
Real-Time Optimization for Dynamic
Ride-Sharing

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

Martin Pouls, M.Sc.

Tag der mündlichen Prüfung: 05.05.2023
Erster Gutachter: Prof. Dr. Stefan Nickel
Zweiter Gutachter: Univ.-Prof. Dr. Jan Fabian Ehmke

Karlsruhe, 2023





Abstract

Throughout the last decade, the advent of novel mobility services such as ride-hailing,
car-sharing, and ride-sharing has shaped urban mobility. While these types of services
offer flexible on-demand transportation for customers, they may also increase the load
on the, already strained, road infrastructure and exacerbate traffic congestion problems.
One potential way to remedy this problem is the increased usage of dynamic ride-sharing
services. In this type of service, multiple customer trips are combined into share a vehicle si-
multaneously. This leads to more efficient vehicle utilization, reduced prices for customers,
and less traffic congestion at the cost of slight delays compared to direct transportation in
ride-hailing services.

In this thesis, we consider the planning and operation of such dynamic ride-sharing
services. We present a wider look at the planning context of dynamic ride-sharing and
discuss planning problems on the strategical, tactical, and operational level. Subsequently,
our focus is on two operational planning problems: dynamic vehicle routing, and idle
vehicle repositioning.

Regarding vehicle routing, we introduce the vehicle routing problem for dynamic ride-
sharing and present a solution procedure. Our algorithmic approach consists of two
phases: a fast insertion heuristic, and a local search improvement phase. The former
handles incoming trip requests and quickly assigns them to suitable vehicles while the
latter is responsible for continuously improving the current routing plan. This way, we
enable fast response times for customers while simultaneously effectively utilizing available
computational resources.

Concerning the idle vehicle repositioning problem, we propose a mathematical model that
takes repositioning decisions and adequately reflects available vehicle resources as well as
a forecast of the upcoming trip request demand. This model is embedded into a real-time
planning algorithm that regularly re-optimizes the movement of idle vehicles. Through an
adaptive parameter calculation process, our algorithm dynamically adapts to changes in
the current system state.

To evaluate our algorithms, we present a modular simulation-based evaluation framework.
We envision that this framework may also be used by other researchers and developers.
In this thesis, we perform computational evaluations on a variety of scenarios based on
real-world data from Chengdu, New York City, and Hamburg. The computational results
show that we are able to produce high-quality solutions in real-time, enabling the usage in
high-demand settings. In addition, our algorithms perform robustly in a variety of settings
and are quickly adapted to new application settings, such as the deployment in a new city.

i





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Scope and Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . 2
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Fundamentals of Mobility-as-a-Service . . . . . . . . . . . . . . . . . . . . 5
2.1 A Definition of Mobility-as-a-Service . . . . . . . . . . . . . . . . . . . . 5
2.2 A Taxonomy of Mobility-as-a-Service Applications . . . . . . . . . . . . 5
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Dynamic Ride-Sharing: Application and Planning Problems . . . . . . . 11
3.1 Application Setting and Characteristics . . . . . . . . . . . . . . . . . . . 11

3.1.1 Service Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Stakeholders and Obectives . . . . . . . . . . . . . . . . . . . . . 12

3.2 Planning and Execution of a Dynamic Ride-Sharing Service . . . . . . . 13
3.2.1 Planning Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Execution of Shared Rides . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Interaction of Planning and Execution . . . . . . . . . . . . . . . 19

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 A Modular Planning and Evaluation Framework for Dynamic Ride-
Sharing Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Related Simulation Frameworks for Dynamic Ride-Sharing . . . . . . . . 22

4.2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 System Overview: Components and Communication . . . . . . . . . . . 28
4.3.1 Planning Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iii



Contents

5 Real-Time Vehicle Routing for Dynamic Ride-Sharing . . . . . . . . . . . 35
5.1 The Vehicle Routing Problem for Dynamic Ride-Sharing . . . . . . . . . 35
5.2 Related Approaches in Dynamic Vehicle Routing . . . . . . . . . . . . . . 37

5.2.1 Vehicle Routing for Dynamic Ride-Sharing . . . . . . . . . . . . . 37
5.2.2 Dynamic Dial-a-Ride Problem . . . . . . . . . . . . . . . . . . . . 42
5.2.3 Local Search Approaches for Dynamic Vehicle Routing . . . . . . 43
5.2.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 The Vehicle Routing Problem for Dynamic Ride-Sharing . . . . . . . . . 45
5.4 Real-Time Dispatching with Local Search Improvement . . . . . . . . . . 49

5.4.1 Planning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.2 Real-Time Dispatching . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.3 Local Search Improvement . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Reactive Idle Vehicle Repositioning . . . . . . . . . . . . . . . . . . . . . 58
5.6 Computational Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6.1 Experimental Design and Setup . . . . . . . . . . . . . . . . . . . 59
5.6.2 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . 65

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Idle Vehicle Repositioning for Dynamic Ride-Sharing . . . . . . . . . . . 83
6.1 The Idle Vehicle Repositioning Problem for Dynamic Ride-Sharing . . . . 83
6.2 Related Approaches in Repositioning and Demand Forecasting . . . . . . 85

6.2.1 Repositioning in Dynamic Ride-Sharing . . . . . . . . . . . . . . 86
6.2.2 Dynamic Vehicle Routing with Stochastic Customers . . . . . . . 88
6.2.3 Repositioning in Car-Sharing, Taxi Operations, andOtherMobility-

as-a-Service Applications . . . . . . . . . . . . . . . . . . . . . . 90
6.2.4 Short-Term Travel Demand Forecasting . . . . . . . . . . . . . . 91
6.2.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Forecast-Driven Repositioning . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.1 Problem Statement and Algorithm Overview . . . . . . . . . . . 93
6.3.2 Planning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.3 Notation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.4 Adaptive Parameter Calculation . . . . . . . . . . . . . . . . . . . 96
6.3.5 Mathematical Model for Forecast-Driven Repositioning . . . . . 98
6.3.6 Repositioning Target Assignment . . . . . . . . . . . . . . . . . . 101

6.4 Computational Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4.1 Experimental Design and Setup . . . . . . . . . . . . . . . . . . . 102
6.4.2 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

iv



List of Figures

1.1 Structure of this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Planning problems in dynamic ride-sharing services. . . . . . . . . . . . . . 14

4.1 Components and data flows of the planning and evaluation framework. . . . 29
4.2 Road networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Planning process in the real-world setup and the simulation environment. . 50
5.2 Grid partitioning with grid cell centers. . . . . . . . . . . . . . . . . . . . . . 52
5.3 Dataset areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Distribution of trip requests over time. . . . . . . . . . . . . . . . . . . . . . 63
5.5 Parameter influence on vehicle routing. . . . . . . . . . . . . . . . . . . . . . 66
5.6 Vehicle states with and without repositioning. . . . . . . . . . . . . . . . . . 69
5.7 Rejection rates for different time window settings. . . . . . . . . . . . . . . . 71
5.8 Rejection rates for different fleet sizes. . . . . . . . . . . . . . . . . . . . . . . 73
5.9 Vehicle states with different fleet factors. . . . . . . . . . . . . . . . . . . . . 75
5.10 Rejection rates for different capacities. . . . . . . . . . . . . . . . . . . . . . . 76
5.11 Rejection rates for different pre-booking probabilities. . . . . . . . . . . . . . 78
5.12 Rejection rates for different pre-booking durations. . . . . . . . . . . . . . . 79
5.13 Vehicle states on Wednesday and Sunday. . . . . . . . . . . . . . . . . . . . . 79

6.1 Vehicle positions with and without repositioning. . . . . . . . . . . . . . . . 84
6.2 Illustration of the grid, neighborhoods, and repositioning targets. . . . . . . 96
6.3 Illustration of decision variables. . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4 Parameter influence on repositioning. . . . . . . . . . . . . . . . . . . . . . . 106
6.5 Vehicle states with REACT and FDR. . . . . . . . . . . . . . . . . . . . . . . . 109
6.6 Rejection rates for different algorithm combinations. . . . . . . . . . . . . . . 109
6.7 Rejection rates for different datasets and time windows. . . . . . . . . . . . . 110
6.8 Rejection rates for different datasets and vehicle factors. . . . . . . . . . . . . 111
6.9 Vehicle states with different vehicle factors. . . . . . . . . . . . . . . . . . . . 111
6.10 Rejection rates for different datasets and vehicle capacities. . . . . . . . . . . 112
6.11 Expected requests served at different times. . . . . . . . . . . . . . . . . . . . 115

v





List of Tables

2.1 A taxonomy of mobility-as-a-service applications. . . . . . . . . . . . . . . . 7

4.1 Related frameworks on simulation for dynamic ride-sharing systems. . . . . 25
4.2 Data structure of trip request data. . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Data structure of vehicle data. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Data structure of link speed data. . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Related literature on vehicle routing for dynamic ride-sharing. . . . . . . . . 40
5.2 Notation for the VRPDRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Data structure of trip request datasets. . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Preliminary and main instances. . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Base fleet size per dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Simulation settings and potential values. . . . . . . . . . . . . . . . . . . . . 64
5.7 Algorithm parameters and potential values. . . . . . . . . . . . . . . . . . . . 64
5.8 Performance indicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.9 Algorithm parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.10 Overview of average running times. . . . . . . . . . . . . . . . . . . . . . . . 68
5.11 Average results with and without repositioning. . . . . . . . . . . . . . . . . 68
5.12 Aggregated results with and without local search. . . . . . . . . . . . . . . . 70
5.13 Results with and without ride-sharing. . . . . . . . . . . . . . . . . . . . . . 70
5.14 Time window settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.15 Results for different time window settings. . . . . . . . . . . . . . . . . . . . 72
5.16 Results with different fleet sizes. . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.17 Results with different vehicle capacities. . . . . . . . . . . . . . . . . . . . . . 77
5.18 Results for different local search time limits. . . . . . . . . . . . . . . . . . . 80

6.1 Related work on repositioning for dynamic ride-sharing. . . . . . . . . . . . 87
6.2 Related work on the DVRPSC. . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Related work on repositioning for car-sharing. . . . . . . . . . . . . . . . . . 91
6.4 Notation for forecast-driven repositioning. . . . . . . . . . . . . . . . . . . . 95
6.5 Preliminary and main instances. . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.6 Base fleet size per dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.7 Simulation settings and potential values. . . . . . . . . . . . . . . . . . . . . 103
6.8 Algorithm parameters and potential values. . . . . . . . . . . . . . . . . . . . 104
6.9 Performance indicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.10 Algorithm parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.11 Overview of average running times. . . . . . . . . . . . . . . . . . . . . . . . 107

vii



List of Tables

6.12 Aggregated results with REACT and FDR. . . . . . . . . . . . . . . . . . . . . 108
6.13 Time window settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.14 Comparison of forecasting methods. . . . . . . . . . . . . . . . . . . . . . . . 114
6.15 Aggregated results with the perfect and naive forecast. . . . . . . . . . . . . 114
6.16 Fixed values of 𝑟𝑠𝑖 for different datasets. . . . . . . . . . . . . . . . . . . . . . 115
6.17 Aggregated results with fixed parameters and adaptive calculation. . . . . . 116

viii



Glossary

ADP approximate dynamic programming

AGV autonomous guided vehicle

ALNS adaptive large neighborhood search

BEV battery-electric vehicle

CNN convolutional neural network

DARP dial-a-ride problem

DDARP dynamic dial-a-ride problem

DIS dispatching algorithm

DP dynamic programming

DVRPSC dynamic vehicle routing problem with stochastic customers

FDR forecast-driven repositioning algorithm

FDR-M forecast-driven repositioning MIP model

GPS global positioning system

LA lookahead algorithm

LS local search algorithm

LSTM long short-term memory

MaaS mobility-as-a-service

MIP mixed-integer programming

MOD mobility-on-demand

MSA multiple scenario approach

OSM OpenStreetMap

PDP pickup and delivery problem

PFA policy function approximation

PT public transport

ix



Glossary

REACT reactive repositioning algorithm

RL reinforcement learning

RMSE root-mean-square error

SimDRS simulation of dynamic ride-sharing

TS tabu search

VFA value function approximation

VRP vehicle routing problem

VRPDRS vehicle routing problem for dynamic ride-sharing

x



1 Introduction

Urban mobility has undergone significant changes throughout the last decade. Due to
the widespread availability of modern communication technology and smartphone ap-
plications, novel mobility services such as ride-hailing, bike- or scooter-sharing, and
ride-sharing have appeared. Previously, few transportation modes, most importantly pri-
vate cars, taxis, and public transport, dominated the market of urban mobility. Nowadays,
mobility service providers such as Uber, Lyft or Tier offer on-demand transportation in
urban areas, sometimes even combining multiple modes of transportation into integrated
trips.

However, the increased convenience for travelers may come at a cost regarding traffic
congestion and the environmental impact through pollution and greenhouse gas emissions.
Early reports and studies on the impact of ride-hailing services indicate that the availability
of ride-hailing can lead to additional road traffic as customers replace public transport
voyages with ride-hailing trips. Additionally, customers may undertake trips that they
would otherwise have done without. Observations from New York City (Fitzsimmons 2017)
suggest that the recent decline in subway ridership might be attributed to the replacement
by ride-hailing trips with Uber and Lyft. Similarly, surveys among ride-hailing users
indicate that up to 34 % of travelers would have otherwise used public transport or active
transportation modes such as walking or biking (Gehrke et al. 2019). While the exact
relationship and interaction of modern mobility services with public transport and private
car ownership is still an active research topic (Nelson and Sadowsky 2019; Cats et al. 2022),
results such as the aforementioned suggest that ride-hailing, in particular, may lead to
increased traffic congestion and emissions in cities through the substitution of public
transport, walking and biking trips. On the other hand, some studies also identify the
potential for mobility-on-demand (MOD) services to complement existing public transport
options by forming multi-modal trips (Gehrke et al. 2019). This way, mobility-on-demand
may increase public transport utilization and reduce traffic congestion problems.

Another option for making mobility-on-demand more efficient, is the increased usage of
sharedmobility options. Ride-sharing services, in contrast to ride-hailing, combinemultiple
customers to single trips with multiple passenger groups sharing a vehicle simultaneously.
This leads to more efficient vehicle usage and may remedy the impact on traffic and the
environment.

Planning and operating such ride-sharing services comes with a key set of challenges.
Service providers operate in a highly dynamic environment with customers demanding
timely service and quick response times to their trip requests. Moreover, operators must
be equipped to handle thousands of trip requests per hour. These requirements raise

1



1 Introduction

the necessity for tailor-made operational planning algorithms, particularly for planning
vehicle movements. In addition, to assess the performance of these algorithms under
realistic scenarios, we need simulation-based evaluation tools. Such simulation tools may
also be utilized by service providers to adequately plan the setup of a ride-sharing service
before deploying it in a new city.

1.1 Scope and Contribution of this Thesis

In this thesis, we consider precisely this application setting of dynamic ride-sharing as
described above. We discuss the particular challenges arising from ride-sharing, such as
the high degree of dynamism and the high request load, in detail, and present insights into
the different stakeholders, objectives, and planning problems. Regarding the operational
planning of ride-sharing services, we propose our own specialized solution algorithms and
a simulation-based evaluation framework to evaluate these algorithmic approaches under
realistic simulation scenarios. The main contributions of our work can be summarized as
follows.

We take a detailed look at the planning context of ride-sharing services. As a first step,
we compare ride-sharing to other mobility-as-a-service (MaaS) applications and
present aspects that differentiate ridesharing from mobility services such as ride-hailing
or car-sharing. Subsequently, we discuss characteristics, business models and planning
objectives for different stakeholders of dynamic ride-sharing systems. Based on these
insights, we derive a set of strategical, tactical and operational planning problems
that are relevant for ride-sharing operators and illustrate how the planning level may
interact with the actual execution of shared rides.

Subsequently, we focus on two key operational planning problems in the context of
ride-sharing: dynamic vehicle routing and idle vehicle repositioning. In the vehicle
routing problem, the objective is to plan efficient vehicle routes that fulfill customer
requests while respecting a set of relevant constraints such as vehicle capacities and
customer time windows. Additionally, the vehicle routing algorithm must be able to
process high request volumes in real-time to enable fast response times to customer
requests. For this purpose, we propose a solution approach that combines a fast insertion
heuristic with a local search improvement phase. This allows us to quickly respond to new
trip requests while at the same time utilizing the available computational power to improve
the routing plan. Besides vehicle routing, we also consider idle vehicle repositioning. This
is a problem that arises in a ride-sharing setting whenever there is a spatial imbalance
between the vehicle supply and the anticipated trip request demand. The objective is to
reposition available vehicles in a way that they are well-suited to serve future customers.
For this purpose, we propose a mathematical model that is integrated into our real-time
planning process. Our model reflects a forecast of the upcoming demand and the current
system state and capabilities of vehicles to serve future trip requests. In addition, it
considers the cost and operational overhead of repositioning movements. In the design of

2



1.2 Organization

our operational planning algorithms we aim to consider practical requirements for ride-
sharing providers. For instance, the algorithms are equipped to handle high trip request
loads in real-time and are easily transferred to new application settings, for instance, a
new city in which the provider operates.

These planning algorithms are integrated into a modular simulation-based evaluation
framework. We envision that this framework may be used by algorithm developers to
assess the performance of their optimization algorithms based on simulation scenarios. In
this thesis, we utilize our framework to evaluate our vehicle routing and repositioning
approaches on a diverse set of simulation scenarios derived from real-world data
from multiple cities. For instance, we run simulations with multiple fleet sizes, vehicle
capacities, and varying demand patterns on different weekdays. Such simulation scenarios
can yield insights into potential practical applications of ride-sharing services, for example,
when a service operator plans to expand to a new city or region.

The work presented in this thesis has been published in three scientific papers:

1. M. Pouls et al. (2020). Idle Vehicle Repositioning for Dynamic Ride-Sharing. Compu-
tational Logistics. Ed. by E. Lalla-Ruiz et al. Vol. 12433. Cham: Springer International
Publishing, pp. 507–521. doi: 10.1007/978-3-030-59747-4_33.

2. M. Pouls et al. (2021). Real-Time Dispatching with Local Search Improvement for
Dynamic Ride-Sharing. Computational Logistics. Ed. by M. Mes et al. Vol. 13004.
Cham: Springer International Publishing, pp. 299–315. doi: 10.1007/978-3-030-
87672-2_20.

3. M. Pouls et al. (2022). Adaptive forecast-driven repositioning for dynamic ride-
sharing. Annals of Operations Research. doi: 10.1007/s10479-022-04560-3.

1.2 Organization

The structure of this thesis is illustrated in Figure 1.1.

Chapter 2 defines the term mobility-as-a-service as it is used in this thesis and presents a
taxonomy of different MaaS applications including ride-sharing. These different applica-
tions are compared regarding several aspects concerning their modes of operation.

In Chapter 3, we address dynamic ride-sharing in detail. We discuss different business
models, stakeholders, and objectives. Subsequently, we present an overview of strategical,
tactical, and operational planning problems that arise when operating a ride-sharing
service.

Chapter 4 introduces our simulation-based evaluation framework. We compare it to
related simulation approaches and explain our design decisions. Additionally, we detail
the different elements, input data, and communication between components.

3

https://doi.org/10.1007/978-3-030-59747-4_33
https://doi.org/10.1007/978-3-030-87672-2_20
https://doi.org/10.1007/978-3-030-87672-2_20
https://doi.org/10.1007/s10479-022-04560-3


1 Introduction

Figure 1.1: Structure of this thesis.

In Chapters 5 and 6, we propose our solution algorithms for the operational vehicle routing
and idle vehicle repositioning problems in the context of dynamic ride-sharing. We review
related approaches in these fields and present our own solution approaches in detail. Both
algorithms are evaluated utilizing our simulation framework on real-world data from the
cities of Chengdu, Hamburg, and New York City.

Finally, we summarize our findings and contributions in Chapter 7 and propose potential
directions for future research.

4



2 Fundamentals of
Mobility-as-a-Service

In this chapter, we provide an introduction into the field of mobility-as-a-service (MaaS).
We first define the term MaaS as it is used in this thesis. Subsequently, we present a
taxonomy of different mobility services and dicuss and categorize them based on a set of
service characteristics. We pay particular attention to the differences between ride-sharing,
the focus of this thesis, and other mobilty services.

2.1 A Definition of Mobility-as-a-Service

While the term mobility-as-a-service is relatively new, MaaS applications in the broadest
sense have existed for decades. Some newer publications present a relatively narrow defini-
tion of MaaS in which they consider the intermodal integration of different transportation
services as an integral aspect (Utriainen and Pöllänen 2018; Jittrapirom et al. 2017). In
this work, we adopt a broader meaning of MaaS that encompasses all mobility services
in which the means of transportation are not solely used by the owner as is generally
the case with privately owned cars. Instead, transportation services are also offered to
other customers. The term mobility-on-demand is sometimes used interchangeably with
mobility-as-a-service. We consider mobility-on-demand to be a subset of mobility-as-
a-service in which services are offered on-demand, i.e. dynamically based on specific
transportation requests by customers. This is in contrast to services that are mostly bound
by timetables such as public transport or services like traditional car-pooling in which
transportation opportunities are based on the available routes.

2.2 A Taxonomy of Mobility-as-a-Service Applications

As the difference between several mobility services such as car-sharing, ride-hailing
and ride-sharing is not clearly defined in literature and the terms are sometimes used
interchangeably, we present a definition and taxonomy of different mobility services. It is
our goal to encompass the most important MaaS applications. However, due to the influx
of new mobility offerings and business models in recent years, it is not within the scope
of this work to present a complete overview of all possible forms of mobility services.
We differentiate services based on the following criteria and summarize our results in
Table 2.1.

5



2 Fundamentals of Mobility-as-a-Service

Stations We distinguish between services that use physical or virtual stations or none at
all. In station-based models, transportation is only offered between predefined stations.
This allows for a simplified planning process and consolidation of demand at stations. In
contrast, manymodernMaaS solutions are not bound to stations anymore and are therefore
able to offer a more flexible service. An intermediate solution between the physical station
infrastructure of public transport solutions and the complete absence of stations is the
usage of virtual stations. This concept has arisen in some recent transportation offerings
such as ride-sharing or scooter-sharing. For instance, in the case of scooter sharing, virtual
stations may be displayed in a mobile application and designate areas in which scooters
may be dropped off. However, no physical infrastructure exists at these locations which
makes it easy to add or remove virtual stations.

Timetable While most traditional public transportation models are bound by a pre-
defined timetable, this is no longer the case for newer MaaS applications in which the
service is provided on-demand. In timetable-based services, vehicles operate according to
a fixed schedule and customers must plan their trips in accordance with this timetable. In
contrast, on-demand mobility services offer flexible transportation where customers may
request a trip at any point in time and are served in a timely manner.

Vehicle sharing We differentiate between services in which vehicles may be shared
between multiple customers simultaneously compared to services in which a customer
books the vehicle exclusively for themselves. The former generally offer lower prices
while the latter offer increased comfort and flexibility for the customer.

Vehicle ownership Servicesmay be classified according to the ownership of the vehicles.
Either vehicles are owned by the operator of the service or by other private entities who
then offer their vehicles via a platform provider. For some use cases, such as ride-sharing,
both business models are possible.

Driver employment Connected to the previous aspect is the employment of drivers.
These may either be employed with the service operator or work independently and offer
their services via a platform. We differentiate vehicle and driver ownership as they are
not always correlated. For instance, it is a possible business model to have drivers who are
employed with a service operator but utilize their private vehicles to provide transportation
services. In some services, such as car-sharing, there are no dedicated drivers and the
vehicle is customer-operated.

In the following we briefly discuss all MaaS applications summarized in Table 2.1.
We provide an overview of the key aspects of all services and, in particular, discuss the
differences compared to ride-sharing services, which are the focus of this thesis. We also
provide references to more in-depth reviews concerning each service type.

6



2.2 A Taxonomy of Mobility-as-a-Service Applications

St
at
io
ns

T
im

et
ab

le
Ve

hi
cl
e

sh
ar
in
g

Ve
hi
cl
e

ow
ne

rs
hi
p

D
ri
ve

r
em

pl
oy

m
en

t
R
ef
er
en

ce
s

Pu
bl
ic

tra
ns
po

rt
ph

ys
ic
al

ye
s

ye
s

op
er
at
or

em
pl
oy

ed
D
es
au
ln
ie
rs

an
d
H
ic
km

an
(2
00
7)

Ib
ar
ra
-R
oj
as

et
al
.(
20
15
)

Ta
xi

an
d

rid
e-
ha
ili
ng

ph
ys
ic
al
/

vi
rtu

al
/

no
ne

no
no

bo
th

bo
th

Sa
la
no

va
et

al
.(
20
11
)

Ti
ra
ch
in
i(
20
20
)

Ca
r-
po

ol
in
g

no
ne

no
ye
s

pr
iv
at
e

in
de
pe
nd

en
t

Ag
at
ze

ta
l.
(2
01
2)

Sh
ah
ee
n
an
d
Co

he
n
(2
01
9)

Ta
fre

sh
ia
n
et

al
.(
20
20
)

Ca
r-
sh
ar
in
g

ph
ys
ic
al
/

no
ne

no
no

op
er
at
or

cu
st
om

er
-

op
er
at
ed

Jo
rg
e
an
d
Co

rr
ei
a
(2
01
3)

Fe
rr
er
o
et

al
.(
20
18
)

H
ua
ng

et
al
.(
20
20
b)

Go
la
lik

ha
ni

et
al
.(
20
21
)

Bi
ke
-a

nd
sc
oo

te
r-
sh
ar
in
g

ph
ys
ic
al
/

vi
rtu

al
/

no
ne

no
no

op
er
at
or

cu
st
om

er
-

op
er
at
ed

Sh
ah
ee
n
et

al
.(
20
10
)

Fi
sh
m
an

et
al
.(
20
13
)

Sh
en

et
al
.(
20
18
)

Ri
de
-s
ha
rin

g
vi
rtu

al
/

no
ne

no
ye
s

bo
th

bo
th

Sh
ah
ee
n
an
d
Co

he
n
(2
01
9)

Ta
bl
e
2.
1:

A
ta
xo
no

m
y
of

m
ob
ili
ty
-a
s-
a-
se
rv
ic
e
ap
pl
ic
at
io
ns
.

7



2 Fundamentals of Mobility-as-a-Service

Public transport Public transport (PT) is among the oldest MaaS applications, with its
beginnings dating back to the 17th century (American Public Transportation Association
2007, p. 5). Compared to more modern services, PT offers the least amount of flexibility
due to its mostly station-based and timetable-bound nature. More recently, PT providers
have started to offer on-demand bus services. However, these are still relatively fringe
concepts and the vast majority of public transport is still based on predefined bus or
railway lines and timetables. Due to the nature of these services, public transport comes
with a set of planning problems that differ from most other MaaS applications considered
in this section. For instance, a key central problem is the determination of timetables and
subsequently the assignment of drivers and vehicles to specific routes. This combination
of planning problems is unique to timetable- and station-based services. Hence, based on
these characteristics, we see limited overlap between PT and dynamic ride-sharing. There
is some common ground in strategical infrastructure planning (e.g. vehicle depots) and
personnel scheduling. However, the operational planning problems are vastly different.
For comprehensive reviews concerning public transportation, we refer the readers to
Desaulniers and Hickman (2007) and Ibarra-Rojas et al. (2015).

Taxi and ride-hailing While taxis have long been a staple mobility service, more
recently the term ride-hailing has emerged to describe similar app-based services such
as Uber and Lyft. We group these applications together as the offered service is very
similar and consequently the associated planning problems are closely related. Both taxi
and ride-hailing providers offer direct transportation from one location to another while
transporting only one customer group at a time. These types of services are generally
not timetable- or station-based although there may sometimes be designated pickup and
waiting areas (e.g. at airports) or virtual stops. Several business models are common
regarding vehicle ownership and driver employment. Service providers such as MOIA may
own the vehicle fleet and use employed drivers to provide their service. On the other hand,
intermediary platforms such as Uber or Lyft merely act as a broker between customers and
drivers while the latter are independent and use their private cars. Operational planning
for these services is comparatively simple as no complex vehicle routing algorithms are
necessary. This is due to the fact that only one trip request is served at a time. In contrast,
in ride-sharing multiple customer groups may occupy the vehicle simultaneously, leading
to a more complex routing problem. However, the idle vehicle repositioning problem
arising from taxi and ride-hailing applications is similar to ride-sharing and may lead to
approaches that can be applied to both domains. This aspect is discussed in more detail in
Chapter 6. Detailed reviews on taxi and ride-hailing services may be found in Salanova
et al. (2011) and Tirachini (2020).

Car-pooling Car pooling, at times also referred to as social ride-sharing or peer-to-peer
ride-sharing, describes a service in which private car owners offer to pick up additional
passengers along their planned route. Some literature may also use the term ride-sharing to
describe such services. However, in this work, we exclusively use ride-sharing for services
in which transportation is offered as a main dedicated service, whereas in car-pooling the

8



2.2 A Taxonomy of Mobility-as-a-Service Applications

opportunity to transport other travelers arises as a by-product. One common use case of
car-pooling is commuting to work and offering to transport additional passengers with a
similar itinerary. The earliest applications of car-pooling date back to World War II and the
energy crisis in the 1970s when car-pooling was used as a means of saving rubber and fuel
(Chan and Shaheen 2012). More recently, car-pooling has become increasingly popular due
to the ease of dynamically matching riders via mobile applications. As mentioned above,
the key difference compared to ride-sharing is the fact that in car-pooling the objective is
to match customers to vehicles with an existing route, for instance, a commute to work. In
contrast, in ride-sharing, there are dedicated drivers to whom any potential route can be
assigned. More in-depth reviews of car-pooling are found in Agatz et al. (2012), Shaheen
and Cohen (2019), and Tafreshian et al. (2020).

Car-sharing The term car-sharing refers to a set of services in which customers may
book vehicles owned by the car-sharing operator. One may differentiate between station-
based and free-floating services. In the station-based case, vehicles are picked up and
returned at dedicated stations. This type of car-sharing may be further subdivided into
two-way systems, where vehicles must be returned at the same station they were picked
up, and one-way systems where pick-up and return may occur at different stations. In
free-floating car-sharing, there are no dedicated stations. Instead, vehicles may be picked
up and returned anywhere within the area of service. In one-way or free-floating car-
sharing systems, one key planning problem is the repositioning of vehicles to match
customer demand. These repositioning movements may either be executed by the car-
sharing operator or by offering incentives for customers to drop off their vehicles in certain
regions. While ostensibly similar to the repositioning problem arising from ride-sharing,
there are some differences. Specifically, in car-sharing, there are no dedicated drivers,
which adds the additional layer of assigning personnel to reposition vehicles. Moreover,
in ride-sharing, vehicles may be shared between multiple customers which increases the
complexity when trying to balance supply and demand. These topics are discussed in
detail in Chapter 6. Dedicated reviews on car-sharing systems may be found in Jorge and
Correia (2013), Ferrero et al. (2018), Huang et al. (2020b), and Golalikhani et al. (2021).

Bike- and scooter-sharing These types of micromobility offerings systems operate
in a similar manner as car-sharing. However, due to the involved resources (bikes / e-
scooters instead of cars), the associated planning problems and operational processes are
different. In general, there are also station-based and free-floating systems. In one-way or
free-floating systems, similar repositioning problems as in car-sharing arise. However, due
to the possibility of transporting bikes or scooters in bulk with a truck, the operational
planning approaches tend to differ. For similar reasons, the proposed algorithms in the
context of bike- or scooter-sharing are also not applicable to ride-sharing. For detailed
overviews regarding such systems, we refer the reader to Shaheen et al. (2010), Fishman
et al. (2013), and Shen et al. (2018).

9



2 Fundamentals of Mobility-as-a-Service

Ride-sharing The focus of this thesis is on ride-sharing applications. We consider
ride-sharing a service in which customers submit a trip request in a similar manner as in
taxi or ride-hailing services. However, customers are not transported individually, as their
routes may be efficiently combined with other customers with a similar route. Similar
to taxi and ride-hailing services, ride-sharing services generally are not station-based
although some providers may use designated waiting areas for vehicles or virtual stops
for customers. Many service providers such as Uber and Lyft offer both ride-hailing and
ride-sharing services. The latter are offered at reduced prices, but the customer must
accept the lower level of comfort and increased travel times. A thorough introduction
into the field of ride-sharing, different business models and relevant planning problems is
provided in the upcoming Chapter 3.

2.3 Summary

In this chapter, we defined the term MaaS as it is used in this thesis. We presented a
taxonomy of different mobility services and categorized them according to a set of criteria
that influence the design and planning of these services. In particular, we discussed the
differences between ride-sharing and other mobility services such as car-sharing or car-
pooling. With this basic understanding of mobility-as-a-service, mobility-on-demand,
and ride-sharing, we proceed in the following chapter by taking a detailed look at the
application setting of ride-sharing and the associated planning problems.

10



3 Dynamic Ride-Sharing:
Application and Planning
Problems

In the previous chapter, we have given an overview of different mobility services. In
this chapter, we present a more detailed look at dynamic ride-sharing, the focus of this
thesis. We present the general application setting and an overview of different business
models, stakeholders, and objectives in ride-sharing systems. Finally, we introduce a set of
relevant strategical, tactical, and operational planning problems that arise when operating
a ride-sharing service.

3.1 Application Setting and Characteristics

We consider ride-sharing to be a service in which multiple groups of customers may be
combined into a single trip with multiple customer groups sharing a vehicle simultaneously.
This is in contrast to taxi or ride-hailing services where a single customer books a vehicle
exclusively for their trip. Additionally, ride-sharing is primarily offered as a profit-oriented
business in contrast to car-pooling where the idea is to share private vehicles. Examples
of real-world ride-sharing services include UberPool, Lyft Line, GrabShare or MOIA.

3.1.1 Service Characteristics

Ride-sharing services exhibit characteristics that differentiate them from other mobility
offerings and influence the business models and planning approaches. In this section,
we discuss several key characteristics of ride-sharing services and their impact on the
arising planning problems and solution approaches. Furthermore, we specify the type of
ride-sharing service that we focus on in this thesis.

Business model While from the customer’s point of view the provided services are
comparable, the business models of different ride-sharing providers may vary. Depending
on the specific business model, a service provider may be faced with different planning
problems and operational concerns. Based on the focus of this thesis, the operational
planning of ride-sharing services, there are two main criteria to differentiate business

11



3 Dynamic Ride-Sharing: Application and Planning Problems

models: vehicle ownership and driver employment. On one end of the spectrum are service
operators that utilize their own vehicle fleet with employed drivers such as MOIA. These
operators maintain direct control over their fleet and drivers. However, they also carry
the financial risks associated with vehicle ownership and employee contracts. On the
other end of the spectrum are intermediary platforms that mainly act as a broker between
independent drivers using their private vehicles and customers (e.g. Uber / Lyft). These
broker platforms have limited control over the availability and routes of their drivers and
must often work with decentralized incentive mechanisms to influence driver behavior.
Other service providers may operate somewhere between the two ends of the spectrum.
For instance, it is possible to have employed drivers, but these drivers use their private
vehicles to provide ride-sharing services. In this thesis, we focus on business models
where the service provider maintains complete control over the vehicle fleet. At times
we also discuss decentral control mechanisms, but our main topic is centralized planning
algorithms.

High degree of dynamism Ride-sharing services are highly dynamic. In fact, most
existing literature in the field considers them as purely dynamic services in which all
requests desire immediate service. This is in line with the idea of mobility-on-demand
and offers flexibility for customers. At times, it may be desirable to book rides in advance,
which is why some service providers such as Uber and Lyft have started to offer reservation
options for customers (Uber 2022; Lyft 2022). However, these reservation possibilities are
highly constrained and, to our knowledge, only offered for their ride-hailing offerings and
not for ride-sharing. In the remainder of this work, we mostly consider purely dynamic
ride-sharing. However, in Chapter 5, we also evaluate the impact of pre-booked trip
requests.

Trip request demand and response times A general-purpose ride-sharing service
must be equipped to handle high levels of trip request demand and still provide near-
instantaneous response times for customers. In large cities, such as New York City, a
ride-sharing operator may receive more than 20,000 trip requests per hour. Consequently,
the operational planning algorithms, in particular for vehicle routing, must be capable of
handling these request numbers while still facilitating fast response times.

Limited geographical coverage Ride-sharing is generally offered in limited, urbanized
regions. The main reason is that sharing rides is only efficient in regions with sufficient
demand. Hence, in the computational evaluations in this thesis, we also focus on urban
and suburban areas of operation.

3.1.2 Stakeholders and Obectives

The planning approaches and objectives of a ride-sharing service are strongly influenced
by the different stakeholders. We have identified four main stakeholders: service providers,

12



3.2 Planning and Execution of a Dynamic Ride-Sharing Service

customers, drivers, and cities/regions. In the following, we present their different perspec-
tives on a ride-sharing service.

Service providers In this work, we mainly focus on the perspective of the service
provider. The main objective of the service provider is to maximize the profit generated by
the ride-sharing service. More often than not, this correlates with other objectives such as
the maximization of served trip requests, the minimization of operational costs, and also
ensuring customer satisfaction. The latter is important as otherwise customers may resort
to alternative modes of transportation.

Customers From the perspective of the customer, there are twomain criteria concerning
the quality of a ride-sharing service: the price and the service quality. The latter is
difficult to measure and encompasses aspects such as waiting and ride times, but also more
intangible criteria like the quality of vehicles.

Drivers When considering drivers, one must differentiate between employed and in-
dependent drivers. In the latter case, the main objective of drivers is to maximize their
personal profit. In contrast, with employed drivers, we would assume a fixed wage, al-
though monetary incentives for serving rides or operating in specific areas are possible.

Cities andRegions More recently, the impact of MaaS offerings of mobility and traffic in
cities has received increasing attention. Traffic congestion problems have been attributed
to the increasing popularity of ride-hailing services (Castiglione and Cooper 2018) and
some cities have begun to take countermeasures by regulating such services (Doubek
2018). These problems can be partially addressed by incentivizing the usage of shared
mobility such as ride-sharing. However, the efficiency of mass public transport through
metro and buses is still unmatched. Hence, from the perspective of regulators in a city,
it is desirable to regulate ride-sharing services in a way that they complement existing
public transport solutions, but do not substitute them.

3.2 Planning and Execution of a Dynamic
Ride-Sharing Service

In this section, we provide an overview of strategical, tactical, and operational planning
problems that arise when operating a dynamic ride-sharing service and review related
literature. In addition, we also consider the execution of planned routes and how a
service operator may interact with a plan while it is being executed. We discuss potential
disruptions and interventions as well as how the gathered data may influence future
planning decisions. An overview of planning problems and the route execution is provided
in Figure 3.1.

13



3 Dynamic Ride-Sharing: Application and Planning Problems

Figure 3.1: Planning problems in dynamic ride-sharing services. The operational planning problems
highlighted in blue are considered in detail in this thesis.

3.2.1 Planning Tasks

In hierarchical decision-making, planning tasks are often divided into three categories:
strategical, tactical, and operational. Crainic (2000) provides an overview of these planning
levels in the context of transportation systems. In the following, we define a set of planning
tasks arising in dynamic ride-sharing and categorize them along these three planning
levels. On a strategical level, we consider decisions that are made on a long-term basis,
often several months or years in advance. The decisions made on this level are typically
expensive and cannot be easily modified. Tactical planning is concerned with medium-term
decisions and a planning horizon of several days or weeks. Lastly, operational decisions
deal with short-term decision-making. In the context of ride-sharing, these are highly
dynamic planning problems.

3.2.1.1 Strategical Planning for Ride-Sharing Services

We are not aware of any dedicated works concerning strategical planning for ride-sharing
services. We believe that this is mainly due to the fact that strategical problems, such as
facility location problems, have been extensively studied in other fields and ride-sharing
does not add any novel aspects. Hence, solution approaches from other domains may
be transferred. Nevertheless, we shortly discuss relevant strategical planning problems

14



3.2 Planning and Execution of a Dynamic Ride-Sharing Service

to give a comprehensive overview concerning the planning of ride-sharing services. We
consider two planning problems on a strategical level: infrastructure planning and fleet
composition.

Infrastructure planning Depending on the business model, it may be necessary for a
ride-sharing provider to build and maintain its own infrastructure. In the following, we
present related literature regarding three core infrastructure decisions that may arise: the
location of vehicle depots, the location of charging infrastructure for electric vehicle fleets,
and the location of stops.

The problem of determining depot locations may in its simplest form be modeled as a
facility location problem. Reviews on this class of problems are presented in Melo et al.
(2009) and Daskin (2013). Alternatively, the depot location problem may be seen as an
interdependent problem with vehicle routing. The resulting optimization problem is
referred to as the location routing problem (Schneider and Drexl 2017; Drexl and Schneider
2015). To our knowledge, there are no works dealing with the problem of locating vehicle
depots in the specific context of dynamic ride-sharing services. However, compared
to other vehicle routing variants, the location of depots is of lesser importance when
considering ride-sharing. This is mainly due to the fact that there is comparatively little
interaction between vehicles and depots. A depot may mainly serve as the start and end
of a driver shift and as a parking place for vehicles that are not currently in operation. In
contrast, in logistics use cases, vehicles may repeatedly drive to the depot throughout a
workday to pick up or deliver goods.

Due to the increasing electrification of vehicles, the location of charging infrastructure for
battery-electric vehicles (BEVs) has attracted significant research attention in recent years.
For ride-sharing operators, it may be necessary to build and operate their own recharging
infrastructure, if it is too costly or infeasible to use public or third-party charging stations.
It could be sufficient to provide recharging infrastructure at depots. However, depending
on the utilization and range of vehicles that may not be sufficient to provide an adequate
service level. There exists a large amount of research on this topic. Extensive reviews
are found in Koç et al. (2016), Shareef et al. (2016), and Deb et al. (2018). There are also
several works dealing with optimizing the location of charging stations in shared mobility
scenarios such as ride-sharing. A comprehensive solution approach and an overview of
recent related works is presented in Lokhandwala and Cai (2020).

As a last strategical infrastructure problem, we consider the placement of stops. While this
is a highly relevant planning task when operating public transport services, it is of lesser
importance for ride-sharing. Ride-sharing services do not operate on fixed lines and while
some services use pre-determined stops, these are purely virtual and therefore require
no investment into physical infrastructure and may be changed on a relatively short
notice. Nevertheless, we see some relevant use cases for the strategical planning of stops
in ride-sharing services. Firstly, with ride-sharing services becoming more widespread,
regulators may step in and require operators to get approval for stops, which is already
the case in Germany with MOIA (MOIA 2022b). Secondly, at some locations (e.g. airports)

15



3 Dynamic Ride-Sharing: Application and Planning Problems

there already is a requirement for physical stops with separate lanes or parking bays
similar to taxi stations. In these cases, the location of stops becomes important for the
satisfaction with the provided service, as customers must walk to stops to be picked up by
a vehicle. For this problem, one may use existing solution approaches for facility locations
(see above) or network design of public transport networks (Desaulniers and Hickman
2007).

