_Windows/
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model fit in signal segments without gaps). This approach performed as expected for all
recordings with single packet transmission (all Smarting Mobi recordings and the OpenBCI
recordings in Configuration 3 with 1 ms FTDI buffer settings). In contrast, the observed trial
latencies for the default OpenBCI recordings (with 16 ms FTDI buffer—Configuration 1
and 2) showed a highly erratic pattern. These observations led us to further investigate the
suitability of alternative dejittering approaches for the OpenBCI data.
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3.2.2. Chunk-Dejittering

The default buffer configuration of the OpenBCI Bluetooth dongle leads to an accumu-
lation of data samples in packets that are then received at more or less regular intervals.
Thereby, the time structure in this data resembles chunks with low sample-to-sample time
difference within chunks, and large differences between the last sample and the following
chunk (see Figure 5A). Importantly, slight variations can be observed in these chunk sizes
(59–61 samples for 125 Hz recordings and 119–121 samples for 250 Hz recordings), which
explains why the linear XDF interpolation method (regular dejitter) performed poorly with
this timestamp structure.

Assuming good temporal accuracy for the chunk reception timestamps, we pursued
an alternative dejittering approach for the OpenBCI data that focused on within-chunk
(i.e., local) timestamp correction instead of a global timestamp correction. Thereby, the
reception of a new chunk is identified by their large sample-to-sample time difference first,
and afterwards, the timestamps for each chunk are extrapolated from the first sample (the
original chunk reception timestamp) using the underlying sampling frequency. Initially,
this approach showed a substantial improvement in jitter metrics, but produced outliers
with some trials. Inspecting the sample-to-sample timespans again further highlighted that
the previously mentioned irregular chunks now appeared to overlap with previous chunks
(and with gaps to following chunks—see Figure 5B). To further correct this issue, short
chunks were shifted in place (i.e., moved to the right by adding the delta value to the chunk
timestamps). This process appeared to correct the timestamp information (see Figure 5C), as
can also be seen in the example of a recording from Configuration 1 in Figure 6. Therefore,
this chunk-dejitter algorithm was also used for analyzing the timing performance in the
OpenBCI recordings in Configuration 1 and 2. To enable other researchers to utilize this
dejitter method, we also integrated the algorithm in a fork of the pyxdf library that is
available at: https://github.com/MKnierim/pyxdf (see Supplementary Materials).

https://github.com/MKnierim/pyxdf
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Figure 5. Observed patterns in OpenBCI Cyton sample-to-sample differences. The orange line
highlights the variation in sample completeness (here: samples per chunk divided by 120). The dark
blue line indicates the time distance between the original time stamps. The red line indicates the time
difference between corrected time stamps. (A): Showing a clean data segment. Here, the differences
between the corrected time stamps (red line) are similar to the sample-to-sample differences in all
the Smarting Mobi recordings. (B): Showing the occurrence of a single short chunk. The negative
time difference highlighted in the light blue trace indicates the overlap of the irregular chunk with
the previous one after within-chunk timestamp extrapolation. (C): Showing the occurrence of an
irregular chunk sequence.
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3.3. Results

