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Abstract
Mixtures of Experts (MoE) are known for their
ability to learn complex conditional distributions
with multiple modes. However, despite their po-
tential, these models are challenging to train and
often tend to produce poor performance, explain-
ing their limited popularity. Our hypothesis is
that this under-performance is a result of the com-
monly utilized maximum likelihood (ML) opti-
mization, which leads to mode averaging and a
higher likelihood of getting stuck in local maxima.
We propose a novel curriculum-based approach
to learning mixture models in which each compo-
nent of the MoE is able to select its own subset
of the training data for learning. This approach
allows for independent optimization of each com-
ponent, resulting in a more modular architecture
that enables the addition and deletion of compo-
nents on the fly, leading to an optimization less
susceptible to local optima. The curricula can
ignore data-points from modes not represented
by the MoE, reducing the mode-averaging prob-
lem. To achieve a good data coverage, we couple
the optimization of the curricula with a joint en-
tropy objective and optimize a lower bound of
this objective. We evaluate our curriculum-based
approach on a variety of multimodal behavior
learning tasks and demonstrate its superiority over
competing methods for learning MoE models and
conditional generative models.

1. Introduction
Mixtures of experts (MoEs) are powerful models, that lever-
age a divide-and-conquer approach to conditional density es-
timation by assigning experts to smaller sub-tasks. They are
capable of representing highly complex multimodal distribu-
tions but are inherently hard to train which often yields poor
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performance due to a sub-optimal optimization outcome.
We hypothesize that these problems are due to training
by maximizing the likelihood via gradient ascent (Bishop,
1994) or expectation maximization (Dempster et al., 1977).
It is well known that maximum likelihood estimation corre-
sponds to a moment projection which causes the model to
average over modes that it cannot represent, leading to poor
generative capabilities (Murphy, 2012). Moreover, these
methods are often susceptible to poor solutions found due
to local maxima, and finding an appropriate model complex-
ity is difficult as the number of experts has to be specified
a-priori.

In this work, we propose Information Maximizing Curricu-
lum (IMC), a novel approach for training mixtures of ex-
perts that combines the information projection (Murphy,
2012) with curriculum learning (CL) to address the afore-
mentioned problems with existing optimizing schemes. The
information projection minimizes the reverse KL divergence
which forces the model to ignore non-representable modes,
leading to good generative models that are able to produce
high quality samples. IMC assigns weights to samples ac-
cording to their difficulty, resulting in reduced outlier sen-
sitivity and better generalization capabilities (Bengio et al.,
2009).

IMC employs a curriculum for each expert, which adapts to
their performance and allows them to specialize on samples
that they are able to represent. Moreover, the information
projection is employed to compute the joint curriculum of
all experts, which results in components that specialize to
different subsets of the data. The curriculum also enables
a modular architecture capable of online adaptation of the
model complexity by adding experts to the model.

We show that our method is able to outperform state-of-
the-art generative models on challenging multimodal condi-
tional density estimation problems. In particular, we focus
on complex behavior learning tasks where data is collected
by human demonstrators. The inherent versatility in human
behavior leads to highly multimodal data distributions. In
our experiments, we assess the ability of the models to i)
avoid mode averaging and ii) extract all modes present in
the data distribution.
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2. Preliminaries
Our approach heavily builds on mixtures of experts as well
as minimizing Kullback-Leibler divergences. Hence, we
will briefly review both concepts.

2.1. Mixtures of Experts

Mixtures of experts are conditional discrete latent variable
models. Given some input x ∈ X and target y ∈ Y , the
marginal likelihood is decomposed into individual compo-
nents o, that is,

p(y|x) =
∑
o

p(o|x)p(y|x, o).

The gating p(o|x) is responsible for soft-partitioning the
input space X into sub-regions where the corresponding
experts p(y|x, o) approximate the target density. Typically
the experts and the gating are parameterized and learned
by maximizing the likelihood via expectation-maximization
(Dempster et al., 1977) or gradient ascent (Bishop, 1994). In
order to sample from the marginal likelihood, that is, y′ ∼
p(y|x′) for some x′, we first sample a component index
from the gating, i.e., o′ ∼ p(o|x)′. The component index
selects the respective expert to obtain y′ ∼ p(y|x′, o′).

2.2. Moment and Information Projection

The Kullback-Leibler (KL) divergence (Kullback & Leibler,
1951) is a similarity measure for probability distributions
and is defined as DKL(p‖p′) =

∑
x p(x) log p(x)/p′(x).

Due to its asymmetry, the KL divergence offers two different
optimization problems for fitting a model distribution p to a
target distribution p∗ (Murphy, 2012), that is,

arg min
p

DKL(p∗‖p)︸ ︷︷ ︸
M(oment)-Projection

p
p∗

and
arg min

p
DKL(p‖p∗)︸ ︷︷ ︸

I(nformation)-Projection

.
p

p∗

The M-projection - or equivalently maximum likelihood es-
timation (MLE) (Bishop & Nasrabadi, 2006) - is probability
forcing, meaning that the model is optimized to match the
moments of the target distribution, causing it to average over
modes that it cannot represent. In contrast, the I-projection
is zero forcing which leads the model to ignore modes of
the target distribution that it is not able to represent. The
I-projection can be rewritten as maximization problem, i.e.,

arg max
p

Ep(x)[log p∗(x)] +H(x). (1)

Using this formulation, it can be seen that the optimization
balances between fitting the target distribution and keeping
the entropyH(x) = −∑x p(x) log p(x) high.