Fleet Composition The fleet composition problem, also referred to as fleet design
problem, is concerned with determining the composition of a heterogeneous vehicle fleet,
i.e. the types of vehicles that are used and the number of vehicles for each type (Etezadi
and Beasley 1983). In the context of dynamic ride-sharing, it can make sense to employ
different vehicle types for different usage scenarios. For instance, in use cases with dense
demand such shuttle services (Lowalekar et al. 2021), one could utilize minibusses for
about 10 passengers. On the other hand, in sub-urban areas or during times of lower
demand, standard cars with a capacity of 3 – 4 passengers could be more cost-effective
as vehicles with a higher capacity would not be fully utilized. As the procurement of a
vehicle fleet poses a significant initial investment and vehicles have a considerable running
cost, it represents an important strategical decision when running a ride-sharing service.
It should be noted that while fleet composition is generally considered as a strategical
problem (Baykasoğlu et al. 2019), it may also have a tactical or even operational dimension.
For instance, some works consider the inclusion of rental vehicles (Bertoli et al. 2020)
which have no associated fixed cost and may be commissioned on a rather short-term
basis. While we are not aware of any works dealing with fleet composition specifically for
dynamic ride-sharing, there are a number of existing models and algorithms that could be
transferred to the use case at hand. For thorough reviews of fleet composition problems
and their combination with various classes of vehicle routing problems, we refer the reader
to the works of Hoff et al. (2010) and Baykasoğlu et al. (2019).

3.2.1.2 Tactical Planning for Ride-Sharing Services

On a tactical level, we see two types of resources for which tactical plans must be devised:
vehicles and drivers. Regarding vehicles, tactical planning is concerned with determining
an adequate fleet size throughout each workday and the scheduling of specific vehi-
cles. Closely coupled with these decisions is the scheduling of personnel. Similar to the
strategical problems above, we are not aware of any publications discussing these topics
specifically for ride-sharing services. However, we believe that solution approaches from
other domains may be applied.

Fleet sizing and scheduling The objective of the fleet sizing and scheduling problem
is to determine a suitable schedule for the given vehicle fleet such that the number of
vehicles in use matches the available demand at any given time. For this purpose, it is
necessary to determine which exact vehicles are to be used at which times considering
constraints regarding aspects such as vehicle types or regular vehicle maintenance. Such

16



3.2 Planning and Execution of a Dynamic Ride-Sharing Service

fleet sizing and scheduling problems have been mostly studied in the context of transport
logistics (Beaujon and Turnquist 1991) and public transport (Desaulniers and Hickman
2007; Schmid and Ehmke 2015). However, there are also works explicitly considering
shared mobility applications (Fagnant and Kockelman 2018). We believe that many of
the planning criteria, particularly in the context of public transport, are also relevant in
ride-sharing and therefore basic solution principles may be transferred.

Staff Scheduling The staff scheduling problem (sometimes also referred to as rostering)
is closely coupled to the fleet sizing and scheduling problem discussed above. Staff schedul-
ing in general is a widely studied problem class with varying applications such as nurse
rostering (Burke et al. 2004) or driver scheduling in public transport (Desaulniers and
Hickman 2007). For general reviews on staff scheduling, we refer the reader to Ernst et al.
(2004) and Van den Bergh et al. (2013). In our opinion, driver scheduling for ride-sharing
services does not add any novel aspects compared to existing staff scheduling applications.
Hence, we believe that existing solution approaches should be transferable.

3.2.1.3 Operational Planning for Ride-Sharing Services

The focus of this thesis is on operational planning problems for dynamic ride-sharing.
In particular, the vehicle routing and repositioning problems. We believe that at the
operational level, the special characteristics of the ride-sharing application, such as the
high degree of dynamism, come into play and require tailor-made solution approaches.

Vehicle Routing Potentially the most extensively studied problem in the context of
dynamic ride-sharing is the arising vehicle routing problem. It is a variation of existing
vehicle routing problems and closely related to the dial-a-ride problem (DARP). In this
thesis, we refer to it as the vehicle routing problem for dynamic ride-sharing (VRPDRS).
While mathematical models and solution approaches for this type of problem have existed
for years, recently there has been an influx of papers dealing with the particular challenges
arising in dynamic ride-sharing (e.g. Ma et al. (2013) and Alonso-Mora et al. (2017a)). We
believe that due to these challenges, particularly the highly dynamic nature and the large
number of trip requests, special algorithms for dynamic ride-sharing are necessary and
one cannot rely on general-purpose vehicle routing approaches. Hence, in Chapter 5,
we present our own solution approach for the VRPDRS and present a detailed literature
review.

Repositioning A second important task on the operational level is the management
of idle vehicles. The key task is to balance trip request demand and available vehicle
supply, i.e. idle vehicles should be repositioned to areas where a lack of available vehicles
is anticipated. Similar repositioning problems arise in other mobility applications such as
car-sharing (Huang et al. 2020b) or bike-sharing (Reiss and Bogenberger 2017). However,
due to the different problem characteristics, we believe that it is beneficial to design

17



3 Dynamic Ride-Sharing: Application and Planning Problems

specialized solution approaches for repositioning in a ride-sharing setting. The idle vehicle
repositioning problem in this context may be either considered in an integrated manner
during vehicle routing (Alonso-Mora et al. 2017b) or as a separate optimization problem
(Riley et al. 2020). In Chapter 6, we discuss this problem in detail and provide a literature
review as well our own solution approach.

3.2.2 Execution of Shared Rides

The plans obtained during operational planning are subsequently executed by drivers
and vehicles. In our work, this execution is simulated with a discrete-event simulation
framework described in Chapter 4. There is a close interaction between the execution
of a plan and the operational planning of vehicle movements. Any updates received
concerning the progress of the current plan must be considered regarding future vehicle
routes and vehicle movements. Besides directly influencing operational planning, there
are also short-term re-planning approaches that may be utilized during the execution of
routes to handle disruptions. Disruption handling in general is a widely studied field in
several domains such as aviation (Su et al. 2021) or public transport (Lai and Leung 2018).
Of particular interest for this work are related works regarding disruptions in vehicle
routing (Eglese and Zambirinis 2018). In the following, we discuss potential disruptions of
a ride-sharing service and associated disruption handling techniques. It is not within the
scope of this thesis to provide an in-depth discussion of disruption handling. We merely
aim to give an idea of potential disruptions that may occur and how these can be handled
during planning and execution. For a more detailed review of disruption handling for
vehicle routing, we refer the reader to Eglese and Zambirinis (2018).

3.2.2.1 Disruption Sources and Types

We differentiate between three sources of disruptions: operator-caused, customer-caused,
and external disruptions.

Operator-caused disruptions This category includes any disruptions that are primarily
caused by the operator’s resources, in particular drivers and vehicles. This includes, for
instance, breakdowns of vehicles or the unplanned absence of personnel.

Customer-caused disruptions Disruptions may also be caused by the customers, for
instance, due to no-shows of passengers, changes in the desired destination or short-term
cancellations of trip requests.

External disruptions The last category includes any disruptions caused by factors that
fall outside the ride-sharing system. These include delays caused by traffic congestion, road
accidents, road closures, and service disruptions due to problematic weather conditions.

18



3.2 Planning and Execution of a Dynamic Ride-Sharing Service

3.2.2.2 Disruption Handling

In the following, we outline several general options for handling arising disruptions.

Personnel changes In case of short-term disruptions to the driver personnel (e.g. a
driver calling in sick at the beginning of the workday), it may become necessary to adjust
driver shifts in order to maintain the desired level of service. This may be achieved by
re-scheduling the shifts of the own workforce, a problem which has been studied in the
context of other applications such as nurse rostering (Wickert et al. 2019). Alternatively, it
might be possible to rely on external temporary workers to maintain the service which
comes at an extra cost for the ride-sharing provider.

Vehicle changes Vehicle breakdowns are perhaps the most commonly studied disrup-
tion type in the context of vehicle routing (Eglese and Zambirinis 2018). Particularly
problematic are vehicle breakdowns that occur during the execution of a route. In this
case, the provider may opt to supply a backup vehicle that serves the remainder of the
disrupted vehicle’s route. Such backup vehicles may either be taken from the operator’s
own vehicle fleet or one can use external rental vehicles. Even if no vehicle breakdowns
occur, it may sometimes become necessary to employ additional vehicles on a short-term
basis. This may for instance be the case if demand is higher than anticipated.

Vehicle re-routing The most flexible disruption handling technique, as no additional
resources are needed, is the re-routing of available vehicles (Eglese and Zambirinis 2018).
It can be used to handle most disruption sources, e.g. vehicle breakdowns, no-shows, and
delays by adjusting the existing routing plan to consider the arising disruptions. These
re-routing decisions can either be taken by a separate module or in the operational vehicle
routing algorithm.

3.2.3 Interaction of Planning and Execution

As we have seen in the prior section, there is a close interaction between the execution
and planning of a ride-sharing service. Disruptions during the execution may influence
the tactical and operational planning levels. In addition, the gathered data during the
execution may improve future planning decisions. In the following, we shortly discuss the
interaction of execution and planning.

Data-driven planning During the execution, data concerning the routes’ progress is
sent to the planning services. It is primarily used to supply an up-to-date system state to
the operational planning modules. However, one can also use the data in multiple ways
to improve future planning decisions. It may, for instance, be used to estimate future
travel times and trip request demand. These estimation models can then be used in the

19



3 Dynamic Ride-Sharing: Application and Planning Problems

planning algorithms to improve decision-making. We present an example of such an
integration in Chapter 6, where we utilize a demand forecast to reposition idle vehicles.
Besides, obtained data can be used to calculate algorithm parameters on the fly in order
to accurately represent the current system state. We employ such an adaptive parameter
calculation in Chapter 6.

Disruptions and planning Besides supplying data for future planning decisions, any
disruptions that occur during the execution have a direct impact on operational and also
tactical planning decisions. On the operational level, the planning modules must be aware
of the current state of the route execution to consider this in their decisions. For instance,
in case of delays, the vehicle routing algorithm should possibly not assign any further trip
requests to a delayed vehicle or even move stops to another route to ensure that no time
windows are violated. A disruption of a vehicle or a driver may also trigger re-planning
decisions that impact the plan on a tactical level. For instance, if driver shifts are adjusted,
this may also impact shifts in the upcoming weeks due to working time considerations.

3.3 Summary

In this chapter, we have introduced the application setting of dynamic ride-sharing and
discussed several problem characteristics, stakeholders, and objectives that influence the
design of planning algorithms for ride-sharing systems. Subsequently, we presented an
overview of the planning and execution of a ride-sharing service. We discussed planning
tasks on a strategical, tactical, and operational level and considered the interaction between
planning and execution, particularly in the case of disruptions. In the following chapters,
we focus on the operational planning level of a ride-sharing service. In the upcoming
Chapter 4, we propose a planning and evaluation framework that simulates the execution
of a ride-sharing service and enables us to evaluate operational planning algorithms. These
planning algorithms themselves are then presented in Chapters 5 and 6.

20



4 A Modular Planning and
Evaluation Framework for
Dynamic Ride-Sharing Services

In this chapter, we propose a modular and extensible planning and evaluation framework
for dynamic ride-sharing services. This framework is used as a basis for the computational
evaluations of our operational planning algorithms for vehicle routing and repositioning in
Chapters 5 and 6. At its core, our framework consists of a planning service that maintains
the current system state, handles incoming trip requests and plans vehicle movements, and
a discrete-event simulation of dynamic ride-sharing (SimDRS) that emulates real-world
vehicles, drivers, and customers. In the following, we discuss the design as well as the
modular components of our framework in detail. Our focus in this chapter is on the
simulation and the communication between the simulation and the planning service. The
operational planning algorithms themselves are discussed in detail in Chapters 5 and 6.

4.1 Introduction

When implementing solution algorithms for the operational planning of dynamic ride-
sharing services, one generally relies on some form of simulation-based evaluation to
assess the performance of the implemented approaches. Unfortunately, the details of these
evaluation frameworks are rarely discussed in literature although they may have a large
impact on the obtained computational results. Hence, in this chapter, we present a detailed
look at the system design of our planning and evaluation framework. We believe that such a
simulation-based framework is paramount to operating and planning ride-sharing services.
It is essential to evaluate potential solution algorithms for the operational planning of the
service. In addition, it can assist service providers in deploying their ride-sharing to a new
city or region as it enables them to perform simulation studies beforehand. Therefore,
it is our goal to design a simulation and evaluation framework that can be utilized by
other researchers and developers in the field of dynamic ride-sharing. In the design of our
framework, we pursued the following main goals.

Applicability to large-scale scenarios The simulation should be computationally
efficient and enable users to run a variety of large-scale scenarios in an acceptable timespan.

21



4 A Modular Planning and Evaluation Framework for Dynamic Ride-Sharing Services

It should support running simulation scenarios faster than real-time in order to conduct
simulation studies on large scenario sets.

Modularity and exensibility Components communicate via clearly defined interfaces
and can therefore be replaced individually. This modular design enables us to evaluate
planning components separately and change the implementation without affecting other
components. While we believe that our framework already covers many aspects that are
relevant for planning and simulating ride-sharing services, there are still several ways
in which it could be improved. Therefore, it should be open to extensions. The external
interfaces of our components should also allow users to use several different data sources
as a basis to create input data for the simulation.

Decoupling of simulation and planning The simulation and the planning services
are decoupled. This would ease the transfer of the implemented planning algorithms to
a real-world use case. The simulation is replaced by real vehicles and customers that
communicate with the planning service via the same communication interface as the
simulation. Additionally, the simulation could be used as a stand-alone solution to evaluate
other planning services.

Ease of transfer to new scenarios The data requirements and setup overhead of the
simulation should be kept at a minimum to ease the application on new datasets, cities or
regions. While the simulation should be able to harness additional data sources, such as
travel time information, it should not rely on this data as it may not always be available.

The remainder of this chapter is structured as follows. In Section 4.2, we present an
overview of related work concerning the simulation-based evaluation of ride-sharing sys-
tems. Section 4.3 presents an overview of our framework and discusses details concerning
the planning service and the simulation. Lastly, Section 4.4 summarizes this chapter and
presents some possible directions for future extensions.

4.2 Related Simulation Frameworks for Dynamic
Ride-Sharing

While most works in the field of dynamic ride-sharing, or more generally dynamic vehicle
routing, utilize some form of simulation-based evaluation framework, the details of these
systems are rarely discussed. For instance, Ma et al. (2013) and Ma et al. (2015) present
a modular system design that is similar to the one proposed in this work. It consists of
a planning service and defines communication interfaces with real-world drivers and
customers. In their computational evaluations, these drivers and customers are replaced
by simulated agents. However, the implementation of this simulation is not presented.

22



4.2 Related Simulation Frameworks for Dynamic Ride-Sharing

4.2.1 Literature Review

In the following, we discuss several open-source and commercial simulation frameworks
that can be utilized to simulate the operation of a ride-sharing fleet and have influenced
the design of our own simulation framework. Please note that in this section, we focus
purely on the simulation aspect of these works as well as the communication between
simulated agents and the service operator. Related approaches for operational planning of
ride-sharing services are discussed in Chapters 5 and 6. Furthermore, several approaches
discussed throughout this section use traffic simulation models as their basis. While
we touch upon some aspects of these models, it is not within the scope of this work to
present the basic principles and different variations of traffic simulation in detail. For this
purpose, we refer the reader to reviews by Casas et al. (2010) and Wageningen-Kessels
et al. (2015). Table 4.1 summarizes related works regarding simulation frameworks for
dynamic ride-sharing. We categorize them according to the following criteria.

Traffic flow The traffic flow model determines how vehicles move through the road
network. We distinguish between three options. In microscopic models, the behavior of
each vehicle and interaction between vehicles is modeled on a detailed level and includes
aspects such as car-following behavior, lane changes, signals, braking and acceleration.
Mesoscopic models view traffic flow on a slightly more aggregated level. They still simulate
individual vehicles, but the movement on roads is less detailed. These approaches use
techniques such as queuing-based or gas-kinetic models in place of vehicle-following
models commonly used in microscopic simulations. This leads to decreased computational
complexity at the cost of reduced precision. Lastly, in deterministic traffic flow models, the
interaction between different vehicles on the road is not modeled at all. A vehicle moves
according to a deterministic path to its destination. In this approach, one assumes that the
relevant aspects of traffic flow, in particular traffic congestion, are encoded in the road
network travel times.

Integrated mode choice We differentiate whether or not the simulation offers the
option to model choices between different transport modes. This is often possible in
approaches that build on more extensive micro- or mesoscopic traffic simulations. The
ability to model mode choices is relevant if one wishes to study the interaction between
ride-sharing and other modes of transport such as private vehicles, walking, or public
transit. Note that while many approaches offer mode choices in theory, this option is not
necessarily used in computational studies. It is a time-consuming and data-intensive task
to model a transport network with different transport modes. One needs to model the
user preferences regarding these modes and integrate additional data sources such as the
availability of private vehicles, public transit routes and timetables, etc.

Travel times The travel times on the road network may be either static or vary dynam-
ically depending on the simulation time and current simulation state. In approaches that
use micro- or mesoscopic traffic flow models, travel times are generally dynamic as the

23



4 A Modular Planning and Evaluation Framework for Dynamic Ride-Sharing Services

time that a vehicle needs to traverse a link depends on the current utilization of this link.
In cases where traffic flow is deterministic, one may use time-dependent travel times to
achieve dynamism.

Demand Demand for the ride-sharing service may be either given by an external data
source or generated by the activities of the simulated agents. In the former case, one
generally uses available data such as records of taxi trips as input for the simulation.
In activity-based models, one defines a population of agents and each agent has a set
of activities that are carried out over the simulation run. Based on these activities, the
transport demands and thereby trip requests for the ride-sharing service are generated.

Customer interaction The interaction between simulated customers and the ride-
sharing service may be realized in several ways. Of particular interest is the booking
process when a customer submits a new trip request. In the simplest 1-step variation, the
trip request is submitted to the ride-sharing service and the customer is served at some
point in the future. No further communication takes place, in particular no confirmation
or rejection of the request. These aspects are included in the 2-step process where the trip
request is answered by either a confirmation or a rejection. This gives the ride-sharing
provider the option to reject a trip request. In the 3-step process, the customer additionally
has the option to accept or reject the offer made by the ride-sharing provider. This is
relevant if multiple options are provided to the customer or the price of the service is not
known in advance and instead included dynamically in the offer.

Driver interaction The ride-sharing service also interacts with drivers. In most works,
this interaction is merely an assignment of vehicle routes to drivers, who subsequently
process these routes. One other option is to model independent driver behavior. In this case,
drivers may have the option to reject a route that has been assigned to them or decide their
availability times independently. This is relevant if one wants to simulate applications
such as Uber or Lyft in which drivers are not employed by the service provider.

In the following, we discuss the works summarized in Table 4.1. SimMobility (Adnan
et al. 2016) is an agent-based simulation framework that consists of three levels. In the
long-term and mid-term levels, decisions such as infrastructure location and vehicle
ownership are taken and the daily activity and mobility patterns of each agent are built.
On the short-term level, SimMobility uses the microscopic traffic simulation MITSIM (Yang
and Koutsopoulos 1996) to simulate vehicle behavior with a high resolution. In a study
by Azevedo et al. (2016), SimMobility is used to simulate the impact of an autonomous
mobility-on-demand service in the inner city of Singapore. The simulation was configured
in a fine-grained manner and includes aspects such as public transit routes and timetables,
traffic light data and a household survey for activity generation.

POLARIS (Auld et al. 2016) is a mesoscopic traffic simulation framework that uses a similar
agent-based activity model as in SimMobility combined with a mesoscopic traffic flow

24



4.2 Related Simulation Frameworks for Dynamic Ride-Sharing

N
am

e
R
ef
er
en

ce
s

T
ra
ffi
c
fl
ow

In
te
gr
at
ed

m
od

e
ch

oi
ce

T
ra
ve

l
ti
m
es

D
em

an
d

C
us

to
m
er

in
te
ra
ct
io
n

D
ri
ve

r
in
te
ra
ct
io
n

Si
m
M
ob
ili
ty

&
M
IT
SI
M

Ya
ng

an
d
Ko

ut
so
po

ul
os

(1
99
6)

Ad
na
n
et

al
.(
20
16
)

A
ze
ve
do

et
al
.(
20
16
)

m
ic
ro
sc
op

ic
ye
s

dy
na
m
ic

ac
tiv

ity
1-
st
ep

as
sig

nm
en
t

PO
LA

RI
S

Au
ld

et
al
.(
20
16
)

Gu
ru
m
ur
th
y
et

al
.(
20
20
)

m
es
os
co
pi
c

ye
s

dy
na
m
ic

ac
tiv

ity
1-
st
ep

as
sig

nm
en
t

M
AT

Si
m

D
RT

Bi
sc
ho

ff
et

al
.(
20
17
)

W
an
g
et

al
.(
20
17
)

Zw
ic
k
an
d
A
xh

au
se
n
(2
02
0)

m
es
os
co
pi
c

ye
s

dy
na
m
ic

ac
tiv

ity
2-
st
ep

as
sig

nm
en
t

M
AT

Si
m

A
M
oD

eu
s

Ru
ch

et
al
.(
20
18
)

Zw
ic
k
an
d
A
xh

au
se
n
(2
02
0)

m
es
os
co
pi
c

ye
s

dy
na
m
ic

ac
tiv

ity
2-
st
ep

as
sig

nm
en
t

M
aa
SS
im

Ku
ch
ar
sk
ia
nd

Ca
ts
(2
02
2)

de
te
rm

in
ist
ic

no
st
at
ic

ex
te
rn
al

3-
st
ep

in
de
pe
nd

en
t

SU
M
O

Q
ur
as
hi

et
al
.(
20
20
)

SU
M
O
(2
02
2b
)

m
ic
ro
sc
op

ic
ye
s

dy
na
m
ic

ex
te
rn
al

1-
st
ep

as
sig

nm
en
t

Fl
ee
tP
y

Ka
ge
rb
au
er

et
al
.(
20
21
)

W
ilk

es
et

al
.(
20
21
)

En
ge
lh
ar
dt

et
al
.(
20
22
)

de
te
rm

in
ist
ic

no
dy

na
m
ic

ex
te
rn
al

2-
st
ep
,

3-
st
ep

as
sig

nm
en
t

Si
m
D
RS

Po
ul
se

ta
l.
(2
02
0)

Po
ul
se

ta
l.
(2
02
1)

Po
ul
se

ta
l.
(2
02
2)

th
is
w
or
k

de
te
rm

in
ist
ic

no
dy

na
m
ic

ex
te
rn
al

2-
st
ep

as
sig

nm
en
t

Ta
bl
e
4.
1:

Re
la
te
d
fra

m
ew

or
ks

on
sim

ul
at
io
n
fo
rd

yn
am

ic
rid

e-
sh
ar
in
g
sy
st
em

s.

25



4 A Modular Planning and Evaluation Framework for Dynamic Ride-Sharing Services

model based on kinematic wave theory. Gurumurthy et al. (2020) use POLARIS as a basis
for simulating the operation of shared autonomous vehicles in the cities of Bloomington
and Chicago. The authors evaluate several detailed simulation scenarios that also integrate
other transportation modes such as private vehicles, trains, and buses.

Among the most popular open-source traffic simulation frameworks is MATSim (Horni
et al. 2016). It is a mesoscopic traffic simulation that combines an agent-based activity
model with a queuing-based traffic flow model. Several works extend MATSim with
capabilities to model ride-sharing services. The MATSim DRT and DVRP extensions are
used by Bischoff et al. (2017) and Wang et al. (2017) to simulate ride-sharing services in
Berlin and Sioux Falls respectively. A similar extension called AMoDeus is presented by
Ruch et al. (2018) and used to simulate a scenario in San Francisco based on taxi global
positioning system (GPS) trace data. Zwick and Axhausen (2020) compare MATSim DRT
and AMoDeus on data from Hamburg provided by the ride-sharing provider MOIA.

Kucharski and Cats (2022) propose a simulation framework called MaaSSim that differs
in several aspects from the works discussed so far. Firstly, it has a narrower focus on
simulating mobility-as-a-service applications and therefore does not include a micro- or
mesoscopic traffic simulation with mode choices and a traffic flow model. Secondly, it
is unique among the works presented in this section in that it aims to simulate services
like Uber and Lyft with independent drivers. Hence, the authors separately model the
behavior of drivers and customers with a service provider platform as an intermediary.
Their booking process includes the option for both drivers and customers to reject a ride
offer. The authors evaluate MaaSSim on a scenario in the city of Delft.

SUMO (Behrisch et al. 2011) is one of the most popular open-source traffic simulation
frameworks besides MATSim. It contains a taxi module (SUMO 2022b) that enables users
to model taxi services with the option to activate ride-sharing. At its core, SUMO is
a detailed microscopic traffic simulation using a car-following model. Activity-based
demand generation is not as tightly integrated as in other traffic simulations discussed in
this section. Hence, we consider the demand for ride-sharing as externally given. However,
SUMO provides a tool called activitygen (SUMO 2022a) to generate activity-based trips
that are used as input for the simulation. Qurashi et al. (2020) use SUMO to simulate an
autonomous van-pooling service in the city center of Munich.

FleetPy (Engelhardt et al. 2022) is a recent framework for simulating mobility-on-demand
services. Its focus is on realistically modeling the interaction of users and service providers
in mobility-on-demand (MOD) services. The authors use their framework to simulate a
ride-sharing service in Manhattan. At its core, FleetPy is not a detailed traffic simulation
but rather focuses on simulating only MOD services. However, the authors propose
combining FleetPy with other tools to facilitate more detailed studies. In Wilkes et al.
(2021), they couple FleetPy with mobiTopp (Mallig et al. 2013), a framework for activity-
based travel demand modeling. They evaluate their approach on a scenario in Eggenstein-
Leopoldshafen. A similar approach is utilized by Kagerbauer et al. (2021), where the
authors again use mobiTopp in conjunction with FleetPy. Additionally, they use PTV
Visum (PTV Group 2022b) to calculate traffic flows and update travel times on the road
network in regular intervals based on the traffic state.

26



4.2 Related Simulation Frameworks for Dynamic Ride-Sharing

Besides approaches from scientific literature and open-source simulation tools, there
are also commercial approaches that offer support for simulating ride-sharing services.
Unfortunately, the detailed capabilities and inner workings of these frameworks are often
not disclosed. PTV MaaS Modeller (PTV Group 2022a) builds upon the macroscopic traffic
simulation PTV Visum (PTV Group 2022b) to enable users to evaluate the impact of shared
mobility solutions. A similar solution is provided by Aimsun with Aimsun Ride (Aimsun
2022) which is based on their existing traffic modeling solutions (Casas et al. 2010).

To summarize, there are several existing simulation approaches for dynamic ride-sharing.
Several frameworks build upon existing micro- or mesoscopic traffic simulations such as
MATSim or SUMO. While these approaches are capable of simulating the operation of a
ride-sharing service in great detail, they may pose problems when working with large
scenarios due to the involved computational effort. Additionally, these approaches involve
a significant overhead when applying them to a new scenario as building a model for a new
city or region is data-intensive and time-consuming. There also exist dedicated simulation
models for simulating a ride-sharing fleet such as FleetPy. While these offer a reduced
level of detail compared to traffic simulations, they are capable of simulating large-scale
scenarios and need a minimal amount of data to be transferred to a new application
setting.

4.2.2 Contribution

In our simulation framework SimDRS, we opt for a lightweight simulation approach
that only simulates the ride-sharing service itself in contrast to a more complex traffic
simulation. To the best of our knowledge, it is most similar to FleetPy (Engelhardt et al.
2022) and was developed within the same timeframe. We opt to not include integrated
mode choice, complex traffic flow models or activity-based demand generation to reduce
the computational complexity of the simulation. In order to facilitate realistic travel times,
we enable users to provide time-dependent link travel times for the road network. These
may for instance be acquired through data providers such as TomTom (TomTom 2022)
or obtained from a traffic simulation. If such data is not available, users may use free-
flow travel times obtained from OpenStreetMap (OSM). A similar coupling with traffic
simulations as proposed by Kagerbauer et al. (2021) and Wilkes et al. (2021) is also possible
in our framework. In this case, the traffic simulation can perform activity-based demand
generation and mode choices and communicate these to the ride-sharing simulation. We
have performed preliminary experiments with PTV Visum, where an existing Visum
model was used to generate different demand scenarios for our simulation runs and
additionally provide time-dependent travel times. However, in many cases, no configured
traffic simulation model is available. Therefore, these interactions are strictly optional.
Concerning customer interaction, we currently implement a 2-step booking process as we
assume that all relevant characteristics of the trip such as the price and time constraints
can be communicated to the customer before the request is submitted. Hence, no 3-step
booking process is necessary. Regarding interaction with the driver, we focus on the use
case of ride-sharing with dedicated drivers that cannot independently reject assigned

27



4 A Modular Planning and Evaluation Framework for Dynamic Ride-Sharing Services

routes. Therefore, in our model, routes and repositioning decisions are assigned to the
driver and then carried out as prescribed.

To summarize, we believe that our simulation framework presents a valuable contribution
in the field of dynamic ride-sharing due to the following main aspects:

• It is capable of simulating large-scale instances without adding a large overhead due
to the running time of the simulation scenarios. This way, developers can evaluate
their algorithms under diverse scenarios.

• Our framework is lightweight and does not need large amounts of data. This allows
us to quickly set up simulation studies in new cities or regions without needing an
extensive data gathering and model configuration phase beforehand.

• Custom planning algorithms for vehicle routing and repositioning are easily inte-
grated, allowing developers to use the framework to evaluate their algorithms. More-
over, if available, they can utilize additional data sources, such as time-dependent
travel times, to create more realistic simulation scenarios.

The details of our framework will be presented in the following sections.

4.3 System Overview: Components and
Communication

Figure 4.1 presents an overview of the components and data flows in our framework. These
components may be partitioned into two separate sections: (1) the planning service, and (2)
the simulation SimDRS. The planning service encompasses all modules for the operational
planning process of a ride-sharing system. These are described in detail in Section 4.3.1. In
addition, it provides communication interfaces for customers and vehicles. The simulation
models these two agent types based on various input data sources. This simulation and the
different possible data sources are presented in Section 4.3.2. Unless noted otherwise, all
software components described throughout the following sections were implemented in
C++. However, the focus of this chapter is on the design and structure of our framework
and not on the specific implementation details.

4.3.1 Planning Service

The planning service has three core functionalities. Firstly, it serves as a communication
interface for customers and vehicles and maintains the current system state based on
the messages received from these agents. Secondly, it is responsible for the operational
planning of vehicle movements in the form of vehicle routes and repositioning decisions.
Lastly, it contains supporting modules to enable these functionalities. In particular, it
provides access to a routing engine that calculates shortest paths on the road network.

28



4.3 System Overview: Components and Communication

Figure 4.1: Components and data flows of the planning and evaluation framework.

Additionally, it contains a demand forecasting module that provides forecasts for repo-
sitioning algorithms. In the following, we discuss the separate modules in the planning
service one by one.

Status Manager The status manager handles communication with customers and ve-
hicles. The communication is described in detail in the descriptions of the simulation
agents in Section 4.3.2. Based on the information received from the simulation, the status
manager maintains the current system state and provides this information to the other
planning modules.

Routing Engine The routing engine fulfills two main purposes. Firstly, it provides
shortest path travel times between arbitrary locations on the road network to the planning
modules. This is, for instance, relevant when checking new insertions into a vehicle route.
Secondly, it provides shortest path geometries to the simulation in order to simulate the
vehicle movements. The travel times in the simulation are not obtained from the routing
engine but rather calculated based on a separate link speed database. This enables the
simulation of scenarios with stochastic travel times in which simulated travel times deviate
from the travel times used in the planning process. In this work, we utilize RoutingKit
(Dibbelt et al. 2016) as our routing engine. This is a fast contraction-hierarchy-based
routing solver implemented in C++ and integrated as a library in our project. As a basis
for our routing graphs, we use road network data extracted from OpenStreetMap. For this
purpose, we define an area under study and extract all roads within this area from OSM
data. We select the largest fully connected component in the resulting graph. Exemplary
road graphs for three regions used in our computational studies are depicted in Figure 4.2.
Currently, we only work with static free-flow travel times in our routing engine. However,
it also offers the option of regularly updating the underlying graph based on new travel

29



4 A Modular Planning and Evaluation Framework for Dynamic Ride-Sharing Services

time information. This would allow us to consider current traffic information during
planning. In our studies, this is not evaluated due to the lack of available data.

(a) Chengdu. (b) Hamburg.

(c) Manhattan.

Figure 4.2: Road networks.

Vehicle Routing The vehicle routing module receives incoming trip requests from the
status manager and subsequently plans vehicle routes. The vehicle routing algorithms
used in this work are discussed in Chapter 5.

Repositioning and Demand Forecasting The repositioning module repositions idle
vehicles to new locations based on a demand forecast. The algorithmic approach, as
well as the forecasts used in this work, are discussed in Chapter 6. In this work, we treat
repositioning and vehicle routing as separate problems. However, there are also approaches
that integrate the anticipation of future requests into the vehicle routing algorithms. In
that case, the separate repositioning module would be obsolete and repositioning would
be integrated into the vehicle routing module. The advantages and disadvantages of both
variations are discussed in Section 6.2.

30



4.3 System Overview: Components and Communication

4.3.2 Simulation

Our simulation is implemented as an agent-based discrete-event simulation that models
the behavior of customer and vehicle agents. In the following, we first describe the general
simulation procedure and settings. Subsequently, we present the customer and vehicle
agents alongside the necessary input data sources.

4.3.2.1 Simulation Process and Settings

The simulation starts by initializing the event queue and agents. This initialization is based
on the input data as well as the settings of the specific simulation run. Our simulation
framework supports a variety of settings pertaining to trip request parameters and the
configuration of the vehicle fleet. We do not discuss all possible settings at this point.
Instead, the different simulation scenarios are described in the computational evaluations
of Chapters 5 and 6. After initializing the event queue, events are processed one after the
other until either no events are left or a defined end of the simulation scenario has been
reached. Our framework supports two temporal modes. By default, events are processed
as fast as possible. In this case, the next event in the queue is processed immediately after
the previous one has finished. This allows for simulation runs that are faster than the
simulated real-time equivalent and is useful for computational evaluations. Throughout
the remainder of this work, we only use this mode and therefore also focus our descriptions
on it. However, we also support a real-time mode. In this case, the simulation may wait
until the starting time of the next event in the queue has been reached. This mode can be
useful to showcase the behavior of the ride-sharing service in real-time.

4.3.2.2 Customer Agents

The population of customer agents is populated based on external trip request data. This
dataset contains the information given in Table 4.2.

Table 4.2: Data structure of trip request data.

Pickup
latitude

Pickup
longitude

Drop-off
latitude

Drop-off
longitude

Request
time

Passengers

53.557628 9.897047 53.571967 9.7163593 2019-03-16 14:42:00 2
53.462357 9.981423 53.447147 9.9589700 2019-03-19 10:39:00 1

. . .

For each trip in the dataset, a separate customer agent is created. At the given request time,
the simulated customer submits the trip request to the planning service. At this point,
the request is enriched with the following additional information: a pickup time window,
the maximum ride time, and the service time for pickup and drop-off. This enrichment is

31



4 A Modular Planning and Evaluation Framework for Dynamic Ride-Sharing Services

based on the settings of a specific simulation run and enables users to evaluate a variety
of different scenarios. As a response, the customer receives either a confirmation of the
request or a rejection in case the trip request cannot be served by the service provider.

4.3.2.3 Vehicle Agents

Vehicle agents are initialized based on an external vehicle dataset that follows the structure
given in Table 4.3. It contains the initial location of each vehicle. In our studies, we
randomly sample these initial locations from historic trip request data, i.e. the initial
vehicle locations correspond to pickup locations of previous trip requests. If available, one
could also use other initial locations such as the location of depots. Moreover, the dataset
specifies the capacity of each vehicle. Note that we support heterogeneous vehicle fleets.
However, the studies in this work are all performed with homogeneous fleets. Finally, the
dataset specifies the temporal availability of the vehicle in the form of a start and end time.
In theory, this allows for studies with specified schedules for vehicles and a fleet size that
varies over time. Please note that in our computational studies, we work with a fixed fleet
size, i.e. the complete fleet is available throughout a simulation run.

Table 4.3: Data structure of vehicle data.

Starting
latitude

Starting
longitude

Capacity Start time End time

53.557628 9.897047 4 2019-03-16 08:00:00 2019-03-16 16:00:00
53.462357 9.981423 6 2019-03-16 00:00:00 2019-03-16 08:00:00

. . .

At the specified time, the vehicle registers itself with the planning service. Subsequently,
it is available for planning and can receive vehicle routes and repositioning assignments.
When receiving a new assignment, the vehicle begins processing it and regularly sends
the following progress events to the planning service: regular location events with the
current coordinates, arrival at a stop, start of service at a stop, end of service at a stop,
departure from a stop, and arrival at a repositioning target. Upon reaching the end of
its shift, the vehicle deregisters with the planning service and is no longer available for
planning. Progress along the current route is simulated based on two data sources: (1)
the shortest path from the vehicle’s location to its next target and (2) time-dependent link
speeds for this path. This simulation of the vehicle’s progress along its route is an essential
part of the simulation and therefore described in detail in the following section.

4.3.2.4 Network Data and Travel Times

We assume that the routing engine described in Section 4.3.1 provides shortest path
geometries to the simulated vehicle agents. In our studies, we use road network data from
OSM to derive these paths. The travel times for each link are obtained from a separate

32



4.4 Conclusions

link speed dataset. This dataset provides the information given in Table 4.4. For each link,
it contains a set of entries specifying time-dependent speeds on this link. The driving
behavior of the vehicle is then simulated based on this speed information. This allows us
to simulate dynamic and time-dependent travel times. Note that for the studies in this
thesis, we work with static free-flow speeds. In that case, the link speed dataset contains
one entry per link with its free-flow speed as obtained from OSM. The main reason for
this is the lack of available link speed data for scenarios studied in our computational
studies. In practice, such data could be obtained through providers such as TomTom (2022)
or via traffic count or speed measurement installations. Alternatively, as mentioned in
Section 4.2, a traffic simulation may be used to simulate time-dependent travel times.
Overall, this setup would allow users of our framework to simulate scenarios in which the
actual travel times during the execution of routes deviate from the planned travel times.
This is of particular interest when considering aspects such as disruption handling and
reaction to delays.

Table 4.4: Data structure of link speed data.

Arc ID Start time End time Speed

1 2019-03-16 08:00:00 2019-03-16 08:15:00 8.33 m
s

1 2019-03-16 08:15:00 2019-03-16 08:30:00 13.89 m
s

. . .

4.4 Conclusions

In this chapter, we have presented a simulation-based evaluation framework that enables us
to evaluate the performance of dynamic ride-sharing services under a variety of scenarios.
We use this framework in the following two chapters to assess the performance of our
operational planning algorithms for vehicle routing and repositioning. Our simulation
framework covers the main requirements for simulating a dynamic ride-sharing service
and includes the option to control relevant aspects such as vehicle availability, trip request
settings and road network link speeds in detail.

There are several ways in which the capabilities of the planning service and especially
the simulation could be expanded. More detailed modeling of the interaction with both
customers and drivers would enable users of our simulation to model application settings
with independent drivers and partially decentral decision-making. For this purpose, the
booking process could be extended to allow for the rejection of routes by individual drivers.
In addition, the communication between the planning service and the simulation should be
extended to allow for the option to model a 3-step booking process in which multiple offers
are submitted to the customer and the customer may choose one or reject the offer. To
enable this, one possible area of future research would be a pricing module in the planning
service that determines adequate prices for different ride options. Furthermore, one could

33



4 A Modular Planning and Evaluation Framework for Dynamic Ride-Sharing Services

extend the simulation with stochastic influences such as cancellations or no-shows. This
would allow users to evaluate their planning algorithms under uncertainty. When it comes
to travel times, our framework is already capable of handling time-dependent travel times
both in the simulation and in the planning process. However, in this work, we do not use
this option due to the lack of available data. Hence, it would be promising to build an
publish datasets for simulation scenarios that enable the evaluation of time-dependent
travel times.

34



5 Real-Time Vehicle Routing for
Dynamic Ride-Sharing

In the previous chapters, we laid the groundwork for the remainder of this thesis by
presenting the application setting of dynamic ride-sharing, introducing relevant planning
problems, and proposing an evaluation framework that couples planning algorithms with a
discrete-event simulation. In this chapter, we focus on one particular planning problem: the
vehicle routing problem for dynamic ride-sharing. We present the general requirements, a
formal mathematical model and our own solution approach. This chapter is based on the
following article:

M. Pouls et al. (2021). Real-Time Dispatching with Local Search Improvement for
Dynamic Ride-Sharing. Computational Logistics. Ed. by M. Mes et al. Vol. 13004.
Cham: Springer International Publishing, pp. 299–315. doi: 10.1007/978-3-030-
87672-2_20.

5.1 The Vehicle Routing Problem for Dynamic
Ride-Sharing

Planning vehicle routes is an essential task when operating a dynamic ride-sharing service.
The goal is to assign trip requests to vehicles while meeting a set of planning criteria. From
the perspective of the service operator, the main optimization objective is the maximization
of profits. This is often approximated by maximizing the number of served trip requests
while minimizing the overall operating costs. Commonly, the total vehicle travel time
or distance is used as a proxy for these operating costs. On the other hand, from the
perspective of the customer, a set of quality of service criteria should be met. Customers
expect waiting times, i.e. the time between the submission of a trip request and the arrival
of a vehicle, to be within a pre-defined limit. In addition, detours compared to direct
travel are acceptable and compensated for by a lower price than traditional taxi services.
However, these detours should be kept within specified bounds that may, for instance, be
determined relative to the direct travel time. From a mathematical modeling perspective,
the VRPDRS may be seen as a dynamic dial-a-ride problem as formulated by Cordeau and
Laporte (2007).

Due to the increasing importance of mobility-as-a-service applications and the availability
of several datasets from this domain, vehicle routing for dynamic ride-sharing has recently

35

https://doi.org/10.1007/978-3-030-87672-2_20
https://doi.org/10.1007/978-3-030-87672-2_20


5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

attracted a large amount of research attention (see e.g. Ma et al. (2013), Alonso-Mora et al.
(2017a), and Lowalekar et al. (2021)). There are several practical requirements that make
the VRPDRS a challenging problem to solve (see also Chapter 3):

• Large problem sizes – Typical datasets for evaluating routing algorithms in the
context of dynamic ride-sharing contain over 300,000 trip requests on a single day
with peaks of over 20,000 trip requests per hour. Many classical approaches from
the field of dynamic vehicle routing are ill-suited for such large instance sizes which
makes new solution approaches a necessity.

• High degree of dynamism – Most works from the domain of dynamic vehicle routing
assume a moderate degree of dynamism with a portion of trip requests being known
in advance. In contrast, the majority of papers dealing with the VRPDRS assume a
purely dynamic setting in which all requests arrive dynamically.