The global results of the timing comparisons for all 32 audio marker recordings (runs)
are summarized below. The boxplots in Figure 7 reflect the onset latency distributions based
on ~400 presented stimuli per session in the top row, and the average lag and jitter metrics
in the mid and bottom rows, respectively. Note that the y-Axis axis range is consistent
(showing 150 ms) but the level is much higher for plots B and C (OpenBCI Config 1 and 2).
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ton+Daisy recordings in configurations 1–3. Note the different levels of the y-Axis scales. The y-Axis
range is consistent (showing 150 ms) but the range is different for plots (B,C), indicating a higher
overall latency in the OpenBCI recordings with the default 16 ms FTDI buffer setting. The second
and third row show the corresponding lag and jitter statistics for the different configurations. The
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Across the runs and configurations, the lag was found to be the lowest for the Smarting
Mobi (31.3 ms at 500 Hz and 22.64 ms at 250 Hz), and the OpenBCI recordings with the FTDI
buffer fix (21.92 ms at 125 Hz and 18.12 ms at 250 Hz). For the OpenBCI recordings with
the default buffer settings, the lag was much larger both with the regular dejitter method
(337.31 ms at 125 Hz and 328.16 ms at 250 Hz) and the chunk dejitter method (529.52 ms
at 125 Hz and 527.07 ms at 250 Hz). This observation implies that the observation of a
classical ERP component (e.g., the P300) would be critically skewed in this default buffer
configuration, if the lag is not accounted for. This problem is exacerbated by a substantial
variation in lag per run that is present with the regular dejitter method. In contrast, the
chunk dejitter method eliminates this lag variance. Thus, with the chunk dejitter method,
the large lag can easily be accounted for by subtracting the average lag from the EEG signal
timestamps in a given run.
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More important than this lag is the presence of timing jitter. This variation in timing
precision is lowest for the Smarting Mobi (0.59 ms at 500 Hz and 1.17 ms at 250 Hz).
Such variation is to be expected for these sampling frequencies. Overall, these results
highlight the high and superior temporal precision of the Smarting Mobi amplifier. For
the OpenBCI Cyton, the lowest jitter is found with the regular buffer setting and the
chunk dejitter method (3.19 ms at 125 Hz and 1.69 ms at 250 Hz), closely followed by
the recordings with the FTDI buffer fix (4.36 ms at 125 Hz and 2.10 ms at 250 Hz). These
values imply that the OpenBCI Cyton+Daisy can be used reliably for the collection of
ERPs with these configurations. The best performance is achieved with the regular buffer
setting and the chunk dejitter method, which also showed very high consistency in jitter
metrics (only minimally higher than for the Smarting Mobi). We, therefore, decided to use
this configuration (default buffer setting + chunk dejitter timestamp correction) for the
following amplifier comparisons with human participants.

4. Amplifier Comparison in Successive Recordings

After the timing test, we conducted an experiment with human participants to assess
possible remaining differences in recording quality between the two amplifiers. Similar to
previous amplifier comparison studies with traditional cap EEG [15,16], two paradigms
were chosen to compare signal qualities, namely a comparison of frequency-domain fea-
tures (band power differences due to visual stimulation and mental workload manipulation)
and of time-domain features (the P300 ERP).

4.1. Protocol

In the first experimental stage, for the frequency-domain features, the Alpha band
power differences between eyes-closed and eyes-open resting phases were compared (the
Berger effect [10]). In these phases, participants were asked to sit still in front of a PC
for 120 s with closed eyes or watching a light grey fixation cross on a dark grey screen.
The magnitude of the band power differences is hereby considered the first measure of
signal-to-noise ratio (SNR) for each amplifier. Similarly, Theta and Alpha band power
differences were compared between low and high mental workload phases (again, for
120 s per phase—for a previous observation of the effect see [12,14]). For the induction
of these workload levels, participants were asked to mentally sum a series of numbers.
These additive equations were shown in a very simple form in the low workload condition
(either “101 + 1 = ?”, “101 + 2 = ?”, or “101 + 3 = ?”), or in a hard form in the high workload
condition (at least three double digit-summands, e.g., “68 + 71 + 31 = ?”). To ensure
that the task was perceived as hard, the difficulty in the high workload condition was
dynamically increased after each correctly solved trial by adding another summand or
turning a single-digit summand into a double-digit summand. Participants had 18 s to
complete a trial and enter the result in a field on the screen via a keyboard. Between each
trial, a four second break occurred. The design for this task was chosen similar to the
procedures used in studies that demonstrated successful elicitation of different mental
workload levels [12,24,25]. Surveys were shown after each of these experimental tasks
to assess perceived mental workload (using the NASA Task Load Index—TLX [26]) for a
manipulation check.