3. Information Maximizing Curriculum
In this section, we propose Information Maximizing Cur-
riculum (IMC), a novel algorithm for training mixtures of
experts. We motivate our optimization objective using a
single expert model. Next, we generalize the objective to
support an arbitrary number of experts. Thereafter, we dis-
cuss the optimization scheme and algorithmic details. Lastly,
we explain how the model is used at inference time.

3.1. Objective for a Single Self-Paced Expert

We propose an objective that jointly learns a curriculum
p(D) and a parameterized expert distribution pθ(y|x) with
parameters θ. The curriculum is a categorical distribution
p(Dn) over samples of a dataset D = {(xn,yn)}Nn=1, as-
signing probability mass to samples according to the per-
formance of the expert. To allow the curriculum to ignore
samples that the expert cannot represent, we build on the
I-projection (see Equation 1). We therefore formulate the
objective as

max
p(D),θ

Ep(D)[log pθ(y|x)] + ηH(D), (2)

which is optimized for p(D) and θ in an alternating fash-
ion. We additionally introduced a trade-off factor η that
determines the pacing of the curriculum. For η → ∞ the
curriculum becomes uniform, exposing all samples to the
expert and hence reducing to maximum likelihood estima-
tion for θ. In contrast, if η → 0 the curriculum concentrates
on samples where the expert log-likelihood log pθ(y|x) is
highest. The objective can be solved in closed form for
p(D), i.e.,

p∗(Dn) ∝ pθ(yn|xn)1/η.

Maximizing the objective w.r.t θ reduces to a weighted
maximum-likelihood estimation for θ, that is,

θ∗ = arg max
θ

∑
n

p(Dn) log pθ(yn|xn).

The expert thus specializes to samples selected by the cur-
riculum which in turn selects samples that lie within the
representational capacity of the expert. As a result, the
expert is paced by its own performance, thus the name self-
paced. The optimization is repeated until the curriculum
converges, meaning that the representational capacity of
the expert is exhausted. The curriculum allows experts to
ignore samples that they cannot represent which makes the
model less sensitive to noise, outliers, and averaging over
parts of the target function with high complexity, such as
discontinuities. These properties are illustrated in Figure 1a



Information Maximizing Curriculum: A Curriculum-Based Approach for Training Mixtures of Experts
p
(y
|x
)

x

p
(D

)

p
(y
|x
)

x

p
(D

)
(a)

p
(y
|x
)

x

p
(D

)

p
(y
|x
)

x

p
(D

)

(b)

p
(y
|x
,o
)

x

p
(D
|o)

p
′ (
y
|x
)

x

p
′ (
D
)

(c)

Figure 1. Uniform vs. learned curriculum: For a uniform curriculum p(D), the expert optimization reduces to maximum likelihood
estimation rendering p(y|x) prone to outliers and averaging effects (Figure (a)). Learning a curriculum counteracts these problems but
ignores samples that the expert is not able to represent (Figure (b)). Introducing multiple curricula p(D|o) allows corresponding experts
p(y|x, o) to specialize to different subsets of the data and hence increasing the overall sample coverage of the joint curriculum p′(D) and
marginal likelihood p′(y|x) (Figure (c)).

and 1b. However, the downside of a self-pacing expert is
the arbitrarily poor performance at samples that are ignored.
This problem is alleviated by introducing multiple experts
that specialize to different subsets of the data.

3.2. Objective for a Mixture of Self-Paced Experts

Assuming limited complexity, a single expert is likely to
ignore a large amount of samples due to the zero-forcing
property of the I-projection. Using multiple curricula and
experts that specialize to different subsets of the data is
hence a natural extension to the single expert model. To
that end, we make two major modifications to Equation
2: Firstly, we use a mixture model with multiple compo-
nents o where each component has its own curriculum, i.e.,
p(D) =

∑
o p(o)p(D|o). Secondly, we employ an expert

per component pθo
(y|x, o), that is paced by the correspond-

ing curriculum. The resulting objective function is given
by

J(ψ) = Ep(o)Ep(D|o)[log pθo
(y|x, o)] + ηH(D), (3)

where ψ summarizes the dependence on p(o), {p(D|o)}o
and {θo}o. However, Equation 3 is difficult to optimize as
the entropy of the mixture model prevents us from updat-
ing each the curriculum of each component independently.
Similar to (Arenz et al., 2018), we introduce an auxiliary
distribution q(o|D) to decompose the objective function into
a lower bound L(ψ, q) and an expected DKL term, that is,

J(ψ) = L(ψ, q) + ηEp(D)DKL(p(o|D)‖q(o|x)), (4)

with p(o|D) = p(D|o)p(o)/p(D) and

L(ψ, q) = Ep(o)
[
Ep(D|o)[Ro(D)] + ηH(D|o)︸ ︷︷ ︸

Jo(p(D|o),θo)

]
]

+ ηH(o),

with Ro(D) = log pθo
(y|x, o) + η log q(o|D), allowing

for independent updates for p(D|o) and θo by maximiz-
ing the per-component objective function Jo(p(D|o),θo).
Similar to the expectation-maximization algorithm, we
introduced q(o|D) as auxiliary distribution. Note that
the lower bound decomposition holds for any distribution

q(o|D). A derivation can be found in Appendix B.1. Since
Ep(D)DKL(p(o|D)‖q(o|x)) ≥ 0, L is a lower bound on J
for η ≥ 0. Please note that the per-component objective
function Jo is very similar to Equation 2, i.e., the differ-
ent experts specialize to samples selected by their curricu-
lum p(D|o). However, Jo additionally contains log q(o|D)
which prevents different curricula from assigning proba-
bility mass to the same samples. This property is further
illustrated in Figure 1c. We follow the optimization scheme
of the EM algorithm, that is, we iteratively maximize (M-
step) and tighten the lower bound (E-step).