• Processing time requirements – Customers of ride-sharing services expect a near-
instantaneous response when submitting a trip request. Hence the processing times
for trip requests need to be kept small to guarantee a fast response. Some approaches
forego this requirement to enable a batching period in which trip requests are
gathered. However, this may be problematic from a customer perspective as response
times exceeding a few seconds impact the customer’s satisfaction negatively.

In this chapter, we present our own solution approach for the VRPDRS. It consists of two
separate vehicle routing algorithms that are combined into a real-time planning process.
Firstly, we propose a fast dispatching algorithm that processes individual incoming trip
requests and facilitates a fast decision regarding whether a trip request is accepted and if
so, to which vehicle it is assigned. This dispatching algorithm is combined with a local
search improvement phase which is executed repeatedly and strives to improve the routing
plan. The main contributions of this chapter may be summarized as follows:

• We introduce a real-time dispatching algorithm based on existing approaches by
Ma et al. (2013) and Ma et al. (2015). It processes incoming trip requests and either
inserts them into a vehicle’s route or rejects them if no feasible insertion is possible.
This approach enables us to guarantee fast response times for the customer.

• The dispatching algorithm is used in combination with a local search heuristic that
tries to improve the routing plan via simple local search operators. The local search
exploits available computational time between the processing of new customer
requests.

• Both algorithms are integrated into a planning process that can be used in real-time
to facilitate efficient vehicle routing for a dynamic ride-sharing service. We illustrate
how this planning process is implemented in our simulation setup, but also show
how it could be transferred to a real-world use case.

• We perform an extensive computational evaluation with the simulation framework
as presented in Chapter 4. We study the impact of several algorithm parameters and
scenario settings such as fleet sizes or customer time windows. Moreover, we also
include the possibility of pre-booking trip requests, an aspect that has rarely been

36



5.2 Related Approaches in Dynamic Vehicle Routing

studied in the context of ride-sharing services. Our computational results show that
our algorithmic approach can be used in real-time on large datasets and that the
utilization of the local search phase improves results compared to purely dynamic
dispatching.

In the remainder of this chapter, we will first provide an overview of related literature in
the field of dynamic vehicle routing in Section 5.2. Subsequently, in Section 5.3 we present
a formal mathematical description of the VRPDRS. Section 5.4 details our vehicle routing
algorithms and shows how both algorithms are combined into an overall planning process.
Section 7 introduces a simple repositioning algorithm that is used for the computational
evaluations in this chapter. Finally, Sections 5.6 and 5.7 present our computational results
and the main conclusions of this chapter.

5.2 Related Approaches in Dynamic Vehicle Routing

Dynamic vehicle routing problems have been studied extensively throughout recent
years. For general reviews on dynamic vehicle routing problems, we refer the reader to
Pillac et al. (2013) and Psaraftis et al. (2016). In this section, we focus mainly on related
approaches designed specifically for dynamic ride-sharing systems as these share the
closest resemblance to the algorithms proposed in this work. Moreover, we consider
related literature in the broader field of dynamic dial-a-ride problems as well as general
techniques for local search algorithms in the context of vehicle routing. Note that in this
chapter we mainly cover non-stochastic vehicle routing variations without anticipation of
future trip requests. This anticipatory component is considered in detail in Chapter 6.

5.2.1 Vehicle Routing for Dynamic Ride-Sharing

In recent years, numerous solution approaches have been proposed for the VRPDRS.
These works are most relevant for the problem and solution approach presented in this
chapter as they consider the use case of dynamic ride-sharing with purely dynamic trip
requests and large instance sizes. As we will see in Section 5.2.2, solution approaches for
other vehicle routing variants such as the dynamic dial-a-ride problem (DDARP) consider
substantially different application settings. We summarize these works in Table 5.1 based
on the following criteria.

Request processing As suggested by Lowalekar et al. (2021), we differentiate between
sequential and batch-based algorithms. Sequential algorithms process trip requests in-
dividually in the order they arrive in the system. Batch-based algorithms first gather a
batch of requests over a given time period and then process all requests in one batch
collectively. This enables them to potentially provide a better solution quality than se-
quential approaches. However, they are not able to provide an immediate response to the
customer.

37



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

Planning horizon Most existing approaches are myopic in the sense that they only try
to find a good solution given the currently known set of trip requests. As this behavior
may lead to adverse effects in the future, some works include an anticipatory (antic.)
component that considers a forecast or some form of stochastic information regarding
future trip requests. This can lead to overall improved vehicle routes. Note that the topic
of anticipating future trip requests is covered in more detail in Chapter 6.

Objective function The most common objective function is to primarily maximize
served trip requests. Often, this is accompanied by the secondary objective of minimizing
vehicle travel times or distances. However, this secondary objective is not always explicitly
modeled as generally solutions that maximize the number of served trip requests are also
efficient concerning travel times. Some works use alternative objective functions such as
the minimization of customer waiting times or the maximization of more general utility
measures.

Solution approach We provide a short description of the proposed solution method-
ology. The proposed algorithms are relatively diverse in their nature. However, there
are some recurring elements such as the usage of cheapest insertion heuristics or the
graph-based solution procedure first proposed by Alonso-Mora et al. (2017a).

Real-world datasets, trip requests and vehicle fleets In addition to this information
concerning models and algorithms, we also report some data concerning the computational
evaluation of the algorithms. There are several real-world datasets that are used in
multiple works, most prominently the New York City taxi dataset (NYC Taxi and Limousine
Commission 2022) that we will also use in our evaluations. However, even though multiple
papers may draw from the same dataset, the created scenarios tend to differ. Hence, we
also report the maximum number of trip requests per time unit. If possible, we give
the number of trip requests per hour as this gives us a good impression regarding peak
system loads. However, not all papers report this detailed information. In addition to
information concerning trip requests, we also report the fleet size and vehicle capacity.
While these metrics allow for some form of comparison between the different works and
algorithms, the results of the papers vary widely and are not directly comparable. This is
mainly due to two reasons. As stated before, some datasets are utilized in multiple works.
However, the specific selected time periods, trip requests as well as data filtering and
cleaning techniques are different. Hence, the generated scenarios are not identical. More
importantly, all works use some form of simulation-based evaluation and the details of
these simulations may impact the obtained results in a significant manner. For instance,
the assumptions regarding the road network and the assumed travel times are highly
relevant. For many papers, this information is not available and hence it is difficult to
reproduce or compare results. Some works, such as this one, use free-floating travel times.
In our case, these are obtained from OSM data. Other works utilize road networks obtained
from OSM, but travel times estimated based on historical trip request data (Santi et al.

38



5.2 Related Approaches in Dynamic Vehicle Routing

2014; Alonso-Mora et al. 2017a). For details on our simulation setup, we refer the reader to
Chapter 4.

In the following we discuss the papers summarized in Table 5.1 in detail. Ma et al. (2013)
present a real-time system for dynamic ride-sharing. They propose a sequential two-phase
insertion heuristic for solving the VRPDRS. Given a new trip request, they first select
suitable candidate vehicles based on a spatial-temporal index data structure. This index
stores current vehicle positions as well as their predicted future positions according to
the current routing plan. In the second phase, they find the cheapest insertion among all
candidate vehicles with respect to the additional incurred travel time. In a follow-up work
(Ma et al. 2015), the same authors slightly extend their approach by including monetary
constraints that ensure that drivers are rewarded for picking up additional passengers.
Conversely, prices for passengers are reduced if they have to accept additional detours due
to a route insertion. The authors evaluate their approach on instances based on real-world
data from Beijing. These contain up to 65,000 trip requests per hour and 7088 vehicles
with a capacity of 4. We use this work as a starting point for designing our own vehicle
routing algorithm in Section 5.4.

Huang et al. (2014) propose a sequential solution approach based on kinetic trees. Instead of
merely storing the route that is currently in execution they also store potential alternative
routes for each vehicle. These contain different sequences of the trip requests assigned
to a vehicle while satisfying all constraints concerning capacity, time windows, and ride
times. For each new trip request their algorithm then finds the cheapest insertion among
all potential routes of all vehicles. Thus, the approach may be seen as an extension of the
cheapest insertion algorithm utilized in Ma et al. (2013). In order to cope with the resulting
computational complexity, the authors design a hotspot-based clustering algorithm that
groups stops in spatial proximity to each other. This reduces the size of their tree data
structure. The approach is evaluated on real-world data from Shanghai with up to 432,000
trip requests per day and 500 – 20,000 vehicles with a capacity of 3 – 16.

Jung et al. (2016) present a batch-based simulated annealing approach that uses two simple
local search operators: moving one customer to another vehicle or swapping two customers
between different vehicles. A cheapest insertion algorithm as in Ma et al. (2013) is used
to find insertion positions into vehicle routes. The authors evaluate their approach on
data from Seoul with up to 4,500 trip requests per hour and 600 vehicles. Note that the
instance sizes used in this study are comparatively small and the approach is therefore not
necessarily applicable to large-scale scenarios.

A batch-based solution approach is presented by Alonso-Mora et al. (2017a). They collect
trip requests over a time period of 30 seconds and subsequently try to insert these requests
into vehicle routes with a graph-based algorithm. They employ a graph-based solution
procedure. First, they create a pairwise shareability graph of vehicles and trip requests
that encodes two types of information: (1) which vehicles can serve which trip requests,
and (2) which pairs of trip requests may be combined into a route. Second, based on this
information, they create a request-trip-vehicle graph that matches individual trip requests

39



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

R
eferences

R
equest

processing
Planning
horizon

O
bjective

Solution
approach

R
eal-w

orld
datasets

T
rip

requests
Fleetsize

Vehicle
capacity

M
a
etal.(2013)

M
a
etal.(2015)

sequential
m
yopic

m
ax.requestsserved

and
m
in.vehicle

traveltim
e

cheapestinsertion
Beijing

65,000
/hour

7,088
4

H
uang

etal.(2014)
sequential

m
yopic

m
ax.requestsserved

and
m
in.vehicle

traveltim
e

branch
&
bound,

M
IP,kinetictree

Shanghai
432,327

/day
500

–
20,000

3
–
16

Jung
etal.(2016)

batch
m
yopic

m
ax.requestsserved

and
m
in.vehicle

traveltim
e

cheapestinsertion
+
sim

ulated
annealing

Seoul
4,500

/hour
600

4

A
lonso-M

ora
etal.

(2017a)
batch

m
yopic

m
ax.requestsserved

and
m
in.vehicle

traveltim
e

graph-based
m
atching

N
YC

460,700
/day

1,000
–

3,000
1
–
10

A
lonso-M

ora
etal.

(2017b)
batch

antic.
m
ax.requestsserved

and
m
in.vehicle

traveltim
e

graph-based
m
atching

+
requestsam

pling
N
YC

460,700
/day

1,000
–

3,000
2
–
4

Cheng
etal.(2017)

batch
m
yopic

m
ax.utility

group-based
scheduling

N
YC,Chicago

20,000
/hour

100
–

500
2
–
5

Chen
etal.(2018)

sequential
m
yopic

m
ax.requestsserved

and
m
in.vehicle

traveltim
e

kinetictree
Shanghai

432,327
/day

-
4

Tong
etal.(2018)

sequential
m
yopic

m
ax.w

eighted
sum

ofdistance
and

rejected
requests

D
P-based

cheapest
insertion

N
YC,Chengdu

517,100
/day

2,000
–

50,000
3
–
20

Low
alekaretal.

(2019)
batch

m
yopic

m
ax.requestsserved

graph-based
m
atching

+
zone

clustering
N
YC

399,695
/day

1,000
–

10,000
1
–
10

Riley
etal.(2019)

batch
m
yopic

m
in.w

aiting
tim

e
colum

n
generation

N
YC

32,869
/hour

1,500
–

3,000
1
–
6

Engelhardtetal.
(2020)

batch
m
yopic

m
ax.requestsserved

and
m
in.vehicle

traveltim
e

graph-based
m
atching

+
speed-up

M
unich

180,000
/day

200
-

3,000
4

Shah
etal.(2020)

batch
antic.

m
ax.requestsserved

graph-based
m
atching

+
RL

&
A
D
P

N
YC

19,820
/hour

1,000
–

3,000
2
–
10

Low
alekaretal.

(2021)
batch

antic.
m
ax.requestsserved

graph-based
m
atching

+
zone

clustering
+
bendersdecom

position

N
YC

403,770
/day

1,000
–

10,000
1
–
10

Poulsetal.(2021)
thisw

ork
sequential

m
yopic

m
ax.requestsserved

and
m
in.vehicle

traveltim
e

cheapestinsertion
+
localsearch

N
YC,H

am
burg,

Chengdu
429,855

/day
72

–
1,512

2
–
6

Table
5.1:Related

literature
on

vehicle
routing

fordynam
icride-sharing.

40



5.2 Related Approaches in Dynamic Vehicle Routing

and vehicles to routes, i.e. combinations of trip requests. On this graph, they solve a
matching problem that matches individual trip requests and vehicles to routes with the
objective of maximizing the number of served trips and minimizing the necessary travel
times. The general structure of this graph-based approach is used in several other works
(Alonso-Mora et al. 2017b; Lowalekar et al. 2019; Shah et al. 2020; Lowalekar et al. 2021). In
their own follow-up paper (Alonso-Mora et al. 2017b), the authors propose an anticipatory
variation that includes sampled anticipated trip requests. These requests are served with a
lower priority than actual trip requests. Both approaches are evaluated on real-world data
from Manhattan with up to 460,700 trip requests on a single day and a fleet size between
1,000 and 3,000 vehicles with a capacity of 1 – 10.

Cheng et al. (2017) propose an alternative objective function for the VRPDRS that aims
to incorporate the satisfaction of drivers and customers. The authors introduce a utility
measure that considers the preference of customers for vehicles, other passengers that they
share a vehicle with and the planned trajectory. The authors present several algorithms
to solve the VRPDRS with this objective function. The most successful one is a batch-
based approach that first groups similar trip requests and subsequently schedules them
collectively. A computational evaluation is performed on a synthetic dataset as well as
instances derived from real-world data from NYC and Chicago. These contain up to 20,000
trip requests per hour and 100 – 500 vehicles with a capacity between 2 and 5.

Chen et al. (2018) present an algorithm that integrates elements from the cheapest insertion
approach by Ma et al. (2013) and the kinetic tree algorithm by Huang et al. (2014). The
key novelty in their approach is that it finds a set of potential vehicles for each incoming
trip request that are non-dominated concerning the price or pick-up time. This gives
the customer the option to choose between multiple alternatives. They evaluate their
approach on data from Shanghai with up to 432,327 trip requests within 24 hours.

Tong et al. (2018) present another insertion-based solution approach for the VRPDRS. Their
work contains two key innovations. Firstly, they consider a generalized objective function
that consists of a weighted sum of travel distance and rejected trip requests. Secondly,
they propose a linear time insertion feasibility check based on a dynamic programming
approach. They evaluate their algorithm on instances derived from real-world data from
NYC and Chengdu with 2,000 - 50,000 vehicles and a capacity of 3 - 20. The number of
trip requests per day is up to 517,100 for the NYC dataset and 259,347 for Chengdu.

Lowalekar et al. (2019) introduce a batch-based solution approach that uses the algorithm
by Alonso-Mora et al. (2017a) as a foundation. Instead of matching vehicles to combina-
tions of requests, they first cluster locations of pickup and dropoff locations into zones.
Subsequently, they determine paths through zones and then match vehicles to these paths.
An extended non-myopic variation of this algorithm is proposed by Lowalekar et al. (2021).
Here the authors design a benders decomposition approach that incorporates information
about anticipated trip requests while assigning vehicles to zone paths. They evaluate
their approaches on real-world data from NYC as well as another real-world dataset from
an undisclosed location and an artificial dataset. These scenarios contain up to 403,770
requests per day and are evaluated with 1,000 – 10,000 vehicles with a capacity of 1 – 10.

41



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

A column generation batch-based algorithm is presented by Riley et al. (2019). One key
difference compared to our work and all other papers discussed in this section is that they
do not permit the rejection of trip requests. Consequently, their objective function is to
minimize the waiting times of customers while serving all incoming requests. In order to
cope with the real-time requirements of the application setting, they utilize an anytime
pricing algorithm that is guaranteed to return a feasible solution even if interrupted due
to running time limits. They evaluate their algorithm on NYC data with up to 32,869 trip
requests per hour and 1,500 – 3,000 vehicles with a capacity between 1 and 6.

Engelhardt et al. (2020) introduce an extension of the graph-based solution approach by
Alonso-Mora et al. (2017a). The key innovation is to maintain information concerning
the feasibility of potential vehicle routes between the processing of batches of new trip
requests. This way, the computational efficiency of the algorithm can be improved. The
authors evaluate their work on a generated dataset in the city of Munich with up to 180,000
trip requests per day and 3,000 vehicles with a capacity of 4. The authors show that their
algorithm outperforms a simple insertion heuristic and their speed-up approaches can
reduce the computational time for some algorithm phases by a large amount which can be
useful during peak demand times.

Shah et al. (2020) propose another variation of the graph-based approach by Alonso-Mora
et al. (2017a). They again build upon the same basic graph-based algorithm. However, they
combine reinforcement learning and approximate dynamic programming in order to score
potential routes and update their score function. They then assign vehicles to routes in a
way that maximizes these scores. The score of a route includes an approximation of the
future value of the decision. Hence, the approach is anticipatory and able to consider the
presumed impact of a decision. The authors perform a computational evaluation on data
from NYC with up to 19,820 requests per hour and 1,000 – 3,000 vehicles with a capacity
between 2 and 10.

5.2.2 Dynamic Dial-a-Ride Problem

From a mathematical modeling perspective, the VRPDRS may be seen as a dynamic dial-a-
ride problem (DDARP). There exists a large amount of prior research regarding this problem
class. For extensive literature reviews specifically regarding dial-a-ride problems (DARPs),
we refer the reader to Cordeau and Laporte (2007) and Molenbruch et al. (2017). As the
DARP itself is a variant of the pickup and delivery problem, it is also covered in several
more general reviews concerning dynamic vehicle routing (Parragh et al. 2008; Berbeglia
et al. 2010; Pillac et al. 2013; Psaraftis et al. 2016; Ritzinger et al. 2016). However, while the
underlying problem model may be similar, most traditional works on the DDARP focus on
applications other than dynamic ride-sharing. Classical applications include, for instance,
the transportation of patients in hospitals (Beaudry et al. 2010) or mobility services for the
elderly and people with disabilities (Borndörfer et al. 1999). The requirements of these
application settings differ substantially from the use case of dynamic ride-sharing that we
described in Chapter 3.

42



5.2 Related Approaches in Dynamic Vehicle Routing

Firstly, considered problem sizes as given by the number of requests over time and the
size of the vehicle fleet are considerably smaller. Frequently used benchmark datasets
(Cordeau and Laporte 2003; Cordeau 2006) contain instances with 16 - 144 customers. A
survey by Parragh et al. (2008) found that the largest instances used to evaluate DDARP
algorithms contained merely around 4,000 customers within 24 hours. In contrast, in the
setting of dynamic ride-sharing, we often consider around 300,000 trip requests in the same
time period. Secondly, realistic VRPDRS scenarios have some characteristics that are not
prevalent in many other applications. In the dynamic ride-sharing setting, we consider a
highly dynamic use case. Many studies in this area even focus on purely dynamic scenarios
where all requests arrive dynamically. In contrast, many DDARP publications consider
a varying degree of dynamism where only a fraction of requests arrives dynamically.
Moreover, in dynamic ride-sharing, one generally assumes relatively tight constraints
on the pickup time windows and the maximum ride time of customers. Due to these
differences between classical DDARP applications and the dynamic ride-sharing setting,
most solution approaches for dynamic dial-a-ride problems are not directly applicable to
the dynamic ride-sharing use case.

5.2.3 Local Search Approaches for Dynamic Vehicle Routing

An extensive amount of prior research exists on local search algorithms for vehicle routing
problems. As noted in the review by Funke et al. (2005), many heuristics and metaheuristics
for vehicle routing problems (VRPs) rely on some form of local search. Generally, these
algorithms consist of two main components: (1) local search operators (also referred to
as neighborhoods) and (2) a search algorithm. The local search operators are steps that
modify the solution in some way in an attempt to achieve a better solution while still
meeting all planning criteria and constraints. For instance, moving a stop to a different
position in the same route or removing the stops associated with a customer from a route
and re-inserting them into another route. The search operators may range from such
simple moves to significantly more complex move chains in which several routes are
modified. In this work, we employ relatively simple search operators due to the running
time constraints present in the dynamic ride-sharing setting. The second component of a
local search approach is a search algorithm that coordinates and steers the search. In its
most simplistic form, this may be a neighborhood descent heuristic that iteratively applies
search operators until no further improvements are found. More complex popular search
algorithms are, for instance, tabu search (Glover and Laguna 1998), variable neighborhood
search (Hansen and Mladenović 2003) or simulated annealing (Bertsimas and Tsitsiklis
1993). In this work, we apply a rather simple search scheme that combines an iterative
neighborhood descent with a tabu mechanism to reduce running times and diversify the
search. For more thorough overviews concerning local search operators and algorithms
in the context of vehicle routing, we refer the reader to Funke et al. (2005), Cordeau et al.
(2008), and Groër et al. (2010). Note that most of the mentioned works cover local search
approaches in a static environment. When utilizing such approaches in a highly dynamic
environment, some challenges arise regarding the integration into the dynamic planning
process. These include the interruption of the search due to newly arriving events and the

43



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

transfer of improved solutions to vehicles. Some works (Attanasio et al. 2004; Beaudry et al.
2010) address these issues. However, they are working with application settings in which
the frequency of incoming trip requests is significantly lower than in the ride-sharing
setting.

5.2.4 Contribution

In the previous sections, we have presented an overview of solution approaches for dynamic
vehicle routing problemswith a focus on the VRPDRS. Compared to the current state-of-the-
art, we introduce several novel aspects in our work that have not been extensively studied
yet. We believe that our algorithmic approach is well-suited to handle the challenges arising
from the ride-sharing setting that we introduced in Chapter 3. Our main contributions
may be summarized as follows.

Combining sequential dispatching and local search improvement To our knowl-
edge, all existing algorithms for the VRPDRS are either purely sequential or batch-based.
While batch-based approaches have the potential of providing a superior solution quality,
they have the inherent disadvantage that the customer does not receive an immediate
response to their trip request. Sequential approaches on the other hand may take sub-
optimal decisions that cannot be reverted due to the structure of the algorithm. In this
thesis, we combine a sequential dispatching algorithm that accepts or rejects trip requests
with a local search improvement procedure that utilizes available computational time to
improve the current routing plan.

Integration of a local search into a real-time planning process As mentioned
previously, there are few works dealing with the integration of local search techniques
into a real-time planning process for large-scale dynamic vehicle routing problems. We
believe that it is promising to utilize widely studied local search approaches in such a
dynamic setting. Hence, we propose the integration of a simple local search into our
dynamic planning setting and also illustrate the future potential of integrating more
complex metaheuristics.

Evaluation and pre-bookings We evaluate our approach on multiple real-world
datasets and study several practically relevant aspects such as the impact of time windows
and fleet sizes. We introduce aspects in our evaluation that have been rarely studied in the
context of ride-sharing services. For instance, we investigate the impact of trip requests
that are reserved in advance. While most algorithmic approaches are theoretically capable
of processing such requests, we are not aware of any structured evaluation how such
pre-booked trips influence the solution quality.

44



5.3 The Vehicle Routing Problem for Dynamic Ride-Sharing

5.3 The Vehicle Routing Problem for Dynamic
Ride-Sharing

The vehicle routing problem in a dynamic ride-sharing setting may be formulated as a
dynamic dial-a-ride problem. In this section, we present a formal mathematical formulation
of the problem based on the static DARP formulation by Cordeau and Laporte (2007).
We first introduce the necessary notation (summarized in Table 5.2) and subsequently
formulate a mixed-integer programming model. While we do not actually solve this
mathematical formulation, we believe that it is useful for gaining a formal understanding
of the problem. The notation introduced in this section is also utilized throughout the
algorithm description in Section 5.4.

Let 𝑅 be the set of all trip requests. Each entry 𝑟 ∈ 𝑅 denotes an individual trip request
for a given number of passengers 𝑞𝑟 as well as a pickup and drop-off location 𝑝𝑟 and 𝑑𝑟
respectively. Furthermore, it has a service time 𝑠𝑟 that occurs at the pickup and drop-off
service. Each request has a creation time 𝑡𝑟 at which it enters the system. Moreover, it
has a pickup time window specified by the earliest pickup time 𝑒𝑝,𝑟 and the latest pickup
time 𝑙𝑝,𝑟 . The size of the time window is referred to as the maximum waiting time 𝑤𝑟
of a customer. We assume that most customers desire immediate service, i.e. 𝑒𝑝,𝑟 = 𝑡𝑟 .
However, we also allow for the option of pre-booking requests with an earliest pickup
time 𝑒𝑝,𝑟 at some point in the future. We then refer to the time interval between 𝑡𝑟 and 𝑒𝑝,𝑟
as the pre-booking time 𝑝𝑏𝑟 . In addition to the time window on the pickup of a customer,
there is also a temporal constraint on the customer’s ride time given by the maximum
ride time 𝐿𝑟 . This is motivated by the fact that, although ride-sharing allows for detours
compared to direct taxi services, these detours should be limited. In practice, the acceptable
detour could either be specified by the customer or determined by the operator. In this
work, the maximum ride time is determined as 𝐿𝑟 = max(𝑚𝑑𝑒𝑡 · 𝑡𝑡𝑝𝑟 ,𝑑𝑟 , 𝑡𝑡𝑝𝑟 ,𝑑𝑟 + 𝐿𝑚𝑖𝑛). Here,
𝑡𝑡𝑝𝑟 ,𝑑𝑟 denotes the direct travel time between pickup and drop-off of the request while
𝑚𝑑𝑒𝑡 > 1.0 corresponds to a detour factor that allows for a relative detour compared to
this direct travel time. For trip requests covering only very short distances, we introduce
a minimum additional ride time 𝐿𝑚𝑖𝑛 . Otherwise, these trip requests are very difficult to
combine with other requests. While the maximum ride time is the constraining factor on
the timing of the drop-off stop, we sometimes use an explicit time window that does not
depend on the actual pickup time. Hence, we also determine the earliest possible drop-off
as 𝑒𝑑,𝑟 = 𝑒𝑝,𝑟 + 𝑠𝑟 + 𝑡𝑡𝑝𝑟 ,𝑑𝑟 and the latest possible drop-off 𝑙𝑑,𝑟 = 𝑙𝑝,𝑟 + 𝑠𝑟 + 𝐿𝑟 . To serve the
trip requests 𝑅 , we employ a fleet of vehicles 𝐾 . Each vehicle 𝑘 ∈ 𝐾 is associated with a
capacity 𝑄𝑘 and a starting location 𝑣0

𝑘
.

As we are dealing with the dynamic version of the problem, the trip requests 𝑅 may be
partitioned into three distinct subsets 𝑅 = 𝑅𝑛 ∪ 𝑅𝑎 ∪ 𝑅𝑝 . 𝑅𝑛 denotes newly arrived trip
requests. If each individual trip request is processed at the exact moment it enters the
system, this set consists of precisely one trip request per decision epoch. However, it
would also be imaginable to have a batching period in which requests are collected and
subsequently processed together. 𝑅𝑎 contains those trip requests which were previously
accepted and assigned to vehicles, but are still awaiting their pickup. Lastly, 𝑅𝑝 consists of

45



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

Table 5.2: Notation for the VRPDRS.

Sets

𝐾 Vehicles
𝑉 Nodes
𝑃/𝐷 Pickup / drop-off nodes
𝑅 Requests
𝑅𝑛/𝑅𝑎/𝑅𝑝 New / assigned / picked up requests
Parameters

𝑠𝑖 Service time at node 𝑖
𝑡𝑡𝑖, 𝑗 Travel time between nodes 𝑖 and 𝑗
𝑡𝑡𝑚𝑎𝑥 Maximum travel time between any pair of nodes
𝑊 𝑟𝑒𝑞 Objective function weight for serving requests
𝑞𝑖 Load change at node 𝑗
𝑒𝑝,𝑟/𝑒𝑑,𝑟 Earliest start of pickup / start of drop-off of 𝑟
𝑙𝑝,𝑟/𝑙𝑑,𝑟 Latest start of pickup / start of drop-off of 𝑟
𝑡𝑟 Creation time of 𝑟
𝑝𝑏𝑟 Pre-booking time of 𝑟
𝑤𝑟 Maximum waiting time of 𝑟
𝐿𝑟 Maximum ride time of request 𝑟
𝐿𝑚𝑖𝑛 Minimum additional detour
𝑚𝑑𝑒𝑡 Detour factor
𝑄𝑘 Capacity of vehicle 𝑘
𝑝𝑟/𝑑𝑟 Pickup / drop-off node of 𝑟
𝑘𝑟 Vehicle 𝑘 by which a request 𝑟 ∈ 𝑅𝑝 is served
𝑣0
𝑘

Initial location of vehicle 𝑘
𝑝𝑠𝑟 Actual start of pickup service for 𝑟 ∈ 𝑅𝑝

Decision variables

𝑥𝑘𝑖, 𝑗 1, iff vehicle 𝑘 traverses the arc (𝑖, 𝑗)
𝑎𝑟𝑘𝑖 Arrival time of vehicle 𝑘 at node 𝑖
𝑑𝑒𝑘𝑖 Departure time of vehicle 𝑘 at node 𝑖
𝑤𝑘
𝑖 Capacity utilization of vehicle 𝑘 after node 𝑖

𝑟𝑡𝑘𝑟 Ride time of request 𝑟 in vehicle 𝑘

all requests that have already been picked up by a vehicle. Trip requests 𝑟 ∈ 𝑅𝑎 ∪ 𝑅𝑝 are
associated with their assigned vehicle 𝑘𝑟 . In addition, requests 𝑟 ∈ 𝑅𝑝 are also associated
with the actual start of their pickup service 𝑝𝑠𝑟 as it has already occurred.

Given these elements, we can formulate the VRPDRS on a complete directed graph with
nodes 𝑉 corresponding to the pickup (𝑃 =

⋃
𝑟∈𝑅 𝑝𝑟 ) and drop-off (𝐷 =

⋃
𝑟∈𝑅 𝑑𝑟 ) locations

as well as the initial vehicle locations 𝑣0
𝑘
for 𝑘 ∈ 𝐾 and a dummy node 𝑣∞. This dummy

node is used as the final destination of all vehicles and is only needed for modeling the

46



5.3 The Vehicle Routing Problem for Dynamic Ride-Sharing

problem. Each node 𝑖 ∈ 𝑉 in the graph is associated with a service time 𝑠𝑖 and passenger
change 𝑞𝑖 . For the pickup and drop-off nodes these correspond to the service time of the
corresponding request 𝑠𝑟 and the number of passengers boarding or alighting the vehicle
respectively. For the nodes corresponding to the initial vehicle locations, a distinction
has to be made between different cases. Either a vehicle 𝑘 ∈ 𝐾 is en route to its next
stop, in which case the service time 𝑠𝑣0

𝑘
and passenger change 𝑞𝑣0

𝑘
at its initial location

are zero. The same is true for idle vehicles. However, if a vehicle is currently serving a
request at a stop, the service time is set to the remaining service time and the load change
corresponds to the passenger change at the stop. Arcs in the graph (𝑖, 𝑗) for 𝑖, 𝑗 ∈ 𝑉 have
an associated travel time 𝑡𝑡𝑖, 𝑗 . Arcs involving the dummy node 𝑣∞ have a travel time of
𝑡𝑡𝑖,𝑣∞ = 0 for 𝑖 ∈ 𝑉 \ 𝑣∞.

Themathematical model given in Equations 5.1 –5.17 contains five sets of decision variables.
The main set of binary decision variables assigns vehicles to arcs in the graph and is defined
as follows:

𝑥𝑘𝑖, 𝑗 =

{
1 if vehicle 𝑘 ∈ 𝐾 traverses arc (𝑖, 𝑗) where 𝑖, 𝑗 ∈ 𝑉
0 else

Moreover, there are four sets of auxiliary variables which are used to ensure bounds on
the time windows, vehicle loads and ride times:

𝑎𝑟𝑘𝑖 , guaranteed to be ≥ the arrival time of vehicle 𝑘 ∈ 𝑘 at node 𝑖 ∈ 𝑉
𝑑𝑒𝑘𝑖 , guaranteed to be ≥ the departure time of vehicle 𝑘 ∈ 𝑘 at node 𝑖 ∈ 𝑉
𝑤𝑘
𝑖 , guaranteed to be ≥ the passenger occupation of vehicle 𝑘 ∈ 𝐾 after node 𝑖 ∈ 𝑉

𝑟𝑡𝑘𝑟 , guaranteed to be ≥ the ride time of request 𝑟 ∈ 𝑅 in vehicle 𝑘 ∈ 𝐾

In contrast to classical static DARP formulations (Cordeau and Laporte 2007), we allow for
the rejection of trip requests, if these cannot be feasibly inserted into the current vehicle
routes. Therefore, we use a hierarchical objective function 5.1 which primarily maximizes
the number of served requests and secondarily minimizes the total driving time. The
prioritization of the first objective is ensured by choosing an adequate objective weight
of𝑊 𝑟𝑒𝑞 = 4 · 𝑡𝑡𝑚𝑎𝑥 + 1 where 𝑡𝑡𝑚𝑎𝑥 corresponds to the maximum travel time between
two nodes. As accepting an additional request will add at most four traversed arcs to the
solution, the incurred additional travel time is capped by 4 · 𝑡𝑡𝑚𝑎𝑥 . Thus, our choice of
weights ensures that accepting an additional trip request is always beneficial for the overall
objective function value. Constraints 5.2 ensure that nodes belonging to new requests
are visited at most once, as these may be rejected if no suitable vehicle is available. On
the other hand, Constraints 5.3 and 5.4 guarantee that assigned customers, as well as
picked-up customers, must be visited. In the latter case, the vehicle by which the service
is provided is already fixed, whereas in the case of merely assigned requests we still allow
for the possibility of the requests being moved to another vehicle. Departure from the
initial vehicle position is enforced by Constraints 5.5, while Constraints 5.6 ensure that all
vehicles arrive at the dummy node as their final position. Constraints 5.7 guarantee that

47



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

(VRPDRS) 𝑊 𝑟𝑒𝑞
∑︁
𝑟∈𝑅𝑛

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑉

𝑥𝑘𝑖,𝑝𝑟 −
∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑉

∑︁
𝑗∈𝑉

𝑡𝑡𝑖, 𝑗𝑥
𝑘
𝑖, 𝑗 → max (5.1)

s.t.
∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑉

𝑥𝑘𝑖,𝑝𝑟 ≤ 1 𝑟 ∈ 𝑅𝑛 (5.2)∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑉

𝑥𝑘𝑖,𝑝𝑟 = 1 𝑟 ∈ 𝑅𝑎 (5.3)∑︁
𝑖∈𝑉

𝑥
𝑘𝑟
𝑖,𝑑𝑟

= 1 𝑟 ∈ 𝑅𝑝 (5.4)∑︁
𝑗∈𝑉

𝑥𝑘
𝑣0
𝑘
, 𝑗
= 1 𝑘 ∈ 𝐾 (5.5)∑︁

𝑖∈𝑉
𝑥𝑘𝑖,𝑣∞ = 1 𝑘 ∈ 𝐾 (5.6)∑︁

𝑖∈𝑉
𝑥𝑘𝑖,𝑝𝑟 −

∑︁
𝑖∈𝑉

𝑥𝑘
𝑖,𝑑𝑟

= 0 𝑟 ∈ 𝑅𝑛 ∪ 𝑅𝑎, 𝑘 ∈ 𝐾 (5.7)∑︁
𝑗∈𝑉

𝑥𝑘𝑗,𝑖 −
∑︁
𝑗∈𝑉

𝑥𝑘𝑖, 𝑗 = 0 𝑖 ∈ 𝑃 ∪ 𝐷,𝑘 ∈ 𝐾 (5.8)

𝑑𝑒𝑘𝑖 ≥ 𝑎𝑟𝑘𝑖 + 𝑠𝑖 𝑖 ∈ 𝑉 , 𝑘 ∈ 𝐾 (5.9)
𝑎𝑟𝑘𝑗 ≥ (𝑑𝑒𝑘𝑖 + 𝑡𝑡𝑖, 𝑗 )𝑥𝑘𝑖, 𝑗 𝑖, 𝑗 ∈ 𝑉 , 𝑘 ∈ 𝐾 (5.10)
𝑤𝑘
𝑗 ≥ (𝑤𝑘

𝑖 + 𝑞 𝑗 )𝑥𝑘𝑖, 𝑗 𝑖, 𝑗 ∈ 𝑉 , 𝑘 ∈ 𝐾 (5.11)
𝑟𝑡𝑘𝑟 ≥ 𝑎𝑟𝑘𝑑𝑟 − 𝑑𝑒

𝑘
𝑝𝑟

𝑟 ∈ 𝑅𝑛 ∪ 𝑅𝑎, 𝑘 ∈ 𝐾 (5.12)

𝑟𝑡𝑘𝑟 ≥ 𝑎𝑟
𝑘𝑟
𝑑𝑟
− (𝑝𝑠𝑟 + 𝑠𝑟 ) 𝑟 ∈ 𝑅𝑝 (5.13)

𝑒𝑝,𝑟 ≤ 𝑎𝑟𝑘𝑖 ≤ 𝑙𝑝,𝑟 𝑟 ∈ 𝑅𝑛 ∪ 𝑅𝑎, 𝑘 ∈ 𝐾 (5.14)
𝑟𝑡𝑘𝑟 ≤ 𝐿𝑟 𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾 (5.15)
𝑤𝑘
𝑖 ≤ 𝑄𝑘 𝑖 ∈ 𝑉 , 𝑘 ∈ 𝐾 (5.16)

𝑥𝑘𝑖, 𝑗 ∈ {0, 1} 𝑖, 𝑗 ∈ 𝑉 , 𝑘 ∈ 𝐾 (5.17)

service at the pickup and drop-off nodes of a request is provided by the same vehicle. Flow
conservation at pickup and drop-off nodes is enforced by Constraints 5.8. Constraints
5.10 – 5.13 ensure that the decision variables for arrival times, load and ride times are
chosen consistently. Variables denoting the arrival time at nodes are set appropriately
by Constraints 5.10. We ensure that the arrival time of the vehicle 𝑘 ∈ 𝐾 serving node
𝑗 ∈ 𝑉 is bounded by the arrival time at the previous node 𝑖 ∈ 𝑉 plus the service time at 𝑖
and the travel time from 𝑖 to 𝑗 . Similarly, Constraints 5.11 set the load of vehicle 𝑘 after
visiting node 𝑗 to be larger or equal to the load after the prior node 𝑖 plus the load change
at node 𝑗 . The same procedure is performed for the ride time variables in Constraints 5.12
and 5.13. In the case of new and assigned requests, the ride time 𝑟𝑡𝑘𝑟 is constrained by
the difference between the planned arrival times at the drop-off and pickup nodes minus

48



5.4 Real-Time Dispatching with Local Search Improvement

the service time at the pickup node. Special treatment is provided for requests that were
already picked up 𝑟 ∈ 𝑅𝑝 in Constraints 5.13. In this case, the planned arrival time at
the pickup node is replaced by the actual arrival at the pickup node 𝑝𝑠𝑟 . The limits on
the pickup time windows, ride times and vehicle capacities are defined in Constraints
5.14 – 5.16. The arrival time at a pickup node 𝑝𝑟 must lie within the defined time window
[𝑒𝑝,𝑟 , 𝑙𝑝,𝑟 ] as given in Constraints 5.14. In a similar fashion, the ride time is capped by
the maximum allowed ride time of a given request in Constraints 5.15. Constraints 5.16
ensure that the vehicle capacity is never exceeded. Finally, the variable domain for binary
decision variables 𝑥𝑘𝑖, 𝑗 is given by Constraints 5.17. With this mathematical model, we have
presented a formal definition of the VRPDRS. In the next section, we follow this up with
our solution algorithm for the presented problem.

5.4 Real-Time Dispatching with Local Search
Improvement

Our solution approach for the VRPDRS consists of two algorithms:

1. A real-time dispatching algorithm (DIS) that is responsible for immediately handling
incoming trip requests and assigning them to vehicles if possible. This algorithm
decides on the acceptance or rejection of a trip request and enables us to provide
fast response times for the customer.

2. A local search improvement algorithm (LS) that tries to improve the current routing
plan through local search operators. The local search exploits available computational
time whenever no trip request is being processed.

In the following, we first present a detailed look at our planning process, both in the
envisioned practical implementation and in a slightly modified variant for simulation
studies. Subsequently, we describe our dispatching and local search algorithms.

5.4.1 Planning Process

Our planning process is illustrated in Figure 5.1. There are two variations: (1) the envisioned
usage in a real-world ride-sharing service, and (2) a slightly adapted version for simulation
studies.

5.4.1.1 Real-World Usage

Whenever a new trip request is submitted by a customer, the first step is to interrupt
the continuously running local search. Subsequently, the trip request is processed by
the dispatching algorithm. As a result, the algorithm returns a response to the customer
whether or not the request can be served. In case of an accepted trip request, it additionally

49



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

(a) Real-world setup. (b) Simulation setup.

Figure 5.1: Planning process in the real-world setup and the simulation environment.

returns an altered vehicle route into which the new trip request has been inserted. Note
that DIS typically terminates after less than 10 ms, thereby providing a nearly instant
response to the customer. After handling a request, the local search is resumed until the
next trip request arrives in the system. Any improvements made by the local search are
immediately sent to the affected parties, i.e. vehicles and customers.

5.4.1.2 Simulation Usage

For our simulation-based evaluations, we perform simulation runs faster than real-time
in order to allow for the evaluation of a large set of diverse scenarios. Hence, in the
basic setup, each trip request is processed immediately after the previous one has finished
processing. As this would leave no time for the local search algorithm, we adapt the
planning process slightly. After dispatching a trip request, we run LS with a fixed time
limit. Subsequently, the next trip request is processed. An adequate time limit may be
derived from the peak number of trip requests per hour for any given scenario. The time
limit should be set low enough that the simulated time still runs faster than real-time.

50



5.4 Real-Time Dispatching with Local Search Improvement

5.4.1.3 Design Decisions

In the combination of dispatching and local search as outlined above, we made two key
design decisions that we would like to explain shortly. Firstly, we opted to not introduce
a batching period and process multiple trip requests at once. As already outlined in
Section 5.2, this was done to ensure an immediate response for customers. Additionally,
in our setup, the local search phase is responsible for optimizing the routing plan as a
whole. Hence, it is not necessary for the dispatching algorithm to change the assignment
of multiple trip requests at once. Secondly, we elected to run DIS and LS sequentially and
not in parallel. Theoretically, one could run the local search continuously parallel to the
dispatching algorithm. However, in practice this would lead to complications as the local
search could modify the current routing plan at the same time as the dispatching algorithm
inserts a new trip request. This could invalidate the routing plan if both modifications
are incompatible. To resolve this conflict, we would either need intricate communication
between the two algorithms to keep the routing plan in sync. Alternatively, there could be
a periodic merging process that merges the changes made by the local search into the plan
that is currently in execution. Given these restrictions, we see no advantage in running
both algorithms in parallel. In our sequential setup, the interruptions of the local search
are short due to the low running time of the dispatching algorithm. Hence, we only lose a
minor amount of potential calculation time and reduce the computational complexity of
our algorithms.