In the second experiment stage, for the time-domain features, the P300 ERP was elicited
by means of an auditory oddball task with 402 trials in total (divided into two blocks, with
80 standard and 20 target tones, and two blocks with 80 standard and 21 targets tones—block
order was randomized to maintain participants’ concentration). The target tone had a
frequency of 900 Hz the standard tone a frequency of 600 Hz. The order of tones was
pseudo-randomized, and it was ensured that no more than two target tones were played in
direct succession. A fixed inter-stimulus interval of 1000 ms was used. Participants were
asked to count the occurrence of target tones in their head for each block while keeping
their eyes open, and to write down their counts on a paper sheet next to them at the end of
each block. Thereby, the procedure closely followed the one used in [10]. The stimuli were
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presented using NeuroBS Presentation. The amplitude of the ERP is herein considered the
second SNR measure to evaluate the amplifiers’ recording qualities.

Stimulus presentation for the resting state and mental arithmetic task was performed
in a self-developed Java program. All experiments were conducted on the same laptop
running Windows 10, using the loudspeakers of the laptop to play the audio stimuli. Lab-
StreamingLayer (LSL) was used to collect all the markers from the experimental software
and the EEG amplifiers, thereby ensuring timestamp synchronization for all the data. For
the Smarting Mobi recording, the adapter from mBrainTrain was used to connect the cEE-
Grids. Thereby, channel R4 served as the reference electrode (REF) and channel R6 as
the ground (GND) electrode (see Figure 8). The same channels were chosen as REF and
GND for the OpenBCI Cyton+Daisy amplifier. However, as the latter system only allows
for an 18-channel recording, the L5 and L6 channels were left out of the recording. This
decision was made to collect a symmetrical recording above and below the ear, especially
for electrodes further away from the reference electrode—as the electrodes closest to the
reference record the smallest amplitudes [3,10].
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Figure 8. cEEGrid channel configurations for this first human participant study.

At the start of the experiment, participants were welcomed to the laboratory, received
the participation instructions and signed the consent form. Before completing the main
experiment tasks, participants also filled out a survey with demographic variables. To set
up the recording, the participant’s skin was cleaned with alcohol and abrasive gel (Abralyt
HiCl). A lentil-sized drop of gel was then placed on each cEEGrid electrode. An initial
impedance check was performed, to ensure that the impedances on all channels were
smaller than 30 kOhm before continuing the experiment. The overall procedure (including
task orders and durations) is visualized in Figure 9. To assess the recording capabilities
of each amplifier in their regular configuration, while minimizing the influence of inter-
individual differences, each participant completed both experimental stages twice (i.e., in a
within-subject design), once with the Smarting Mobi amplifier and once with the OpenBCI
Cyton+Daisy amplifier. To eliminate the influence of order or duration effects on these
results, the order in which amplifiers were used was randomized. Overall, 14 participants
(six female, one left-handed) completed the study (seven participants for each amplifier
order). All participants were generally healthy, had full vision (corrected or uncorrected)
and participated voluntarily without receiving financial remuneration. The average age of
participants is 25.3 years (median = 26, SD = 4.31).
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Figure 9. The experiment procedure visualized.

4.2. Data Processing

Upon loading the EEG data, the streams were lag-corrected using the respective
metrics determined in Section 3. The OpenBCI data was loaded with the “chunk dejitter”
timestamp correction procedure. Then, the EEG data were processed following previous
cEEGrid work, primarily the work by [10] to obtain comparable measures. This means
that the channel data were mean-centered and re-referenced to a linked mastoid reference
(mean of L4 and R4). To using ascertain a robust re-referencing, automated bad channel
detection was performed using the Python version of the PREP pipeline [27]. Thereby,
channels with minimal amplitudes (flat channels), abnormal deviations, and high degrees
of high-frequency noise were removed and interpolated from the remaining electrodes.
Only in one recording a single channel was removed and interpolated using this procedure.
Further, during this early stage, the data of one participant had to be discarded due to large
and persistent signal artifacts which were likely caused by electrode shift due to extensive
sweating. Afterwards, the data were cut to extract and process the experimental conditions
individually. A fully automated data preparation process (with descriptive statistical and
visual inspection of the data before and after processing) was implemented to make the
feature extraction transparent and reproducible (see, e.g., [27]). The signal processing and
statistical analyses were conducted using custom Python scripts with the dedicated EEG
Signal processing toolboxes (MNE Python—[28], megkit, PyPREP—[29]).