3.3. Maximizing the Lower Bound (M-Step)

We maximize the lower bound L(ψ, q) with respect to the
mixture weights p(o), curricula p(D|o) and expert param-
eters θo. We find closed form solutions for both, p(o) and
p(D|o) given by

p∗(o) ∝ exp
(
Ep(D|o)[Ro(D)/η] +H(D|o)

)
, (5)

and

p∗(Dn|o) ∝ p̃(Dn|o) = exp
(
Ro(Dn)/η

)
,

where p̃(Dn|o) are the optimal unnormalized curricula
p∗(Dn|o). However, due to the hierarchical structure of
L(ψ, q) we implicitly optimize for p(o) when updating the
curricula. This result is frequently used throughout this
work and is formalized in Proposition 3.1. A proof is found
in Appendix A.1.

Proposition 3.1. Let p∗(o) and p̃(D|o) be the optimal mix-
ture weights and unnormalized curricula for maximizing
L(ψ, q). It holds that

p∗(o) =
∑
n

p̃(Dn|o)/
∑
o

∑
n

p̃(Dn|o).

The implicit updates of the mixture weights render the com-
putation of p∗(o) obsolete, reducing the optimization to
computing the optimal (unnormalized) curricula p̃(D|o) and
expert parameters θ∗o . Maximizing the lower bound with
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respect to the expert parameters results in a weighted maxi-
mum likelihood estimation, i.e.,

θ∗o = arg max
θo

∑
n

p(Dn|o) log pθo(yn|xn, o), (6)

where the curricula p(Dn|o) assign sample weights.

3.4. Tightening the Lower Bound (E-Step)

Tightening of the lower bound (also referred to as E-step)
is done by minimizing the expected Kullback-Leibler di-
vergence in Equation 4. Using the properties of the KL
divergence, it can easily be seen that the lower bound
is tight if for all n ∈ {1, ..., N} q(o|xn) = p(o|Dn)
holds. To obtain p(o|Dn) we leverage Bayes’ rule, that
is, p(o|Dn) = p∗(o)p∗(Dn|o)/

∑
o p
∗(o)p∗(Dn|o). Using

Proposition 3.1 we find that

p(o|Dn) = p̃(Dn|o)/
∑
o

p̃(Dn|o).

Please note that the lower bound is tight after every E-step as
the KL divergence is set to zero. Thus, increasing the lower
bound L maximizes the original objective J assuming that
updates of θo are not decreasing the expert log-likelihood
log pθo

(y|x, o).

3.5. Automatic Per-Component Curriculum Pacing

Choosing a fixed curriculum pacing value η for applications
where entropy and expert log-likelihood values change heav-
ily during training can be a limiting assumption and might
lead to sub-optimal results. Moreover, pacing all curric-
ula with the same η can result in curricula that cover large
subsets of the data while others degenerate, i.e., only cover
few samples. In order to obtain an adaptive per-component
curriculum pacing and alleviate problems with degrading
curricula, we enforce a lower bound Hmin on the entropy
of the individual curricula. To that end, we frame the per-
component objective Jo as constraint optimization problem,
giving

arg max
p(D|o)

Ep(D|o)[Ro(D)]+ηH(D|o), s.t.H(D|o) ≥ Hmin.

Using Lagrange duality (Boyd et al., 2004) we obtain a
closed form solution by optimizing the Lagrangian function
given by

p∗ξo(D|o) ∝ exp
(Ro(D)

ξo + η

)
,

with per-component Lagrangian multiplier ξo. The optimal
value ξ∗o is obtained by minimizing the Lagrangian dual
function g(ξo), that is, ξ∗o = arg minξo>0 g(ξo) with

g(ξo) = ξo

(
log
∑
n

exp
(Ro(Dn)

ξo + η

)
−Hmin

)
,

and thus p∗(D|o) = p∗ξ∗o (D|o). Please note that ξ∗o is ob-
tained using a convex numerical optimizer. The minimum
per-component entropyHmin is intuitive to choose as it trans-
lates into the number of samplesNs that a single curriculum
should cover (uniformly) by settingHmin = logNs.

3.6. Adding Components and Algorithmic Details

In contrast to mixtures of experts trained by either EM or
backpropagation, we adapt the model complexity online
by adding new components during the training procedure.
Using such an online scheme for maximum likelihood based
approaches is difficult as existing components are forced to
cover all samples, making it challenging to initialize new
components that improve the overall model performance.

We initialize the model with a single component and grad-
ually increase the model complexity by adding more com-
ponents to the mixture of experts model. Moreover, we use
the convergence of the lower bound L(ψ, q) as criterion for
adding new components to the model. After each M-step,
the lower bound is evaluated using Corollary 3.1.1. See
Appendix A.2 for a proof.

Corollary 3.1.1. Consider the setup used in Proposition
3.1. For p∗(o) ∈ ψ and {p∗(D|o)}o ∈ ψ it holds that

L
(
ψ, q

)
= η log

∑
o

∑
n

p̃(Dn|o).