5.4.2 Real-Time Dispatching

In this section, we describe the dispatching algorithm DIS that is responsible for handling
newly arrived trip requests. This algorithm is inspired by the approach by Ma et al. (2013)
and Ma et al. (2015).

5.4.2.1 Algorithm Outline

Our dispatching procedure consists of three steps:

1. Vehicle selection – As the first step, we select a set of candidate vehicles that are
potentially suited to insert the request into their route.

2. Vehicle sorting – As the second step, we sort all candidate vehicles according to the
estimated suitability of inserting the request into the vehicles’ routes.

3. Cheapest insertion – Lastly, we find the cheapest insertion among the candidate
vehicles. We may abort the search prematurely after finding a feasible insertion.

These main steps are described in detail in the following sections.

51



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

5.4.2.2 Vehicle Selection

The objective of the vehicle selection step is to determine a set of candidate vehicles that
are potentially well-suited to accommodate the new trip request. For this purpose, we
utilize a grid-based index data structure that we will introduce in the following. Afterward,
we describe how this data structure is used to determine candidate vehicles for a request.

Figure 5.2: Grid partitioning with grid cell centers.

Grid-based partitioning It would be computationally intensive to use routing-based
travel times to estimate whether a vehicle could potentially accommodate a new trip
request. Hence, to speed up this calculation, we partition our area under study into a
set of grid cells 𝐺𝑑 . This is similar to the approach presented in Ma et al. (2013). An
example of this grid partitioning is shown in Figure 5.2. The grid data structure fulfills
two main purposes. Firstly, the grid may be utilized to estimate travel times between
arbitrary locations. For this purpose, each grid cell is represented by a center 𝑐𝑔. This
center corresponds to the node in the road network closest to the geometric centroid of
the cell. We may now pre-compute a matrix of travel times between each pair of grid
cell centers 𝑐𝑔, 𝑐ℎ |𝑔, ℎ ∈ 𝐺𝑑 . These pre-computed travel times are used as fast travel time
estimations. Assume that we have two locations 𝑖 and 𝑗 that lie within grid cells 𝑔 and ℎ
respectively. We may use the pre-computed travel time between the grid cell centers as
an estimate for the actual travel time between 𝑖 and 𝑗 . In the following, 𝑡𝑡𝑔

𝑖, 𝑗
denotes this

grid-based travel time estimation. Secondly, using these estimations, the grid serves as a
fast lookup method for vehicles. For each cell 𝑔 in the grid, we store the set of vehicles
currently located within the cell 𝐾𝑔. This way, when a new trip request arrives, we can
quickly look up all vehicles in the vicinity of the requested pickup location. Please note
that these grid-based travel time estimations are used at several points throughout the
algorithm and not only during the vehicle selection step.

52



5.4 Real-Time Dispatching with Local Search Improvement

Vehicle candidate determination Given a trip request 𝑟 , we first determine the grid
cell 𝑔 in which its pickup location 𝑝𝑟 is situated. Subsequently, we select a subset of grid
cells 𝐻 ⊆ 𝐺𝑑 where 𝑔 is reachable from ℎ ∈ 𝐻 within the prescribed pickup time window
of 𝑟 . Hence, 𝑡𝑐𝑢𝑟 + 𝑡𝑡𝑔

𝑔,ℎ
≤ 𝑙𝑑,𝑟 must hold true. Here, 𝑡𝑐𝑢𝑟 denotes the current time. Finally,

we consider all vehicles as potential candidates for insertion that are currently situated in
a grid cell in 𝐻 . We denote this list of vehicles as 𝐾𝑐𝑟 . This way, we may efficiently select
all vehicles that are theoretically able to reach the pickup of 𝑟 on time. We do not need to
perform any expensive shortest-path calculations in this step as we rely on pre-calculated
travel times.

5.4.2.3 Vehicle Sorting

After selecting the list of candidate vehicles 𝐾𝑐𝑟 , we sort vehicles based on their suitability
for trip request 𝑟 . As actually evaluating insertions is the most expensive operation in
our algorithm, we employ estimations to determine whether inserting a request 𝑟 into the
route of a vehicle 𝑘 is promising. In the following, we first explain the calculation of the
estimated insertion cost. Subsequently, we describe how we employ this estimation to sort
our vehicles.

Estimated insertion cost For estimating the insertion cost of Request 𝑟 into the route
of vehicle 𝑘 , we utilize the grid-based travel time estimations as outlined above in Section
5.4.2.2. The estimation of the insertion cost is outlined in Algorithm 1. First, in lines 1 and 2,
we calculate a representative pickup time 𝑡𝑝𝑟𝑒𝑝𝑟 as the middle of the time window [𝑒𝑝,𝑟 , 𝑙𝑝,𝑟 ]
and a representative drop-off time 𝑡𝑑𝑟𝑒𝑝𝑟 as the middle of the time window [𝑒𝑑,𝑟 , 𝑙𝑑,𝑟 ].
Subsequently, in lines 3 and 4, we determine the indices 𝑖∗, 𝑗∗ in the route of 𝑘 such that
the representative pickup and drop-off lie in the interval between the end of the previous
stop and the start of the following one. If no such position is found, the stops are inserted
at the end of the route. The estimated insertion cost Δ̂+

𝑟,𝑘
corresponds to the additional

travel time as given by our grid-based estimations. Note that this estimated insertion cost

Algorithm 1: Estimated insertion
/* Estimates the cost of inserting 𝑟 into the route of a vehicle 𝑘. */

Input: Request 𝑟 , vehicle 𝑘
Output: Estimated insertion cost Δ̂+

𝑟,𝑘

1 𝑡𝑝
𝑟𝑒𝑝
𝑟 ←Middle of time window 𝑒𝑝,𝑟 ,𝑙𝑝,𝑟

2 𝑡𝑑
𝑟𝑒𝑝
𝑟 ←Middle of time window 𝑒𝑑,𝑟 ,𝑙𝑑,𝑟

3 𝑖∗ ← Index at which 𝑑𝑒𝑘𝑖−1 ≤ 𝑡𝑝
𝑟𝑒𝑝
𝑟 ∧ 𝑎𝑟𝑘𝑖 ≥ 𝑡𝑝

𝑟𝑒𝑝
𝑟 or end of route

4 𝑗∗ ← Index at which 𝑑𝑒𝑘𝑖−1 ≤ 𝑡𝑑
𝑟𝑒𝑝
𝑟 ∧ 𝑎𝑟𝑘𝑖 ≥ 𝑡𝑑

𝑟𝑒𝑝
𝑟 or end of route

5 Δ̂+
𝑟,𝑘
← Grid-based insertion cost at positions 𝑖∗, 𝑗∗

6 return Δ̂+
𝑟,𝑘

53



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

is also used in other phases of the algorithm, we will reference Algorithm 1 in the relevant
sections.

Vehicle candidate sorting Given a vehicle 𝑘 ∈ 𝐾𝑐𝑟 we utilize Algorithm 1 to calculate
the estimated insertion cost Δ̂+

𝑟,𝑘
. Subsequently, we sort 𝐾𝑐𝑟 in increasing order according to

this estimated cost. This sorting procedure allows us to check the most promising vehicles
for an insertion first and abort the search prematurely.

5.4.2.4 Cheapest Request Insertion

Finally, we iterate over the sorted vehicle candidates𝐾𝑐𝑟 and determine the cheapest feasible
insertion of trip request 𝑟 into the route of a vehicle 𝑘 ∈ 𝐾𝑐𝑟 . For this purpose, we utilize a
cheapest insertion algorithm that we explain next. Afterward, we show how this algorithm
is used to determine a vehicle’s route into which 𝑟 will be inserted.

Cheapest insertion algorithm One common operation in vehicle routing algorithms
is the determination of the cheapest insertion of a request 𝑟 into the route of a vehicle
𝑘 . We utilize a straightforward cheapest insertion algorithm as given in Algorithm 2.
As checking an insertion for feasibility and calculating the insertion cost is potentially
expensive due to the necessary shortest path calculations, we use some simple pruning
techniques to limit the range of insertion indices that are checked. In line 1, we determine
a set of potentially feasible pickup indices 𝐼𝑟,𝑘 . This includes all positions 𝑖 in the vehicle’s
current route for which the departure time at the previous stop is earlier than the latest
pickup service, i.e. 𝑑𝑒𝑘𝑖−1 < 𝑙𝑝,𝑟 . Additionally, the next stop 𝑖 + 1 is associated with a latest
possible service 𝑙𝑖+1. An insertion position is potentially feasible, if 𝑒𝑝,𝑟 < 𝑙𝑖+1. A similar
procedure is performed in line 3 for the drop-off stop. The drop-off must occur after the

Algorithm 2: Cheapest insertion
/* Finds the cheapest insertion of a request 𝑟 into the route of a

vehicle 𝑘. */

Input: Request 𝑟 , vehicle 𝑘
Output: Cheapest feasible insertion indices 𝑖∗, 𝑗∗ with cost Δ+,∗

𝑟,𝑘

1 𝐼𝑟,𝑘 ← Set of potentially feasible pickup indices
2 for 𝑖 ∈ 𝐼𝑟,𝑘 do
3 𝐽𝑟,𝑘,𝑖 ← Set of potentially feasible drop-off indices
4 for 𝑗 ∈ 𝐽𝑟,𝑘,𝑖 do
5 Δ+

𝑟,𝑘,𝑖, 𝑗
← Evaluate insertion at indices 𝑖, 𝑗

6 if Insertion is feasible and new best then
7 𝑖∗, 𝑗∗,Δ+,∗

𝑟,𝑘
← 𝑖, 𝑗,Δ+

𝑟,𝑘,𝑖, 𝑗

8 return 𝑖∗, 𝑗∗,Δ+,∗
𝑟,𝑘

54



5.4 Real-Time Dispatching with Local Search Improvement

pickup and, in addition, the following conditions must hold: 𝑑𝑒𝑘𝑗−1 < 𝑙𝑑,𝑟 and 𝑒𝑑,𝑟 < 𝑙 𝑗+1.
For any potentially feasible combination 𝑖, 𝑗 , we evaluate the insertion of 𝑟 into the route
and check its feasibility concerning the vehicle capacity, pickup time window, and ride
time. If the insertion is feasible, we calculate the additional travel time incurred by this
insertion as Δ+

𝑟,𝑘,𝑖, 𝑗
. We return the best feasible insertion positions 𝑖∗, 𝑗∗ with the minimal

insertion cost denoted as Δ+,∗
𝑟,𝑘
. Note that Algorithm 2 uses actual routing travel times

instead of estimations. This ensures the feasibility of the found insertion.

Request insertion We utilize Algorithm 2 to determine a vehicle in 𝐾𝑐𝑟 to which 𝑟 will
be assigned. For this purpose, we iterate over the sorted vehicle candidates 𝑘 ∈ 𝐾𝑐𝑟 and
evaluate the insertion into the vehicle’s route. After checking 𝑘𝑚𝑎𝑥 vehicles, we abort the
search if a feasible insertion was found. Due to the prior sorting step, we have evaluated
the most promising vehicles at this point. If no feasible insertion was found, we continue
the search until either an insertion is found or we have iterated over all vehicles. As the
final result of the dispatching phase, we have now determined a feasible vehicle route into
which 𝑟 is inserted. In case no feasible insertion was found, the request 𝑟 is rejected.

5.4.3 Local Search Improvement

The second major algorithmic component of our vehicle routing approach is a local search
algorithm LS. It uses the available computational time between the dispatching of incoming
trip requests to improve the current routing plan. LS consists of several separate phases:

1. Inter-route search – Modifies two routes simultaneously.

a) Inter-route move – Moves a single request from one vehicle to another.

b) Inter-route swap – Swaps two requests between vehicles.

2. Intra-route search – Improves the route of a single vehicle.

a) Intra-route stop move – Moves a single stop within a route.

b) Intra-route request move – Moves the pickup and drop-off stops associated with
a trip request within a route.

5.4.3.1 Common Components and Notation

Several elements are utilized repeatedly throughout our local search algorithm. In the
following, we first introduce these common elements.

55



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

Request Queue The request queue contains the set of trip requests that are currently
planned but have not yet been picked up. The queue is ordered in decreasing order by
the travel time contribution of each request Δ−

𝑟,𝑘𝑟
. This corresponds to the travel time

that would be saved if the trip request 𝑟 were removed from its current vehicle 𝑘𝑟 and
is determined based on the travel times from our routing engine. The request queue is
updated every time a trip request is inserted into or removed from a route. The reasoning
for this is that we want to prioritize requests with a large Δ−

𝑟,𝑘𝑟
during our search, as they

offer the most potential for improvement and we may not be able to evaluate all requests
due to running time restrictions. Our two inter-route search neighborhoods each utilize
a separate request queue 𝑅𝑄𝑚 (move) and 𝑅𝑄𝑠 (swap) to determine the next request for
evaluation. The usage of separate queues is necessary due to the tabu mechanism described
in the next paragraph and the separate time limits for both operators.

Tabu List In addition to the request queue, our inter-tour operators each use a tabu
list denoted as 𝑇𝐿𝑚 (move) and 𝑇𝐿𝑠 (swap). These contain requests that have recently
been evaluated without finding an improving move or swap respectively. For a given
tabu interval 𝑡 𝑡𝑎𝑏𝑢 , a request on the tabu list is not evaluated for a potential move or swap
again.

5.4.3.2 Inter-Route Search

The inter-route search modifies the routes of two vehicles simultaneously by trying to
move a request from one vehicle to another or swapping two requests between vehicles
while improving the overall vehicle travel times.

Inter-RouteMove The inter-route move operator is outlined in Algorithm 3. It performs
a first-improvement search until either the time limit 𝑇𝑚 is reached or the request queue
𝑅𝑄𝑚 is empty. We first select the next request 𝑟 in the request queue. Subsequently, we
iteratively determine a sorted set of potential vehicles to which 𝑟 may be moved. Initially,
in line 3, this set contains all vehicles except the vehicle to which 𝑟 is currently assigned
denoted as 𝑘𝑟 . In line 4, we filter vehicles based on the travel time contribution of 𝑟 and the
estimated insertion cost Δ̂+

𝑟,𝑘
. We only consider vehicles for which Δ̂+

𝑟,𝑘
is smaller or equal

than Δ−
𝑟,𝑘𝑟

multiplied by a factor 𝑓 𝑑𝑒𝑡 > 1.0. In general, the actual cost of inserting 𝑟 into
the route of 𝑘 must be smaller than Δ−

𝑟,𝑘𝑟
in order for a move to be worth it. As we only

work with an estimated insertion in this step, we allow for some leeway by introducing
the factor 𝑓 𝑑𝑒𝑡 . In line 5, we sort all remaining vehicles in increasing order according to
Δ̂+
𝑟,𝑘
. This way, we evaluate vehicles first with a low estimated insertion cost and hence,

the largest potential improvement. Subsequently, we iterate over the sorted vehicles and
search for a feasible move. We utilize Algorithm 2 to determine the cheapest insertion of a
request into a vehicle’s route. If we find an improving move, i.e. one that is feasible and
reduces the overall travel time, we perform this move in line 9. Subsequently, we update
𝑅𝑄𝑚 and proceed with the next request. If we find no improving move for a given request,
the request is added to 𝑇𝐿𝑚 .

56



5.4 Real-Time Dispatching with Local Search Improvement

Algorithm 3: First-improvement inter-route move
/* Performs a first improvement inter-route move search. */

Input: Request queue 𝑅𝑄𝑚 , tabu list 𝑇𝐿𝑚 , vehicles 𝐾
1 while 𝑇𝑚 is not reached and 𝑅𝑄𝑚 is not empty do
2 𝑟 ← next request in 𝑅𝑄𝑚
3 𝐾𝑡 ← 𝐾 \ 𝑘𝑟
4 𝐾𝑡 ← {𝑘 ∈ 𝐾𝑡 |Δ̂+

𝑟,𝑘
≤ 𝑓 𝑑𝑒𝑡 · Δ−

𝑟,𝑘𝑟
}

5 𝐾𝑡 ← sort 𝐾𝑡 by Δ̂+
𝑟,𝑘

6 for 𝑘 ∈ 𝐾𝑡 do
7 𝑚∗ ← best move for 𝑟, 𝑘𝑟 , 𝑘
8 if 𝑚∗ is improving then
9 perform𝑚∗, update 𝑅𝑄𝑚 and break

10 if no improving swap was found for 𝑟 then
11 𝑇𝐿𝑚 ← 𝑇𝐿𝑚 ∪ 𝑟

Inter-Route Swap The inter-route swap search as outlined in Algorithm 4 behaves
similarly to the inter-route move. In lines 3 – 5, in the same manner as before, we select
the next request 𝑟1 from the queue and the determine a sorted set of vehicles 𝐾𝑡 . Now we
iterate over vehicles 𝑘2 ∈ 𝐾𝑡 . Let 𝑅𝑘2 denote all requests that are assigned to 𝑘2, but have
not been picked up yet. These are the potential swap partners. We then find the best swap
by performing a cheapest insertion of 𝑟1 into 𝑘2 and 𝑟2 into 𝑘𝑟1 with Algorithm 2. If we find
a swap that reduces the overall travel time, i.e. Δ+,∗

𝑟1,𝑘2
+ Δ+,∗

𝑟2,𝑘𝑟1
< Δ−

𝑟1,𝑘𝑟1
+ Δ−

𝑟,𝑘2
, the swap is

performed. Subsequently, we update 𝑅𝑄𝑠 and continue with line 1. If no improving swap
is found, 𝑟1 is added to 𝑇𝐿𝑠 .

Algorithm 4: First-improvement inter-route swap
/* Performs a first improvement inter-route swap search. */

Input: Request queue 𝑅𝑄𝑠 , tabu list 𝑇𝐿𝑠 , vehicles 𝐾
1 while 𝑇 𝑠 is not reached and 𝑅𝑄𝑠 is not empty do
2 𝑟1 ← next request in 𝑅𝑄𝑠
3 𝐾𝑡 ← 𝐾 \ 𝑘𝑟1

4 𝐾𝑡 ← {𝑘 ∈ 𝐾𝑡 |Δ̂+
𝑟1,𝑘
≤ 𝑓 𝑑𝑒𝑡 · Δ−

𝑟1,𝑘𝑟1
}

5 𝐾𝑡 ← sort 𝐾𝑡 by Δ̂+
𝑟1,𝑘

6 for 𝑘2 ∈ 𝐾𝑡 do
7 for 𝑟2 ∈ 𝑅𝑘2 do
8 𝑠∗ ← best swap for 𝑟1, 𝑟2, 𝑘𝑟1, 𝑘𝑟2
9 if 𝑠∗ is improving then
10 perform 𝑠∗, update 𝑅𝑄𝑠 and break
11 if no improving move was found for 𝑟1 then
12 𝑇𝐿𝑠 ← 𝑇𝐿𝑠 ∪ 𝑟1

57



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

5.4.3.3 Intra-Route Search

The intra-route search improves the sequence of stops within a single route. It is applied
to all vehicles whose routes have been modified since the last intra-route search iteration.
These modifications may have either been performed by the dispatching algorithm or
the inter-route search. We utilize two operators. The intra-route stop move removes a
single stop and tries to re-insert it at another feasible position while reducing the overall
travel time. The intra-route request move removes both stops belonging to a request
that has not yet been picked up from the route and re-inserts them with Algorithm 2.
Both operators are used in a first-improvement fashion, i.e. once an improving move is
found, it is performed. The intra-route search has no time limit and is applied exhaustively
until no further improvement is found. However, due to the small search space and the
limited number of vehicles that need to be checked in each iteration, the running time is
negligible.

5.5 Reactive Idle Vehicle Repositioning

While anticipatory routing and repositioning of idle vehicles is discussed in detail in
Chapter 6, preliminary experiments have shown that the overall performance of our ride-
sharing system suffers greatly when no repositioning at all is performed. This is mainly
due to the fact that vehicles get stranded in low-demand areas and cannot reach arising trip
requests in high-demand areas within their maximum waiting time. Hence, we introduce
a simple repositioning approach to enable us to evaluate our vehicle routing algorithms.
Otherwise, our performance metrics would be dominated by the lack of repositioning. We
propose the usage of a reactive repositioning algorithm based on the work by Alonso-Mora
et al. (2017a). Our approach is outlined in Algorithm 5. Given a rejected trip request 𝑟 , we
determine the idle vehicle 𝑘∗ with the lowest travel time to 𝑝𝑟 and reposition this vehicle
to 𝑝𝑟 . The intuitive reasoning behind this approach is that trip requests are highly spatially
and temporally correlated. Hence, when we reject a trip request at a location, it is likely

Algorithm 5: Reactive repositioning
/* Repositions an idle vehicle (if available) to the pickup location of a

rejected trip request. */

Input: Set of idle vehicles 𝐾𝑖𝑑 , rejected trip request 𝑟
1 𝑡𝑡𝑚𝑖𝑛 ←∞
2 for 𝑘 ∈ 𝐾𝑖𝑑 do
3 𝑡𝑡𝑘,𝑝𝑟 ← travel time of 𝑘 to 𝑝𝑟
4 if 𝑡𝑡𝑘,𝑝𝑟 < 𝑡𝑡𝑚𝑖𝑛 then
5 𝑡𝑡𝑚𝑖𝑛 ← 𝑡𝑡𝑘,𝑝𝑟
6 𝑘∗ ← 𝑘

7 Reposition 𝑘∗ to 𝑝𝑟

58



5.6 Computational Evaluation

that additional trip requests will arise in the vicinity in the near future. Therefore, sending
an idle vehicle to the pickup location of the request may ensure that we are capable of
serving these future requests.

5.6 Computational Evaluation

In this section, we evaluate our vehicle routing algorithms on several real-world datasets.
As a basis for our evaluation, we use the simulation-based framework as presented in
Chapter 4. In the following, we first discuss our overall experimental design in Section
5.6.1 followed by the presentation of our computational results in Section 5.6.2.

5.6.1 Experimental Design and Setup

In our computational experiments, we investigate the performance of our vehicle routing
approaches on several datasets. Our main goals are to:

• Evaluate the applicability of our vehicle routing approach on a diverse set of instances
and show the robustness of our approach under varying circumstances.

• Show that our algorithm is capable of handling large-scale real-world scenarios in
real-time.

• Assess the improvement gained by employing the local search improvement phase
compared to only the dispatching heuristic.

• Investigate the impact of relevant settings and parameters such as, for instance, time
windows and fleet sizes on the performance of our algorithms.

To evaluate these different aspects, we use four real-world datasets described in Section
5.6.1.1. Based on these datasets, we generate a set of problem instances as presented
in Section 5.6.1.2. These instances are subsequently run with a wide range of different
simulation and algorithm settings that are detailed in Sections 5.6.1.3 and 5.6.1.4. As
mentioned in Chapter 4, our planning algorithms and simulation were implemented in
C++. All computational studies were run on a computer with an Intel i7-6600U CPU and
20 GB of RAM.

5.6.1.1 Dataset Description

We evaluate our vehicle routing algorithms on multiple real-world datasets from the cities
of Hamburg (HH)1, New York City (NYC) (NYC Taxi and Limousine Commission 2022) and
Chengdu (CH) (Didi Chuxing 2020). In addition, we build a fourth dataset based on the
NYC dataset that only encompasses the area of Manhattan (MANH). All datasets contain

1 Provided by PTV Group, Haid-und-Neu-Str. 15, 76131 Karlsruhe, Germany.

59



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

at least the information given in Table 5.3 – the coordinates of the desired pickup and
drop-off location as well as the time and date at which the request enters the system. Some
datasets originally provide the time at which the customer is picked up. In that case, we
treat this as the arrival time of the request in the system.

Table 5.3: Data structure of trip request datasets.

Pickup
latitude

Pickup
longitude

Drop-off
latitude

Drop-off
longitude

Request datetime

53.55762887 9.89704761 53.57196746 9.716359358 2019-03-16 14:42:00
53.46235765 9.98142367 53.44714752 9.958970077 2019-03-19 10:39:00

. . .

In addition to this data, we also need the number of passengers for each trip request
in order to conduct our simulation studies. However, this information is only explicitly
given for the NYC and MANH datasets. For these two datasets, we take the number of
passengers as provided. We only consider trip requests with up to 2 passengers as this is
common practice in ride-sharing services like UberPool (Uber 2021). Larger groups are
generally requested to use ride-hailing services in which they occupy the complete vehicle
for their trip and no sharing with other customers takes place. Hence, trip requests with
three or more passengers are removed from the datasets. As the information concerning
the passenger numbers is missing from the CH and HH datasets, we derive a probability
distribution from the NYC dataset with a probability of 82.5 % for one passenger and 17.5 %
for two passengers. The number of passengers for the CH and HH dataset is sampled
from this distribution. The resulting enriched datasets may now be used as input for our
simulation framework as described in Chapter 4.

For each dataset, we limit the geographical area in which trip requests may be situated. This
is necessary due to the fact that some datasets contain outliers for which the desired pickup
or drop-off location is far away from the area that we want to study. It is also common
practice for ride-sharing services like MOIA (MOIA 2022a) to limit their service area to a
region covering mostly densely populated areas close to the city center. The reasoning is
that ride-sharing needs a certain level of demand density to be able to efficiently combine
trip requests into shared routes. The service areas used in our simulation studies are
depicted in Figure 5.3. Trip requests in the original data that lie outside these areas are
removed from the datasets. For HH, MANH and NYC we restrict the covered areas to the
administrative boundaries of the respective cities or boroughs. In the case of Chengdu, no
such data was available to us. Hence, we restrict the area to a bounding box encompassing
the outer ring road of Chengdu. In all cases, the vast majority of trip requests in the
original data occur within the specified areas.

Given these datasets, we are able to evaluate our algorithms under diverse scenarios. In
particular, we can evaluate the performance of our solution approach with regard to the
following factors:

60



5.6 Computational Evaluation

(a) Chengdu. (b) Hamburg.

(c) Manhattan. (d) New York City.

Figure 5.3: Dataset areas.

• Trip request demand – The total demand, as in the number of trip requests per day,
varies between the datasets. While the CH, MANH and NYC datasets are relatively
similar with around 300,000 trip requests per day, the HH dataset only contains ca.
15,000 trip requests per day. In addition, the demand density within each dataset
varies between sub-regions. For instance, in the NYC dataset, roughly 80% of the
demand occurs within Manhattan whereas the remaining areas have a comparatively
low demand density.

• Covered area – The geographical area in which the trip requests in our datasets
occur varies widely. The HH and NYC datasets cover relatively large areas that also
encompass more sub-urban areas. In contrast, the MANH dataset, and, to a lesser
extent, the CH dataset are focused on smaller, highly urbanized areas with a high
population density.

61



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

5.6.1.2 Simulation Instances

Based on the datasets described above, we generate a set of simulation instances of which
each instance covers a single day. The instances are divided into two groups: (1) preliminary
test instances and (2) main evaluation instances. The former instances are used to perform
preliminary experiments to determine adequate parameter settings while the latter are used
for our main computational evaluations. The specific dates and number of trip requests
for each instance are given in Table 5.4. For our main evaluation instances, we decided to
seperately consider instances on a weekday (Wednesday) and on a weekend (Sunday). This
way, we evaluate our algorithms under different demand patterns as the distribution of trip
requests over the day varies significantly between weekdays and weekends as illustrated
in Figure 5.4. Particularly for the HH, MANH and CH datasets, we may observe that on
Sundays the demand at night is higher, but the peaks in the morning and evening that
occur on weekdays are not as pronounced. We utilize a shorthand name for our instances
consisting of the group (P – Preliminary, M – Main), the dataset and the weekday.

Table 5.4: Preliminary and main instances.

Group Dataset Weekday Date # trip Name
requests

Preliminary CH Wed 09 Nov 2016 224,219 P-CH-Wed
HH Wed 13 Mar 2019 16,158 P-HH-Wed
MANH Wed 09 Mar 2016 335,929 P-MANH-Wed
NYC Wed 09 Mar 2016 429,855 P-NYC-Wed

Main CH Wed 16 Nov 2016 239,037 M-CH-Wed
Sun 20 Nov 2016 237,037 M-CH-Sun

HH Wed 20 Mar 2019 13,556 M-HH-Wed
Sun 24 Mar 2019 10,669 M-HH-Sun

MANH Wed 16 Mar 2016 297,457 M-MANH-Wed
Sun 20 Mar 2016 269,346 M-MANH-Sun

NYC Wed 16 Mar 2016 376,526 M-NYC-Wed
Sun 20 Mar 2016 368,508 M-NYC-Sun

In addition to trip requests, we also need information concerning the vehicle fleet for
our simulations. As we have no reliable real-world data regarding taxi fleets, we ran
preliminary tests on the instances described above and determined a base fleet size for
each dataset as given in Table 5.5. This fleet should be able to serve approximately 85 -
90 % of all trip requests. The assumption behind this choice of fleet size is that a real-world
ride-sharing provider should be able to serve most trip requests entering the system. A
low amount of rejections is allowed to account for excess demand during peak hours or
trip requests in remote areas that are very difficult to reach. In Section 5.6.2.7, we also
perform experiments with other fleet sizes.

62



5.6 Computational Evaluation

2000

4000

nu
m

be
r o

f t
rip

 re
qu

es
ts

CH

100

200

HH

00:00 12:00 24:00
time of day

2500

5000

MANH

Wednesday Sunday

00:00 12:00 24:00
time of day

3000

6000

NYC

Figure 5.4: Distribution of trip requests over time on Wednesday and Sunday for the main instances of our
datasets (aggregated in 15-minute intervals).

Table 5.5: Base fleet size per dataset.

CH HH MANH NYC

Fleet size 1260 90 670 1180

5.6.1.3 Simulation Settings

Table 5.6 summarizes the relevant settings for our simulation scenarios that are evaluated
in the following sections. Unless noted otherwise the default values indicated in bold
are used in our experiments. When it comes to parameters controlling customer time
windows (𝑤𝑟 , 𝐿𝑚𝑖𝑛,𝑚𝑑𝑒𝑡 ), we consider three different settings with short, medium and
long time windows. These experiments are described in Section 5.6.2.6. Please note the
simulation warm-up time of six hours. This means that we simulate six hours of service
before beginning our collection of evaluation metrics. This ensures that we do not start
with a system state in which all vehicles are idle which would distort our performance
indicators. Therefore, when simulating an instance on 16 March 2016, the warm-up phase
starts on 15 March 2016 at 18:00 and evaluation metrics are gathered after 00:00.

5.6.1.4 Algorithm Parameters

Table 5.7 summarizes all relevant parameters of our algorithms dispatching algorithm
(DIS) and local search algorithm (LS). Most of our experiments are performed with and

63



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

Table 5.6: Simulation settings and potential values. Default values are indicated in bold.

Parameter Notation Unit Values

Sharing allowed - - true, false
Maximum waiting time 𝑤𝑟 s 180, 300, 600
Minimum allowed detour 𝐿𝑚𝑖𝑛 s 100, 150, 300
Maximum detour factor 𝑚𝑑𝑒𝑡 - 1.33, 1.5, 2
Vehicle factor - - 0.8, 0.9, 1.0, 1.1, 1.2
Vehicle capacity - - 2, 3, 4, 5, 6
Pre-booking times 𝑝𝑏𝑟 min 0, 15, 30, 60
Pre-booking percentage - % 0, 10, 25, 50
Service time 𝑠𝑟 s 10
Warm-up time - h 6

Table 5.7: Algorithm parameters and potential values. Default values are indicated in bold.

Parameter Notation Unit Values

Algorithm mode - - DIS, DIS+LS
Grid cell side length 𝑔𝑠𝑖𝑧𝑒

𝑑
m 750, 1000, 1500, 2000, 3000

Vehicle limit 𝑘𝑚𝑎𝑥 - 16, 32, 48, 96,∞
Detour filter factor 𝑓 𝑑𝑒𝑡 - 1.0, 1.5,∞
Tabu time 𝑡 𝑡𝑎𝑏𝑢 s 0, 60, 180, 300,∞
Time limit move 𝑇𝑚 ms 80,∞
Time limit swap 𝑇 𝑠 ms 120,∞
Repositioning - - no, yes

without the local search phase in order to gauge its impact. These two algorithm modes are
denoted as DIS and DIS+LS. Concerning the four parameters 𝑔𝑠𝑖𝑧𝑒

𝑑
, 𝑘𝑚𝑎𝑥 , 𝑓 𝑑𝑒𝑡 , and 𝑡 𝑡𝑎𝑏𝑢 , we

perform preliminary experiments in Section 5.6.2.1 to determine adequate values. Hence,
no default values are given at this point. Regarding the time limits for the local search, we
set the default values to a sum of 200 ms. This ensures that we can process all trip requests
in real-time, even during peak demand hours. In Section 5.6.2.11, we also investigate
scenarios in which we do not set a time limit to evaluate the potential performance gain.
Unless noted otherwise, all evaluations are performed with the repositioning algorithm
presented in Section 7. In Section 5.6.2.3, we evaluate scenarios without repositioning to
illustrate its impact.

5.6.1.5 Performance Indicators

Table 5.8 summarizes the main performance indicators used throughout this section to
assess the performance of our algorithms. The trip request rejection rate (Rej) is our
main indicator for the overall system performance as we aim to maximize the number
of accepted trip requests. Wait and Ride indicate the average waiting time and ride time

64



5.6 Computational Evaluation

Table 5.8: Performance indicators.

KPI Unit Description

Rej % Trip request rejection rate
Wait s Avg. customer waiting time
Ride s Avg. customer ride time
TT𝑣 min Avg. total vehicle travel time
TT𝑣𝑟𝑒𝑞 s Avg. vehicle travel time per served trip request
RT min Total running time
RT𝑑𝑖𝑠 min Total running time for the dispatching algorithm
RT𝑑𝑖𝑠𝑟 min Avg. running time for dispatching one trip request
RT𝑙𝑠 min Total running time for the local search algorithm
RT𝑟𝑒 min Total running time for the repositioning algorithm
RT𝑜 min Total running time for other tasks

of a customer, respectively. The waiting time is the time between the earliest and actual
pickup of a customer while the ride time is the time spent riding in the vehicle. These serve
as ways to measure the impact on customer satisfaction. TT𝑣 denotes the average total
travel time of a single vehicle and serves as a proxy for the operational costs of operating
the ride-sharing service. As the total vehicle travel time is strongly correlated with the
number of served trip requests, we also report the average vehicle travel time per served
request (TT𝑣𝑟𝑒𝑞). This corresponds to the total travel time of all vehicles divided by the
number of served trip requests. Hence, it is normalized for the overall number of served
trip requests and should indicate how efficiently we manage to plan the vehicle routes.
Besides indicators concerning the solution quality, we also report the running times of
our algorithm. RT denotes the total running time of a simulation run. This running time
may be divided into the running time for DIS (RT𝑑𝑖𝑠 ), the running time for LS (RT𝑙𝑠 ), the
running time for repositioning (RT𝑟𝑒 ), and the running time for other tasks, such as the
simulation itself and maintaining the current state of the vehicle fleet (RT𝑜 ). In addition,
we also report the average running time for dispatching a single trip request (RT𝑑𝑖𝑠𝑟 ). This
value should ideally be very small as it corresponds to the response time for an incoming
trip request.

5.6.2 Computational Results

Throughout the following sections, we present the results of our computational experi-
ments. We start by evaluating our algorithm parameters in Section 5.6.2.1 and determining
a set of suitable parameter values for the remainder of this study. Subsequently, Section
5.6.2.2 discusses the running times of our algorithms. Section 5.6.2.3 presents the impact of
our repositioning algorithm as proposed in Section 7. An overview of our computational
results with default settings is presented in Section 5.6.2.4, while Sections 5.6.2.5 - 5.6.2.11
present a more detailed analysis concerning aspects such as vehicle sharing, time windows,
fleet sizes, or pre-booking of trip requests.

65



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

5.6.2.1 Parameter Influence

In this section, we study the influence of several main parameters of our algorithms DIS
and LS. For each parameter, we evaluate the different settings given in Table 5.9. Due to
the involved computational effort, we do not perform a full grid search of all parameter
combinations. Instead, we vary each parameter value individually setting the remaining
parameters to their default starting value indicated in italic. The best-found settings that
will be used for the remainder of this study are highlighted in bold. We mainly focus on
the impact of each parameter value on the trip request rejection rate and the total running
time.

Table 5.9: Algorithm parameters with default starting values denoted in italic and the best found values in
bold.

Parameter Notation Unit Values

Grid cell side length 𝑔𝑠𝑖𝑧𝑒
𝑑

m 750, 1000, 1500, 2000, 3000
Vehicle limit 𝑘𝑚𝑎𝑥 - 16, 32, 48, 96,∞
Tabu time 𝑡 𝑡𝑎𝑏𝑢 s 0, 60, 180, 300,∞
Detour filter factor 𝑓 𝑑𝑒𝑡 - 1.0, 1.5,∞

750 1000 1500 2000 3000
grid cell size (gsize

d ) [m]

0

5

10

re
je

ct
io

n 
ra

te
 [%

]

16 32 48 96
vehicle limit (kmax)

0 60 180 300
tabu time (ttabu) [s]

0

5

10

rejection rate (Rej) [%] running time (RT) [min]

1.0 1.5
detour filter factor (fdet)

0
180
360
540
720

ru
nn

in
g 

tim
e 

(R
T)

 [m
in

]

0
180
360
540
720

Figure 5.5: Influence of the grid cell side length (𝑔𝑠𝑖𝑧𝑒
𝑑

), vehicle limit (𝑘𝑚𝑎𝑥 ), detour filter factor (𝑓 𝑑𝑒𝑡 ), and
tabu time (𝑡𝑡𝑎𝑏𝑢 ).

The average results across our preliminary test instances are depicted in Figure 5.5. Our
main findings may be summarized as follows:

• The grid cell side length𝑔𝑠𝑖𝑧𝑒
𝑑

has almost no impact on the running time. This behavior
is to be expected, as the grid calculation is a preprocessing step. A smaller grid size

66



5.6 Computational Evaluation

has a positive impact on the request rejection rates as both our travel time estimations
and the lookup of potential vehicles for a trip request become more precise. Hence,
we select a grid size of 750 m x 750 m. Smaller grid sizes are impractical due to the
associated preprocessing time and the involved memory usage when covering large
geographical areas.

• The vehicle limit 𝑘𝑚𝑎𝑥 has a minor impact on the rejection rates. As expected, a larger
number of evaluated vehicles correlates with reduced rejection rates. However, due
to our vehicle sorting phase, this effect is not very pronounced as the most promising
vehicles are evaluated first. In addition, going from a vehicle limit of 96 to evaluating
all vehicles comes at a considerable runtime cost. Therefore, we set the vehicle
limit to 96 as it presents a good trade-off between running time and rejection rate.
Note that the different vehicle limits chosen for this experiment are multiples of the
number of available threads on our machine, as vehicles are processed in parallel.

• The tabu time 𝑡 𝑡𝑎𝑏𝑢 has almost no impact on the rejection rate. Lower values are
slightly better, but the effect is very minor. Setting the tabu time to 0 leads to a
drastic jump in running time as each request is evaluated for potential moves and
swaps in each iteration of the local search. In consequence, we choose a value of 60
seconds for the tabu time. Note that in our simulation experiments, 𝑡 𝑡𝑎𝑏𝑢 refers to
the simulated time.

• Similarly, the detour filter factor has a very small impact on the rejection rate. In
fact, all three settings lead to virtually identical results. In contrast, the running time
of the algorithm may be reduced by setting 𝑓 𝑑𝑒𝑡 to a small value. Hence, we select a
detour filter factor of 1.0.

5.6.2.2 Running Times

Table 5.10 shows a more detailed look at the running times of our algorithms DIS and
LS. It reports the average running times for our main instances on each dataset. The
main takeaway is that the running times are suitable for real-time usage in all evaluated
scenarios. For each scenario, a timespan of 30 hours or 1800 minutes is simulated. This
consists of the simulated 24 hours and the simulation warm-up time of 6 hours. Hence,
even in the most computationally expensive scenarios, the simulation-based evaluation
can be performed faster than in real-time by a large margin. For the larger datasets, the
running times are heavily dominated by the dispatching and local search algorithms as
these scale with the number of trip requests and the size of the vehicle fleet, whereas for
the small instances in the HH dataset, the running times for the simulation and status
management actually contribute a major portion. Looking at the dispatching running
time for a single trip request RT𝑑𝑖𝑠𝑟 , we can see that even on the most challenging dataset
(NYC), we still only need an average of roughly 10 ms to dispatch a single trip request.
This facilitates fast response times for customers and leaves ample time for the local search
to improve the routing plan.

67



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

Table 5.10: Overview of average running times. Rows denoted as “ALL” contain averages across all four
datasets.

Data Mode RT𝑑𝑖𝑠 RT𝑙𝑠 RT𝑟𝑒 RT𝑜 RT RT𝑑𝑖𝑠𝑟
[min] [min] [min] [min] [min] [ms]

CH DIS 22.91 0.00 0.88 3.97 27.76 6.91
DIS+LS 24.17 33.54 1.14 11.66 70.51 7.22

HH DIS 0.23 0.00 0.00 0.40 0.63 1.40
DIS+LS 0.25 0.02 0.00 0.46 0.73 1.50

MANH DIS 39.54 0.00 0.09 5.91 45.54 9.05
DIS+LS 38.18 30.86 0.12 14.02 83.18 8.65

NYC DIS 58.30 0.00 1.26 14.47 74.03 10.42
DIS+LS 58.49 65.97 1.69 24.92 151.07 10.38

ALL DIS 30.25 0.00 0.56 6.19 36.99 6.95
DIS+LS 30.27 32.60 0.74 12.77 76.37 6.94

Table 5.11: Average results with and without repositioning. Rows denoted as “ALL” contain averages across
all four datasets.