For the frequency band powers (for the resting and mental arithmetic conditions),
50 Hz line noise was removed using the ZapLine algorithm [30]. Afterwards, the data were
bandpass filtered with a 2–15 Hz FIR filter to reduce the impact of broadband artefacts.
These artefacts were prominent in the recordings with both amplifiers (see below as well)
and have been previously documented [14]. Finally, to further reduce artefact influences,
the signals were cleaned using Artefact Subspace Reconstruction (ASR—[31]) with the eyes
open resting phase data as calibration data. Afterwards, band powers were extracted using
the Welch periodogram (with 2 s window length—i.e., 1024 samples for the Smarting Mobi
and 256 samples for the OpenBCI Cyton+Daisy and 50% window overlap with Hanning
windowing). Frequency band powers were extracted for the Theta range (4–7 Hz) and
Alpha range (8–12 Hz). To obtain more reliable frequency band estimates, the band powers
were normalized by dividing each by the sum of all the frequency powers. Lastly, the
powers were mean averaged across channels to obtain a single estimate and reduce the
number of statistical tests.

For the ERP features, the signals were bandpass filtered first (0.2–15 Hz FIR filter).
Afterwards the signals were visually inspected for artefact contamination. Unfortunately,
numerous movement artefacts were discovered in many recordings. Therefore, ASR was
used for these data as well (with 0.2–15 Hz filtered eyes-open resting state data as calibration
data). Similar measures have been taken in related cEEGrid research where movement
artefacts had to be removed [7]. Afterwards, as with the previous study, one-second-long
epochs were extracted for each stimulus occurrence (−200 to +800 ms with 0 being the
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stimulus onset). All epochs were baseline corrected (subtracting the mean value of the
segment from −200 ms to 0).

4.3. Results
4.3.1. Frequency-Domain

For the frequency-domain amplifier comparison we replicated two known frequency
band effects: (1) the Berger effect, and (2) the manipulation of frequency band powers by
mental workload induction.

The Berger effect is the increase in Alpha frequency band power when the eyes are
closed during rest. This effect is clearly visible by the peak in the Alpha range in Figure 10
for both amplifiers. Furthermore, a two-way repeated measures ANOVA (with interaction
between Amplifier and Condition) shows a significant effect of Condition (F = 17.4009,
p = 0.0013), but no effect of Amplifier (F = 1.4399, p = 0.2533) and no interaction effect
(F = 0.5617, p = 0.4680). The absence of the interaction effect indicates that similar effects
are observed for both amplifiers.
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Figure 10. Berger effect replication. The elevated power in the Alpha frequency range (8–12 Hz)
indicates similar effects for both amplifiers.

Next, to assess the effects of mental workload inductions on Theta and Alpha frequency
band powers we first checked the manipulations’ success by comparing the perceived
workload in the easy and hard mental arithmetic tasks. Therefore, the six NASA TLX report
items were summed and normalized (range 0–1). This manipulation check shows a good
separation of perceived mental workload between the task conditions (see Figure 11). For
the frequency bands, we find a significant condition effect in the Theta range (F = 7.9723,
p = 0.0154) and a trend level condition effect in the Alpha range (F = 3.9736, p = 0.0695).
Additionally, the effects show the expected directions (increases for Theta and decreases
for Alpha with higher load). For the Alpha band only, a significant amplifier effect is found
(F = 7.2089, p = 0.0199) indicating higher Alpha powers overall for the Smarting Mobi
recordings. As no interaction effects are found for either frequency band (Theta: F = 0.1890,
p = 0.6715; Alpha: F = 0.1384, p = 0.7163), we conclude that also for this classical effect, no
significant difference between the two amplifiers is found.