Hence, if the difference between two subsequent iterations
(i) and (i− 1) falls below a threshold ε, that is,

|∆L| = |L(i)(ψ, q)− L(i−1)(ψ, q)| ≤ ε,

a new component onew is added. The full training procedure
is outlined in Algorithm 1.

3.7. Inference

In order to perform inference, i.e., sampling from the model
or computing expectations, we need to access the gating
distribution for arbitrary inputs x which is not possible as
p(o|D) is only defined for samples contained in D. We
therefore leverage Corollary 3.1.2 to learn an inference net-
work gφ(o|x) with parameters φ by minimizing the KL
divergence between p(o|D) and gφ(o|x) under the joint
curriculum p(D) (see Appendix A.3 for a proof).

Corollary 3.1.2. Consider the setup used in Proposi-
tion 3.1. For p(o|D) ∝ p∗(o)p∗(D|o) and p(D) =∑
o p
∗(o)p∗(D|o) it holds that

min
φ

Ep(D)DKL

(
p(o|D)‖gφ(o|x)

)
= max

φ

∑
n

∑
o

p̃(Dn|o) log gφ(o|xn).
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Algorithm 1 IMC training procedure

1: Require: Data D = {(xn,yn)}Nn=1

2: Require: Curriculum pacing η
3: Require: Minimal entropyHmin
4: Require: Max. number of components No,max
5: No ← 1
6: while No ≤ No,max do
7: q(o|Dn)← p̃(Dn|o)/

∑
o p̃(Dn|o) ∀n

8: for o← 1, .., No do
9: p̃ξo(Dn|o)← exp

(
Ro(Dn)
ξo+η

)
∀n

10: ξ∗o ← argminξo>0 g(ξo)

11: θ∗o ← argmaxθo

∑
n p
∗(Dn|o) log pθo(yn|xn, o)

12: end for
13: if |∆L| ≤ ε then
14: add component()
15: No ← No + 1
16: end if
17: end while

Training a gating network can be cumbersome for applica-
tions where we often switch between training and inference
(e.g. due to new data acquisition), since adding components
requires learning a new gating network from scratch due
to varying network sizes. We counteract this problem by
using an output dimension equal to the maximal number of
components No,max in the MoE model. Using a masking
layer, i.e., a binary vector that sets the current number of
components No to 1 and 0 otherwise allows to preserve the
learned representation for existing components when adding
a new component.

4. Related Work
Mixtures of Experts. The mixture of experts model was
first proposed by Jacobs et al. (1991) and used expectation
maximization (Dempster et al., 1977) for optimizing the
model parameters. Several studies are dedicated to increas-
ing the flexibility of the model (Jordan & Jacobs, 1994;
Waterhouse, 1998; Bishop & Svensén, 2012). On another
note, Bishop (1994) introduced the mixture density network
(MDN) which uses a neural network whose parameters are
shared between gating and experts, allowing for an end-to-
end training using the backpropagation algorithm (Rumel-
hart et al., 1986). All of these works maximize the likelihood
to optimize the model parameters which corresponds to a
moment projection. This differs from our approach which
is inspired by the information projection. Recently, Becker
et al. (2020) introduced expected information maximization
(EIM), an approach for computing the expected information
projection based on samples from a dataset. While EIM
was mainly introduced in the context of density estimation,

the authors mention that the algorithm is also applicable to
conditional models. However, EIM relies on an interme-
diate density ratio estimation step, causing stability issues
and preventing scaling to high dimensional problems. We,
therefore, do not consider EIM as a competitive baseline.
For an elaborate survey on mixture of experts models, the
reader is referred to Yuksel et al. (2012) and Masoudnia &
Ebrahimpour (2014).

Curriculum Learning. Bengio et al. (2009) introduced
curriculum learning (CL) as a new paradigm for training
machine learning models by gradually increasing the dif-
ficulty of samples that are exposed to the model. Several
studies followed this definition (Spitkovsky et al., 2009;
Soviany et al., 2022; Chen & Gupta, 2015; Tudor Ionescu
et al., 2016; Pentina et al., 2015; Shi et al., 2015; Zaremba
& Sutskever, 2014). Other studies used the term curricu-
lum learning for gradually increasing the model complexity
(Karras et al., 2017; Morerio et al., 2017; Sinha et al., 2020)
or task complexity (Caubrière et al., 2019; Florensa et al.,
2017; Lotter et al., 2017; Sarafianos et al., 2017). All of
these approaches assume that the difficulty-ranking of the
samples is known a-priori. In contrast, we consider dy-
namically adapting the curriculum according to the learning
progress of the model which is known as self-paced learning
(SPL). Pioneering work in SPL was done by Kumar et al.
(2010) which is related to our work in that the authors pro-
pose to update the curriculum as well as model parameters
iteratively. However, their method is based on maximum
likelihood which is different from our approach. Moreover,
their algorithm is restricted to latent structural support vec-
tor machines. For a comprehensive survey on curriculum
learning, the reader is referred to (Soviany et al., 2022).