Data Repositioning Rej RT RT𝑟𝑒 RT𝑑𝑖𝑠 RT𝑙𝑠

[%] [min] [min] [min] [min]

CH no 61.35 35.52 0.00 19.65 9.64
yes 10.80 70.51 1.14 24.17 33.54

HH no 56.26 0.48 0.00 0.16 0.00
yes 17.55 0.73 0.00 0.25 0.02

MANH no 48.17 64.66 0.00 41.63 13.13
yes 6.39 83.18 0.12 38.18 30.86

NYC no 79.74 59.09 0.00 34.39 10.87
yes 9.19 151.07 1.69 58.49 65.97

ALL no 61.38 39.94 0.00 23.96 8.41
yes 10.98 76.37 0.74 30.27 32.60

5.6.2.3 Impact of Repositioning

In Section 7, we introduced a reactive repositioning algorithm. The main reason for this
was the fact that without any repositioning at all, the system performance deteriorates
quickly. This effect is illustrated by the results in Table 5.11, where we show computational
results with and without the proposed repositioning mechanism. As we can see, the
rejection rate is increased drastically in scenarios where no repositioning is performed.
This is due to the fact that vehicles are stuck in low-demand areas and cannot reach

68



5.6 Computational Evaluation

00:00 12:00
0

25

50

75

100
fra

ct
io

n 
of

 v
eh

icl
es

 [%
] no repositioning

00:00 12:00
time of day

repositioning

active
idle

repositioning
total requests

rejected requests

0

2000

4000

6000

nu
m

be
r o

f r
eq

ue
st

s

Figure 5.6: Vehicle states with and without repositioning for instance M-MANH-Wed.

incoming trip requests in other areas on time. Performing our repositioning mechanism
remedies this and drastically reduces rejection rates. This effect can also be observed in
the vehicle state chart in Figure 5.6. It shows the distribution of vehicle states over time
for instance M-MANH-Wed. In addition, it depicts the number of total and rejected trip
requests. In the scenario without repositioning, a large number of trip requests have to
be rejected although a major fraction of the vehicle fleet is idle. In contrast, when using
the reactive repositioning mechanism, the complete vehicle fleet is utilized during peak
demand times. As seen by the results in Table 5.11, running times are increased when
performing repositioning. However, this is not mainly due to the running time of the
repositioning algorithm (RT𝑟𝑒 ). Rather, the running times for dispatching and local search
increase. The former is due to the tendency that more vehicles are available close to a
new trip request. Hence, we can check more vehicles for insertion in our dispatching
algorithm. The latter is due to the fact that we serve more trip requests and consequently
the search space in our local search phase is larger. All other evaluations in this section
are performed with our repositioning mechanism activated.

5.6.2.4 Results on Default Scenarios

Table 5.12 summarizes our computational results with the two algorithm modes DIS and
DIS+LS on the scenarios with default settings as presented in Section 5.6.1.3. On average,
activating the local search leads to a reduction in the number of rejected requests of 5.2 %.
Besides this, we observe minor improvements in the customer waiting and ride times.
There is one exception in the HH dataset, where results with the local search are actually
slightly worse than without. We believe that this is due to the low demand density in
Hamburg combined with the relatively narrow time windows in the base scenario. In
general, the results in Section 5.6.2.6 will show that the local search performs better in
scenarios with more flexible time windows as this leaves a larger search space for the local
search operators. Nevertheless, when it comes to the vehicle travel time measures TT𝑣
and TT𝑣𝑟𝑒𝑞 , we can see that the local search consistently plans more efficient vehicle routes

69



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

Table 5.12: Aggregated results with and without local search. Rows denoted as “ALL” contain averages
across all four datasets.

Data Mode Rej Wait Ride TT𝑣 TT𝑣𝑟𝑒𝑞 RT
[%] [s] [s] [min] [s] [min]

CH DIS 11.67 200.47 595.64 965.25 366.96 27.76
DIS+LS 10.80 200.52 593.13 929.69 350.00 70.51

HH DIS 17.42 174.94 475.59 855.58 462.76 0.63
DIS+LS 17.55 174.95 476.19 842.71 456.72 0.73

MANH DIS 7.36 227.01 295.19 1071.16 164.34 45.54
DIS+LS 6.39 222.96 293.07 1028.68 156.16 83.18

NYC DIS 9.86 218.73 378.00 1086.75 229.16 74.03
DIS+LS 9.19 216.69 375.70 1037.41 217.17 151.07

ALL DIS 11.58 205.29 436.11 994.69 305.81 36.99
DIS+LS 10.98 203.78 434.52 959.62 295.01 76.37

Table 5.13: Results with and without ride-sharing. Rows denoted as “ALL” contain averages across all four
datasets.

Data Ride- Rej Wait Ride TT𝑣 TT𝑣𝑟𝑒𝑞 TT𝑑𝑖𝑟

Sharing [%] [s] [s] [min] [s] [s]

CH no 32.05 240.30 430.75 1085.75 536.59 430.75
yes 10.80 200.52 593.13 929.69 350.00 445.35

HH no 26.54 188.54 369.19 968.46 588.55 369.19
yes 17.55 174.95 476.19 842.71 456.72 381.02

MANH no 32.82 264.64 194.68 1220.71 258.36 194.68
yes 6.39 222.96 293.07 1028.68 156.16 198.54

NYC no 30.24 253.21 252.96 1252.69 341.38 252.96
yes 9.19 216.69 375.70 1037.41 217.17 267.94

ALL no 30.41 236.67 311.90 1131.90 431.22 311.90
yes 10.98 203.78 434.52 959.62 295.01 323.21

for all datasets. On average, TT𝑣𝑟𝑒𝑞 is reduced by 3.5 % compared to the setting without
local search.

5.6.2.5 Impact of Ride-Sharing

In Table 5.13, we show results with and without ride-sharing. Note that the last column de-
noted TT𝑑𝑖𝑟 shows the average direct travel time of served trip requests, i.e. the travel time
between their pickup and drop-off location. As expected, the rejection rate is significantly

70



5.6 Computational Evaluation

higher without ride-sharing, as vehicles cannot transport multiple customer groups at
once. In addition, the waiting time of customers is reduced when ride-sharing is allowed,
as it is easier to insert a trip request into a vehicle route. Without ride-sharing, customers
must wait until a vehicle has finished serving its current trip request. In contrast, the
ride times are naturally higher with ride-sharing as we allow for detours compared to the
direct travel time. However, the planned vehicle routes are more efficient as illustrated by
TT𝑣𝑟𝑒𝑞 . This illustrates that ride-sharing can be an improvement compared to ride-hailing
or taxi services when it comes to traffic congestion as vehicles spend less time on the road.
In three out of four datasets, TT𝑣𝑟𝑒𝑞 is even lower than TT𝑑𝑖𝑟 . In these cases, ride-sharing
leads to a reduced traffic load compared to a setting in which all customers would drive
directly with their own vehicle. On average, the time spent by vehicles on the road may
be reduced by 8.7 % by using ride-sharing. This illustrates the potential for ride-sharing
services to help tackle traffic congestion problems in cities. However, the fact that for the
HH dataset no improvement compared to TT𝑑𝑖𝑟 is achieved also shows that a sufficiently
dense demand is paramount to achieving this benefit of ride-sharing services.

Table 5.14: Time window settings.

Unit Short Medium Long

𝑤𝑟 s 180 300 600
𝐿𝑚𝑖𝑛 s 100 150 300
𝑚𝑑𝑒𝑡 - 1.33 1.5 2.0

0

10

20

30

re
je

ct
io

n 
ra

te
 [%

]

CH HH

short medium long
time window settings

0

10

20

30

MANH

DIS DIS+LS

short medium long

NYC

Figure 5.7: Rejection rates for different time window settings.

71



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

5.6.2.6 Time Windows

In this section, we take a look at the impact of customer time windows on our vehicle
routing algorithms. We consider three different time window settings: short, long and
medium time windows. The specific values for the relevant parameters controlling the
maximum waiting time (𝑤𝑟 ), the minimum additional detour (𝐿𝑚𝑖𝑛) and the maximum
detour factor (𝑚𝑑𝑒𝑡 ) are given in Table 5.14.

Table 5.15: Results for different time window settings.

Data Time Mode Rej Wait Ride TT𝑣 TT𝑣𝑟𝑒𝑞 RT
Windows [%] [s] [s] [min] [s] [min]

CH short DIS 20.49 107.75 528.87 959.52 405.28 17.90
DIS+LS 20.39 109.57 531.01 925.87 390.55 42.76

medium DIS 11.67 200.47 595.64 965.25 366.96 27.76
DIS+LS 10.80 200.52 593.13 929.69 350.00 70.51

long DIS 5.24 460.50 738.71 969.28 343.49 45.62
DIS+LS 3.16 452.77 716.70 915.97 317.61 155.52

HH short DIS 34.50 100.36 423.21 807.33 549.75 0.43
DIS+LS 34.18 100.39 425.85 797.60 540.65 0.51

medium DIS 17.42 174.94 475.59 855.58 462.76 0.63
DIS+LS 17.55 174.95 476.19 842.71 456.72 0.73

long DIS 5.41 389.89 603.48 855.10 404.05 1.18
DIS+LS 5.00 383.23 596.53 822.24 386.93 1.46

MANH short DIS 11.32 121.80 262.61 1100.22 176.36 29.49
DIS+LS 10.62 120.95 262.25 1072.30 170.51 48.76

medium DIS 7.36 227.01 295.19 1071.16 164.34 45.54
DIS+LS 6.39 222.96 293.07 1028.68 156.16 83.18

long DIS 6.87 507.33 368.93 1068.39 163.08 83.22
DIS+LS 4.88 490.81 356.65 1004.17 150.04 216.53

NYC short DIS 15.01 117.74 336.09 1119.60 250.39 49.66
DIS+LS 14.78 118.17 337.12 1082.99 241.58 90.32

medium DIS 9.86 218.73 378.00 1086.75 229.16 74.03
DIS+LS 9.19 216.69 375.70 1037.41 217.17 151.07

long DIS 6.78 496.43 469.16 1072.59 218.67 138.77
DIS+LS 5.23 487.28 454.67 1004.97 201.58 376.65

ALL short DIS 20.33 111.91 387.70 996.67 345.45 24.37
DIS+LS 19.99 112.27 389.06 969.69 335.82 45.59

medium DIS 11.58 205.29 436.11 994.69 305.81 36.99
DIS+LS 10.98 203.78 434.52 959.62 295.01 76.37

long DIS 6.08 463.54 545.07 991.34 282.32 67.20
DIS+LS 4.57 453.52 531.14 936.84 264.04 187.54

72



5.6 Computational Evaluation

Table 5.15 shows our computational results. The main conclusions are as follows. The
improvement in the number of rejected trip requests achieved by the local search algorithm
grows larger as the time windows are increased. For the long time window setting, we
see an average improvement of 24.8 %. This is mainly due to the fact that the short and
medium time windows leave little room for improvement as the search space is highly
constrained by the narrower time windows. With longer time windows, the local search
has a larger search space to explore and is capable of exploiting this. The impact of the
time window length on the rejection rates is also illustrated in Figure 5.7. As expected, this
improvement in rejection rate comes at the cost of an increased running time. However, the
overall running time of our simulations is still significantly faster than real-time. Another
observation is that the local search algorithm is able to exploit larger time windows to build
more efficient vehicle routes. This may be seen by the decrease in TT𝑣𝑟𝑒𝑞 when comparing
the two modes DIS and DIS+LS. For the long time windows, the lowest absolute values
are achieved and the improvement of DIS+LS compared to DIS is also the largest at 6.5 %,
compared to 3.5 % and 2.8 % with medium and short time windows respectively.

5.6.2.7 Fleet Sizes

We evaluate different vehicle fleet sizes by applying a factor ranging from 0.8 - 1.2 to our
base fleet size as determined in Section 5.6.1.2. Aggregated results for vehicle factors of
0.8, 1.0 and 1.2 are presented in Table 5.16. One noteworthy result is that LS manages to
substantially improve the results for smaller fleet sizes whereas the performance between

10

20

re
je

ct
io

n 
ra

te
 [%

]

CH HH

0.8 0.9 1.0 1.1 1.2
vehicle factor

10

20

MANH

DIS DIS+LS

0.8 0.9 1.0 1.1 1.2

NYC

Figure 5.8: Rejection rates for different fleet sizes.

73



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

Table 5.16: Results with different fleet sizes.

Data Vehicle Mode Rej Wait Ride TT𝑣 TT𝑣𝑟𝑒𝑞 RT
Factor [%] [s] [s] [min] [s] [min]

CH 0.8 DIS 23.52 205.78 611.69 1068.16 375.20 28.29
DIS+LS 21.36 205.92 606.96 1050.69 358.92 57.78

1.0 DIS 11.67 200.47 595.64 965.25 366.96 27.76
DIS+LS 10.80 200.52 593.13 929.69 350.00 70.51

1.2 DIS 7.61 195.12 591.08 833.28 363.43 28.17
DIS+LS 7.98 196.60 589.96 790.15 346.01 76.47

HH 0.8 DIS 22.38 177.98 477.80 1013.92 467.32 0.53
DIS+LS 22.37 178.02 477.43 1001.72 461.39 0.65

1.0 DIS 17.42 174.94 475.59 855.58 462.76 0.63
DIS+LS 17.55 174.95 476.19 842.71 456.72 0.73

1.2 DIS 15.28 172.06 475.47 723.48 458.02 0.69
DIS+LS 15.08 171.94 476.91 711.75 449.70 0.82

MANH 0.8 DIS 19.12 235.94 299.49 1182.11 166.23 49.43
DIS+LS 16.90 232.23 297.42 1164.89 159.41 77.31

1.0 DIS 7.36 227.01 295.19 1071.16 164.34 45.54
DIS+LS 6.39 222.96 293.07 1028.68 156.16 83.18

1.2 DIS 3.29 223.39 294.06 931.22 164.16 41.89
DIS+LS 3.15 220.28 292.23 882.46 155.32 86.36

NYC 0.8 DIS 20.83 224.37 385.26 1226.03 235.57 76.97
DIS+LS 18.51 221.75 381.25 1198.45 223.67 127.10

1.0 DIS 9.86 218.73 378.00 1086.75 229.16 74.03
DIS+LS 9.19 216.69 375.70 1037.41 217.17 151.07

1.2 DIS 5.80 216.70 377.09 939.47 227.57 73.43
DIS+LS 6.07 214.80 375.02 885.41 215.11 167.43

ALL 0.8 DIS 21.46 211.02 443.56 1122.56 311.08 38.81
DIS+LS 19.79 209.48 440.77 1103.94 300.85 65.71

1.0 DIS 11.58 205.29 436.11 994.69 305.81 36.99
DIS+LS 10.98 203.78 434.52 959.62 295.01 76.37

1.2 DIS 8.00 201.82 434.43 856.86 303.30 36.05
DIS+LS 8.07 200.91 433.53 817.44 291.54 82.77

DIS and DIS+LS is rather similar for a larger fleet. With factor 0.8, the average improvement
in rejection rates is 1.67 percentage points, whereas with factor 1.2, we actually obtain
slightly better results without the local search. This aspect may also be observed in
Figure 5.8 where we additionally show the rejection rates for vehicle factors 0.9 and 1.1.
We assume that the reason for this behavior is that the local search builds more efficient
vehicle routes as observed by the vehicle travel times per served request TT𝑣𝑟𝑒𝑞 . Hence,
with LS we are able to serve more customers given the same amount of vehicle resources.

74



5.6 Computational Evaluation

00:00 12:00
0

25

50

75

100
fra

ct
io

n 
of

 v
eh

icl
es

 [%
] 0.8

00:00 12:00
time of day

1.0

00:00 12:00

1.2

active
idle

repositioning
total requests

rejected requests

0

2000

4000

6000

nu
m

be
r o

f r
eq

ue
st

s

Figure 5.9: Vehicle states with different fleet factors for scenario M-MANH-Wed and DIS+LS.

This aspect grows less important in scenarios with a larger fleet. In these scenarios, trip
requests are not mainly rejected due to the complete fleet being occupied. Instead, we
reject trip requests in remote areas that are difficult to reach. The main constraining
factor is no longer the fleet size in scenarios with factor 1.2, which is further illustrated
in Figure 5.9 which shows the state of the vehicle fleet for scenario M-MANH-Wed and
different fleet factors. We may see that with lower fleet factors, the complete vehicle fleet
is occupied during peak demand times. With factor 1.2, this is no longer the case. To
enable these available vehicles to serve the trip requests that are currently rejected, we
would need anticipatory routing or repositioning approaches. This is discussed in detail
in Chapter 6. We believe that the slightly worse performance of DIS+LS compared to DIS
with the largest fleet size is not due to structural reasons, but rather due to differences
in the created vehicle routes. Both algorithms should perform very similarly regarding
the rejection rate in scenarios with excess vehicles. We may also observe that DIS+LS still
manages to reduce TT𝑣𝑟𝑒𝑞 .

5.6.2.8 Vehicle Capacity

Besides the size of the vehicle fleet, we also evaluate the impact of the vehicle’s capacities.
We perform experiments with a capacity of 2 – 6. The results for capacities 2, 4, and 6 are
given in Table 5.17. Additionally, Figure 5.10 shows the rejection rates for all capacities.
Similarly to the experiments with different fleet sizes, we can again observe that the
improvement of DIS+LS over DIS is greatest with the smallest vehicle capacity (0.99
percentage points at capacity 2 versus 0.49 percentage points at capacity 6). We believe
that the reason for this is the greater importance of efficient routes in scenarios where the
total capacity of the fleet is a severely constraining factor. As expected, larger capacities
lead to an overall decreased rejection rate and a lower TT𝑣𝑟𝑒𝑞 . However, we see diminishing
returns here and increasing the capacity beyond 4 only leads to minor improvements. It
becomes increasingly difficult to exploit this capacity, mainly due to the time window

75



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

10

20

re
je

ct
io

n 
ra

te
 [%

]

CH HH

2 3 4 5 6
vehicle capacity

10

20

MANH

DIS DIS+LS

2 3 4 5 6

NYC

Figure 5.10: Rejection rates for different capacities.

constraints of trip requests. In use cases with larger time windows or passenger groups of
more than 2 people, the benefit of higher vehicle capacities may be more pronounced.

5.6.2.9 Pre-Booked Trip Requests

One aspect that is rarely studied in literature concerning ride-sharing services, is the
inclusion of pre-booked trip requests, i.e. trip requests that are known in advance and
desire service at some point in the future. We believe that this is a relevant use case
for ride-sharing providers. Depending on the fraction of pre-booked requests and the
time interval between the submission of a request and its desired service, the degree of
dynamism of the problem may change substantially. We evaluate the impact of both
the pre-booking time and the pre-booking probabilities separately. Figure 5.11 shows
the rejection rates in scenarios where the percentage of pre-booked trip requests varies
between 0 % and 50 %. The pre-booking time 𝑝𝑏𝑟 is set to a fixed value of 15 minutes. The
first thing to note is that DIS performs worse with a larger fraction of pre-booked trip
requests. This is due to the fact that by itself it is not well suited to handle trip requests
that are not served immediately as it greedily inserts each trip request at the best found
route position regardless of when the desired start of service is. This aspect may be offset
by using LS which benefits from having a higher percentage of pre-booked trip requests.
These requests provide a larger search space for the local search as trip requests can be
flexibly moved until their start of service.

76



5.6 Computational Evaluation

Table 5.17: Results with different vehicle capacities.

Data Vehicle Mode Rej Wait Ride TT𝑣 TT𝑣𝑟𝑒𝑞 RT
Capacity [%] [s] [s] [min] [s] [min]

CH 2 DIS 20.84 221.44 547.82 1044.40 443.07 21.45
DIS+LS 19.54 220.75 538.49 1027.67 428.91 67.14

4 DIS 11.67 200.47 595.64 965.25 366.96 27.76
DIS+LS 10.80 200.52 593.13 929.69 350.00 70.51

6 DIS 9.73 196.11 600.55 942.33 350.55 28.71
DIS+LS 9.37 196.05 600.46 899.67 333.33 70.68

HH 2 DIS 20.69 180.91 442.94 909.15 511.43 0.41
DIS+LS 20.82 179.96 441.41 899.82 507.36 0.53

4 DIS 17.42 174.94 475.59 855.58 462.76 0.63
DIS+LS 17.55 174.95 476.19 842.71 456.72 0.73

6 DIS 17.04 173.30 479.62 848.29 456.91 0.44
DIS+LS 16.83 173.39 479.56 832.89 447.56 0.58

MANH 2 DIS 17.86 252.77 263.07 1176.15 203.56 34.44
DIS+LS 16.37 249.89 257.69 1161.91 197.50 77.84

4 DIS 7.36 227.01 295.19 1071.16 164.34 45.54
DIS+LS 6.39 222.96 293.07 1028.68 156.16 83.18

6 DIS 6.29 221.74 299.63 1047.12 158.80 48.65
DIS+LS 5.50 217.29 299.12 998.05 150.07 87.61

NYC 2 DIS 17.04 240.96 334.53 1205.26 276.21 52.98
DIS+LS 15.74 238.72 327.32 1180.09 266.27 137.97

4 DIS 9.86 218.73 378.00 1086.75 229.16 74.03
DIS+LS 9.19 216.69 375.70 1037.41 217.17 151.07

6 DIS 9.06 213.70 384.41 1060.83 221.74 74.20
DIS+LS 8.44 210.27 384.46 1009.59 209.62 148.78

ALL 2 DIS 19.11 224.02 397.09 1083.74 358.57 27.32
DIS+LS 18.12 222.33 391.23 1067.37 350.01 70.87

4 DIS 11.58 205.29 436.11 994.69 305.81 36.99
DIS+LS 10.98 203.78 434.52 959.62 295.01 76.37

6 DIS 10.53 201.21 441.05 974.64 297.00 38.00
DIS+LS 10.04 199.25 440.90 935.05 285.15 76.91

In Figure 5.12 we show the rejection rates with different pre-booking times. The pre-
booking probability is set to a fixed 25 % while the times are either 15 minutes or equally
distributed between 15 – 30 or 15 – 60 minutes respectively. As before, when comparing
the two algorithm modes DIS and DIS+LS, we may see that the gap in rejection rate
between them increases as pre-booking is introduced. However, there is another trend
in the results as both algorithm modes start to perform worse as the pre-booking time
is increased. While DIS+LS benefits from pre-booked trip requests with a pre-booking

77



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

0

10

20

re
je

ct
io

n 
ra

te
 [%

]

CH HH

0 10 25 50
pre-booking probability [%]

0

10

20
MANH

DIS DIS+LS

0 10 25 50

NYC

Figure 5.11: Rejection rates for different pre-booking probabilities.

time of 15 minutes, this is no longer always the case with longer pre-booking times. This
shows that it is not beneficial to plan trip requests with a requested pickup time of more
than 15 minutes in the future as this merely pollutes the routing plan with stops that do
not need to be served immediately. We believe that this is currently a research gap when
it comes to algorithms for the VRPDRS. To our knowledge, most current approaches are
only evaluated on purely dynamic instances and as the results in this section have shown,
this does not necessarily translate to good results on instances with less dynamism. For
use cases where a large portion of trip requests is known in advance, it can be useful to
implement specific solution approaches, e.g. combine static vehicle routing algorithms on
pre-booked requests with dynamic approaches for the dynamically arriving requests.

5.6.2.10 Impact of Different Weekdays

So far, we only looked at aggregated results that combine both weekday scenarios (Wednes-
day and Sunday). This was mainly due to the fact that the weekday and particularly the
different demand patterns had no noticeable impact on the algorithm performance. Figure
5.13 shows the vehicle state distribution over time for the two scenarios M-MANH-Wed
and M-MANH-Sun with DIS+LS. Although the demand patterns are substantially different,
the behavior of our algorithm is similar. Trip requests are mainly rejected at peak demand
times with some rejections throughout the day caused by remote trip requests with no
nearby vehicles.

78



5.6 Computational Evaluation

0

10

20
re

je
ct

io
n 

ra
te

 [%
]

CH HH

0 15 15 - 30 15 - 60
pre-booking time [min]

0

10

20
MANH

DIS DIS+LS

0 15 15 - 30 15 - 60

NYC

Figure 5.12: Rejection rates for different pre-booking durations.

00:00 12:00
0

25

50

75

100

fra
ct

io
n 

of
 v

eh
icl

es
 [%

] Wednesday

00:00 12:00
time of day

Sunday

active
idle

repositioning
total requests

rejected requests

0

1000

2000

3000

4000

nu
m

be
r o

f r
eq

ue
st

s

Figure 5.13: Vehicle states on Wednesday and Sunday for instances M-MANH-Wed and M-MANH-Sun
with DIS+LS.

5.6.2.11 Local Search Time Limit

We evaluate two settings regarding the local search time limit. One with a limit of 200 ms.
This setting emulates a real-time usage of the algorithm in which the available computation
time between two trip requests may be as small as 200 ms during demand peaks. Second,
we also consider a setting with unlimited computational time for our local search. The
idea is that this gives us the ability to see the potential of the local search if computational
time was no issue. Such results could be obtained by a more efficient implementation of

79



5 Real-Time Vehicle Routing for Dynamic Ride-Sharing

Table 5.18: Results for different local search time limits.

Data Time Rej Wait Ride TTv TTvr RT
Limit [%] [s] [s] [min] [s] [min]

CH 200 10.80 200.52 593.13 929.69 350.00 70.51
inf 10.77 200.48 593.16 929.52 349.81 69.58

HH 200 17.55 174.95 476.19 842.71 456.72 0.73
inf 17.55 174.95 476.19 842.71 456.72 0.72

MANH 200 6.39 222.96 293.07 1028.68 156.16 83.18
inf 6.39 222.96 293.07 1028.68 156.16 82.94

NYC 200 9.19 216.69 375.70 1037.41 217.17 151.07
inf 9.28 216.51 375.87 1037.71 217.45 150.97

ALL 200 10.98 203.78 434.52 959.62 295.01 76.37
inf 11.00 203.73 434.57 959.66 295.04 76.05

the local search or more powerful computational resources. The results are summarized
in Table 5.18. As we may see, for two datasets (HH and MANH), the computational results
are identical (aside from some minor running time fluctuations). The local search is able
to exhaustively search the search space within the time limit. For the other two datasets,
there are minor differences. However, the running times and performance metrics are
still very similar. Hence, for our default scenario, the increased local search time limit
does not yield any significant improvements. In scenarios with a larger search space (e.g.
with larger time windows), this behavior may be different. However, we conclude that
additional computational power would not be the most promising way to improve the
local search. Instead, one should look towards more complex search operators or a more
refined guidance for the search.

5.7 Conclusions

In this chapter, we introduced a vehicle routing approach for the VRPDRS consisting of
a fast dispatching algorithm and a local search improvement phase. Through extensive
computational studies, we showed that our approach is capable of handling a diverse
range of scenarios in real-time. The local search manages to improve the rejection rates
and efficiency of vehicle routes. It is particularly important in scenarios with long time
windows, high vehicle occupation or pre-booked trip requests. In such settings, it may no
longer be sufficient to employ a purely dynamic dispatching algorithm. Our results show
that local search techniques for vehicle routing can be integrated into a highly dynamic
planning process. Combined with a dispatching approach, this is a promising solution that
offers both immediate response times for customers and good solution quality. Regarding
the impact of ride-sharing services on city-wide traffic, our evaluations indicate that it is

80



5.7 Conclusions

possible to significantly reduce the traffic load compared to ride-hailing or taxi services.
And even compared to the usage of personal vehicles, the overall vehicle travel time may
be reduced. However, for the latter to be achieved, a high demand density is necessary.

The usage of established local search techniques for vehicle routing problems in a highly
dynamic setting is a promising direction for future research. While we have shown that
simple search operators can be integrated into a dynamic planning process, we see the
potential to utilize more complex neighborhoods and metaheuristics in this context. In
addition, the dispatching and local search algorithms could be extended to explicitly
consider pre-booked trip requests. As our results show, the integration of these requests
into dynamic vehicle routing algorithms can lead to adverse effects. Hence, we envision a
combination of static vehicle routing approaches that process pre-booked requests with
dynamic approaches that build upon an already existing plan. We believe that it is highly
desirable for dynamic ride-sharing services to be able to accommodate reservations for
trip requests in advance and use this information to build more efficient routing plans. In
general, we see the usage of stochastic information on future trip request demand, vehicle
utilization, and traffic congestion as one major research direction which we will partly
address in the next chapter.

81





6 Idle Vehicle Repositioning for
Dynamic Ride-Sharing

In the previous chapter, we presented a vehicle routing algorithm for the VRPDRS. As
illustrated by the computational results, the lack of a repositioning mechanism for idle
vehicles may lead to a serious deterioration in the system’s performance. Hence, in
this chapter, we focus on the inclusion of a forecast-based repositioning algorithm that
anticipates future trip requests and repositions idle vehicles accordingly. This chapter is
based on the following two articles:

M. Pouls et al. (2020). Idle Vehicle Repositioning for Dynamic Ride-Sharing. Compu-
tational Logistics. Ed. by E. Lalla-Ruiz et al. Vol. 12433. Cham: Springer International
Publishing, pp. 507–521. doi: 10.1007/978-3-030-59747-4_33.

M. Pouls et al. (2022). Adaptive forecast-driven repositioning for dynamic ride-
sharing. Annals of Operations Research. doi: 10.1007/s10479-022-04560-3

6.1 The Idle Vehicle Repositioning Problem for
Dynamic Ride-Sharing

In the previous chapter, we have focused purely on the VRPDRS, i.e. the assignment of
incoming trip requests to vehicles. However, as our computational results in Section 5.6.2.3
have illustrated, the lack of an anticipatory component that predicts future trip requests
and repositions vehicles accordingly severely impacts the overall system performance.
Figure 6.1 illustrates this aspect by comparing vehicle positions after several hours of
service in simulation studies without and with repositioning. Without a repositioning
mechanism, vehicles become stuck in low-demand areas. In turn, trip requests in other
areas are rejected due to the lack of nearby vehicles as the vehicles in more distant regions
cannot reach the trip requests within their pickup time windows. This phenomenon
may be avoided through the usage of a repositioning mechanism that actively steers idle
vehicles toward high-demand regions.

In practical applications with self-employed drivers, i.e. services like Uber and Lyft, this
problem is tackled by incentivizing drivers to reposition towards areas with a low vehicle
supply. For instance, Uber employs a mechanism called “surge-pricing" that raises prices
in areas with excess demand and thereby increasing revenue opportunities for drivers
(Uber 2020). Lyft utilizes a similar mechanism named “personal power zones" (Ong et

83

https://doi.org/10.1007/978-3-030-59747-4_33
https://doi.org/10.1007/s10479-022-04560-3


6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

Figure 6.1: Dots show vehicle positions without (red) and with repositioning (green) after several hours of
service for simulation scenarios in Manhattan and Hamburg.

al. 2021), which similarly incentivizes drivers monetarily to move towards zones with
lacking vehicle supply. However, in use cases with a central fleet operator, we believe
that a central repositioning strategy can be beneficial for the overall system performance
compared to such decentral repositioning mechanisms. Existing approaches from literature
on central repositioning in the context of dynamic ride-sharing may be roughly divided
into two groups. Firstly, explicit repositioning algorithms that treat repositioning as a
separate decision from vehicle routing. Secondly, anticipatory routing algorithms that
integrate vehicle routing and repositioning. In the remainder of this chapter, we propose a
repositioning algorithm that falls into the first group. The main objective of our approach
is to increase the number of trip requests served in a ride-sharing system. Our major
contributions are threefold:

• We propose a forecast-based repositioning algorithm that is applicable in real-time
to large-scale dynamic ride-sharing systems. Our approach is modular and may be
easily combined with existing vehicle routing solutions. For the remainder of this

84



6.2 Related Approaches in Repositioning and Demand Forecasting

work, we study repositioning in combination with our vehicle routing algorithm
presented in Chapter 5.

• We introduce an integrated adaptive parameter tuning technique to adequately
consider temporal and spatial differences in the number of trip requests that vehicles
are expected to serve. This is crucial in the context of ride-sharing services and
ensures that our approach can be applied to new settings without requiring extensive
prior configuration or parameter tuning. In addition, the algorithm automatically
adapts to changes in the relevant system parameters such as the overall demand.

• We perform an extensive computational evaluation on a diverse set of scenarios
derived from four real-world datasets and compare our algorithm to a myopic bench-
mark algorithm. Our results show that the forecast-based approach is able to reduce
the number of rejected trip requests and additionally also improves customer waiting
times.

The remainder of this chapter is structured as follows. Section 6.2 summarizes the related
work in the fields of repositioning, anticipatory vehicle routing, and demand forecasting. In
Section 6.3 we detail our own repositioning algorithm. Subsequently, Section 6.4 presents
our computational evaluations. Finally, Section 6.5 summarizes our findings and presents
some directions for potential future research.

6.2 Related Approaches in Repositioning and Demand
Forecasting

To the best of our knowledge, there are relatively few papers dealing with repositioning
explicitly in the context of large-scale dynamic ride-sharing applications. However, there
exist several closely related fields. There is a large body of work on the dynamic vehicle
routing problem with stochastic customers (DVRPSC). In this vehicle routing variant, part
of the trip requests arrive dynamically and there is some form of stochastic knowledge
about trip request arrivals that may be exploited during planning. There also exists a large
number of works regarding repositioning in other mobility-on-demand services besides
ride-sharing. For instance, repositioning is a widely considered problem in car-sharing
systems. In these systems, customers rent a vehicle for a desired time period. Repositioning
is particularly important for one-way systems in which customers may drop off the vehicle
at a different location than their pickup. However, there are some key differences between
car-sharing and dynamic ride-sharing. In car-sharing, there are no dedicated drivers and
customers drive the rented vehicles themselves. In addition, there is no sharing between
different customers, a vehicle is assigned to exactly one customer at a time.

We structure our literature review as follows. We first consider related work regarding
repositioning in dynamic ride-sharing systems. These are closely related to the algorithm
presented in this chapter. Subsequently, we review literature concerning the DVRPSC
as well as repositioning approaches for car-sharing and taxi services. Finally, we discuss

85



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

existing approaches for short-term travel demand forecasting, a vital component in our
repositioning approach.

6.2.1 Repositioning in Dynamic Ride-Sharing

Most closely related to the algorithm presented in this chapter are works dealing with
repositioning in the context of dynamic ride-sharing systems. A summary of existing
approaches is provided in Table 6.1 with the following criteria.

Routing interaction We differentiate between approaches where repositioning is ex-
plicitly performed by a separate algorithm versus algorithms that integrate some form of
anticipation of future trip requests into the vehicle routing algorithm.

Objective Most approaches strive to maximize the number of served trip requests while
secondarily minimizing vehicle travel times. Sometimes this secondary objective is not
explicitly formulated but rather a side-effect as maximizing the served trip requests often
correlates with planning efficient routes. One paper uses a different objective function as
the rejection of trip requests is not allowed.

Solution approach We give a short description of the utilized solution methodology.
Similar to the papers discussed in Section 5.2.1, there is a group of works that all build
upon the graph-based solution approach by Alonso-Mora et al. (2017a).

Real-world datasets, trip requests, and vehicle fleets As before in Section 5.2.1, we
provide information concerning used real-world datasets, numbers of trip requests, and
the configuration of the vehicle fleet. For a more detailed discussion of these aspects please
refer to Section 5.2.1.

In the following we discuss the papers summarized in Table 6.1 in detail. Alonso-Mora
et al. (2017a) propose a reactive repositioning policy with the idea of sending idle vehicles
to the desired pickup locations of rejected trip requests. Given a batch of rejected requests,
idle vehicles are matched to the corresponding pickup locations while minimizing travel
times for repositioning movements. We use a similar approach as a benchmark for our
solution algorithm. In a follow-up paper, Alonso-Mora et al. (2017b) present a more refined
approach similar to the sampling-based algorithms for the DVRPSC presented in the
following section. They include predicted trip requests in their vehicle routing algorithm.
These requests are served with a lower priority than actual trip requests. The authors show
that this approach leads to reduced waiting times and in-car travel delays compared to the
reactive repositioning from their previous work (Alonso-Mora et al. 2017a). However, no
noticeable improvement in the number of rejected trip requests is achieved.

86



6.2 Related Approaches in Repositioning and Demand Forecasting

Pa
pe

r
R
ou

ti
ng

in
te
ra
ct
io
n

O
bj
ec
ti
ve

So
lu
ti
on

ap
pr

oa
ch

R
ea
l-
w
or
ld

da
ta
se
ts

T
ri
p

re
qu

es
ts

Fl
ee
ts

iz
e

Ve
hi
cl
e

ca
pa

ci
ty

A
lo
ns
o-
M
or
a
et

al
.

(2
01
7a
)

se
pa
ra
te

m
ax
.r
eq
ue
st
ss

er
ve
d
an
d

m
in
.v

eh
ic
le
tra

ve
lt
im

e
re
ac
tiv

e
N
YC

46
0,7

00
/d

ay
1,0

00
–

3,0
00

1
–
10

A
lo
ns
o-
M
or
a
et

al
.

(2
01
7b
)

in
te
gr
at
ed

m
ax
.r
eq
ue
st
ss

er
ve
d
an
d

m
in
.v

eh
ic
le
tra

ve
lt
im

e
gr
ap
h-
ba
se
d
m
at
ch
in
g

+
re
qu

es
ts
am

pl
in
g

N
YC

46
0,7

00
/d

ay
1,0

00
–

3,0
00

2
–
4

Ch
ow

an
d
Ju
ng

(2
01
9)

se
pa
ra
te

m
ax
.r
eq
ue
st
ss

er
ve
d

de
po

to
rz

on
e-
ba
se
d

re
po

sit
io
ni
ng

po
lic
ie
s

N
YC

14
5,6

43
/6

ho
ur
s

3,0
00

–
7,0

00
6

Ri
le
y
et

al
.(
20
20
)

se
pa
ra
te

m
in
.w

ai
tin

g
tim

e
an
d

m
in
.v

eh
ic
le
tra

ve
lt
im

e
M
IP
-b
as
ed

zo
ne

re
ba
la
nc
in
g

+
de
m
an
d
fo
re
ca
st

N
YC

59
,82

0
/2

ho
ur
s

2,0
00

4

Sh
ah

et
al
.(
20
20
)

in
te
gr
at
ed

m
ax
.r
eq
ue
st
ss

er
ve
d
an
d

m
in
.v

eh
ic
le
tra

ve
lt
im

e
gr
ap
h-
ba
se
d
m
at
ch
in
g

+
RL

&
A
D
P

N
YC

19
,82

0
/h

ou
r

1,0
00

–
3,0

00
2
–
10

Lo
w
al
ek
ar

et
al
.

(2
02
1)

in
te
gr
at
ed

m
ax
.r
eq
ue
st
ss

er
ve
d
an
d

m
in
.v

eh
ic
le
tra

ve
lt
im

e
gr
ap
h-
ba
se
d
m
at
ch
in
g

+
zo
ne

cl
us
te
rin

g
+
be
nd

er
sd

ec
om

po
sit
io
n

N
YC

40
3,7

70
/d

ay
1,0

00
–

10
,00

0
1
–
10

Po
ul
se

ta
l.
(2
02
0)

Po
ul
se

ta
l.
(2
02
2)

th
is
w
or
k

se
pa
ra
te

m
ax
.r
eq
ue
st
ss

er
ve
d
an
d

m
in
.v

eh
ic
le
tra

ve
lt
im

e
an
d

m
in
.r
ep
os
iti
on

in
g
m
ov
em

en
ts

M
IP
-b
as
ed

re
po

sit
io
ni
ng

+
de
m
an
d
fo
re
ca
st

N
YC

,
H
am

bu
rg
,

Ch
en
gd

u

42
9,8

55
/d

ay
72

–
1,5

12
2
–
6

Ta
bl
e
6.
1:

Re
la
te
d
w
or
k
on

re
po

sit
io
ni
ng

fo
rd

yn
am

ic
rid

e-
sh
ar
in
g.

87



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

Chow and Jung (2019) present two policies in which vehicles reposition according to
historical pickup probabilities. Vehicles either move to a zone or a depot. The probability
of selecting a zone or depot is proportional to the historical distribution of trip requests.
The authors compare these approaches to a setting without repositioning and show that
both repositioning policies improve the request acceptance rate at the cost of an increase
in the total distance traveled by vehicles. In contrast to our work, the authors do not
consider detailed information about supply and demand. In particular, neither the current
configuration of the vehicle fleet nor the total demand is considered during repositioning.

Riley et al. (2020) propose an approach based on a mixed-integer programming (MIP)
formulation similar to the one presented in this work. They use a two-step formulation
that first determines the number of vehicles to be repositioned between a pair of zones
and subsequently selects specific vehicles. Their algorithm integrates a demand forecast
containing the number of trip requests between each pair of zones. Hence, in contrast to
this work, they expect a more fine-grained forecast which may not be available in practice.
Moreover, they do not allow for the rejection of trip requests but rather penalize long
customer waiting times. They evaluate their approach on data from New York City and
show that their repositioning approach decreases customer waiting times compared to
performing no repositioning.

Shah et al. (2020) propose a learning-based approach that assesses the future value of
routing decisions. However, the approach does not explicitly reposition idle vehicles. It
rather considers the future value of routing decisions when assigning trip requests to
vehicles. They evaluate their algorithm on data from New York City and show that it
yields a decrease in rejected trip requests compared to myopic routing approaches.

Lowalekar et al. (2021) propose another approach that includes samples of future trip
requests to build routes that are suitable to accommodate upcoming requests. The authors
evaluate their approach on two real-world datasets from NYC and another undisclosed
location and show that the trip request rejection rate is reduced compared to myopic
approaches.

6.2.2 Dynamic Vehicle Routing with Stochastic Customers

In the DVRPSC, part of the trip requests arrive dynamically and there is some form of
exploitable stochastic information about these trip requests. The problem has been widely
studied in literature. A selection of solution approaches is summarized in Table 6.2. For
more extensive literature reviews we refer the reader to Ritzinger et al. (2016) and Ulmer
et al. (2020). As before, we report the solution approaches and largest instance sizes per
paper. In addition, we adopt the classification by Ulmer et al. (2020) that distinguishes
between the following general solution methods.

Lookahead algorithms (LAs) Approaches that use a lookahead, for instance, samples
of anticipated trip requests, to improve routing decisions.

88



6.2 Related Approaches in Repositioning and Demand Forecasting

Policy function approximation (PFA) Algorithms that aim to approximate a policy
and are often inspired by decision-making in practice.

Value function approximation (VFA) Procedures that derive a value function for
routing decisions via simulations and related learning techniques.

Among the earliest works in the field of the DVRPSC are waiting strategies (Mitrović-
Minić and Laporte 2004; Ichoua et al. 2006; Thomas 2007), which represent examples of
PFA algorithms. In these algorithms, the aim is to decide when and where a vehicle should
wait while executing a route in order to be well-positioned for dynamically arriving trip
requests. While these approaches yield benefits for many application settings such as parcel
delivery (Mitrović-Minić and Laporte 2004), the problems arising from these applications
are structurally different from the setting of ride-sharing. For instance, they tend to be less
dynamic as a large portion of customer requests is known in advance, while in this work
we consider purely dynamic trip requests. Additionally, vehicles in ride-sharing tend to
have little to no waiting times while executing a route as dynamically arriving customers

Table 6.2: Related work on the DVRPSC.

Paper Solution
approach

Classification by
Ulmer et al. (2020)

Instance
size

Bent and
Van Hentenryck (2004)

MSA LA 100 / day

Mitrović-Minić and
Laporte (2004)

Waiting
strategy

PFA 1,000 /
10 hours

Ichoua et al. (2006) Waiting
strategy

PFA 36 / hour

Bent and
Van Hentenryck (2007)

MSA LA 100 / day

Thomas (2007) Waiting
strategy

PFA 50 / day

Mes et al. (2010) Auction VFA 4.5 / hour
Schmid (2012) ADP VFA 90 / day
Ferrucci et al. (2013) TS with

sampling
LA 150 / day

Ulmer et al. (2018) ADP VFA 100 / 6 hours
Ulmer et al. (2019) ADP VFA 100 / 6 hours
Voccia et al. (2019) ADP VFA 192 / day

89



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

want to be serviced immediately. Moreover, when transporting passengers, it is difficult to
justify waiting times whenever there are customers aboard the vehicle or waiting for its
arrival. In contrast, for applications such as parcel logistics, this aspect is less of a problem.
Therefore, in our view, such waiting strategies are not directly applicable to the use case
considered in this paper.