Altogether, this first set of results in the frequency-domain suggests that the Smarting
Mobi and the OpenBCI Cyton+Daisy are similarly usable to study such neural activity.
These observations are in line with previous work that observed similar effects with the
OpenBCI Cyton+Daisy and cEEGrids [12]. However, as these are large-effect activities, this
type of comparison only documents the lower capability bound. Additionally, it should
be pointed out that oscillatory activity is less dependent on the temporal precision of the
amplifiers. The more challenging comparison is, therefore, the following time-domain
comparison of small-amplitude activities: ERPs.
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4.3.2. Time-Domain

The goal of this time-domain analysis was primarily to compare the SNR levels of the
two amplifiers by replicating classical auditory evoked potentials. The amplitudes of these
neural activities in the ear region (i.e., when recorded with cEEGrids) are typically very
small due to the small inter-electrode distances (around ±3 µV—see e.g., [10]). Therefore,
the observation of these ERPs can illuminate whether the timing and noise levels of the
OpenBCI amplifier are good enough to compare to the Smarting Mobi for which the ERPs
have been documented before [10]. In alignment with previous work [10], we pursued a
qualitative and numerical comparison of the waveform morphologies, amplitudes, and
condition effects.

The grand average ERPs are shown in Figure 12. While this figure shows ERP traces
that can be described as expectable from this auditory attention task, the traces are more at-
tenuated than in previous work for both amplifiers. The negative deflection approximately
100 ms after onset of both tones (N100) and the classical positive deflection after onset of
the target tones (P300) are strongly attenuated. On the one hand, this is a normal effect
due to the averaging of the results of multiple participants. Furthermore, the repetition of
the experiment can have led to effect-diminishing habituation effects. On the other hand,
the previously mentioned presence of movement artefacts is possibly also reducing the
distinctive component morphology. By inspecting the data of one of the participants with
the cleanest data (few movement artefacts) much larger N100 and P300 amplitudes can
again be seen (see Figure 13). Both, the grand average and the single participant ERP traces
also show the expected polarity reversal (a positive P300 deflection above and an inverted
deflection below the L4+R4 reference) and show that these ERPs are more pronounced with
greater distances to the reference. This component emphasis is most visible for the bottom
electrodes (L8 and L9/R8/R9).

Furthermore, in both cases (grand average and individual participants) very similar
amplitudes are observed for both amplifiers. Thus, from a qualitative view, we consider
these ERP components to show high comparability of the two amplifiers in terms of SNR.
To further assess the effect strength of the P300 component, amplitude differences between
target and standard condition were calculated for 100 ms windows (see Figure 14). The
condition effects are most pronounced between 300 and 500 ms and maximal at channels L8,
L9, R8, and R9, with a much weaker, positive reflection of the same effect in the electrodes
L2, L3, R2, and R3. To ascertain the significance of these differences for the entire sample,
paired t-tests were calculated for each bin (see Figure 14). Both the heatmap and the
statistical tests further support the observation of similar SNR across the amplifiers with
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the clearest effects for the evoked potential in the lower electrodes (L8 and L9/R8 and R9)
in the 300 to 500 ms time range.
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Altogether, through these various comparisons of the ERPs, the results suggest a
similar aptitude of both amplifiers for recording ERPs with cEEGrids (i.e., low amplitude
signals despite small electrode distances). However, the unexpected attenuation of the ERP
traces led us to conduct a third recording and analysis aiming to provide an even more
precise comparison of the time-domain effects by simultaneously recording cEEGrid data
from a single participant in a single experiment run.

5. Amplifier Comparison in Concurrent Recording

The main motivation for this final study was the frequent presence of recording
artefacts in the first user study and the general limitation from that repeated measures
design that the observed signals might be subject to various behavioral and cognitive
confounding factors (fatigue, boredom, or discomfort, just to name a few possible influences
that might set in during the second repetition of the experiment). Therefore, to overcome
these limitations and get a clear picture of the recording quality comparability of the
two amplifiers with cEEGrids, a recording was conducted that concurrently used both
amplifiers with a subset of the cEEGrid electrodes on each amplifier (as pairs with maximum
proximity). Thereby, it was possible to measure a shared neural signal ground truth (similar
to the timing test and similar to a previous OpenBCI comparison study [32]).