5. Experiments
We evaluate IMC on challenging conditional density esti-
mation tasks. To that end, we focus on behavior learning
tasks with human-collected data. The inherent versatility
in human behavior introduces high variability and outliers
to data, inducing complex multimodal distributions. Hence,
our experiments assess the ability of models to i) avoid mode
averaging and ii) cover all modes present in the data distribu-
tion. For all experiments, we employ conditional Gaussian
experts, i.e., pθo

(y|x, o) = N (y|µθo
(x), σ2I) due to ef-

ficient sample routines and the simplicity of the resulting
optimization problem. Please note that we parameterize the
expert means µθo

as (shallow) neural networks. Moreover,
we use a fixed variance of σ2 = 1 for all experiments as full
Gaussian likelihood optimization often results in unstable
updates (Guo et al., 2017).

We compare our method to state-of-the-art generative
models including denoising diffusion probabilistic models
(DDPM) (Ho et al., 2020), normalizing flows (NF) (Papa-
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Figure 2. Behavior learning environments: Visualization of the obstacle avoidance task (left), the block pushing task (middle), and the
table tennis task (right).

Demonstrations MDN EM DDPM NF CVAE IBC BET IMC

Figure 3. Obstacle Avoidance: Visualization of 100 end-effector trajectories for all trained models.

makarios et al., 2021) and conditional variational autoen-
coders (CVAE). Moreover, we consider energy-based mod-
els for behavior learning (IBC) (Florence et al., 2022) and
the recently proposed behavior transformer (BeT) (Shafi-
ullah et al., 2022). Lastly, we compare against mixture of
experts trained using expectation maximization (EM) (Ja-
cobs et al., 1991) and backpropagation (MDN) (Bishop,
1994). We extensively tune the hyperparameters of the base-
lines using Bayesian optimization (Snoek et al., 2012) on
all experiments. We report the mean and the standard de-
viation over ten random seeds for all experiments. For a
detailed explanation of tasks, data, performance metrics and
hyperparameters see Appendix C.

5.1. Obstacle Avoidance

The obstacle avoidance environment is visualized in Figure
2 (left) and consists of a seven DoF Franka Emika Panda
robot arm equipped with a cylindrical end effector simulated
using the MuJoCo physics engine (Todorov et al., 2012).
The task is to reach the green finish line without colliding
with one of the six obstacles. The dataset contains four
human demonstrations for all 24 ways of avoiding obstacles
and completing the task which are collected using a game-
pad controller and inverse kinematics (IK) in the xy-plane
amounting to 7.3k (x,y) pairs. The inputs x ∈ R4 contain
the end-effector position and velocity of the robot. The
targets y ∈ R2 represent the desired position of the robot.
To evaluate the susceptibility to mode averaging, we use the
success rate, i.e., the percentage of trajectories that reach
the finish line. Moreover, we assess a model’s ability to
learn multimodal distributions by computing the entropy of
the categorical distribution that contains the probabilities of
a model completing the different ways of avoiding obstacles.
For more details see Appendix C.1.1. For a visual illustra-
tion of end-effector trajectories see Figure 3. The results are
shown in Table 1 and are generated using 1000 evaluation
trajectories for each seed. IMC achieves a superior success

rate and entropy compared to the baselines. CVAE closely
follows the success rate of IMC but lacks the ability to dis-
cover modes in the data distribution, indicated by the low
entropy value. In contrast, EM achieves an entropy similar
to IMC but is inferior with respect to the success rate.

5.2. Block Pushing

The block pushing environment is visualized in Figure 2
(middle) and uses the setup explained in Section 5.1 with
the 2-D gamepad controller. However, the robot manip-
ulator is tasked to push blocks into target zones. Having
two blocks and target zones amounts to four different push
sequences. See Figure 4 for an example. We consider 30
different block configurations c (i.e., initial orientation and
position) that are uniformly sampled from a configuration
space. Using a game-pad controller we recorded four tra-
jectories for all push sequences and block configurations
amounting to a total of 30×4×4 = 480 demonstrations and
thus 100k (x,y) pairs. The inputs x ∈ R16 contain infor-
mation about the robot’s state and the block configurations.
The targets y ∈ R2 represent the desired position of the
robot. We evaluate the models using three different metrics:
First, the success rate which is the proportion of trajectories
that manage to push both boxes to the target zones. Next,
the expected entropy over a categorical distribution contain-
ing the probabilities of a model completing different push
sequences conditioned on the initial block configuration c.
Lastly, to evaluate the performance on non-successful tra-
jectories, we employ the distance error, that is, the distance
from the blocks to the target zones at the end of a trajectory.
The success rate and distance error indicate whether a model
is able to avoid averaging over different behavior. Moreover,
the entropy assesses the ability to represent multimodal data
distributions by completing different push-sequences for the
same configuration. See Appendix C.1.2 for more details.
The results are reported in Table 1 and generated simulating
16 evaluation trajectories for all 30 contexts per seed. IMC
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Table 1. Result Table: Performance comparison between various generative models on three behavior learning tasks.