The most prevalent approach for lookahead algorithms is the inclusion of samples of
predicted customers in the routing algorithm. Among these sampling-based algorithms are
the multiple scenario approach (MSA) by Bent and Van Hentenryck (2004) and Bent and
Van Hentenryck (2007), in which multiple routing plans are generated based on different
samples of future customers and a so-called “distinguished" plan is selected via consensus
mechanisms. Ferrucci et al. (2013) also propose a sampling-based approach in the form of
a tabu search (TS) that includes sampled future customers. Due to their computational
complexity, most sampling-based approaches have not been tested on large instance sizes
as commonly seen in dynamic ride-sharing.

A third major direction of DVRPSC research are VFA algorithms such as approximate
dynamic programming (Mes et al. 2010; Schmid 2012; Ulmer et al. 2018; Ulmer et al. 2019;
Voccia et al. 2019). The idea behind these approaches is to determine a value function for
routing decisions that incorporates their impact on the handling of future trip requests.
From the practical perspective of ride-sharing applications, these algorithms have two
main drawbacks. First, they need a relatively large amount of training data to approximate
the value function. Hence, launching a ride-sharing service in a region where no prior
data is available becomes a challenge. Second, these VFA approaches are also not tested
on large instances and may not deliver the necessary computational performance for
processing large numbers of trip requests.

6.2.3 Repositioning in Car-Sharing, Taxi Operations, and Other
Mobility-as-a-Service Applications

Vehicle repositioning is a widely studied problem in the context of car-sharing services.
One may differentiate between operator-based and user-based repositioning. In the former,
the car-sharing operator employs personnel to reposition vehicles while in the latter
car-sharing users are incentivized to pick up or drop off cars at certain locations. In our
literature review, we focus on operator-based repositioning as it shares a closer resemblance
with central repositioning approaches for ride-sharing. A summary of recent works in
this field is presented in Table 6.3. A more detailed review may be found in Huang et al.
(2020b).

Algorithms are often based on MIP formulations (Nourinejad and Roorda 2014; Repoux et
al. 2015; Boyacı et al. 2017; Gambella et al. 2018; Xu andMeng 2019; Huang et al. 2020b), but
also include metaheuristics (Bruglieri et al. 2019) and Markov chain based models (Repoux
et al. 2019). There are some key differences compared to the application setting of dynamic
ride-sharing. Most importantly, in car-sharing systems, there is a one-to-one relation
between a customer and a vehicle. In contrast, ride-sharing allows for multiple customers

90



6.2 Related Approaches in Repositioning and Demand Forecasting

Table 6.3: Related work on repositioning for car-sharing.

Paper Solution
approach

Instance
size

Nourinejad and Roorda (2014) MIP 200 / day
Repoux et al. (2015) MIP 200 / day
Boyacı et al. (2017) MIP 300 / day
Gambella et al. (2018) MIP 50 / day
Bruglieri et al. (2019) ALNS 100
Repoux et al. (2019) Markov chain model 400 / day
Xu and Meng (2019) MIP 125 / day
Huang et al. (2020b) MIP 125,000 / day

to share the same vehicle. Therefore, one key challenge when making repositioning
decisions in a ride-sharing system is to estimate how many vehicles are needed to serve
a given number of trip requests. As this depends on the structure of the trip requests, it
may vary between datasets but also between locations or the time of day within the same
dataset. On the other hand, repositioning approaches for car-sharing systems focus on
specific aspects of that application domain. These include scheduling the personnel that
carries out the repositioning movements, considering different operation modes (two-way,
one-way, free-floating) and different reservation schemes. Hence, we believe that due to
the structural differences between car- and ride-sharing, specific solution approaches are
needed for both applications.

Repositioning approaches have also been proposed for ride-hailing and classic taxi ser-
vices. In these services, no sharing takes place and only one group of customers uses the
vehicle at a time. Both Li et al. (2011) and Powell et al. (2011) use GPS traces of taxis to
identify profitable regions. In contrast to most other works presented in this section, these
approaches take the viewpoint of the taxi driver and aim to optimize the profit, while
our goal is to optimize the system-wide performance. Additionally, they do not take into
account the vehicle-sharing aspect and assume that a vehicle serves at most one customer
at a time. Syed et al. (2021) propose a repositioning algorithm for ride-hailing services that
uses similar concepts as presented in this work. They reposition vehicles between regions
based on the estimated imbalance between supply and demand. The authors evaluate the
approach on a simulated ride-hailing service based on New York City taxi data. However,
their solution method could also be adapted for other MOD services such as dynamic
ride-sharing.

6.2.4 Short-Term Travel Demand Forecasting

In our solution approach, we utilize a short-term forecast of the anticipated trip requests.
The general field of short-term travel demand forecasting and related spatio-temporal

91



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

prediction problems has been studied extensively. For reviews, we refer the reader to Vla-
hogianni et al. (2004) and Vlahogianni et al. (2014). Most approaches provide information
in an aggregated form, i.e. they offer a forecast of the total number of trip requests for a
given area and interval of time rather than predicting individual trip requests (Vlahogianni
et al. 2014). Classical approaches include time series models such as ARIMA or Kalman
filters (Li et al. 2012; Lippi et al. 2013) as well as statistical learning (Huang et al. 2020a).
More recently, convolutional neural network (CNN) and long short-term memory (LSTM)
recurrent neural networks have emerged as suitable techniques for modeling the complex
spatial and temporal dependencies typically found in these forecasting problems (Zhang
et al. 2018; Liao et al. 2018; Yao et al. 2018; Ke et al. 2017; Yao et al. 2019). For instance, Yao
et al. (2018) and Yao et al. (2019) combine a CNN for modeling spatial dependencies with a
LSTM architecture that reflects the temporal aspects. They evaluate their approach on
New York City taxi data and achieve a significant improvement over a simple historical
average as well classic machine learning algorithms such as gradient boosting.

In the remainder of this work, we will not focus on the forecasting methodology itself but
rather on the usage of a forecast to improve planning results. However, the assumptions of
our algorithm regarding the structure of the forecast conform to state-of-the-art forecasting
techniques, i.e. they expect the predicted number of trip requests per area and interval of
time as an input. This way, we ensure that these approaches can be used in combination
with our algorithm.

6.2.5 Contribution

Throughout the previous sections, we have presented a summary of related solution
approaches in the field of idle vehicle repositioning. We believe that there are still some
research gaps, particularly concerning the consideration of the current system state and
anticipated demand as well as the integration with existing vehicle routing approaches.
We aim to address these aspects in our work. Compared to the existing literature, the
following novel aspects are considered in this work.

Modular and adaptive repositioning algorithm In our algorithmic design, we strive
to consider several practically relevant aspects. Firstly, the repositioning algorithm should
be applicable to large-scale scenarios with several hundreds of thousands of trip requests
per day. Secondly, the algorithm should be modular and easily integrated with existing
vehicle routing solutions. Lastly, the algorithm should be easily applied to new application
settings, for instance, a new city in which the ride-sharing service is introduced. Hence, it
should adapt to new environments well without the necessity for training data or a priori
parameter tuning.

Integration of forecasting techniques Our repositioning algorithm works in con-
junction with existing forecasting models. To ensure this, we consider the state-of-the-art
techniques in the realm of short-term travel demand forecasting and ensure that the

92



6.3 Forecast-Driven Repositioning

input data structure of our algorithm conforms to the output that these models commonly
produce. Hence, if a service provider already has existing forecasting models, these could
be used in combination with our repositioning algorithm.

6.3 Forecast-Driven Repositioning

In this section, we describe our forecast-driven repositioning algorithm (FDR). We first
present a brief overview of the general ideas behind our algorithm. Subsequently, we
consider the envisioned planning process in detail and present the separate phases of our
algorithm.

6.3.1 Problem Statement and Algorithm Overview

The main objective in idle vehicle repositioning for dynamic ride-sharing is to maximize
the number of served trip requests by repositioning vehicles and enabling them to reach
trip requests on time that would otherwise have to be rejected. A secondary objective or
side-effect of this approach is the minimization of lead times when approaching a new
trip request. This leads to improved fleet utilization as well as reduced waiting times for
customers.

The central component of our approach is a MIP model (FDR-M) that is solved in regular
intervals. In this model, we aim to balance supply and demand by maximizing the sum
of covered demand and minimizing the number of repositioning movements as well as
vehicle travel times. FDR-M work on a spatially aggregated level. Hence, we assume that
our region under study is partitioned into a discrete set of areas. Anticipated demand
is given by a forecast that outputs the expected number of trip requests originating in
each area over a forecast horizon. Supply on the other hand is provided by the vehicle
fleet. We assume that vehicles may cover demand in the neighborhood of their current
location. Alternatively, if a vehicle is selected for repositioning, we assume that it will
cover demand in the neighborhood of its assigned repositioning target. This neighborhood
is intuitively defined as the set of areas that may be reached within the maximum allowed
waiting time of a customer. A single vehicle is assumed to cover multiple trip requests
over the forecast horizon. However, the precise number varies drastically by dataset,
location, and time of day. For instance, at night, when demand tends to be lower, vehicles
serve fewer customers in the same amount of time as fewer trip requests can be combined
into a single-vehicle route. Similar behavior may be observed when comparing low- and
high-demand areas. Vehicles in high-demand areas serve more customers within the same
time period. Thus, we integrate an adaptive parameter tuning technique into our approach
that estimates the expected number of served trips for a vehicle located in a certain area.
As this parameter is updated each time we solve FDR-M, it reflects the spatial and temporal
differences in the utilization of vehicles. Based on this adaptive parameter tuning and the
current vehicle schedules, we may calculate the supply provided by our vehicle fleet. By
repositioning idle vehicles, we are now able to shift supply from low-demand areas to areas

93



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

with excess demand. Repositioning decisions in FDR-M are taken on an aggregated level.
As an output, the model determines the number of vehicles repositioned between each pair
of areas. Translating these decisions into actionable repositioning assignments is part of a
rolling-horizon planning process that we explain in the following section. Subsequently,
we introduce FDR-M itself alongside the necessary notation and the adaptive parameter
tuning technique.

6.3.2 Planning Process

FDR-M is embedded into a rolling horizon planning process which is triggered at a regular
interval 𝐼 . The four main steps of the planning process are as follows:

1. Obtain an up-to-date demand forecast from an external forecasting module.

2. Perform the adaptive parameter calculation as detailed in Section 6.3.4.

3. Solve FDR-M as given in Section 6.3.5.

4. Determine an optimal assignment of vehicles to repositioning targets (Section 6.3.6).

In the first step, a demand forecast is obtained that yields the number of expected trip
requests for a set of areas within a forecast horizon ℎ. Combined with the current state of
the vehicle fleet, this forecast serves as an input for FDR-M. In the second step, parameters
for FDR-M are adaptively determined based on the current performance of the vehicle
fleet. This enables us to adjust to varying spatial and temporal conditions. Subsequently,
we solve FDR-M which determines repositioning assignments on an aggregated level. As
an output, we obtain the number of vehicles repositioned between any pair of areas 𝑖 and
𝑗 , denoted as 𝑥𝑖, 𝑗 . Lastly, these aggregated values are translated into actionable decisions.
For this purpose, we sample target locations from each target area 𝑗 and subsequently
assign idle vehicles to these locations in a way that minimizes the overall travel times for
repositioning. In the remainder of this section, we will take a detailed look at steps 2 – 4
of the planning process which constitute the core portion of our algorithm. Step 1 is not
discussed in detail as forecasting models are not the focus of this work. For a brief review
of relevant forecasting methods, we refer the reader to Section 6.2.4.

6.3.3 Notation Overview

The relevant notation used throughout this section is summarized in Table 6.4. 𝐾 denotes
the set of all vehicles. This set may be further subdivided into idle vehicles 𝐾𝑖𝑑 , active
vehicles currently serving trip requests 𝐾𝑎𝑐𝑡 and repositioning vehicles 𝐾𝑟𝑒 . As mentioned
previously, we assume a partitioning of the region under study into discrete areas 𝐴.
For the remainder of this work, we utilize a partitioning into square grid cells similar to
Chapter 5. However, note that the utilized grid is different from the one used in the vehicle
routing algorithm. In particular, it tends to be beneficial to utilize a less fine-grained grid
partitioning, as a certain level of aggregation is desirable. The size of the grid cells used

94



6.3 Forecast-Driven Repositioning

Table 6.4: Notation for forecast-driven repositioning.

Sets

𝐴 Areas
𝐴𝑟𝑒 Valid target areas for repositioning
𝐾 Vehicles
𝐾𝑖𝑑 |𝐾𝑎𝑐𝑡 |𝐾𝑟𝑒 Idle | active | repositioning vehicles
𝐾𝑖𝑑𝑖 |𝐾𝑎𝑐𝑡𝑖 |𝐾𝑟𝑒𝑖 Idle | active | repositioning vehicles per area 𝑖 ∈ 𝐴
𝐾𝑁𝑖 Vehicles in the neighborhood of 𝑖 at the start of ℎ−
𝑅𝐿𝑖 Feasible repositioning target locations in 𝑖 ∈ 𝐴
𝑁𝑖 Neighborhood of 𝑖
𝑇 𝑟𝑒 Repositioning targets sampled from 𝑅𝐿𝑖, 𝑖 ∈ 𝐴
Parameters

𝛼𝑘 Active percentage of vehicle 𝑘
𝑑𝑖 Demand forecast for 𝑖 ∈ 𝐴
�̂� Cumulated demand forecast for all areas 𝑖 ∈ 𝐴
𝑑−
𝑘

Number of performed delivery operations by vehicle 𝑘 in ℎ−
𝑑+
𝑘

Number of planned delivery operations by vehicle 𝑘 in ℎ+
𝑟𝑠𝑖 Expected number of requests served by a vehicle in 𝑖 ∈ 𝐴 in ℎ+
𝑟𝑠𝑘 Potential number of requests served by 𝑘 ∈ 𝐾 in ℎ−
𝐼 Interval of time in which algorithm FDR is run
𝑔𝑠𝑖𝑧𝑒𝑟𝑒 Side length grid cells for repositioning
ℎ Forecast horizon in minutes
ℎ+ |ℎ− Time periods covering the previous and next ℎ minutes
𝑘𝑚𝑖𝑛
𝑁

Minimum number of vehicles for neighborhood calculations
𝑝−
𝑘

Performed pickup operations by vehicle 𝑘 in ℎ−
𝑝+
𝑘

Planned pickup operations by vehicle 𝑘 in ℎ+
𝑆𝑎𝑐𝑡𝑖 Supply provided by active vehicles in area 𝑖 ∈ 𝐴
𝑆𝑟𝑒𝑖 Supply provided by repositioning vehicles to area 𝑖 ∈ 𝐴
𝑡𝑡𝑖, 𝑗 Travel time from area 𝑖 to 𝑗
𝑡𝑡𝑘𝑡 Travel time of vehicle 𝑘 to location 𝑡
𝑡𝑡𝑚𝑎𝑥 Maximum travel time max𝑖, 𝑗∈𝐴 𝑡𝑡𝑖, 𝑗
𝑤𝑐𝑜𝑣 Objective function weight for covered demand
𝑤𝑟𝑒 Objective function weight for repositioning movements
𝑤 𝑡𝑡,𝑐𝑜𝑣 Objective function weight for coverage travel times
𝑤𝑖 Objective function weight for coverage of demand in area 𝑖 ∈ 𝐴
Decision variables

𝑐𝑖, 𝑗 ∈ R+0 Provided demand coverage from area 𝑖 to 𝑗
𝑥𝑖, 𝑗 ∈ N+0 Number of vehicles repositioned from area 𝑖 to 𝑗
𝑎𝑘,𝑡 ∈ {0, 1} Assignment of vehicle 𝑘 to repositioning target 𝑡

95



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

Figure 6.2: Illustration of the grid-based map partitioning, the neighborhood of the considered area 𝑎, the
area centers, and possible repositioning targets.

for repositioning is given by 𝑔𝑠𝑖𝑧𝑒𝑟𝑒 and denotes the length of the sides. Figure 6.2 illustrates
the utilized grid among other key concepts that will be explained throughout this section.
For the purpose of travel time calculations, we assume that areas are represented by their
center and calculate a travel time 𝑡𝑡𝑖, 𝑗 between the centers of two areas 𝑖, 𝑗 ∈ 𝐴. Centers
are not the exact centroid of an area but rather the closest node on the road network.
Consequently, travel times are calculated from the shortest paths on the road network. The
maximum travel time between any pair of areas is denoted as 𝑡𝑡𝑚𝑎𝑥 = max𝑖, 𝑗∈𝐴 𝑡𝑡𝑖, 𝑗 . We
may now further divide the sets of vehicles by area 𝑖 ∈ 𝐴 as 𝐾𝑖𝑑𝑖 , 𝐾𝑎𝑐𝑡𝑖 , 𝐾𝑟𝑒𝑖 . Note that the
sets 𝐾𝑖𝑑𝑖 and 𝐾𝑎𝑐𝑡𝑖 contain those vehicles currently situated in area 𝑖 . 𝐾𝑟𝑒𝑖 on the other hand
consists of vehicles currently repositioning towards 𝑖 . Vehicles may only be repositioned
to valid target areas 𝐴𝑟𝑒 ⊆ 𝐴. In this study, we limit 𝐴𝑟𝑒 to areas with at least one prior
pickup. This is necessary as we sample specific repositioning target locations 𝑅𝐿𝑖 for each
𝑖 ∈ 𝐴𝑟𝑒 from past pickup locations. An example of possible repositioning targets may be
seen in Figure 6.2. In practical applications, 𝐴𝑟𝑒 might be determined based on suitable
parking spots for vehicles. Our model works on a demand forecast denoted as 𝑑𝑖 for each
𝑖 ∈ 𝐴. This forecast gives us the expected number of trip requests originating in an area
𝑖 within a forecast horizon of ℎ minutes. ℎ+ and ℎ− denote time periods covering the
previous and next ℎ minutes respectively.

6.3.4 Adaptive Parameter Calculation

After obtaining a demand forecast, the first main step of our algorithm is the adaptive
calculation of relevant parameters. More specifically, we aim to estimate the number of
trip requests that a vehicle situated in area 𝑖 ∈ 𝐴 is expected to serve within ℎ+. We denote

96



6.3 Forecast-Driven Repositioning

this expected number of requests served as 𝑟𝑠𝑖 . This value may vary drastically between
different scenarios, but also within the same scenario depending on the time of day and
considered area. For instance, vehicles tend to be able to serve more trip requests in the
same time frame in high-demand areas as it is possible to build more efficient vehicle
routes.

In order to consider these aspects, we consider the current performance of our vehicle
fleet and determine the potential number of trip requests that each vehicle could have
served throughout the last ℎ− minutes as in Equation 6.1.

𝑟𝑠𝑘 = 𝑢
𝑡𝑎𝑟 · 1

𝛼𝑘
·
𝑝−
𝑘
+ 𝑑−

𝑘

2 𝑘 ∈ 𝐾 (6.1)

𝑝−
𝑘
and 𝑑−

𝑘
denote the number of pickup and delivery operations performed by 𝑘 in ℎ−.

Thus, dividing the sum of these values by two in the right-hand side of the equation gives
us the number of trip requests served in ℎ−. However, 𝑘 may have been idle for a portion
of ℎ−, therefore this number does not reflect the potential number of served requests at
full utilization. To account for this fact we multiply by a factor of 1

𝛼𝑘
where 𝛼𝑘 is the

percentage of time that 𝑘 was active in ℎ−. This gives us an upper bound on the number
of trip requests that the vehicle could have realistically served. In general, a 100 % usage
rate of vehicles is not achievable in practical scenarios. Hence, we multiply by a target
utilization rate 𝑢𝑡𝑎𝑟 , which may be determined empirically. Based on preliminary studies,
we estimate that an average utilization rate of 90 % (𝑢𝑡𝑎𝑟 = 0.9) is a realistic target.

Based on the current vehicle performance, we may now estimate the expected number
of served trip requests 𝑟𝑠𝑖 for each area 𝑖 as defined in Equation 6.2. This value yields an
estimation of how many trip requests a vehicle starting in area 𝑖 will serve in the time
period ℎ+.

𝑟𝑠𝑖 =

∑
𝑘∈𝐾𝑁

𝑖
𝑟𝑠𝑘

|𝐾𝑁
𝑖
|

𝑖 ∈ 𝐴 (6.2)

To calculate 𝑟𝑠𝑖 , we consider all vehicles 𝐾𝑁𝑖 that were located in the neighborhood 𝑁𝑖 of 𝑖
at the start of the previous horizon ℎ−. This neighborhood is defined as the set of areas
𝑗 ∈ 𝐴 that may be reached from 𝑖 within the maximum waiting time𝑤𝑟 of a request. Thus,
𝑁𝑖 is defined as 𝑁𝑖 = { 𝑗 ∈ 𝐴|𝑡𝑡𝑖, 𝑗 ≤ 𝑤𝑟 }. In our studies, we assume that all trip requests
have the same𝑤𝑟 . In cases where this is not applicable, an average value could be used. To
achieve a reliable estimate, we furthermore ensure that 𝐾𝑁𝑖 contains at least 𝑘𝑚𝑖𝑛

𝑁
vehicles.

If this is not the case, the neighborhood 𝑁𝑖 is grown iteratively by including the next
closest area until 𝑘𝑚𝑖𝑛

𝑁
vehicles are reached. We may then calculate 𝑟𝑠𝑖 as the average of

𝑟𝑠𝑘 for all vehicles in 𝐾𝑁𝑖 .

Based on 𝑟𝑠𝑖 , we are now able to estimate our available supply in any area. Supply provided
by repositioning vehicles, i.e. vehicles that have been selected for repositioning in previous
runs of the repositioning algorithms, is calculated as defined in Equation 6.3. We assume
that each vehicle repositioning to area 𝑖 will serve approximately 𝑟𝑠𝑖 requests over the

97



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

coming forecast horizonℎ+. Thus, wemerely multiply the number of repositioning vehicles
by 𝑟𝑠𝑖 .

𝑆𝑟𝑒𝑖 = |𝐾𝑟𝑒 | · 𝑟𝑠𝑖 𝑖 ∈ 𝐴 (6.3)

Supply provided by active vehicle is calculated in a similar fashion in Equation 6.4. However,
in this case, we need to consider the current vehicle schedules. Thus, for each vehicle, we
adjust the number of expected served trip requests based on the current planned pickup
(𝑝+
𝑘
) and delivery (𝑑+

𝑘
) operations.

𝑆𝑎𝑐𝑡𝑖 =
∑︁
𝑘∈𝐾𝑎𝑐𝑡

𝑖

𝑟𝑠𝑖 −
𝑝+
𝑘
+ 𝑑+

𝑘

2 𝑎 ∈ 𝐴 (6.4)

Finally, supply is also provided by idle vehicles that are either selected to reposition to
another location in the subsequent period or that stay at their current position. This
is expressed through decisions in our repositioning model that is presented in the next
section.

6.3.5 Mathematical Model for Forecast-Driven Repositioning

The complete repositioning model FDR-M is given in equations (6.5) - (6.12). In the
following, we first describe the decision variables. Subsequently, we take a detailed look
at the model, its objective function, and constraints.

Decision variables Our model contains two sets of decision variables. Integer variables
𝑥𝑖, 𝑗 |𝑖, 𝑗 ∈ 𝐴 correspond to our repositioning decisions and denote the number of vehicles
repositioned from area 𝑖 to 𝑗 . Coverage variables 𝑐𝑖, 𝑗 |𝑖, 𝑗 ∈ 𝐴 denote the coverage that is
provided by vehicle resources located in or repositioning to 𝑖 for forecasted trip demand in
𝑗 . This concept of provided coverage is central to our model. We assume that any vehicle
may serve multiple trip requests over the forecast horizon in the neighborhood 𝑁𝑖 of its
current or assigned location in area 𝑖 . Recall from the prior section that this neighborhood
is defined as the set of areas reachable within the maximum waiting time𝑤𝑟 of a newly
arising trip request. This means that a vehicle situated in 𝑖 could reach such a trip request
in the neighborhood on time. Figure 6.2 shows an example of 𝑁𝑖 in the city of Hamburg.
Given these variable definitions, our model will reposition vehicles to provide coverage
in areas with lacking supply. Figure 6.3 shows a simple example in which one vehicle
is repositioned from area 𝑘 to area 𝑖 in order to cover demand in the two neighboring
areas ℎ and 𝑗 . The precise number of requests that a single vehicle may cover depends
on its location and the time of day. Therefore, we adaptively determined parameter 𝑟𝑠𝑖 as
described in the prior Section 6.3.4.

98



6.3 Forecast-Driven Repositioning

Figure 6.3: Illustration of decision variables. Green areas form the neighborhood of 𝑖 . Only non-zero
demands and relevant area centers are shown for simplicity. In this example one vehicle is repositioned
from area 𝑘 to area 𝑖 to cover forecasted demand in areas 𝑗 and ℎ.

Model The objective function (6.5) follows three hierarchical goals which are reflected
in the terms of the objective function:

1. Maximize the sum of covered demand, weighted by𝑤𝑐𝑜𝑣 and𝑤𝑖 .

2. Minimize the number of repositioning movements, weighted by weight𝑤𝑟𝑒 .

3. Minimize travel times for repositioning movements and demand coverage. The latter
may be penalized with a factor𝑤 𝑡𝑡,𝑐𝑜𝑣 >= 1.0.

Objective precedence is ensured by weights 𝑤𝑐𝑜𝑣 > 𝑤𝑟𝑒 > 1. These weights may be
determined based on the maximum overall travel time between two areas 𝑡𝑡𝑚𝑎𝑥 . We use
𝑤𝑐𝑜𝑣 = 10 · 𝑡𝑡𝑚𝑎𝑥 and𝑤𝑟𝑒 = 𝑡𝑡𝑚𝑎𝑥 . With this choice of weights, we ensure that one unit of
additional covered demand is prioritized over minimizing movements and travel times.
The primary objective is to maximize the acceptance rate of future requests by covering
predicted demand. The area-specific weight component enables us to prioritize coverage
in certain areas. This can be beneficial in situations where not all demand may be covered
by the vehicle fleet. Empirically, it has proven useful to set𝑤𝑖 proportional to the fraction
of total demand in 𝑖 . For instance, one could use 𝑤𝑖 = 1 + 𝑑𝑖

�̂�
where �̂� is equal to the

total forecasted demand
∑
𝑖∈𝐴 𝑑𝑖 . The secondary objective stems from the operational

concern that we want to move as few vehicles as possible. Particularly, we do not want to
move any vehicles at all, if the current fleet configuration can cover all forecasted demand.
Otherwise, we run the risk of causing oscillating vehicle movements where vehicles are
repeatedly repositioned due to minor shifts in the forecasted demand. Thus, we penalize
the movement of vehicles and ensure that repositioning only takes place if it leads to
additional covered demand. The tertiary objective ensures that overall travel times are
minimized and leads to suitable vehicles being selected for repositioning. Two travel time

99



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

factors are taken into account. First, we consider travel times incurred by repositioning
decisions 𝑥𝑖, 𝑗 . Second, we consider anticipated travel times attached to 𝑐𝑖, 𝑗 variables. The
assumption is that a vehicle located at 𝑖 ∈ 𝐴 will have to move to 𝑗 ∈ 𝐴 when a request
arises. These anticipated travel times are penalized by a factor𝑤 𝑡𝑡,𝑐𝑜𝑣 ≥ 1 which rewards
moving vehicles closer to the predicted demand. This tends to be beneficial as it reduces
customer waiting times and improves vehicle utilization.

(FDR-M)
∑︁
𝑖∈𝐴

∑︁
𝑗∈𝐴

𝑤𝑐𝑜𝑣 ·𝑤 𝑗 · 𝑐𝑖, 𝑗 (6.5)

−
∑︁
𝑖∈𝐴

∑︁
𝑗∈𝐴\{𝑖}

𝑤𝑟𝑒 · 𝑥𝑖, 𝑗

−
∑︁
𝑖∈𝐴

∑︁
𝑗∈𝐴

𝑥𝑖, 𝑗 · 𝑡𝑡𝑖, 𝑗 −
∑︁
𝑖∈𝐴

∑︁
𝑗∈𝐴

𝑤 𝑡𝑡,𝑐𝑜𝑣 · 𝑐𝑖, 𝑗 · 𝑡𝑡𝑖, 𝑗 → max

s.t.
∑︁
𝑗∈𝐴

𝑥𝑖, 𝑗 ≤ |𝐾𝑖𝑑𝑖 | 𝑖 ∈ 𝐴 (6.6)∑︁
𝑗∈𝐴

𝑐 𝑗,𝑖 ≤ 𝑑𝑖 𝑖 ∈ 𝐴 (6.7)∑︁
𝑗∈𝐴

𝑐𝑖, 𝑗 ≤
∑︁
𝑗∈𝐴

𝑥 𝑗,𝑖 · 𝑟𝑠𝑖 + 𝑆𝑟𝑒𝑖 + 𝑆𝑎𝑐𝑡𝑖 𝑖 ∈ 𝐴 (6.8)

𝑐𝑖, 𝑗 = 0 𝑖 ∈ 𝐴, 𝑗 ∉ 𝑁𝑖 (6.9)
𝑥𝑖, 𝑗 = 0 𝑖 ∈ 𝐴, 𝑗 ∉ 𝐴𝑟𝑒, 𝑖 ≠ 𝑗 (6.10)
𝑥𝑖, 𝑗 ∈ N+0 𝑖, 𝑗 ∈ 𝐴 (6.11)
𝑐𝑖, 𝑗 ∈ R+0 𝑖, 𝑗 ∈ 𝐴 (6.12)

Constraints (6.6) guarantee that the number of vehicles repositioned from 𝑖 ∈ 𝐴 does not
exceed the number of available idle vehicles. Note that only idle vehicles are available for
repositioning. Vehicles that are currently performing a repositioning movement cannot
be reassigned to a new target. This is due to operational concerns as we do not want to
frequently change repositioning targets of individual vehicles and drivers. A repositioning
movement may however be interrupted by the vehicle routing algorithm as presented
in Chapter 5. In that case, the vehicle is assigned a route with trip requests and starts
serving these immediately. Constraints (6.7) ensure that the maximum provided coverage
for a given area 𝑖 is capped by the forecasted demand 𝑑𝑖 . Inversely, Constraints (6.8) limit
the provided coverage from area 𝑖 to the available supply. This supply is equivalent to
the number of trip requests that may be served within the forecast horizon ℎ by vehicle
resources in 𝑖 . In order to calculate the available supply, we consider three types of vehicles.
Active vehicles located in 𝑖 contribute to the active supply 𝑆𝑎𝑐𝑡𝑖 , while vehicles currently
repositioning to 𝑖 provide the repositioning supply 𝑆𝑟𝑒𝑖 . Lastly, supply provided by idle
vehicles is considered through the 𝑥 𝑗,𝑖 variables in the right-hand side of the equation. This
term includes vehicles staying idle at 𝑖 as well as vehicles being selected for repositioning
to 𝑖 . The sum of these vehicles is multiplied with 𝑟𝑠𝑖 , which denotes the expected number

100



6.4 Computational Evaluation

of trip requests that a vehicle in 𝑖 will serve within the forecast horizon. This parameter
as well as the active and repositioning supply may differ significantly depending on the
considered area, current vehicle schedules, and time of day among other factors. Therefore,
we introduced an adaptive parameter tuning approach in Section 6.3.4. Constraints (6.9)
limit the spatial extent of provided coverage to the given neighborhood 𝑁𝑖 as explained
earlier. As repositioning is only allowed to a set of target areas 𝐴𝑟𝑒 , Constraints (6.10)
ensure that we only send idle vehicles to such areas or leave them at their current location.
Lastly, variable domains are given by Constraints (6.11) and (6.12).

6.3.6 Repositioning Target Assignment

As the final step of our repositioning algorithm, we must derive specific repositioning
assignments from the aggregated decisions taken in FDR-M. For this purpose, we start by
sampling a set of repositioning targets 𝑇 𝑟𝑒 . For each area 𝑗 ∈ 𝐴, we compute the sum of
repositioning movements towards 𝑗 as

∑
𝑖∈𝐴 𝑥𝑖, 𝑗 and randomly sample that many targets

from the potential repositioning locations 𝑅𝐿 𝑗 and add them to 𝑇 𝑟𝑒 . Subsequently, we
assign idle vehicles to these targets in a way that minimizes repositioning travel times.
We do this by solving the MIP model given in Equations 6.13 – 6.16.∑︁

𝑘∈𝐾𝑖𝑑

∑︁
𝑡∈𝑇 𝑟𝑒

𝑎𝑘,𝑡𝑡𝑡
𝑘
𝑡 → min (6.13)

s.t.
∑︁
𝑘∈𝐾𝑖𝑑

𝑎𝑘,𝑡 = 1 𝑡 ∈ 𝑇 𝑟𝑒 (6.14)∑︁
𝑡∈𝑇 𝑟𝑒

𝑎𝑘,𝑡 ≤ 1 𝑘 ∈ 𝐾𝑖𝑑 (6.15)

𝑎𝑘,𝑡 ∈ {0, 1} 𝑘 ∈ 𝐾𝑖𝑑 , 𝑡 ∈ 𝑇 𝑟𝑒 (6.16)

The decision variables 𝑎𝑘,𝑡 denote whether a specific vehicle 𝑘 ∈ 𝐾𝑖𝑑 is assigned to a
repositioning target 𝑡 ∈ 𝑇 𝑟𝑒 . The objective function 6.13 minimizes the sum of travel
times for repositioning movements. Constraints 6.14 ensure that exactly one idle vehicle
is assigned to each repositioning target. Due to the fact that FDR-M considers the supply
of idle vehicles when determining how many vehicles to reposition, it is guaranteed that
sufficient idle vehicles are available. Constraints 6.15 on the other hand guarantee that
each idle vehicle is assigned to at most one repositioning target. The domain of variables
𝑎𝑘,𝑡 is given in Constraints 6.16.

6.4 Computational Evaluation

In this section, we evaluate FDR on the same real-world datasets as used in Chapter 5. To
perform these evaluations, we use the simulation framework presented in Chapter 4. In
the following, we begin by discussing our experimental design in Section 6.4.1 followed
by the computational results in Section 6.4.2.

101



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

6.4.1 Experimental Design and Setup

In our computational evaluations we investigate the performance of our repositioning
approach with regard to the following main goals:

• Show that FDR can be used successfully on large-scale instances in real-time.

• Compare the performance of FDR to a reactive benchmark algorithm REACT and
illustrate that non-myopic repositioning leads to performance improvements.

• Assess the robustness of our algorithm and particularly the adaptive parameter
tuning process under a variety of demand patterns in order to show that FDR may
be easily applied to new application settings.

• Evaluate the necessary forecast quality in order to utilize FDR effectively. For this
purpose, we compare a setting with perfect information to one with a naive forecast.
The latter simply assumes that demand stays constant and uses the actual demand
of the previous horizon as a forecast for the next one.

The datasets and simulation instances used in our evaluations are described in Section
6.4.1.1. The different studied simulation and algorithm settings are detailed in Sections
6.4.1.2 and 6.4.1.3. As in Chapter 5, our planning algorithms and simulation were imple-
mented in C++. We utilize Gurobi 9.1.2 as a MIP solver for FDR-M. All computational
studies were run on a computer with an Intel i7-6600U CPU and 20 GB of RAM.

6.4.1.1 Dataset and Simulation Instances

We use the same datasets and instances as in the evaluations of Chapter 5. Hence, for a
detailed description, we refer the reader to Sections 5.6.1.1 and 5.6.1.2. For the sake of
convenience we repeat the main information concerning the used instances in Table 6.5.
Recall that the preliminary instances are used for determining adequate parameters while
the main instances are utilized for our actual computational evaluations. We also use the
same base fleet sizes as in Chapter 5. These are repeated in Table 6.6. For a discussion
concerning the choice of these values, we refer the reader to Section 5.6.1.2.

6.4.1.2 Simulation Settings

In our simulation studies, we evaluate scenarios with different settings as given in Table 6.7.
Unless noted otherwise, the default values indicated in bold are used. In the same manner
as in the previous chapter, we consider scenarios with short, medium and long time
windows controlled by the parameters𝑤𝑟 , 𝐿𝑚𝑖𝑛,𝑚𝑑𝑒𝑡 . These evaluations are presented in
Section 6.4.2.5. Additionally, we also evaluate scenarios with different vehicle fleets. In
Section 6.4.2.6, we vary the size of the fleet via the vehicle factor that determines the
number of vehicles in combination with the base fleet sizes given in the previous section.
We also evaluate different vehicle capacities in Section 6.4.2.7.

102



6.4 Computational Evaluation

Table 6.5: Preliminary and main instances.

Group Dataset Weekday Date # trip Name
requests

Preliminary CH Wed 09 Nov 2016 224,219 P-CH-Wed
HH Wed 13 Mar 2019 16,158 P-HH-Wed
MANH Wed 09 Mar 2016 335,929 P-MANH-Wed
NYC Wed 09 Mar 2016 429,855 P-NYC-Wed

Main CH Wed 16 Nov 2016 239,037 M-CH-Wed
Sun 20 Nov 2016 237,037 M-CH-Sun

HH Wed 20 Mar 2019 13,556 M-HH-Wed
Sun 24 Mar 2019 10,669 M-HH-Sun

MANH Wed 16 Mar 2016 297,457 M-MANH-Wed
Sun 20 Mar 2016 269,346 M-MANH-Sun

NYC Wed 16 Mar 2016 376,526 M-NYC-Wed
Sun 20 Mar 2016 368,508 M-NYC-Sun

Table 6.6: Base fleet size per dataset.

CH HH MANH NYC

Fleet size 1260 90 670 1180

Table 6.7: Simulation settings and potential values. Default values are indicated in bold.

Parameter Notation Unit Values

Maximum waiting time 𝑤𝑟 s 180, 300, 600
Minimum allowed detour 𝐿𝑚𝑖𝑛 s 100, 150, 300
Maximum detour factor 𝑚𝑑𝑒𝑡 - 1.33, 1.5, 2
Vehicle factor - - 0.8, 0.9, 1.0, 1.1, 1.2
Vehicle capacity - - 2, 3, 4, 5, 6

6.4.1.3 Algorithm Parameters

In Table 6.8, we summarize the different algorithm parameters studied in this section.
Concerning parameters for our vehicle routing algorithm, we use the best-found val-
ues from Chapter 5. In this section, we focus purely on parameters pertaining to the
repositioning algorithm. For most evaluations in this section, we utilize DIS+LS as our
routing algorithm. The interactions between repositioning and routing with and without
local search are investigated in detail in Section 6.4.2.4. Throughout this section, the
adaptive parameter calculation process from Section 6.3.4 is generally used. To illustrate

103



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

Table 6.8: Algorithm parameters and potential values. Default values are indicated in bold.

Parameter Notation Unit Values

Routing mode - - DIS, DIS+LS
Repositioning mode - - REACT, FDR
Adaptive parameters - - no, yes
Grid cell side length 𝑔𝑠𝑖𝑧𝑒𝑟𝑒 m 1000, 1500, 2000, 3000, 5000
Forecast horizon ℎ min 5, 15, 30, 60, 120
Repositioning interval 𝐼 s 30, 60, 120, 180, 300
Obj. weight coverage times 𝑤 𝑡𝑡,𝑐𝑜𝑣 - 0.0, 0.9, 1.0, 1.1, 2.0
Min. vehicles in neighborhood 𝑘𝑚𝑖𝑛

𝑁
- 1, 3, 5, 10, 20

Proportional area weight 𝑤𝑖 - true, false

Table 6.9: Performance indicators.

KPI Unit Description

Rej % Trip request rejection rate
Wait s Avg. customer waiting time
Ride s Avg. customer ride time
TT𝑣 min Avg. total vehicle travel time
TT𝑣𝑟𝑒𝑞 s Avg. vehicle travel time per served trip request
RT min Total running time
RT𝑑𝑖𝑠 min Total running time for the dispatching algorithm
RT𝑑𝑖𝑠𝑟 min Avg. running time for dispatching one trip request
RT𝑙𝑠 min Total running time for the local search algorithm
RT𝑟𝑒 min Total running time for the repositioning algorithm
RT𝑜 min Total running time for other tasks

its impact, we also perform evaluations with fixed parameters and compare the results
in Section 6.4.2.9. Concerning the six algorithm parameters 𝑔𝑠𝑖𝑧𝑒𝑟𝑒 , ℎ, 𝐼 ,𝑤

𝑡𝑡,𝑐𝑜𝑣 , 𝑘𝑚𝑖𝑛
𝑁

and𝑤𝑖 ,
we perform experiments on our preliminary instances and determine adequate values in
Section 6.4.2.1.

6.4.1.4 Forecast Mode

An important factor for our repositioning approach FDR is the demand forecast that is
used as an input. Generally, in this section, we assume a perfect demand forecast. The
reason for this is that we focus on the evaluation of our repositioning algorithm itself
and illustrate its potential performance with a good forecast. However, to show that our
algorithm already performs well with relatively simple forecasting models, we perform
evaluations with a naive forecast. The utilized forecast and the results are discussed in
Section 6.4.2.8. Together, these two forecast modes form an upper and lower bound on the
forecast quality that a state-of-the-art forecasting model would yield.

104



6.4 Computational Evaluation

6.4.1.5 Performance Indicators

We use the same performance indicators as in Chapter 5. For the sake of convenience,
these are repeated in Table 6.9. For more detailed explanations of the individual KPIs, we
refer the reader to Section 5.6.1.5.

6.4.2 Computational Results

In the following sections, we discuss our main computational results and findings. We
start by presenting the results of our parameter studies on preliminary instances in Section
6.4.2.1. Subsequently, we take a look at running times and aggregated results with default
settings in Sections 6.4.2.2 and 6.4.2.3. In the remaining Sections 6.4.2.4 through 6.4.2.9, we
present a detailed look into the impact of factors such as time windows, fleet sizes, or the
adaptive parameter calculation process.

6.4.2.1 Parameter Influence

In this section, we study the impact of several key algorithm parameters to determine
adequate values for the remainder of the experiments. The considered parameters and
values are given in Table 6.10. We do not perform a full grid search of all parameter
combinations as this would be too computationally expensive. Instead, we vary each
parameter individually and leave the other ones at their default values. We focus on the
impact of each parameter on the total running time and the trip request rejection rate.

Average results on our perliminary test instances are illustrated in Figure 6.4. The main
takeaways are the following:

• Reducing the repositioning interval 𝐼 leads to improved rejection rates which is to
be expected as it enables us to regularly adjust repositioning movements to reflect
the current system state. Due to the minor influence on the running time, we can
opt for the smallest value of 30 seconds.