5.1. Protocol

With the main interest focused on the time-domain signal comparability, the same ex-
periment from the previous study (Section 4) was re-used, excluding the frequency-domain
tasks (eyes-open and closed rest and mental arithmetic). Additionally, in this instance, the
experiment was not repeated (single run). To simultaneously collect EEG data with both
amplifiers, the cEEGrids were connected to a subset of the Smarting Mobi and the OpenBCI
pins—in alternating order to assess the similarity of a simultaneous EEG recording on a
single subject with electrodes in close proximity. The electrode configuration and a picture
from the recording setup are shown in Figure 15. To obtain a higher sampling frequency
(250 Hz) with the OpenBCI amplifier (and as only ten electrode positions are available for
each amplifier), only the OpenBCI Cyton board (not the Daisy shield) were used.

This study was conducted with a single participant (female, age 25). The participant
preparation and recording setup was completed in the same way as explained in Section 4.1.
However, in this instance, after an initial impedance check to assure that all channels
were available, we waited for 30 minutes for the impedances to settle (see, e.g., [33] for a
demonstration of the impedance reduction in the first hour of an experiment with cEEGrids).
The impedances in each channel were assessed using the Smarting Streamer Software (the
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standard adapter from mBrainTrain was used in this step). We also checked for good
impedances in the reference and ground electrodes by rotating the connector. Afterwards,
the impedances were recorded for two minutes before, and after the study recording
to assess the possibility of signal quality changes over the course of the data collection
(e.g., channel loss). Both before and after the experiment the impedances on all channels
measured below 10 kOhm with no substantial changes during the experiment. Data were
collected using the LabStreamingLayer (LSL) protocol for precise integration of amplifier
and experiment timestamps. The sampling frequencies were both set to be as high as
possible (500 Hz for Smarting Mobi, 250 Hz for OpenBCI) to allow a comparison with both
amplifiers performing at their highest level.
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Figure 15. Channel and adapter configuration for a simultaneous recording with both amplifiers.

5.2. Data Processing

The OpenBCI data was again loaded with the “chunk dejitter” timestamp correction
procedure documented in the previous chapters. The lags for Smarting and OpenBCI were
subtracted from each amplifiers’ timestamps to align the signals. Again, as in Section 4.1
the recorded signals were band-pass filtered (0.2–15 Hz, FIR) for the following analyses.
Afterwards, trial epochs were extracted over the range of −0.2 to 0.8 s around stimulus
onset. The average amplitude from −0.2 s before onset to 0 s was subtracted from each
epoch’s signal to baseline-correct each trial’s data.

5.3. Results

Besides comparing the ERP components as in the previous study (Section 4), we
decided to also directly compare the recorded signals’ similarity across amplifiers by
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inspecting the signal correlation in adjacent electrodes. First, as a reference point, the
correlations for adjacent electrodes for each individual amplifier were calculated. These
within-amplifier channel correlations showed similarly high coefficients for both amplifiers
(Smarting Mobi: 0.89, OpenBCI: 0.83). Figure 16 shows the full distribution of channel
correlations. Next, for the channel correlation assessment across amplifiers, the Smarting
Mobi data was downsampled to 250 Hz. The median channel correlation with mixed-
amplifier pairs was found to be similarly high, albeit slightly higher with r = 0.93. These
higher cross-amplifier correlations are most likely caused by the smaller electrode distances.
Importantly, this finding indicates highly comparable SNR in electrodes with close prox-
imity across amplifiers. Figure 17 shows two channels in close proximity with higher and
lower correlations.
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Figure 16. Correlations between channels within amplifiers (left) and across amplifiers (right).
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Figure 17. Signals on two adjacent electrodes (Smarting Mobi = Blue, OpenBCI Cyton = Red) in a
highly correlated pair (A) and a less correlated pair (B).

Given this high signal comparability, the final ERP comparison was pursued. To enable
higher comparability, a crossed linked reference was computed (i.e., L6+R5 for the Smarting
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Mobi, and L5+R6 for the OpenBCI Cyton). Next, all trials per condition (standard and
target) were averaged. Figure 18 shows the ERP traces aligned with the cEEGrid electrodes.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 24 
 

 

 
Figure 17. Signals on two adjacent electrodes (Smarting Mobi = Blue, OpenBCI Cyton = Red) in a 
highly correlated pair (A) and a less correlated pair (B). 