OBSTACLE AVOIDANCE BLOCK PUSHING TABLE TENNIS
SUCCESS RATE (↑) ENTROPY (↑) SUCCESS RATE (↑) ENTROPY (↑) DISTANCE ERROR (↓) SUCCESS RATE (↑) DISTANCE ERROR (↓)

MDN 0.200±0.421 0.000±0.000 0.000±0.000 0.000±0.000 0.360±0.005 0.031±0.013 0.549±0.056

EM 0.675±0.033 0.902±0.035 0.154±0.021 0.317±0.057 0.192±0.006 0.725±0.042 0.220±0.012

DDPM 0.719±0.075 0.638±0.079 0.075±0.016 0.053±0.035 0.207±0.013 0.866±0.010 0.185±0.007

NF 0.313±0.245 0.349±0.208 0.001±0.001 0.000±0.000 0.346±0.034 0.422±0.035 0.371±0.013

CVAE 0.853±0.113 0.465±0.183 0.041±0.014 0.019±0.018 0.224±0.010 0.620±0.050 0.320±0.010

IBC 0.379±0.411 0.098±0.131 0.000±0.000 0.000±0.000 0.357±0.041 0.567±0.030 0.310±0.010

BET 0.504±0.076 0.837±0.066 0.329±0.047 0.595±0.077 0.163±0.013 0.758±0.025 0.235±0.011

IMC 0.855±0.053 0.930±0.031 0.413±0.060 0.441±0.101 0.158±0.018 0.870±0.017 0.153±0.007

Figure 4. Block pushing: Top view of four different push sequences for the same initial block configuration c. Following the gray
line from the black cross visualizes the end-effector trajectory of the robot manipulator. The small rectangles indicate different box
configurations in the push sequence while the big rectangles mark the target zones.

achieves superior success rate and distance error while BET
has the highest entropy. The difficulty of the task is reflected
by the low success rates of most models. Besides being a
challenging manipulation task, the high task complexity is
caused by having various sources of multimodality in the
data distribution: First, the inherent versatility in human
behavior. Second, multiple human demonstrators, and lastly
different push sequences for the same block configuration.

5.3. Franka Kitchen

The Franka kitchen environment was introduced by Gupta
et al. (2019) and uses a seven DoF Franka Emika Panda
robot with a two DoF gripper to interact with a simulated
kitchen environment. The corresponding dataset contains
566 human-collected trajectories collected using a virtual re-
ality setup amounting to 128k (x,y) pairs. Each trajectory
executes a sequence completing four out of seven differ-
ent tasks. The inputs x ∈ R30 contain information about
position and orientation of the task-relevant objects in the
environment. The targets y ∈ R9 represent the control sig-
nals for the robot and gripper. To asses a model’s ability to
avoid mode averaging we again use the success rate over the
number of tasks solved within one trajectory. Completing
tasks in different orders introduces multimodality into the
data distribution which is assessed by the entropy of the
distribution over completed task sequences. For more de-
tails see Appendix C.1.3. The results are shown in Figure 5
and are generated using 100 evaluation trajectories for each
seed. There are no results reported for IBC and MDN as
we did not manage to obtain reasonable results. All models
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Figure 5. Franka Kitchen: Performance comparison between var-
ious generative models.

except for EM manage to complete one and two tasks with a
success rate close to 1. For three and four task completions
DDPM has the highest success rate closely followed by IMC
and CVAE. EM has the highest entropy for one task. For
two, three and four tasks BET achieves superior entropy,
being slightly ahead of IMC and DDPM.

5.4. Table Tennis

The table tennis environment is visualized in Figure 2 (right)
and consists of a seven DOF robot arm equipped with a table
tennis racket and is simulated using the MuJoCo physics
engine. The goal is to return the ball to varying target posi-
tions after it is launched from a randomized initial position.
Although not collected by human experts, the 5000 demon-
strations are generated using a reinforcement learning agent
that is optimized for highly multimodal behavior such as
backhand and forehand strokes (Celik et al., 2022). Each
demonstration consists of an input x ∈ R4 defining the
initial and target ball position. Movement primitives (MPs)
(Paraschos et al., 2013) are used to describe the joint space
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(a) Obstacle avoidance performance comparison.
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(d) Obstacle avoidance end-effector trajectories for IMC.

Figure 6. Ablation study: Performance comparison between the EM and IMC algorithm for an increasing number of components.

trajectories of the robot manipulator using two basis func-
tions per joint and thus y ∈ R14. We evaluate the model
performance using the success rate, that is, how frequently
the ball is returned to the other side. Moreover, we employ
the distance error, i.e., the euclidean distance from the land-
ing position of the ball to the target position. Both metrics
reflect if a model is able to avoid averaging over different
movements. For this experiment, there is no metric to assess
multimodality as it is difficult to quantify the versatility in
the model behavior. The results are shown in Table 1 and
are generated using 500 different initial and target positions.
Please note that the reinforcement learning agent used to
generate the data achieves an average success rate of 0.91
and a distance error of 0.14. This performance is closely
followed by IMC which achieves superior performance com-
pared to the other methods.

5.5. Ablation Studies

Additionally, we compare the performance of IMC with EM
for a varying number of components on the obstacle avoid-
ance and table tennis task. Please note that the incremental
component adding scheme of IMC allows for evaluating the
model performance after additional components are added.
In contrast, the model is trained from scratch when employ-
ing EM for evaluating the performance using a different
number of components. The results are shown in Figure 6
and highlight the properties of the moment and information
projection: Using limited model complexity, e.g. 1 or 5
components, EM suffers from mode averaging, resulting
in poor performances (Figure 6a and Figure 6b). This is
further illustrated in Figure 6c. In contrast, the zero forcing
property of the information projection allows IMC to avoid
mode averaging (see Figure 6d) which is reflected in the
success rates and distance error for a small number of com-
ponents. The performance gap between EM and IMC for
high model complexities suggests that EM still suffers from

averaging problems. Moreover, the results show that IMC
needs fewer components to achieve the same performance
as EM.