Table 6.10: Algorithm parameters with default starting values denoted in italic and the best found values in
bold.

Parameter Notation Unit Values

Grid cell side length 𝑔𝑠𝑖𝑧𝑒𝑟𝑒 m 1000, 1500, 2000, 3000, 5000
Forecast horizon ℎ m 5, 15, 30, 60, 120
Repositioning interval 𝐼 s 30, 60, 120, 180, 300
Obj. weight coverage times 𝑤 𝑡𝑡,𝑐𝑜𝑣 - 0.0, 0.9, 1.0, 1.1, 2.0
Min. vehicles in neighborhood 𝑘𝑚𝑖𝑛

𝑁
- 1, 3, 5, 10, 20

Proportional area weight 𝑤𝑖 - true, false

105



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

30 60 120 180 300
repositioning interval (f) [s]

0

5

10

5 15 30 60 120
forecast horizon (h) [min]

1000 1500 2000 3000 5000
repositioning grid size (gsize

re ) [m]

0

5

10

re
je

ct
io

n 
ra

te
 [%

]

0 0.9 1.0 1.1 2.0
obj. weight coverage travel time (wtt)

1 3 5 10 20
minimum vehicles in neighborhood (kmin

N )

0

5

10

rejection rate [%] running time (RT) [min]

no yes
proportional area weights

0
180
360
540
720

0
180
360
540
720

ru
nn

in
g 

tim
e 

(R
T)

 [m
in

]

0
180
360
540
720

Figure 6.4: Influence of the repositioning interval (𝐼 ), grid cell cell side length (𝑔𝑠𝑖𝑧𝑒𝑟𝑒 ), minimum vehicles
in neighborhood (𝑘𝑚𝑖𝑛

𝑁
), forecast horizon (𝑘𝑚𝑎𝑥 ), objective weight for coverage travel times (𝑤𝑡𝑡,𝑐𝑜𝑣), and

proportional area objective weights.

• Concerning the forecast horizon ℎ, a value of 15 minutes leads to the best rejection
rates. A shorter forecast horizon leaves us too little time to react to vehicle shortages.
On the other hand, a longer forecast horizon leads to the consideration of forecasted
requests which may not be immediately relevant for deciding repositioning move-
ments. In addition, an increase in the forecast horizon leads to a steady increase in
running time. This is mostly due to the necessary data collection for the adaptive
parameter tuning process and could be improved by more efficient data structures.

• The grid cell side length 𝑔𝑠𝑖𝑧𝑒𝑟𝑒 of 5000 m x 5000 m leads to the best rejection rates,
illustrating that a certain level of aggregation in the demand forecasts and decision-
making is beneficial to the overall performance and there is no benefit in using a
finer spatial resolution. The impact on the running time is negligible although a
larger grid cell size also leads to slightly reduced running times.

• Regarding the objective weights for coverage travel times𝑤 𝑡𝑡,𝑐𝑜𝑣 it is beneficial to
penalize these in the objective function compared to the travel times for repositioning

106



6.4 Computational Evaluation

movements. This encourages the model to reposition vehicles closer to the forecasted
demand.

• The minimum number of vehicles in the neighborhood 𝑘𝑚𝑖𝑛
𝑁

only has a very minor
impact on both the rejection rate and the running time. The best results are achieved
with a value of 20. Hence, this setting is used for the remaining experiments.

• Regarding the objective weights for covering specific areas 𝑤𝑖 , we evaluated two
different settings. One in which areas are all weighted equally and one in which
coverage is prioritized in high-demand areas by setting weights proportional to the
demand. The latter leads to slightly better results although the differences are minor.

6.4.2.2 Running Times

Table 6.11 shows the average running times for our two repositioning modes REACT
and FDR. The main conclusion is that with FDR activated, we are still able to process
large-scale simulation scenarios faster than real-time. In fact, the repositioning algorithm
itself, which is executed every 30 seconds, only makes up a negligible portion of the overall
running time. We still see a large increase in running time when activating FDR compared
to the runs with REACT. This is mainly due to one major factor. As we may observe,
the running time RT𝑜 for other tasks besides the core planning functionalities exhibits
the largest difference. This is caused by the handling of additional data needed as input
for the repositioning algorithm and particularly the adaptive parameter calculation. To
facilitate this adaptive mechanism, we store detailed histories of vehicle itineraries. The
running time could be improved by usingmore efficient data structures for this purpose and
preventing unnecessary copy operations. However, even with the current implementation,

Table 6.11: Overview of average running times. Rows denoted as “ALL” contain averages across all four
datasets.

Data Mode RT𝑟𝑒 RT𝑑𝑖𝑠 RT𝑙𝑠 RT𝑜 RT
[min] [min] [min] [min] [min]

CH REACT 1.20 27.30 35.67 20.25 84.42
FDR 0.58 26.58 36.21 69.61 132.98

HH REACT 0.00 0.22 0.02 0.47 0.71
FDR 0.19 0.30 0.02 1.40 1.91

MANH REACT 0.12 38.98 31.23 18.31 88.64
FDR 0.39 43.28 31.07 71.01 145.75

NYC REACT 1.79 60.06 69.38 36.07 167.30
FDR 0.95 67.38 68.57 171.42 308.32

ALL REACT 0.78 31.64 34.08 18.78 85.27
FDR 0.53 34.39 33.97 78.36 147.24

107



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

our approach is applicable to large instances on the most challenging dataset (NYC). The
total running time still constitutes a major speed-up compared to the simulated timespan
of 1800 minutes.

6.4.2.3 Results on Default Scenarios

Table 6.12 summarizes our main computational results with our repositioning algorithm
FDR and the benchmark approach reactive repositioning algorithm (REACT). The main
takeaway is that forecast-driven repositioning manages to achieve an average reduction
in trip request rejection rate of 4.81 percentage points. Additionally, it leads to reduced
waiting times (-19.48 s) and slightly reduced ride times (-7.07 s) which would improve
customer satisfaction. These improvements come at the price of an increased TT𝑣𝑟𝑒𝑞 .
This is to be expected as additional repositioning movements lead to less efficient routes.
Particularly in the case of the HH dataset, FDR enables us to serve remote trip requests
that would otherwise have to be rejected. However, as these remote requests are inefficient
to serve, the overall efficiency of our routes is decreased. We believe that this trade-off is
still worthwhile as on average TT𝑣𝑟𝑒𝑞 is merely increased by 19.85 s.

Figure 6.5 presents a more detailed look at the occupation of the vehicle fleet with REACT
and FDR for instance M-NYC-Wed. As we can see, FDR manages to prevent the rejection
of trip requests throughout most of the day. During the evening demand peak, there are
rejections due to the overloaded vehicle fleet. In the morning there is a minor amount of
rejections which could potentially be attributed to an underestimation of the necessary
vehicle resources.

Table 6.12: Aggregated results with REACT and FDR. Rows denoted as “ALL” contain averages across all
four datasets.

Data Mode Rej Wait Ride TT𝑣 TT𝑣𝑟𝑒𝑞 RT
[%] [s] [s] [min] [s] [min]

CH REACT 10.77 200.48 593.16 929.52 349.81 84.42
FDR 5.37 182.94 579.67 1019.92 361.97 132.98

HH REACT 17.55 174.95 476.19 842.71 456.72 0.71
FDR 7.37 155.67 472.67 1061.37 512.51 1.91

MANH REACT 6.39 222.96 293.07 1028.68 156.16 88.64
FDR 5.09 203.75 290.38 1056.15 158.16 145.75

NYC REACT 9.19 216.69 375.70 1037.41 217.17 167.30
FDR 6.86 194.81 367.10 1110.35 226.63 308.32

ALL REACT 10.98 203.77 434.53 959.58 294.97 85.27
FDR 6.17 184.29 427.46 1061.95 314.82 147.24

108



6.4 Computational Evaluation

00:00 12:00
0

25

50

75

100
fra

ct
io

n 
of

 v
eh

icl
es

 [%
] REACT

00:00 12:00
time of day

FDR

active
idle

repositioning
total requests

rejected requests

0

2000

4000

6000

8000

nu
m

be
r o

f r
eq

ue
st

s

Figure 6.5: Vehicle states with REACT and FDR for instance M-NYC-Wed.

6.4.2.4 Impact of the Local Search

While most experiments in this section were ran with our routing algorithm DIS+LS,
we also ran simulations without the local search in order to gain some insights into
the interaction of both algorithms. Figure 6.6 shows the most interesting result from
these evaluations. We ran our instances with all four combinations of our repositioning
algorithms REACT and FDR as well as the vehicle routing algorithms DIS and DIS+LS.
Figure 6.6 illustrates the average rejection rates obtained from these simulation runs.
As we can see, the impact of the local search is larger when using our forecast-driven
repositioning approach. On average, activating the local search yields an improvement
in the rejection rate of 0.6 percentage points with REACT versus 1.4 percentage points
with FDR. These results illustrate that the two approaches benefit from being used in
combination. We assume that the reason for this is that FDR improves the positioning of
our vehicle fleet and the local search can better utilize these improved positions.

CH HH MANH NYC
Dataset

0

5

10

15

20

re
je

ct
io

n 
ra

te
 [%

]

REACT & DIS
REACT & DIS+LS
FDR & DIS
FDR & DIS+LS

Figure 6.6: Rejection rates for different datasets and combinations of vehicle routing and repositioning.

109



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

Table 6.13: Time window settings.

Unit Short Medium Long

𝑤𝑟 s 180 300 600
𝐿𝑚𝑖𝑛 s 100 150 300
𝑚𝑑𝑒𝑡 - 1.33 1.5 2.0

0

10

20

30

re
je

ct
io

n 
ra

te
 [%

]

CH HH

short medium long
time window settings

0

10

20

30

MANH

REACT FDR

short medium long

NYC

Figure 6.7: Rejection rates for different datasets and time windows.

6.4.2.5 Time Windows

As in Chapter 5, we evaluate different time window settings for the trip requests. Table 6.13
summarizes our three settings with short, medium and long time windows. The average
rejection rates for the different scenarios and datasets are depicted in Figure 6.7. The
results illustrate that regardless of the time window length, FDR achieves improved results
compared to REACT. The absolute improvement is lowest with the long time window
setting at an average of 1.95 percentage points in contrast to 4.58 and 4.8 percentage points
with short and medium time windows respectively. This is to be expected as with long
time windows the rejection rates are already relatively low with REACT.

6.4.2.6 Fleet Size

In our evaluations, we assess the impact of the vehicle fleet size by running scenarios
with a vehicle factor of 0.8 – 1.2. This factor is multiplied by the base fleet size as given in

110



6.4 Computational Evaluation

10

20

re
je

ct
io

n 
ra

te
 [%

]
CH HH

0.8 0.9 1.0 1.1 1.2
vehicle factor

10

20

MANH

REACT FDR

0.8 0.9 1.0 1.1 1.2

NYC

Figure 6.8: Rejection rates for different datasets and vehicle factors.

00:00 12:00
0

25

50

75

100

fra
ct

io
n 

of
 v

eh
icl

es
 [%

] 0.8

00:00 12:00
time of day

1.0

00:00 12:00

1.2

active
idle

repositioning
total requests

rejected requests

0

2000

4000

6000

8000

nu
m

be
r o

f r
eq

ue
st

s

Figure 6.9: Vehicle states with different vehicle factors for instance M-NYC-Wed.

Section 6.4.1.1. Our main findings are illustrated by the rejection rates for different vehicle
factors in Figure 6.8. The central takeaway is that the gap in rejection rate between REACT
and FDR grows with a larger fleet size. FDR is able to exploit the additional vehicles to
serve additional trip requests. In contrast, with a small vehicle fleet, a large portion of the
fleet is occupied at all times leaving little room for improvement through repositioning.
At many points in time, there may not even be available vehicles for repositioning as all
vehicles are occupied. This is further illustrated by Figure 6.9 that visualizes the vehicle
states for scenario M-NYC-Wed and different fleet factors. It shows that with a vehicle

111



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

factor of 0.8, the complete fleet is occupied during the morning and evening demand peaks
and throughout most of the day. Hence, not enough vehicles are available for repositioning.
In contrast, with the 1.2 vehicle factor, there are idle vehicles available at most times. Only
during the evening peak, there is a period of time at which all vehicles are either active or
repositioning.

6.4.2.7 Vehicle Capacity

Figure 6.10 shows trip request rejection rates for different vehicle capacities ranging from
2 – 6 passengers. As expected, the overall rejection rate decreases as the vehicle capacity
is increased. However, there are diminishing returns and, for instance, when increasing
the capacity from 5 to 6, we only see minor improvements. This can mainly be attributed
to the customer time windows as it becomes increasingly difficult to combine additional
trip requests in one route while still adhering to their time window constraints. When
comparing the two repositioning modes REACT and FDR, we observe that the gap between
modes slightly widens as the capacity is increased. This is a similar effect as with the fleet
size in the previous section. With FDR we are able to use the increased capacity more
effectively as vehicles are better positioned to serve incoming trip requests and we have a
reduced lead time when approaching new requests.

10

20

re
je

ct
io

n 
ra

te
 [%

]

CH HH

2 3 4 5 6
vehicle capacity

10

20

MANH

REACT FDR

2 3 4 5 6

NYC

Figure 6.10: Rejection rates for different datasets and vehicle capacities.

112



6.4 Computational Evaluation

6.4.2.8 Utilizing a Naive Demand Forecast

Throughout most of this section, we have combined FDR with a perfect demand forecast
to illustrate the potential of our approach with a good forecast quality. In practice, one
only has access to a flawed forecast generated by a forecasting model. In this section we
combine FDR with a naive forecast, to show that our approach already performs well with
a very simple forecasting model.

Naive demand forecast Our naive demand forecast assumes that demand stays constant,
i.e. the forecasted demand 𝑑𝑖 for an area 𝑖 over the next ℎ+ minutes is equal to the actual
demand within the previous ℎ− minutes. When working with a short forecast horizon as
in this work, this simple forecast already provides a reasonable forecast quality. To assess
the quality of the forecast, we replicated the evaluations by Yao et al. (2019) on the NYC
taxi dataset. They use the time period between 10 February 2015 and 1 March 2015 as their
test data and split the region into 200 grid cells of 1x1 km. Their forecast horizon is 30
minutes. We aimed to reproduce these settings as accurately as possible, however, there
may be slight differences in the experimental setup due to data preprocessing, cleaning,
and the exact spatial coverage of the grid. Nevertheless, we believe that our results should
be roughly comparable to those obtained in their original paper and therefore give the
reader a good idea of how the naive forecast performs compared to the forecasting models
evaluated in Yao et al. (2019). Table 6.14 summarizes these results and reports the root-
mean-square error (RMSE) for the naive forecast compared to the methods from Yao et al.
(2019). As the results show, the naive forecast falls between traditional time series methods
such as historical averages or ARIMA and classical machine learning approaches like
gradient boosting. The best results are obtained by deep learning approaches utilizing
CNNs and LSTMs. For details concerning the evaluated methods, we refer the reader to
the original paper. The main takeaway for this work is that the naive forecast delivers an
adequate quality for short-term demand predictions.

Computational results with the naive forecast Table 6.15 summarizes the results
with the perfect and naive forecast modes. The main conclusion is that FDR may already
be successfully used with a simple demand forecasting model such as our naive forecast.
On average, FDR performs only slightly worse with the naive forecast concerning the
trip request rejection rate and all other performance indicators merely exhibit minor
deviations. On one dataset, we unexpectedly even achieve better results with the naive
forecast. We mainly attribute this effect to the structure of the forecast as the naive forecast
underestimates future demand when it is rising (e.g. in the morning) and overestimates
it when it is declining. Sometimes, this may lead to better overall results as FDR may
miscalculate how many vehicles are needed to serve the arising demand. A more in-depth
evaluation of these cases could lead to some potential improvements in our repositioning
approach.

113



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

Table 6.14: Comparison of the naive forecast with established forecasting methods. Naive indicates the
RMSE of the model used in this work, while the reference models are from the paper by Yao et al. (2019).

Model RMSE

HA 43.82
ARIMA 36.53
LR 28.51
MLP 26.67
XGBoost 26.07
LinUOTD 28.48
ConvLSTM 28.13
DeepSD 26.35
ST-ResNet 26.23
DMVST-Net 25.74
STDN 24.10
Naive 35.54

Table 6.15: Aggregated results with the perfect and naive forecast. Rows denoted as “ALL” contain averages
across all four datasets.

Data Forecast Rej Wait Ride TT𝑣 TT𝑣𝑟𝑒𝑞 RT
Mode [%] [s] [s] [min] [s] [min]

CH perfect 5.37 182.94 579.67 1019.92 361.97 132.98
naive 5.28 182.06 579.76 1013.27 359.23 132.05

HH perfect 7.37 155.67 472.67 1061.37 512.51 1.91
naive 7.88 155.73 472.28 1071.40 521.05 1.88

MANH perfect 5.09 203.75 290.38 1056.15 158.16 145.75
naive 5.14 202.90 290.23 1055.79 158.21 146.32

NYC perfect 6.86 194.81 367.10 1110.35 226.63 308.32
naive 6.72 192.93 366.85 1112.91 226.82 304.38

ALL perfect 6.17 184.29 427.46 1061.95 314.82 147.24
naive 6.26 183.41 427.28 1063.34 316.33 146.16

6.4.2.9 Impact of Adaptive Parameter Calculation

As a final evaluation in this section, we take a look at the impact of the adaptive parameter
tuning approach described in Section 6.3.4. It adaptively calculates the number of trip
requests 𝑟𝑠𝑖 that a vehicle located in area 𝑖 is expected to serve within the next forecast
horizon. This approach serves two main purposes. Firstly, it removes the necessity for
tuning parameters a priori. Hence, one could start the ride-sharing service in a new area of
operations without the need for prior data to determine algorithm parameters. Secondly,

114



6.4 Computational Evaluation

Figure 6.11: Expected requests served 𝑟𝑠𝑖 within the next 15 minutes for an excerpt of NYC on 16 March
2016 at 06:00 and 19:00.

Table 6.16: Fixed values of 𝑟𝑠𝑖 for different datasets.

CH HH MANH NYC

𝑟𝑠𝑖 2.30 2.06 5.17 3.54

the adaptive approach should more accurately reflect temporal and spatial differences
in the number of trip requests a vehicle may be expected to serve. This should in turn
improve the overall performance of our ride-sharing system. The usefulness of estimating
the number of trip requests served depending on the time of day and geographical location
is illustrated in Figure 6.11. It shows values for 𝑟𝑠𝑖 for areas in NYC at 06:00 and 19:00.
Clearly, there are large differences in 𝑟𝑠𝑖 . On the one hand, values at 06:00 are overall
lower compared to 19:00 as the total demand at this point in time is lower. This makes
it difficult to efficiently combine multiple trip requests into one route and leads to fewer
expected requests served per vehicle. On the other hand, we can also observe geographical
differences. The values for 𝑟𝑠𝑖 tend to be higher for the Manhattan areas (towards the left)
as the demand density is higher.

To assess whether the adaptive parameter tuning process can adequately consider these
effects, we ran experiments inwhich 𝑟𝑠𝑖 is fixed to a single value. This valuewas determined
based number of trip requests that vehicles served in our preliminary studies. The values
on the different datasets are given in Table 6.16. The results with fixed parameters and
adaptive parameter tuning are compared in Table 6.17. Regarding the rejection rate, the
adaptive mechanism clearly outperforms the fixed parameter setting. This is to be expected
as the fixed setting will often miscalculate the number of vehicles that are needed at a given
time in a specific location. In theory, one could determine time- and location-dependent
fixed parameters. However, we believe that an adaptive mechanism as proposed in this
work represents a more applicable and flexible option. It manages to consider shifts
in demand without the need for prior data-intensive tuning and can react to structural
changes in demand on the fly.

115



6 Idle Vehicle Repositioning for Dynamic Ride-Sharing

Table 6.17: Aggregated results with fixed parameters and adaptive calculation. Rows denoted as “ALL”
contain averages across all four datasets.

Data Parameter Rej Wait Ride TT𝑣 TT𝑣𝑟𝑒𝑞 RT
Mode [%] [s] [s] [min] [s] [min]

CH fixed 5.82 186.11 580.20 981.96 350.12 133.03
adaptive 5.37 182.94 579.67 1019.92 361.97 132.98

HH fixed 9.33 158.25 471.10 998.31 492.33 1.89
adaptive 7.37 155.67 472.67 1061.37 512.51 1.91

MANH fixed 5.24 209.76 291.07 1041.11 156.15 146.44
adaptive 5.09 203.75 290.38 1056.15 158.16 145.75

NYC fixed 8.60 203.17 365.25 1021.60 212.49 309.73
adaptive 6.86 194.81 367.10 1110.35 226.63 308.32

ALL fixed 7.25 189.32 426.91 1010.75 302.77 147.77
adaptive 6.17 184.29 427.46 1061.95 314.82 147.24

6.5 Conclusions

In this chapter, we have presented a new approach for idle vehicle repositioning in the
context of dynamic ride-sharing services. The central component of our algorithm is a
MIP model that aims to balance supply provided by the vehicle fleet and expected demand
given by a forecast. We include an adaptive parameter tuning process in order to reflect
temporal and spatial changes in the number of trip requests a vehicle is expected to serve.
Our approach is evaluated with simulation scenarios on four real-world datasets. Our
results show that the algorithm facilitates a robust improvement in trip request rejection
rate over a diverse set of scenarios. Moreover, we are able to show that it already performs
well with a simple naive demand forecast and can therefore be easily applied in practical
settings with little available data.

In the future, we see the potential to apply our forecast-driven repositioning approach
to other application settings such as the repositioning of autonomous guided vehicles
(AGVs) in a large-scale industrial manufacturing or warehousing setting. In addition,
one particularly interesting research direction would be the transfer of our approach to
applications with decentrally controlled vehicles such as MOD services like Uber or Lyft
with self-employed drivers. In these settings, our model and algorithm could be adapted to
modify prices and incentivize drivers to reposition to certain areas. Moreover, it appears
promising to integrate additional forecasting components into our system in order to
adequately consider other sources of uncertainty. One big factor here would be the inclu-
sion of a forecasting model for travel times, as these vary substantially depending on the
current time of day, location, and traffic situation. There are also several minor extensions
and improvements that could be made for our MIP model. Despite our consideration of
the current system state and the adaptive parameter tuning process, additional details

116



6.5 Conclusions

could still be added in several areas. For instance, it could prove beneficial to consider the
current vehicle routes which contain information regarding the future vehicle location
and occupation. Moreover, our parameter tuning currently only considers information
about the immediate past and could be replaced by a more complex approach. For example,
one could use a trained machine learning model that forecasts the expected number of
served trip requests per vehicle. Besides modifying the current algorithm, we also think
it is promising to solve a similar repositioning approach with completely different algo-
rithms. While the running times and performance of our algorithm are good, the need for
a commercial-grade MIP solver can be problematic in real-world use cases. Therefore, one
could apply different approaches such as network flow models which may be able to solve
a similar repositioning model considering current supply and forecasted demand.

117





7 Conclusion and Outlook

This thesis presented detailed insights into the planning of dynamic ride-sharing services.
In Chapters 2 and 3, we introduced ride-sharing in the broader context of mobility-as-a-
service and gave an overview of planning problems that arise when operating a ride-sharing
service. Subsequently, Chapters 4 - 6 presented a simulation-based evaluation framework
and operational planning algorithms for vehicle routing and repositioning. In this chapter,
we summarize our main contributions and results and propose some promising directions
for future research.

7.1 Summary and Conclusion

Modern mobility-on-demand applications such as ride-sharing, ride-hailing, and bike-
sharing have revolutionized the urban mobility landscape throughout recent years. This
thesis focused on dynamic ride-sharing services as a model that can potentially offer
flexible mobility-on-demand to customers while at the same time efficiently utilizing
vehicle resources and minimizing the impact on urban traffic congestion and pollution. In
our work, we considered the particular challenges that arise in the dynamic ride-sharing
setting, such as the high degree of dynamism and the large amount of trip requests to
process. With these challenges in mind, we aimed to develop a comprehensive toolset to
plan and evaluate the operation of a dynamic ride-sharing service.

In Chapter 2, we presented a taxonomy of mobility-as-a-service offerings, comparing
ride-sharing to other MaaS applications such as car-sharing, ride-hailing and car-pooling.
We emphasized the differences between ride-sharing and these other mobility offerings,
for instance, the vehicle-sharing aspect when comparing car-sharing and ride-sharing.
This taxonomy of MaaS applications was followed up by a more detailed discussion
of the application setting of dynamic ride-sharing in Chapter 3. We highlighted key
characteristics of ride-sharing services such as the high degree of dynamism, the large
number of trip requests, and the importance of different business models in the field.
Moreover, we analyze the different stakeholders of a ride-sharing system such as the
service operator, customers, drivers, and also the city or region in which the service
operates. Based on these stakeholders and their different objectives, we derived a set of
strategical, tactical, and operational planning problems that are relevant for ride-sharing
providers. On the strategical level, we considered infrastructure and fleet design decisions.
However, we believe that these planning problems are similar to ones arising in other
application settings, for instance, facility location problems. Therefore, we think that

119



7 Conclusion and Outlook

existing solution approaches for these problems may be utilized. On the tactical level, we
discussed the fleet and personnel scheduling problems. Similar to the strategical level,
we believe that comparable problems have been studied sufficiently in other application
domains such as public transport planning and the solution approaches may be adapted for
dynamic ride-sharing. On the operational planning level, we see some unique challenges
due to the dynamic nature of the ride-sharing service and the potentially large number of
simultaneous trip requests in the system. Hence, we consider the operational planning
of ride-sharing services as a focus in this thesis. Besides presenting the planning tasks
associated with ride-sharing services, Chapter 3 also considered the execution of shared
rides and how it interacts with the planning level, for instance, in case of disruptions. This
is particularly important when simulating the execution of shared rides to evaluate the
operational planning approaches.

This introduction into the application context of ride-sharing was followed up in Chapter 4
by our proposed system architecture for the operational planning and simulation-based
evaluation of ride-sharing systems. We reviewed related literature and found two main
groups of simulation approaches for dynamic ride-sharing. On the one hand, there are
approaches based on micro- or mesoscopic traffic simulations. These enable detailed
simulation studies of urban mobility and can also include other mobility modes such as
personal vehicles or public transport. However, they are comparatively difficult to set up
and configure. On the other hand, there are simulation tools that focus purely on the simu-
lation of the ride-sharing service and do not include detailed modeling of overall mobility
demand and traffic behavior. We proposed our own simulation framework SimDRS that
falls into the second category. It simulates vehicles and customer requests in a ride-sharing
service and is capable of efficiently running large-scale simulation scenarios. Additionally,
it only needs a minimal amount of data concerning trip requests, the vehicle fleet and the
road network to get started. We envision that our framework may be utilized for multiple
purposes. Due to its modular nature, it enables algorithm developers to evaluate their
operational planning approaches for dynamic ride-sharing. We utilize this in Chapters 5
and 6 to evaluate our own algorithms for vehicle routing and repositioning. Moreover, the
lightweight simulation setup allows ride-sharing providers to quickly evaluate simulation
scenarios in cities or regions to which they want to expand their service. In addition, the
simulation framework is easily extended and can accommodate additional data sources
such as time-dependent travel times if they are available.

Chapter 5 focuses on the vehicle routing problem for dynamic ride-sharing and introduces
a heuristic solution approach that consists of a fast dispatching algorithm for new trip
requests and a local search improvement phase that leverages available computational time
to improve the current routing plan. The approach is evaluated on diverse scenarios based
on real world-data from Chengdu, Hamburg and New York City. Our computational results
show that the application of our local search improvement phase reduces the number
of rejected trip requests by up to 40 % and the vehicle travel times per request by up to
8 % depending on the specific simulation scenario. This illustrates the potential benefits
of utilizing an improvement phase in conjunction with a fast dispatching heuristic to
facilitate an improved solution quality with nearly instantaneous responses to customer
requests. Moreover, our results show that the usage of ride-sharing can indeed reduce

120



7.2 Outlook

the generated vehicle traffic compared to the usage of private vehicles. This shows the
potential for ride-sharing to deliver flexible mobility while reducing traffic congestion.

Chapter 6 considers the problem of idle vehicle repositioning. The main objective is to
reposition idle vehicles in a way that anticipates future trip request demand. For this
purpose, we present a forecast-driven repositioning algorithm (FDR). This algorithm uses
a demand forecast as an input for a mathematical model that determines repositioning
decisions. The model considers vehicle supply and forecasted trip request demand and
tries to balance these two aspects in a way that maximizes the acceptance of trip requests
while minimizing the operational cost of repositioning movements. To consider spatial and
temporal differences in the number of trip requests that a vehicle can be expected to serve,
we introduce an adaptive parameter calculation approach that automatically adapts key
algorithm parameters to the current system state. The forecast-driven repositioning model
is integrated into a real-time planning approach and evaluated on simulation scenarios.
As a benchmark for our algorithm, we use a reactive repositioning scheme. Our algorithm
was evaluated on the same real-world instances from Chengdu, Hamburg and New York
City as in Chapter 5. The computational results show that FDR manages to improve trip
request rejection rates by an average of 44 % while also reducing waiting and ride times of
customers. These results illustrate that intelligent repositioning can lead to a significantly
better performance of the ride-sharing system. Moreover, our algorithm performs well
under diverse circumstances and, due to its adaptive nature, may be easily applied to new
scenarios.

Overall, this thesis has presented the planning context of dynamic ride-sharing systems
with relevant planning problems, stakeholders, and characteristics. On the operational
planning level, we have designed algorithms for vehicle routing and repositioning. To
evaluate these algorithms, we have proposed a simulation-based evaluation framework that
allowed us to assess the performance of our approaches under a diverse set of simulation
scenarios based on real-world data. Our evaluations have shown that our algorithms
can be used for large-scale ride-sharing applications and exhibit robust performance in
diverse scenarios. In particular, they do not rely on large amounts of prior data and can
be easily applied to new application settings. We believe that the structured analysis of
the application context of dynamic ride-sharing presented in this thesis combined with
the operational planning and evaluation framework forms a solid foundation for planning
and operating ride-sharing services. This serves as the basis for future work concerning
the operation of ride-sharing systems.

7.2 Outlook

This thesis has mainly focused on the operational planning of dynamic ride-sharing
services and evaluated the proposed algorithms through simulations. In this regard, we see
two promising directions for extensions. Firstly, it would be interesting to also consider
tactical planning problems such as vehicle and staff scheduling as these are coupled with
the operational planning level and form the basis for the operational decisions. While we

121



7 Conclusion and Outlook

do not think that the application setting of ride-sharing introduces any completely new
problem aspects on the tactical level compared to existing staff and vehicle scheduling
problems, we still consider it beneficial to move towards a more holistic planning approach
akin to other domains such as public transport (Desaulniers and Hickman 2007). Secondly,
we consider it highly relevant to evaluate the interaction between the execution of rides and
operational planning in more detail. While some fundamental considerations concerning
this interaction were presented in this thesis, we see a multitude of promising research
directions. For instance, the simulation framework could be extended in a way that makes
it possible to model several types of disruptions such as vehicle breakdowns and customer
cancellations. Based on these disruptions, one could integrate special disruption handling
techniques into the planning service and extend the vehicle routing algorithm to also
trigger the re-routing of vehicles. Besides disruption handling, it would also be relevant to
leverage the data gathered from the execution more effectively. In this work, we use the
data for demand forecasting and adaptive parameter calculation. There are several other
potential uses for the collected data such as the estimation of vehicle travel times or the
usage on a tactical planning level to determine an adequate vehicle fleet size throughout
the day.

Besides the scope of the planning and simulation framework, there are naturally also several
ways to extend the presented operational planning algorithms. The vehicle routing solution
is relatively simple in nature and could be improved in several ways. In our opinion, the
cheapest insertion dispatching heuristic is well-suited for its job to find insertion positions
for new trip requests very quickly. However, the local search improvement phase could
be extended in multiple ways. For instance, there is a large amount of existing work on
search operators and search algorithms for vehicle routing problems that could be adapted
to the dynamic planning setting of dynamic ride-sharing. This could improve the solution
quality compared to the results from this work as we only worked with simple search
operators. Besides improving the algorithm itself, we also see several application-specific
requirements that could be considered in more advanced ways in our approach. We
discussed the integration with the execution level concerning disruption handling and
re-routing above. Besides this, we consider the integration of pre-booked trip requests
or some form of combined static and dynamic planning to be a promising direction for
future work. In many application settings, it is highly relevant to consider a portion of
the trip requests in advance and make commitments toward the customer. To improve
the robustness and reliability of routing plans, we envision the usage of more data-driven
approaches. Particularly promising is the estimation of realistic travel times as this would
lead to fewer delays and disruptions during the execution of routes.

Concerning the task of vehicle repositioning, our algorithm might be improved in several
ways. For instance, the adaptive parameter tuning process only considers information
about past trip requests and routes. It would also be possible to include data from forecasts
and future vehicle routes. In general, the currently planned vehicle routes could be
incorporated into our mathematical model in some form to utilize this information instead
of only using the vehicle locations at the time the model is solved. One drawback of our
algorithm is that it relies on a commercial grade mixed-integer programming solver. We
think that a similar modeling approach as ours could be used in a network flow formulation,

122



7.2 Outlook

removing the need for a solver. Another direction of research would be the usage of our
repositioning model to other application domains. In this focus, we focused solely on
the use case of dynamic ride-sharing. However, repositioning problems arise in many
other settings such as ambulance repositioning or the repositioning of autonomous guided
vehicles in manufacturing and warehousing. We believe that the general principles behind
our model could be transferred to other domains.

Lastly, we believe that a detailed study of decentralized approaches and a comparison
to centralized algorithms such as the ones presented in this work would be highly rele-
vant. Many large ride-sharing providers such as Uber and Lyft rely on decentralized and
incentive-based approaches to control their drivers due to their business model. Our simu-
lation framework could be extended to include decentral driver decisions. For instance,
drivers should have the option to reject assigned routes and repositioning would be based
on price incentives. On the planning side, the central repositioning approach would be
replaced by pricing algorithms. In theory, centralized algorithms should perform better
than decentralized ones as they have complete control over drivers and vehicles. In our
view, a structured quantitative comparison of decentral and central control mechanisms
for repositioning would be a promising future research topic.

123





Bibliography

Adnan, M., F. Pereira, C. L. Azevedo, K. Basak, M. Lovric, S. Raveau, Y. Zhu, J. Ferreira,
C. Zegras, and M. Ben-Akiva (2016). SimMobility: a multiscale integrated agent-based
simulation platform. Transportation Research Board 95th Annual Meeting.

Agatz, N., A. Erera, M. Savelsbergh, and X. Wang (2012). Optimization for dynamic ride-
sharing: A review. European Journal of Operational Research 223 (2), pp. 295–303. doi:
10.1016/j.ejor.2012.05.028.

Aimsun (2022). Aimsun Ride. Accessed 12 Aug 2022. https://www.aimsun.com/de/aimsun-
ride-forschungsprogramm/.

Alonso-Mora, J., S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus (2017a). On-demand
high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the
National Academy of Sciences 114 (3), pp. 462–467. doi: 10.1073/pnas.1611675114.

Alonso-Mora, J., A. Wallar, and D. Rus (2017b). Predictive routing for autonomous mobility-
on-demand systems with ride-sharing. 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). Vancouver, BC: IEEE, pp. 3583–3590. doi: 10.1109/
IROS.2017.8206203.

American Public Transportation Association (2007). Public Transportation Fact Book, 2007.
Tech. rep.

Attanasio, A., J.-F. Cordeau, G. Ghiani, and G. Laporte (2004). Parallel Tabu search heuristics
for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing 30 (3), pp. 377–387.
doi: 10.1016/j.parco.2003.12.001.

Auld, J., M. Hope, H. Ley, V. Sokolov, B. Xu, and K. Zhang (2016). POLARIS: Agent-based
modeling framework development and implementation for integrated travel demand
and network and operations simulations. Transportation Research Part C: Emerging
Technologies 64, pp. 101–116. doi: 10.1016/j.trc.2015.07.017.

Azevedo, C. L. et al. (2016). Microsimulation of Demand and Supply of Autonomous
Mobility On Demand. Transportation Research Record: Journal of the Transportation
Research Board 2564 (1), pp. 21–30. doi: 10.3141/2564-03.

125

https://doi.org/10.1016/j.ejor.2012.05.028
https://www.aimsun.com/de/aimsun-ride-forschungsprogramm/
https://www.aimsun.com/de/aimsun-ride-forschungsprogramm/
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1109/IROS.2017.8206203
https://doi.org/10.1109/IROS.2017.8206203
https://doi.org/10.1016/j.parco.2003.12.001
https://doi.org/10.1016/j.trc.2015.07.017
https://doi.org/10.3141/2564-03


7 Bibliography

Baykasoğlu, A., K. Subulan, A. S. Taşan, and N. Dudaklı (2019). A review of fleet planning
problems in single andmultimodal transportation systems. Transportmetrica A: Transport
Science 15 (2), pp. 631–697. doi: 10.1080/23249935.2018.1523249.

Beaudry, A., G. Laporte, T. Melo, and S. Nickel (2010). Dynamic transportation of patients
in hospitals. OR Spectrum 32 (1), pp. 77–107. doi: 10.1007/s00291-008-0135-6.

Beaujon, G. J. and M. A. Turnquist (1991). A Model for Fleet Sizing and Vehicle Allocation.
Transportation Science 25 (1), pp. 19–45. doi: 10.1287/trsc.25.1.19.

Behrisch, M., L. Bieker, J. Erdmann, and D. Krajzewicz (2011). SUMO – Simulation of Urban
MObility: An Overview. Proceedings of SIMUL 2011. Ed. by A. Omerovic, D. Simoni, and
G. Bobashev. Barcelona: ThinkMind.

Bent, R. and P. Van Hentenryck (2004). Scenario-Based Planning for Partially Dynamic
Vehicle Routing with Stochastic Customers. Operations Research 52 (6), pp. 977–987. doi:
10.1287/opre.1040.0124.

Bent, R. and P. Van Hentenryck (2007). Waiting and Relocation Strategies in Online
Stochastic Vehicle Routing. Proceedings of the 20th International Joint Conference on
Artificial Intelligence. Ed. by M. M. Veloso. Hyderabad: Morgan Kaufmann Publishers
Inc., pp. 1816–1821.

Berbeglia, G., J.-F. Cordeau, and G. Laporte (2010). Dynamic pickup and delivery problems.
European Journal of Operational Research 202 (1), pp. 8–15. doi: 10.1016/j.ejor.2009.
04.024.

Bertoli, F., P. Kilby, and T. Urli (2020). A column-generation-based approach to fleet design
problems mixing owned and hired vehicles. International Transactions in Operational
Research 27 (2), pp. 899–923. doi: 10.1111/itor.12647.

Bertsimas, D. and J. Tsitsiklis (1993). Simulated Annealing. Statistical Science 8 (1). doi:
10.1214/ss/1177011077.

Bischoff, J., M. Maciejewski, and K. Nagel (2017). City-wide shared taxis: A simulation
study in Berlin. 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC). Yokohama: IEEE, pp. 275–280. doi: 10.1109/ITSC.2017.8317926.

Borndörfer, R., M. Grötschel, F. Klostermeier, and C. Küttner (1999). Telebus Berlin: Vehicle
Scheduling in a Dial-a-Ride System. Computer-Aided Transit Scheduling. Ed. by N. H. M.
Wilson. Vol. 471. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 391–422. doi:
10.1007/978-3-642-85970-0_19.

Boyacı, B., K. G. Zografos, and N. Geroliminis (2017). An integrated optimization-simulation
framework for vehicle and personnel relocations of electric carsharing systems with

126

https://doi.org/10.1080/23249935.2018.1523249
https://doi.org/10.1007/s00291-008-0135-6
https://doi.org/10.1287/trsc.25.1.19
https://doi.org/10.1287/opre.1040.0124
https://doi.org/10.1016/j.ejor.2009.04.024
https://doi.org/10.1016/j.ejor.2009.04.024
https://doi.org/10.1111/itor.12647
https://doi.org/10.1214/ss/1177011077
https://doi.org/10.1109/ITSC.2017.8317926
https://doi.org/10.1007/978-3-642-85970-0_19


7 Bibliography

reservations. Transportation Research Part B: Methodological 95, pp. 214–237. doi: 10.
1016/j.trb.2016.10.007.

Bruglieri, M., F. Pezzella, and O. Pisacane (2019). An Adaptive Large Neighborhood Search
for relocating vehicles in electric carsharing services. Discrete Applied Mathematics 253.
doi: 10.1016/j.dam.2018.03.067.

Burke, E. K., P. De Causmaecker, G. V. Berghe, and H. Van Landeghem (2004). The State of
the Art of Nurse Rostering. Journal of Scheduling 7 (6), pp. 441–499. doi: 10.1023/B:
JOSH.0000046076.75950.0b.

Casas, J., J. L. Ferrer, D. Garcia, J. Perarnau, and A. Torday (2010). Traffic Simulation with
Aimsun. Fundamentals of Traffic Simulation. Ed. by J. Barceló. Vol. 145. New York, NY:
Springer New York, pp. 173–232. doi: 10.1007/978-1-4419-6142-6_5.

Castiglione, J. and D. Cooper (2018). TNCs and Congestion. Accessed 11 Mar 2020. https:
//www.sfcta.org/projects/tncs-and-congestion.

Cats, O., R. Kucharski, S. R. Danda, and M. Yap (2022). Beyond the dichotomy: How
ride-hailing competes with and complements public transport. PLOS ONE 17 (1). doi:
10.1371/journal.pone.0262496.

Chan, N. D. and S. A. Shaheen (2012). Ridesharing in North America: Past, Present, and
Future. Transport Reviews 32 (1), pp. 93–112. doi: 10.1080/01441647.2011.621557.

Chen, L., Y. Gao, Z. Liu, X. Xiao, C. S. Jensen, and Y. Zhu (2018). PTrider: a price-and-time-
aware ridesharing system. Proceedings of the VLDB Endowment 11 (12), pp. 1938–1941.
doi: 10.14778/3229863.3236229.

Cheng, P., H. Xin, and L. Chen (2017). Utility-Aware Ridesharing on Road Networks.
Proceedings of the 2017 ACM International Conference onManagement of Data. Chicago, IL:
Association for Computing Machinery, pp. 1197–1210. doi: 10.1145/3035918.3064008.

Chow, J. and J. Jung (2019). Large-Scale Simulation-Based Evaluation of Fleet Repositioning
Strategies for Dynamic Rideshare in New York City. SAE Technical Papers. doi: 10.4271/
2019-01-0924.

Cordeau, J.-F. (2006). A Branch-and-Cut Algorithm for the Dial-a-Ride Problem. Operations
Research 54 (3), pp. 573–586. doi: 10.1287/opre.1060.0283.

Cordeau, J.-F. and G. Laporte (2003). A tabu search heuristic for the static multi-vehicle
dial-a-ride problem. Transportation Research Part B: Methodological 37 (6), pp. 579–594.
doi: 10.1016/S0191-2615(02)00045-0.