Given this high signal comparability, the final ERP comparison was pursued. To en-
able higher comparability, a crossed linked reference was computed (i.e., L6+R5 for the 
Smarting Mobi, and L5+R6 for the OpenBCI Cyton). Next, all trials per condition (stand-
ard and target) were averaged. Figure 18 shows the ERP traces aligned with the cEEGrid 
electrodes. 

 
Figure 18. ERP signals from simultaneous recordings. 

This figure shows ERP traces that can be described as to be expected from this audi-
tory attention task. A negative deflection approximately 100 ms after onset of both tones 
is visible, resembling an auditory evoked potential N100 component (see, e.g., [34]). This 
deflection is pronounced in the upper channels (L1 to L3 and R1 to R3) and is diminished 
or absent in the other channels. Furthermore, an even more prominent positive deflection 
in response to target tones is found, with peak amplitudes at approximately 400 ms. Mor-
phology, condition effect and latency of this deflection strongly resembled the typical P300 

R = Ref
G = Ground = OpenBCI

= Smarting
LEFT

L2

L4

L6

L8

L10

L1

L3

L5

L7

L9

RIGHT

R2

R4G

R6R

R8

R10

R1

R3

R5R

R7G

R9

Figure 18. ERP signals from simultaneous recordings.

This figure shows ERP traces that can be described as to be expected from this auditory
attention task. A negative deflection approximately 100 ms after onset of both tones is
visible, resembling an auditory evoked potential N100 component (see, e.g., [34]). This
deflection is pronounced in the upper channels (L1 to L3 and R1 to R3) and is dimin-
ished or absent in the other channels. Furthermore, an even more prominent positive
deflection in response to target tones is found, with peak amplitudes at approximately
400 ms. Morphology, condition effect and latency of this deflection strongly resembled
the typical P300 ERP component (see, e.g., [10,35]). In a similar manner to the N100, the
P300 was pronounced for channels located above the reference sites. Below the references
an opposite polarity waveform emerges with a smaller amplitude. Comparing the traces
across amplifiers, the signals are very similar (see, e.g., L2 and L3 for two very similar
traces in adjacent electrodes—or L3 and R3 for two very similar traces on two contralat-
eral electrodes). However, slight differences remain that could be due to the differences
resulting from the reference electrode positions or anatomical peculiarities.

As in the previous study, to further assess the effect strength of the P300 component,
differences between target and standard condition were calculated for 100 ms windows
(see Figure 19). Again, the condition effects are most pronounced between 300 and 500 ms
and maximal at channels L2 and L3/R3 and R3—with a weaker, negative reflection of the
same effect in the electrodes L8 and L9/R8 and R9. From this comparison as well, no clear
difference in terms of effect strength emerges between the two amplifiers.

In summary, this final, concurrent time-domain comparison of the two amplifiers
again supports the observation that similar cEEGrid recording aptitudes are found for both
the Smarting Mobi and the OpenBCI Cyton amplifier.
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6. Discussion and Conclusions

In this work, we compared the performance of a high-end (MBrainTrain Smarting
Mobi) and a low-cost (OpenBCI Cyton+Daisy) EEG signal amplifier for recording neural
activity with around-the-ear (cEEGrid) electrodes. This comparison provides crucial an-
swers for the accessibility and progress of the research on concealed EEG, which can be
used in everyday life to enable applications such as adaptive hearing aids [3], sleep moni-
toring [1] or novel human–computer interaction modalities [4,5]. Due to the high technical
requirements for the recording of ear EEG signals (high temporal precision for ERPs and
high SNR for the acquisition of low-amplitude signals [3]) a comprehensive evaluation
of the recording capabilities of a low-cost amplifier alternative is essential. Thereby, our
work goes beyond previous comparisons of the OpenBCI Cyton+Daisy amplifier [15,32]
by documenting temporal precision more systematically and directly comparing ear-EEG
signals and features. We adapted a paradigm specifically for this purpose and identified a
number of interesting parameters.