6. Conclusion
We introduced Information Maximizing Curriculum (IMC),
a novel approach to learning mixture of experts models
(MoE). IMC is a curriculum-based approach that allows
each expert to select its own subset of the training data for
learning. The curriculum allows the MoE model to auto-
matically ignore data points that it can not represent, which
reduces the susceptibility to local optima and in particular to
mode-averaging, a common problem associated with maxi-
mum likelihood-based optimization for multimodal density
estimation. The maximization of the entropy of the joint cur-
riculum of all experts incentivizes the MoE to cover all data
samples. IMC is able to adapt the model complexity online
by adding more experts during training which is enabled by
the proposed objective. We motivated our objective for a
single expert and generalized it to the MoE case. We showed
that our method is able outperform existing optimization
schemes for MoE and state-of-the art generative models
on challenging multimodal conditional density estimation
problems. In particular, we employed behavior learning
tasks to show that IMC is able i) avoid mode averaging and
ii) extract all modes present in the data distribution.

Despite introducing a lower bound on the per-component
entropy of the curricula, which helps to tune the curriculum
pacing η, we find that it can still be difficult to determine
an appropriate value. In future work, we plan to tackle this
issue.
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A. Proofs
A.1. Proof of Proposition 3.1

Expanding the entropy in Equation 5 we obtain

p∗(o) ∝ exp
(
Ep∗(D|o)[Ro(D)/η − log p∗(D|o)]

)
.

Using p∗(D|o) = p̃(D|o)/∑n p̃(Dn|o) yields

p∗(o) ∝ exp
(
Ep∗(D|o)[Ro(D)/η − log p̃(D|o)

+ log
∑
n

p̃(Dn|o)]
)
.

Next, leveraging that log p̃(D|o) = Ro(Dn)/η we see that

p∗(o) ∝ exp
(
Ep∗(D|o)[log

∑
n

p̃(Dn|o)]
)

=
∑
n

p̃(Dn|o),

which concludes the proof.

A.2. Proof of Corollary 3.1.1

We start by rewriting the lower bound as L(ψ, q) =

Ep∗(o)
[
Ep∗(D|o)[Ro(D)− η log p∗(D|o)]− η log p∗(o)

]
.

Using p∗(D|o) ∝ p̃(D|o) and Proposition 3.1 we obtain

L(ψ, q) =Ep∗(o)
[
Ep∗(D|o)[Ro(D)− η log p̃(D|o)

+η log
∑
n

p̃(Dn|o)]− η log
∑
n

p̃(Dn|o)

+η log
∑
o

∑
n

p̃(Dn|o)
]

With η log p̃(D|o) = Ro(Dn) all most terms cancel, giving

L(ψ, q) =Ep∗(o)
[
η log

∑
o

∑
n

p̃(Dn|o)
]

=η log
∑
o

∑
n

p̃(Dn|o),

which concludes the proof.

A.3. Proof of Corollary 3.1.2

Expanding the expected KL divergence, we get

min
φ

Ep(D)DKL

(
p(o|D)‖gφ(o|x)

)
= min

φ

∑
n

p(Dn)
∑
o

p(o|Dn) log
p(o|Dn)

gφ(o|xn)
.

Noting that p(o|Dn) is independent of φ we can rewrite the
objective as

max
φ

∑
n

p(Dn)
∑
o

p(o|Dn) log gφ(o|xn).

Using that p(o|D) = p̃(D|o)/∑o p̃(D|o) together with
p(D) =

∑
o p
∗(o)p∗(D|o) yields

max
φ

∑
n

∑
o

p∗(o)p∗(Dn|o)
∑
o

p̃(Dn|o)∑
o p̃(Dn|o)

log gφ(o|xn).

Using Proposition 3.1 we can rewrite p∗(o)p∗(D|o) as
p̃(D|o)/∑o

∑
n p̃(Dn|o). Since the constant factor

1/
∑
o

∑
n p̃(Dn|o) does not affect the optimal value of

φ we obtain

max
φ

∑
n

∑
o

p̃(Dn|o)
∑
o

p̃(Dn|o)∑
o p̃(Dn|o)

log gφ(o|xn)

max
φ

∑
n

∑
o

p̃(Dn|o) log gφ(o|xn),

which concludes the proof.

B. Derivations
B.1. Lower Bound Decomposition

To arrive at Equation 4 by marginalizing over the latent
variable o for the entropy of the joint curriculum, i.e.,

H(D) = −
∑
n

p(Dn) log p(Dn)

= −
∑
n

p(Dn)
∑
o

p(o|Dn) log p(Dn)

Next, we use Bayes’ theorem, that is, p(Dn) =
p(o)p(Dn|o)/p(o|Dn), giving

H(D) =−
∑
n

p(Dn)
∑
o

p(o|Dn)
(

log p(o) + log p(Dn|o)

− log p(o|Dn)
)
.

Moreover, we add and subtract the log auxiliary distribution
log q(o|Dn) which yields

H(D) =−
∑
n

p(Dn)
∑
o

p(o|Dn)
(

log p(o) + log p(Dn|o)

− log p(o|Dn) + log q(o|Dn)− log q(o|Dn)
)
.

Rearranging the terms leads and writing the sums in terms
of expectations we arrive at

H(D) =Ep(o)
[
Ep(o|D)[log q(o|D)] +H(D|o)

]
+H(o)

+DKL

(
p(o|D)‖q(o|D)

)
.