127

https://doi.org/10.1016/j.trb.2016.10.007
https://doi.org/10.1016/j.trb.2016.10.007
https://doi.org/10.1016/j.dam.2018.03.067
https://doi.org/10.1023/B:JOSH.0000046076.75950.0b
https://doi.org/10.1023/B:JOSH.0000046076.75950.0b
https://doi.org/10.1007/978-1-4419-6142-6_5
https://www.sfcta.org/projects/tncs-and-congestion
https://www.sfcta.org/projects/tncs-and-congestion
https://doi.org/10.1371/journal.pone.0262496
https://doi.org/10.1080/01441647.2011.621557
https://doi.org/10.14778/3229863.3236229
https://doi.org/10.1145/3035918.3064008
https://doi.org/10.4271/2019-01-0924
https://doi.org/10.4271/2019-01-0924
https://doi.org/10.1287/opre.1060.0283
https://doi.org/10.1016/S0191-2615(02)00045-0


7 Bibliography

Cordeau, J.-F. and G. Laporte (2007). The dial-a-ride problem: models and algorithms.
Annals of Operations Research 153 (1), pp. 29–46. doi: 10.1007/s10479-007-0170-8.

Cordeau, J.-F., G. Laporte, and S. Ropke (2008). Recent Models and Algorithms for One-
to-One Pickup and Delivery Problems. The Vehicle Routing Problem: Latest Advances
and New Challenges. Ed. by B. Golden, S. Raghavan, and E. Wasil. Vol. 43. Boston, MA:
Springer US, pp. 327–357. doi: 10.1007/978-0-387-77778-8_15.

Crainic, T. G. (2000). Service network design in freight transportation. European Journal of
Operational Research 122 (2), pp. 272–288. doi: 10.1016/S0377-2217(99)00233-7.

Daskin,M. S., ed. (2013).Network andDiscrete Location: Models, Algorithms, and Applications,
Second Edition. Hoboken, NJ: John Wiley & Sons, Inc. doi: 10.1002/9781118537015.

Deb, S., K. Tammi, K. Kalita, and P. Mahanta (2018). Review of recent trends in charging
infrastructure planning for electric vehicles. Wiley Interdisciplinary Reviews: Energy and
Environment 7 (6). doi: 10.1002/wene.306.

Desaulniers, G. and M. D. Hickman (2007). Chapter 2 Public Transit. Handbooks in Op-
erations Research and Management Science. Ed. by C. Barnhart and G. Laporte. Vol. 14.
Elsevier, pp. 69–127. doi: 10.1016/S0927-0507(06)14002-5.

Dibbelt, J., B. Strasser, and D. Wagner (2016). Customizable Contraction Hierarchies.
Journal of Experimental Algorithmics 21 (1), pp. 1–49. doi: 10.1145/2886843.

Didi Chuxing (2020). KDD Cup 2020 – Learning to Dispatch and Reposition on a Mobility-
on-Demand Platform. Accessed 16 Jul 2020. https://outreach.didichuxing.com/
appEn-vue/KDD_CUP_2020.

Doubek, J. (2018). New York City Temporarily Halts More Uber And Lyft Cars On The
Road. Accessed 11 Mar 2020. https://www.npr.org/2018/08/09/637008474/new-york-
city-temporarily-halts-more-uber-and-lyft-cars-on-the-road.

Drexl, M. and M. Schneider (2015). A survey of variants and extensions of the location-
routing problem. European Journal of Operational Research 241 (2), pp. 283–308. doi:
10.1016/j.ejor.2014.08.030.

Eglese, R. and S. Zambirinis (2018). Disruption management in vehicle routing and schedul-
ing for road freight transport: a review. TOP 26 (1), pp. 1–17. doi: 10.1007/s11750-018-
0469-4.

Engelhardt, R., F. Dandl, and K. Bogenberger (2020). Speed-up Heuristic for an On-Demand
Ride-Pooling Algorithm. doi: 10.48550/arXiv.2007.14877.

128

https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1007/978-0-387-77778-8_15
https://doi.org/10.1016/S0377-2217(99)00233-7
https://doi.org/10.1002/9781118537015
https://doi.org/10.1002/wene.306
https://doi.org/10.1016/S0927-0507(06)14002-5
https://doi.org/10.1145/2886843
https://outreach.didichuxing.com/appEn-vue/KDD_CUP_2020
https://outreach.didichuxing.com/appEn-vue/KDD_CUP_2020
https://www.npr.org/2018/08/09/637008474/new-york-city-temporarily-halts-more-uber-and-lyft-cars-on-the-road
https://www.npr.org/2018/08/09/637008474/new-york-city-temporarily-halts-more-uber-and-lyft-cars-on-the-road
https://doi.org/10.1016/j.ejor.2014.08.030
https://doi.org/10.1007/s11750-018-0469-4
https://doi.org/10.1007/s11750-018-0469-4
https://doi.org/10.48550/arXiv.2007.14877


7 Bibliography

Engelhardt, R., F. Dandl, A.-A. Syed, Y. Zhang, F. Fehn, F. Wolf, and K. Bogenberger (2022).
FleetPy: A Modular Open-Source Simulation Tool for Mobility On-Demand Services.
doi: 10.48550/ARXIV.2207.14246.

Ernst, A., H. Jiang, M. Krishnamoorthy, and D. Sier (2004). Staff scheduling and rostering:
A review of applications, methods and models. European Journal of Operational Research
153 (1), pp. 3–27. doi: 10.1016/S0377-2217(03)00095-X.

Etezadi, T. and J. E. Beasley (1983). Vehicle Fleet Composition. Journal of the Operational
Research Society 34 (1), pp. 87–91. doi: 10.1057/jors.1983.11.

Fagnant, D. J. and K. M. Kockelman (2018). Dynamic ride-sharing and fleet sizing for a
system of shared autonomous vehicles in Austin, Texas. Transportation 45 (1), pp. 143–
158. doi: 10.1007/s11116-016-9729-z.

Ferrero, F., G. Perboli, M. Rosano, and A. Vesco (2018). Car-sharing services: An annotated
review. Sustainable Cities and Society 37, pp. 501–518. doi: 10.1016/j.scs.2017.09.020.

Ferrucci, F., S. Bock, and M. Gendreau (2013). A pro-active real-time control approach for
dynamic vehicle routing problems dealing with the delivery of urgent goods. European
Journal of Operational Research 225 (1), pp. 130–141. doi: 10.1016/j.ejor.2012.09.016.

Fishman, E., S. Washington, and N. Haworth (2013). Bike Share: A Synthesis of the Litera-
ture. Transport Reviews 33 (2), pp. 148–165. doi: 10.1080/01441647.2013.775612.

Fitzsimmons, E. G. (2017). Subway Ridership Declines in New York. Is Uber to Blame?
Accessed 25 Oct 2022. https://www.nytimes.com/2017/02/23/nyregion/new-york-
city-subway-ridership.html.

Funke, B., T. Grünert, and S. Irnich (2005). Local Search for Vehicle Routing and Scheduling
Problems: Review and Conceptual Integration. Journal of Heuristics 11 (4), pp. 267–306.
doi: 10.1007/s10732-005-1997-2.

Gambella, C., E. Malaguti, F. Masini, and D. Vigo (2018). Optimizing relocation operations
in electric car-sharing. Omega 81, pp. 234–245. doi: 10.1016/j.omega.2017.11.007.

Gehrke, S. R., A. Felix, and T. G. Reardon (2019). Substitution of Ride-Hailing Services
for More Sustainable Travel Options in the Greater Boston Region. Transportation
Research Record: Journal of the Transportation Research Board 2673 (1), pp. 438–446. doi:
10.1177/0361198118821903.

Glover, F. and M. Laguna (1998). Tabu Search. Handbook of Combinatorial Optimization.
Ed. by D.-Z. Du and P. M. Pardalos. Boston, MA: Springer US, pp. 2093–2229. doi:
10.1007/978-1-4613-0303-9_33.

129

https://doi.org/10.48550/ARXIV.2207.14246
https://doi.org/10.1016/S0377-2217(03)00095-X
https://doi.org/10.1057/jors.1983.11
https://doi.org/10.1007/s11116-016-9729-z
https://doi.org/10.1016/j.scs.2017.09.020
https://doi.org/10.1016/j.ejor.2012.09.016
https://doi.org/10.1080/01441647.2013.775612
https://www.nytimes.com/2017/02/23/nyregion/new-york-city-subway-ridership.html
https://www.nytimes.com/2017/02/23/nyregion/new-york-city-subway-ridership.html
https://doi.org/10.1007/s10732-005-1997-2
https://doi.org/10.1016/j.omega.2017.11.007
https://doi.org/10.1177/0361198118821903
https://doi.org/10.1007/978-1-4613-0303-9_33


7 Bibliography

Golalikhani, M., B. B. Oliveira, M. A. Carravilla, J. F. Oliveira, and A. P. Antunes (2021).
Carsharing: A review of academic literature and business practices toward an integrated
decision-support framework. Transportation Research Part E: Logistics and Transportation
Review 149, p. 102280. doi: 10.1016/j.tre.2021.102280.

Groër, C., B. Golden, and E. Wasil (2010). A library of local search heuristics for the
vehicle routing problem. Mathematical Programming Computation 2 (2), pp. 79–101. doi:
10.1007/s12532-010-0013-5.

Gurumurthy, K. M., F. de Souza, A. Enam, and J. Auld (2020). Integrating Supply and
Demand Perspectives for a Large-Scale Simulation of Shared Autonomous Vehicles.
Transportation Research Record: Journal of the Transportation Research Board 2674 (7),
pp. 181–192. doi: 10.1177/0361198120921157.

Hansen, P. and N. Mladenović (2003). Variable Neighborhood Search. Handbook of Meta-
heuristics. Ed. by F. Glover and G. A. Kochenberger. Vol. 57. Boston, MA: Springer US,
pp. 145–184. doi: 10.1007/0-306-48056-5_6.

Hoff, A., H. Andersson, M. Christiansen, G. Hasle, and A. Løkketangen (2010). Industrial
aspects and literature survey: Fleet composition and routing. Computers & Operations
Research 37 (12), pp. 2041–2061. doi: 10.1016/j.cor.2010.03.015.

Horni, A., K. Nagel, and K. Axhausen, eds. (2016). The Multi-Agent Transport Simulation
MATSim. London: Ubiquity Press. doi: 10.5334/baw.

Huang, H., M. Pouls, A. Meyer, and M. Pauly (2020a). Travel Time Prediction Using Tree-
Based Ensembles. Computational Logistics. Ed. by E. Lalla-Ruiz, M. Mes, and S. Voß.
Vol. 12433. Cham: Springer International Publishing, pp. 412–427. doi: 10.1007/978-3-
030-59747-4_27.

Huang, K., K. An, J. Rich, and W. Ma (2020b). Vehicle relocation in one-way station-based
electric carsharing systems: A comparative study of operator-based and user-based
methods. Transportation Research Part E: Logistics and Transportation Review 142. doi:
10.1016/j.tre.2020.102081.

Huang, Y., F. Bastani, R. Jin, and X. S. Wang (2014). Large scale real-time ridesharing
with service guarantee on road networks. Proceedings of the VLDB Endowment 7 (14),
pp. 2017–2028. doi: 10.14778/2733085.2733106.

Ibarra-Rojas, O. J., F. Delgado, R. Giesen, and J. C. Muñoz (2015). Planning, operation, and
control of bus transport systems: A literature review. Transportation Research Part B:
Methodological 77, pp. 38–75. doi: 10.1016/j.trb.2015.03.002.

130

https://doi.org/10.1016/j.tre.2021.102280
https://doi.org/10.1007/s12532-010-0013-5
https://doi.org/10.1177/0361198120921157
https://doi.org/10.1007/0-306-48056-5_6
https://doi.org/10.1016/j.cor.2010.03.015
https://doi.org/10.5334/baw
https://doi.org/10.1007/978-3-030-59747-4_27
https://doi.org/10.1007/978-3-030-59747-4_27
https://doi.org/10.1016/j.tre.2020.102081
https://doi.org/10.14778/2733085.2733106
https://doi.org/10.1016/j.trb.2015.03.002


7 Bibliography

Ichoua, S., M. Gendreau, and J.-Y. Potvin (2006). Exploiting Knowledge About Future
Demands for Real-Time Vehicle Dispatching. Transportation Science 40 (2), pp. 211–225.
doi: 10.1287/trsc.1050.0114.

Jittrapirom, P., V. Caiati, A.-M. Feneri, S. Ebrahimigharehbaghi, M. J. A. González, and
J. Narayan (2017). Mobility as a Service: A Critical Review of Definitions, Assessments
of Schemes, and Key Challenges. Urban Planning 2 (2), pp. 13–25. doi: 10.17645/up.
v2i2.931.

Jorge, D. and G. Correia (2013). Carsharing systems demand estimation and defined op-
erations: a literature review. European Journal of Transport and Infrastructure Research
13 (3). doi: 10.18757/EJTIR.2013.13.3.2999.

Jung, J., R. Jayakrishnan, and J. Y. Park (2016). Dynamic Shared-Taxi Dispatch Algorithm
with Hybrid-Simulated Annealing: Dynamic shared-taxi dispatch algorithm. Computer-
Aided Civil and Infrastructure Engineering 31 (4), pp. 275–291. doi: 10.1111/mice.12157.

Kagerbauer, M., N. Kostorz, G. Wilkes, F. Dandl, R. Engelhardt, U. Glöckl, E. Fraedrich, and
F. Zwick (2021). Ridepooling in der Modellierung des Gesamtverkehrs - Methodenbericht
zur MOIA Begleitforschung. doi: 10.5445/IR/1000141282.

Ke, J., H. Zheng, H. Yang, Xiqun, and Chen (2017). Short-Term Forecasting of Passenger
Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach.
Transportation Research Part C: Emerging Technologies 85, pp. 591–608. doi: 10.1016/j.
trc.2017.10.016. arXiv: 1706.06279.

Koç, Ç., T. Bektaş, O. Jabali, and G. Laporte (2016). The impact of depot location, fleet
composition and routing on emissions in city logistics. Transportation Research Part B:
Methodological 84, pp. 81–102. doi: 10.1016/j.trb.2015.12.010.

Kucharski, R. and O. Cats (2022). Simulating two-sided mobility platforms with MaaSSim.
PLOS ONE 17 (6). doi: 10.1371/journal.pone.0269682.

Lai, D. S. W. and J. M. Y. Leung (2018). Real-time rescheduling and disruption management
for public transit. Transportmetrica B: Transport Dynamics 6 (1), pp. 17–33. doi: 10.1080/
21680566.2017.1358678.

Li, B., D. Zhang, L. Sun, C. Chen, S. Li, G. Qi, and Q. Yang (2011). Hunting or waiting?
Discovering passenger-finding strategies from a large-scale real-world taxi dataset. 2011
IEEE International Conference on Pervasive Computing and Communications Workshops
(PERCOM Workshops). Seattle, WA: IEEE, pp. 63–68. doi: 10 . 1109 / PERCOMW . 2011 .
5766967.

131

https://doi.org/10.1287/trsc.1050.0114
https://doi.org/10.17645/up.v2i2.931
https://doi.org/10.17645/up.v2i2.931
https://doi.org/10.18757/EJTIR.2013.13.3.2999
https://doi.org/10.1111/mice.12157
https://doi.org/10.5445/IR/1000141282
https://doi.org/10.1016/j.trc.2017.10.016
https://doi.org/10.1016/j.trc.2017.10.016
https://arxiv.org/abs/1706.06279
https://doi.org/10.1016/j.trb.2015.12.010
https://doi.org/10.1371/journal.pone.0269682
https://doi.org/10.1080/21680566.2017.1358678
https://doi.org/10.1080/21680566.2017.1358678
https://doi.org/10.1109/PERCOMW.2011.5766967
https://doi.org/10.1109/PERCOMW.2011.5766967


7 Bibliography

Li, X., G. Pan, Z. Wu, G. Qi, S. Li, D. Zhang, W. Zhang, and Z. Wang (2012). Prediction
of urban human mobility using large-scale taxi traces and its applications. Frontiers of
Computer Science 6 (1), pp. 111–121. doi: 10.1007/s11704-011-1192-6.

Liao, S., L. Zhou, X. Di, B. Yuan, and J. Xiong (2018). Large-scale short-term urban taxi de-
mand forecasting using deep learning. 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC). Jeju: IEEE, pp. 428–433. doi: 10.1109/ASPDAC.2018.8297361.

Lippi, M., M. Bertini, and P. Frasconi (2013). Short-Term Traffic Flow Forecasting: An Experi-
mental Comparison of Time-Series Analysis and Supervised Learning. IEEE Transactions
on Intelligent Transportation Systems 14 (2), pp. 871–882. doi: 10.1109/TITS.2013.
2247040.

Lokhandwala, M. and H. Cai (2020). Siting charging stations for electric vehicle adoption
in shared autonomous fleets. Transportation Research Part D: Transport and Environment
80. doi: 10.1016/j.trd.2020.102231.

Lowalekar, M., P. Varakantham, and P. Jaillet (2019). ZAC: A Zone Path Construction
Approach for Effective Real-Time Ridesharing. Proceedings of the International Conference
on Automated Planning and Scheduling 29 (1), pp. 528–538. doi: 10.1609/icaps.v29i1.
3519.

Lowalekar, M., P. Varakantham, and P. Jaillet (2021). Zone pAth Construction (ZAC) based
Approaches for Effective Real-Time Ridesharing. Journal of Artificial Intelligence Research
70, pp. 119–167. doi: 10.1613/jair.1.11998.

Lyft (2022). Scheduled rides for riders. Accessed 21 Oct 2022. https://help.lyft.com/hc/
e/all/articles/115013078668-Scheduled-rides-for-riders.

Ma, S., Y. Zheng, and O. Wolfson (2013). T-share: A large-scale dynamic taxi ridesharing
service. 2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane:
IEEE, pp. 410–421. doi: 10.1109/ICDE.2013.6544843.

Ma, S., Y. Zheng, and O. Wolfson (2015). Real-Time City-Scale Taxi Ridesharing. IEEE
Transactions on Knowledge and Data Engineering 27 (7), pp. 1782–1795. doi: 10.1109/
TKDE.2014.2334313.

Mallig, N., M. Kagerbauer, and P. Vortisch (2013). mobiTopp – A Modular Agent-based
Travel Demand Modelling Framework. Procedia Computer Science 19, pp. 854–859. doi:
10.1016/j.procs.2013.06.114.

Melo, M. T., S. Nickel, and F. Saldanha-da-Gama (2009). Facility location and supply chain
management – A review. European Journal of Operational Research 196 (2), pp. 401–412.
doi: 10.1016/j.ejor.2008.05.007.

132

https://doi.org/10.1007/s11704-011-1192-6
https://doi.org/10.1109/ASPDAC.2018.8297361
https://doi.org/10.1109/TITS.2013.2247040
https://doi.org/10.1109/TITS.2013.2247040
https://doi.org/10.1016/j.trd.2020.102231
https://doi.org/10.1609/icaps.v29i1.3519
https://doi.org/10.1609/icaps.v29i1.3519
https://doi.org/10.1613/jair.1.11998
https://help.lyft.com/hc/e/all/articles/115013078668-Scheduled-rides-for-riders
https://help.lyft.com/hc/e/all/articles/115013078668-Scheduled-rides-for-riders
https://doi.org/10.1109/ICDE.2013.6544843
https://doi.org/10.1109/TKDE.2014.2334313
https://doi.org/10.1109/TKDE.2014.2334313
https://doi.org/10.1016/j.procs.2013.06.114
https://doi.org/10.1016/j.ejor.2008.05.007


7 Bibliography

Mes, M., M. van der Heijden, and P. Schuur (2010). Look-ahead strategies for dynamic
pickup and delivery problems. OR Spectrum 32 (2), pp. 395–421. doi: 10.1007/s00291-
008-0146-3.

Mitrović-Minić, S. and G. Laporte (2004). Waiting strategies for the dynamic pickup and
delivery problem with time windows. Transportation Research Part B: Methodological
38 (7), pp. 635–655. doi: 10.1016/j.trb.2003.09.002.

MOIA (2022a). MOIA Servicegebiet. Accessed 01 Aug 2022. https://help.moia.io/hc/
de/articles/360000988738-Servicegebiet-Hamburg-.

MOIA (2022b). What are MOIA stops? Accessed 21 Oct 2022. https://help.moia.io/hc/
en-us/articles/360000792145-What-are-MOIA-stops-.

Molenbruch, Y., K. Braekers, and A. Caris (2017). Typology and literature review for dial-a-
ride problems. Annals of Operations Research 259 (1), pp. 295–325. doi: 10.1007/s10479-
017-2525-0.

Nelson, E. and N. Sadowsky (2019). Estimating the Impact of Ride-Hailing App Company
Entry on Public Transportation Use in Major US Urban Areas. The B.E. Journal of
Economic Analysis & Policy 19 (1). doi: 10.1515/bejeap-2018-0151.

Nourinejad, M. and M. J. Roorda (2014). A dynamic carsharing decision support system.
Transportation Research Part E: Logistics and Transportation Review 66, pp. 36–50. doi:
10.1016/j.tre.2014.03.003.

NYC Taxi and Limousine Commission (2022). TLC Trip Record Data. Accessed 17 Oct 2022.
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

Ong, H. Y., D. Freund, and D. Crapis (2021). Driver Positioning and Incentive Budgeting
with an Escrow Mechanism for Ride-Sharing Platforms. INFORMS Journal on Applied
Analytics 51 (5), pp. 373–390. doi: 10.1287/inte.2021.1091.

Parragh, S. N., K. F. Doerner, and R. F. Hartl (2008). A survey on pickup and delivery
problems: Part II: Transportation between pickup and delivery locations. Journal für
Betriebswirtschaft 58 (2), pp. 81–117. doi: 10.1007/s11301-008-0036-4.

Pillac, V., M. Gendreau, C. Guéret, and A. L. Medaglia (2013). A review of dynamic vehicle
routing problems. European Journal of Operational Research 225 (1), pp. 1–11. doi:
10.1016/j.ejor.2012.08.015.

Pouls, M., N. Ahuja, K. Glock, and A. Meyer (2022). Adaptive forecast-driven repositioning
for dynamic ride-sharing. Annals of Operations Research. doi: 10.1007/s10479-022-
04560-3.

133

https://doi.org/10.1007/s00291-008-0146-3
https://doi.org/10.1007/s00291-008-0146-3
https://doi.org/10.1016/j.trb.2003.09.002
https://help.moia.io/hc/de/articles/360000988738-Servicegebiet-Hamburg-
https://help.moia.io/hc/de/articles/360000988738-Servicegebiet-Hamburg-
https://help.moia.io/hc/en-us/articles/360000792145-What-are-MOIA-stops-
https://help.moia.io/hc/en-us/articles/360000792145-What-are-MOIA-stops-
https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1515/bejeap-2018-0151
https://doi.org/10.1016/j.tre.2014.03.003
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://doi.org/10.1287/inte.2021.1091
https://doi.org/10.1007/s11301-008-0036-4
https://doi.org/10.1016/j.ejor.2012.08.015
https://doi.org/10.1007/s10479-022-04560-3
https://doi.org/10.1007/s10479-022-04560-3


7 Bibliography

Pouls, M., A. Meyer, and N. Ahuja (2020). Idle Vehicle Repositioning for Dynamic Ride-
Sharing. Computational Logistics. Ed. by E. Lalla-Ruiz, M. Mes, and S. Voß. Vol. 12433.
Cham: Springer International Publishing, pp. 507–521. doi: 10.1007/978-3-030-59747-
4_33.

Pouls, M., A. Meyer, and K. Glock (2021). Real-Time Dispatching with Local Search Improve-
ment for Dynamic Ride-Sharing. Computational Logistics. Ed. by M. Mes, E. Lalla-Ruiz,
and S. Voß. Vol. 13004. Cham: Springer International Publishing, pp. 299–315. doi:
10.1007/978-3-030-87672-2_20.

Powell, J. W., Y. Huang, F. Bastani, and M. Ji (2011). Towards Reducing Taxicab Cruis-
ing Time Using Spatio-Temporal Profitability Maps. Advances in Spatial and Temporal
Databases. Ed. by D. Pfoser, Y. Tao, K. Mouratidis, M. A. Nascimento, M. Mokbel, S.
Shekhar, and Y. Huang. Vol. 6849. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 242–
260. doi: 10.1007/978-3-642-22922-0_15.

Psaraftis, H. N., M. Wen, and C. A. Kontovas (2016). Dynamic vehicle routing problems:
Three decades and counting. Networks 67 (1), pp. 3–31. doi: 10.1002/net.21628.

PTV Group (2022a). PTV MaaS Modeller. Accessed 12 Aug 2022. https://www.ptvgroup.
com/de/mobilitynext/.

PTV Group (2022b). Verkehrsplanungssoftware PTV Visum. Accessed 12 Aug 2022. https:
//www.myptv.com/de/mobilitaetssoftware/ptv-visum.

Qurashi, M., H. Jiang, and C. Antoniou (2020). Modeling autonomous dynamic vanpooling
services in SUMO by integrating a dynamic routing scheduler. doi: 10.5281/ZENODO.
4955079.

Reiss, S. and K. Bogenberger (2017). A Relocation Strategy for Munich’s Bike Sharing
System: Combining an operator-based and a user-based Scheme. Transportation Research
Procedia 22, pp. 105–114. doi: 10.1016/j.trpro.2017.03.016.

Repoux, M., B. Boyacı, and N. Geroliminis (2015). Simulation and optimization of one-
way car-sharing systems with variant relocation policies. TRB 94th Annual Meeting
Compendium of Papers.

Repoux, M., M. Kaspi, B. Boyacı, and N. Geroliminis (2019). Dynamic prediction-based
relocation policies in one-way station-based carsharing systems with complete journey
reservations. Transportation Research Part B: Methodological 130, pp. 82–104. doi: 10.
1016/j.trb.2019.10.004.

Riley, C., P. van Hentenryck, and E. Yuan (2020). Real-Time Dispatching of Large-Scale
Ride-Sharing Systems: Integrating Optimization, Machine Learning, and Model Predic-
tive Control. Proceedings of the Twenty-Ninth International Joint Conference on Artificial

134

https://doi.org/10.1007/978-3-030-59747-4_33
https://doi.org/10.1007/978-3-030-59747-4_33
https://doi.org/10.1007/978-3-030-87672-2_20
https://doi.org/10.1007/978-3-642-22922-0_15
https://doi.org/10.1002/net.21628
https://www.ptvgroup.com/de/mobilitynext/
https://www.ptvgroup.com/de/mobilitynext/
https://www.myptv.com/de/mobilitaetssoftware/ptv-visum
https://www.myptv.com/de/mobilitaetssoftware/ptv-visum
https://doi.org/10.5281/ZENODO.4955079
https://doi.org/10.5281/ZENODO.4955079
https://doi.org/10.1016/j.trpro.2017.03.016
https://doi.org/10.1016/j.trb.2019.10.004
https://doi.org/10.1016/j.trb.2019.10.004


7 Bibliography

Intelligence. Yokohama: International Joint Conferences on Artificial Intelligence Orga-
nization, pp. 4417–4423. doi: 10.24963/ijcai.2020/609.

Riley, C., A. Legrain, and P. Van Hentenryck (2019). Column Generation for Real-Time
Ride-Sharing Operations. Integration of Constraint Programming, Artificial Intelligence,
and Operations Research. Ed. by L.-M. Rousseau and K. Stergiou. Vol. 11494. Cham:
Springer International Publishing, pp. 472–487. doi: 10.1007/978-3-030-19212-9_31.

Ritzinger, U., J. Puchinger, and R. F. Hartl (2016). A survey on dynamic and stochastic
vehicle routing problems. International Journal of Production Research 54 (1), pp. 215–231.
doi: 10.1080/00207543.2015.1043403.

Ruch, C., S. Horl, and E. Frazzoli (2018). AMoDeus, a Simulation-Based Testbed for Au-
tonomous Mobility-on-Demand Systems. 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). Maui, HI: IEEE, pp. 3639–3644. doi: 10.1109/ITSC.2018.
8569961.

Salanova, J. M., M. Estrada, G. Aifadopoulou, and E. Mitsakis (2011). A review of the
modeling of taxi services. Procedia - Social and Behavioral Sciences 20, pp. 150–161. doi:
10.1016/j.sbspro.2011.08.020.

Santi, P., G. Resta, M. Szell, S. Sobolevsky, S. H. Strogatz, and C. Ratti (2014). Quantifying
the benefits of vehicle pooling with shareability networks. Proceedings of the National
Academy of Sciences of the United States of America 111 (37), pp. 13290–13294. doi:
10.1073/pnas.1403657111.

Schmid, V. (2012). Solving the dynamic ambulance relocation and dispatching problem
using approximate dynamic programming. European Journal of Operational Research
219 (3), pp. 611–621. doi: 10.1016/j.ejor.2011.10.043.

Schmid, V. and J. F. Ehmke (2015). Integrated timetabling and vehicle scheduling with
balanced departure times. OR Spectrum 37 (4), pp. 903–928. doi: 10.1007/s00291-015-
0398-7.

Schneider, M. and M. Drexl (2017). A survey of the standard location-routing problem.
Annals of Operations Research 259 (1), pp. 389–414. doi: 10.1007/s10479-017-2509-0.

Shah, S., M. Lowalekar, and P. Varakantham (2020). Neural Approximate Dynamic Pro-
gramming for On-Demand Ride-Pooling. Proceedings of the AAAI Conference on Artificial
Intelligence 34 (1), pp. 507–515. doi: 10.1609/aaai.v34i01.5388.

Shaheen, S. and A. Cohen (2019). Shared ride services in North America: definitions,
impacts, and the future of pooling. Transport Reviews 39 (4), pp. 427–442. doi: 10.1080/
01441647.2018.1497728.

135

https://doi.org/10.24963/ijcai.2020/609
https://doi.org/10.1007/978-3-030-19212-9_31
https://doi.org/10.1080/00207543.2015.1043403
https://doi.org/10.1109/ITSC.2018.8569961
https://doi.org/10.1109/ITSC.2018.8569961
https://doi.org/10.1016/j.sbspro.2011.08.020
https://doi.org/10.1073/pnas.1403657111
https://doi.org/10.1016/j.ejor.2011.10.043
https://doi.org/10.1007/s00291-015-0398-7
https://doi.org/10.1007/s00291-015-0398-7
https://doi.org/10.1007/s10479-017-2509-0
https://doi.org/10.1609/aaai.v34i01.5388
https://doi.org/10.1080/01441647.2018.1497728
https://doi.org/10.1080/01441647.2018.1497728


7 Bibliography

Shaheen, S. A., S. Guzman, and H. Zhang (2010). Bikesharing in Europe, the Americas,
and Asia: Past, Present, and Future. Transportation Research Record: Journal of the
Transportation Research Board 2143 (1), pp. 159–167. doi: 10.3141/2143-20.

Shareef, H., M. M. Islam, and A. Mohamed (2016). A review of the stage-of-the-art charging
technologies, placement methodologies, and impacts of electric vehicles. Renewable and
Sustainable Energy Reviews 64, pp. 403–420. doi: 10.1016/j.rser.2016.06.033.

Shen, S., Z.-Q. Wei, L.-J. Sun, Y.-Q. Su, R.-C. Wang, and H.-M. Jiang (2018). The Shared
Bicycle and Its Network—Internet of Shared Bicycle (IoSB): A Review and Survey. Sensors
18 (8). doi: 10.3390/s18082581.

Su, Y., K. Xie, H.Wang, Z. Liang, W. Art Chaovalitwongse, and P. M. Pardalos (2021). Airline
Disruption Management: A Review of Models and Solution Methods. Engineering 7 (4),
pp. 435–447. doi: 10.1016/j.eng.2020.08.021.

SUMO (2022a). SUMO – Activity-based Demand Generation. Accessed 12 Aug 2022. https:
//sumo.dlr.de/docs/Demand/Activity-based_Demand_Generation.html.

SUMO (2022b). SUMO – Taxi. Accessed 10 Aug 2022. https://sumo.dlr.de/docs/
Simulation/Taxi.html.

Syed, A. A., F. Dandl, B. Kaltenhäuser, and K. Bogenberger (2021). Density Based Distri-
bution Model for Repositioning Strategies of Ride Hailing Services. Frontiers in Future
Transportation 2, p. 681451. doi: 10.3389/ffutr.2021.681451.

Tafreshian, A., N. Masoud, and Y. Yin (2020). Frontiers in Service Science: Ride Matching
for Peer-to-Peer Ride Sharing: A Review and Future Directions. Service Science 12 (2),
pp. 44–60. doi: 10.1287/serv.2020.0258.

Thomas, B. W. (2007). Waiting Strategies for Anticipating Service Requests from Known
Customer Locations. Transportation Science 41 (3), pp. 319–331.

Tirachini, A. (2020). Ride-hailing, travel behaviour and sustainable mobility: an interna-
tional review. Transportation 47 (4), pp. 2011–2047. doi: 10.1007/s11116-019-10070-2.

TomTom (2022). Traffic Data & Traffic Stats. Accessed 12 Aug 2022. https://www.tomtom.
com/products/traffic-stats/.

Tong, Y., Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu (2018). A unified approach to route
planning for shared mobility. Proceedings of the VLDB Endowment 11 (11), pp. 1633–1646.
doi: 10.14778/3236187.3236211.

Uber (2020). Surge pricing. Accessed 07 Apr 2020. https://marketplace.uber.com/
pricing/surge-pricing.

136

https://doi.org/10.3141/2143-20
https://doi.org/10.1016/j.rser.2016.06.033
https://doi.org/10.3390/s18082581
https://doi.org/10.1016/j.eng.2020.08.021
https://sumo.dlr.de/docs/Demand/Activity-based_Demand_Generation.html
https://sumo.dlr.de/docs/Demand/Activity-based_Demand_Generation.html
https://sumo.dlr.de/docs/Simulation/Taxi.html
https://sumo.dlr.de/docs/Simulation/Taxi.html
https://doi.org/10.3389/ffutr.2021.681451
https://doi.org/10.1287/serv.2020.0258
https://doi.org/10.1007/s11116-019-10070-2
https://www.tomtom.com/products/traffic-stats/
https://www.tomtom.com/products/traffic-stats/
https://doi.org/10.14778/3236187.3236211
https://marketplace.uber.com/pricing/surge-pricing
https://marketplace.uber.com/pricing/surge-pricing


7 Bibliography

Uber (2021). UberPool. Accessed 08 Jan 2021. https://www.uber.com/us/en/ride/
uberpool.

Uber (2022). Get your ride right with Uber Reserve. Accessed 21 Oct 2022. https://www.
uber.com/us/en/ride/how-it-works/reserve/.

Ulmer, M. W., J. C. Goodson, D. C. Mattfeld, and M. Hennig (2019). Offline–Online Approx-
imate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests.
Transportation Science 53 (1), pp. 185–202. doi: 10.1287/trsc.2017.0767.

Ulmer, M. W., J. C. Goodson, D. C. Mattfeld, and B. W. Thomas (2020). On modeling
stochastic dynamic vehicle routing problems. EURO Journal on Transportation and
Logistics 9 (2). doi: 10.1016/j.ejtl.2020.100008.

Ulmer, M. W., N. Soeffker, and D. C. Mattfeld (2018). Value function approximation for
dynamic multi-period vehicle routing. European Journal of Operational Research 269 (3),
pp. 883–899. doi: 10.1016/j.ejor.2018.02.038.

Utriainen, R. and M. Pöllänen (2018). Review on mobility as a service in scientific publica-
tions. Research in Transportation Business & Management 27, pp. 15–23. doi: 10.1016/j.
rtbm.2018.10.005.

Van den Bergh, J., J. Beliën, P. De Bruecker, E. Demeulemeester, and L. De Boeck (2013).
Personnel scheduling: A literature review. European Journal of Operational Research
226 (3), pp. 367–385. doi: 10.1016/j.ejor.2012.11.029.

Vlahogianni, E. I., J. C. Golias, and M. G. Karlaftis (2004). Short-term traffic forecasting:
Overview of objectives and methods. Transport Reviews 24 (5), pp. 533–557. doi: 10.
1080/0144164042000195072.

Vlahogianni, E. I., M. G. Karlaftis, and J. C. Golias (2014). Short-term traffic forecast-
ing: Where we are and where we’re going. Transportation Research Part C: Emerging
Technologies 43, pp. 3–19. doi: 10.1016/j.trc.2014.01.005.

Voccia, S. A., A. M. Campbell, and B. W. Thomas (2019). The Same-Day Delivery Problem
for Online Purchases. Transportation Science 53 (1), pp. 167–184. doi: 10.1287/trsc.
2016.0732.

Wageningen-Kessels, F. van, H. van Lint, K. Vuik, and S. Hoogendoorn (2015). Genealogy
of traffic flow models. EURO Journal on Transportation and Logistics 4 (4), pp. 445–473.
doi: 10.1007/s13676-014-0045-5.

Wang, B., H. Liang, S. Hörl, and F. Ciari (2017). Dynamic ride sharing implementation and
analysis in MATSim. doi: 10.3929/ETHZ-B-000183727.

137

https://www.uber.com/us/en/ride/uberpool
https://www.uber.com/us/en/ride/uberpool
https://www.uber.com/us/en/ride/how-it-works/reserve/
https://www.uber.com/us/en/ride/how-it-works/reserve/
https://doi.org/10.1287/trsc.2017.0767
https://doi.org/10.1016/j.ejtl.2020.100008
https://doi.org/10.1016/j.ejor.2018.02.038
https://doi.org/10.1016/j.rtbm.2018.10.005
https://doi.org/10.1016/j.rtbm.2018.10.005
https://doi.org/10.1016/j.ejor.2012.11.029
https://doi.org/10.1080/0144164042000195072
https://doi.org/10.1080/0144164042000195072
https://doi.org/10.1016/j.trc.2014.01.005
https://doi.org/10.1287/trsc.2016.0732
https://doi.org/10.1287/trsc.2016.0732
https://doi.org/10.1007/s13676-014-0045-5
https://doi.org/10.3929/ETHZ-B-000183727


7 Bibliography

Wickert, T. I., P. Smet, and G. Vanden Berghe (2019). The nurse rerostering problem:
Strategies for reconstructing disrupted schedules. Computers & Operations Research 104,
pp. 319–337. doi: 10.1016/j.cor.2018.12.014.

Wilkes, G., R. Engelhardt, L. Briem, F. Dandl, P. Vortisch, K. Bogenberger, and M. Kager-
bauer (2021). Self-Regulating Demand and Supply Equilibrium in Joint Simulation of
Travel Demand and a Ride-Pooling Service. Transportation Research Record: Journal of the
Transportation Research Board 2675 (8), pp. 226–239. doi: 10.1177/0361198121997140.

Xu, M. and Q. Meng (2019). Fleet sizing for one-way electric carsharing services considering
dynamic vehicle relocation and nonlinear charging profile. Transportation Research Part
B: Methodological 128, pp. 23–49. doi: 10.1016/j.trb.2019.07.016.

Yang, Q. and H. N. Koutsopoulos (1996). A Microscopic Traffic Simulator for evaluation
of dynamic traffic management systems. Transportation Research Part C: Emerging
Technologies 4 (3), pp. 113–129. doi: 10.1016/S0968-090X(96)00006-X.

Yao, H., X. Tang, H. Wei, G. Zheng, and Z. Li (2019). Revisiting Spatial-Temporal Similarity:
A Deep Learning Framework for Traffic Prediction. Vol. 33. Honolulu, HI: AAAI Press,
pp. 5668–5675. doi: 10.1609/aaai.v33i01.33015668.

Yao, H., F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, D. Chuxing, and Z. Li (2018). Deep
Multi-View Spatial-Temporal Network for Taxi Demand Prediction. Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applica-
tions of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational
Advances in Artificial Intelligence. New Orleans, LA: AAAI Press.

Zhang, J., Y. Zheng, D. Qi, R. Li, X. Yi, and T. Li (2018). Predicting citywide crowd flows
using deep spatio-temporal residual networks. Artificial Intelligence 259, pp. 147–166.
doi: 10.1016/j.artint.2018.03.002.

Zwick, F. and K. W. Axhausen (2020). Analysis of ridepooling strategies with MATSim.
doi: 10.3929/ETHZ-B-000420103.

138

https://doi.org/10.1016/j.cor.2018.12.014
https://doi.org/10.1177/0361198121997140
https://doi.org/10.1016/j.trb.2019.07.016
https://doi.org/10.1016/S0968-090X(96)00006-X
https://doi.org/10.1609/aaai.v33i01.33015668
https://doi.org/10.1016/j.artint.2018.03.002
https://doi.org/10.3929/ETHZ-B-000420103

	Abstract
	List of Figures
	List of Tables
	Glossary
	Introduction
	Scope and Contribution of this Thesis
	Organization

	Fundamentals of Mobility-as-a-Service
	A Definition of Mobility-as-a-Service
	A Taxonomy of Mobility-as-a-Service Applications
	Summary

	Dynamic Ride-Sharing: Application and Planning Problems
	Application Setting and Characteristics
	Service Characteristics
	Stakeholders and Obectives

	Planning and Execution of a Dynamic Ride-Sharing Service
	Planning Tasks
	Execution of Shared Rides
	Interaction of Planning and Execution

	Summary

	A Modular Planning and Evaluation Framework for Dynamic Ride-Sharing Services
	Introduction
	Related Simulation Frameworks for Dynamic Ride-Sharing
	Literature Review
	Contribution

	System Overview: Components and Communication
	Planning Service
	Simulation

	Conclusions

	Real-Time Vehicle Routing for Dynamic Ride-Sharing
	The Vehicle Routing Problem for Dynamic Ride-Sharing
	Related Approaches in Dynamic Vehicle Routing
	Vehicle Routing for Dynamic Ride-Sharing
	Dynamic Dial-a-Ride Problem
	Local Search Approaches for Dynamic Vehicle Routing
	Contribution

	The Vehicle Routing Problem for Dynamic Ride-Sharing
	Real-Time Dispatching with Local Search Improvement
	Planning Process
	Real-Time Dispatching
	Local Search Improvement

	Reactive Idle Vehicle Repositioning
	Computational Evaluation
	Experimental Design and Setup
	Computational Results

	Conclusions

	Idle Vehicle Repositioning for Dynamic Ride-Sharing
	The Idle Vehicle Repositioning Problem for Dynamic Ride-Sharing
	Related Approaches in Repositioning and Demand Forecasting
	Repositioning in Dynamic Ride-Sharing
	Dynamic Vehicle Routing with Stochastic Customers
	Repositioning in Car-Sharing, Taxi Operations, and Other Mobility-as-a-Service Applications
	Short-Term Travel Demand Forecasting
	Contribution

	Forecast-Driven Repositioning
	Problem Statement and Algorithm Overview
	Planning Process
	Notation Overview
	Adaptive Parameter Calculation
	Mathematical Model for Forecast-Driven Repositioning
	Repositioning Target Assignment

	Computational Evaluation
	Experimental Design and Setup
	Computational Results

	Conclusions

	Conclusion and Outlook
	Summary and Conclusion
	Outlook

	Bibliography