First of all, our work shows that it is necessary to determine the desired recording
configuration with the OpenBCI Cyton+Daisy and the USB dongle buffer settings. If
the system is used with its default settings (“out-of-the-box”), scholars will experience
problems with latency and jitter—especially when using the currently available dejittering
methods (i.e., those implemented in the XDF interfaces like pyxdf). While the OpenBCI
developers are aware of this limitation and recommend the FTDI buffer fix in the amplifier
documentation, this step may not be obvious to all users. For example, we were not aware
of this aspect when recording the timing test signals. On the other hand, this led us to
investigate and develop a fix for the chunky and irregular timestamp patterns in this initial
configuration—the chunk dejitter method. This new algorithm not only allowed for the
correction of misaligned timestamps, but actually led to improved timing performance
(higher precision and consistency), which is why we used (and recommend) it for our ERP
study recordings. The improved consistency is the main reason for this recommendation,
as the OpenBCI Cyton+Daisy sometimes showed quite high jitter variances. Even with the
manufacturer’s recommended FTDI buffer fix, sample transfer timestamps can be quite
volatile, which can have a serious impact on ERP analyses. Still, we must emphasize that
our recommended recording configuration without the buffer fix will require a one-time
shift of the recorded timestamps to provide accurate ERP results due to the high lag of over
500 ms. In summary, with these recommended corrections (using the new chunk dejitter
and timestamp shift) OpenBCI Cyton+Daisy users can reliably (i.e., with high temporal
precision) and easily (without having to change hardware settings) record ear-EEG time-
domain signals that approach the quality of the high-end Smarting Mobi amplifier.
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Second, beyond these timing findings, we found comparable performance in human
cEEGrid recordings with both amplifiers in two experimental designs: (1) repeated exper-
iments with both amplifiers per participant, and (2) simultaneous amplifier recordings
in a single experiment run. Generally, it should be highlighted that our results rely on
a relatively small sample size, which poses a limitation for the detection of small effects.
However, as we were primarily interested in replicating relatively large and well-known
effects—and did so with both amplifiers—we feel that this sample size was acceptable
for the purposes of this work. In the first case, comparable signals are found for the
frequency-domain and time-domain features, with no discernible patterns that would
indicate superior performance of one amplifier over the other. However, since the recorded
data in this first experiment showed general limitations with artifacts, we also looked more
closely at the concurrent recordings. In this last experiment, we were able to directly assess
signal comparability and found very similar signal morphologies and ERP components for
both amplifiers. Again, these results lead us to conclude that both amplifiers have similar
SNR performance. Because the signals were compared for electrodes in close proximity,
but not exactly in the same position, there remain minimal differences that could be further
eliminated by building adapters that allow signals from the same electrodes to be recorded
simultaneously with both amplifiers. A design for such an adapter (which also limits
crosstalk between amplifiers connected to the same electrode) has been documented in [32].
However, since the author found very similar signals in the OpenBCI Cyton and another
high-end EEG amplifier, and since our results have consistently shown similar signal quali-
ties, we believe that the sum of the evidence sufficiently documents the suitability of the
OpenBCI Cyton+Daisy amplifier for recording (around-the-ear) EEG signals.

In conclusion, the MBrainTrain Smarting Mobi definitely offers advantages in terms
of sampling frequency and temporal precision for the study of neural signals in the ear
region. If money is no obstacle, it is probably the preferably option currently. However,
if you are on a smaller budget, using the OpenBCI Cyton+Daisy amplifiers is a viable
alternative for (around-the-ear) EEG research and prototype development. Given that
many of these amplifiers are already distributed around the world (OpenBCI currently lists
over 200 publications with their devices, which is only a fraction of the units distributed)
this new evidence of additional recording capabilities will hopefully stimulate further
growth in the development of concealed EEG [3], which has the potential to deliver exciting
applications and technologies in the near future.

Supplementary Materials: The following supporting information can be downloaded at: https://
github.com/MKnierim/pyxdf (accessed on 3 May 2023), The chunk dejitter algorithm implemented
as an extension of the PyXDF library.
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