Lastly, multiplying H(D) with η and adding
Ep(o)Ep(D|o)[log pθo(y|x, o)] we arrive at Equation 4
which concludes the derivation.
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Figure 7. The left figure shows 6 out of 24 ways of completing the
obstacle avoidance task. The right figure shows all 30 initial block
configurations used for the block pushing task.

C. Experiment Setup
C.1. Environments and Datasets

C.1.1. OBSTACLE AVOIDANCE

Dataset. The obstacle avoidance dataset contains 96 trajec-
tories resulting in a total of 7.3k (x,y) pairs. The inputs
x ∈ R4 contain the end-effector position and velocity in
Cartesian space. Please note that the height of the robot is
fixed. The targets y ∈ R2 represent the desired position
of the robot. The data is recorded such that there are an
equal amount of trajectories for all 24 ways of avoiding
the obstacles and reaching the target line. For successful
example trajectories see Figure 7.

Performance Metrics. The success rate indicates the num-
ber of end-effector trajectories that successfully reach the
target line (indicated by green color in Figure 3). The en-
tropy

H24(τ ) = −
∑
τ

p(τ ) log24 p(τ ),

is computed for successful trajectories τ . To assess the
model performance, we simulate 1000 end-effector trajec-
tories. We count the number of successful trajectories for
each way of completing the task. From that, we calcu-
late a categorical distribution p(τ ) which is used to com-
pute the entropy. By the use of log24 we make sure that
H24(τ ) ∈ [0, 1]. If a model is able to discover all modes
in the data distribution with equal probability, its entropy
will be close to 1. In contrast,H24(τ ) = 0 if a model only
learns one solution.

C.1.2. BLOCK PUSHING

Dataset. The block pushing dataset contains 480 trajecto-
ries resulting in a total of 100k (x,y) pairs. The inputs
x ∈ R16 contain the desired position and velocity of the
robot in addition to the position and orientation of the green
and red block. Please note that the orientation of the blocks
is represented as quaternion number system. Please note
that the height of the robot is fixed. The targets y ∈ R2

represent the desired position of the robot. For all 30 initial

block configurations c, i.e., position and orientation, we
record four trajectories for all (four) push sequences. This
task is similar to the one proposed in (Florence et al., 2022).
However, they use a deterministic controller to record the
data whereas we use human demonstrators which increases
the difficulty of the task significantly due to the inherent
versatility in human behavior.

Performance Metrics. The success rate indicates the num-
ber of end-effector trajectories τ that successfully push
both blocks to different target zones. To assess the model
performance on non-successful trajectories, we consider
the distance error, that is, the euclidean distance from the
blocks to the target zones at the final block configuration of
an end-effector trajectory. As there are a total of four push
sequences (see Figure 3) we use the expected entropy

Ep(c)H4(τ |c) = −
∑
c

p(c)
∑
τ

p(τ |c) log4 p(τ |c),

to quantify a model’s ability extract the modes in the data
distribution. Please note that we set p(c) = 1/30 as we
sample 30 block configurations uniformly from a config-
uration space (see Figure 7). For each c we simulate 16
end-effector trajectories. For a given configuration, we
count how often each of the four push-sequences is executed
successfully and use the result to calculate a categorical dis-
tribution p(τ |c). Once repeated for all 30 configurations ,
we compute Ep(c)H4(τ |c). Using log4 we make sure that
the expected entropy is upper bounded by 1. This bound
is achieved if a model is able to execute each of the push
sequences with equal probability for all configurations. If a
model only executes one sequence successfully, the entropy
is 0.

C.1.3. FRANKA KITCHEN

Dataset. The Franka kitchen environment was introduced
by Gupta et al. (2019). It contains 566 human-collected
trajectories resulting in a total of 128k (x,y) pairs. The
inputs x ∈ R30 contain information about position and
orientation of the task-relevant objects in the environment.
The targets y ∈ R9 represent the signals to control the
robot and the gripper. The dataset comprises sequences that
successfully solve 4 out of 7 tasks in different orders.

Performance Metrics. First, we consider the success rate
for a different number of tasks solved. We additionally
compute the entropy over task sequences. This is computed
using 100 simulated robot trajectories. For trajectories with
a single task solved, we count how frequently each of the
tasks is executed. From that we calculate a categorical dis-
tribution which is then used for computing the entropy. We
generalize this concept to more successful task completions,
by calculating a categorical distribution over all 7k possible
task sequences for k task completions.



Information Maximizing Curriculum: A Curriculum-Based Approach for Training Mixtures of Experts

Figure 8. Franka kitchen environment.

C.1.4. TABLE TENNIS

Dataset. The table tennis dataset contains 5000 (x,y) pairs.
The inputs x ∈ R4 contain the coordinates of the initial and
target ball position as projection on the table. Movement
primitives (MPs) (Paraschos et al., 2013) are used to de-
scribe the joint space trajectories of the robot manipulator
using two basis functions per joint and thus y ∈ R14.

Metrics. To evaluate the different algorithms on the demon-
strations recorded using the table tennis environment quan-
titatively, we employ two performance metrics: The success
rate and the distance error. The success rate is the per-
centage of strikes where the ball is successfully returned
to the opponent’s side. The distance error, is the distance
between the target position and landing position of the ball
for successful strikes.

C.2. IMC Details and Hyperparameter

IMC employs a parameterized inference network and condi-
tional Gaussian distributions to represent experts. For the
latter, we also use a fixed variance of 1 and parameterize
the means as shallow neural networks. In every M-step,
we optimize the experts for 5 epochs. We add a new com-
ponent after performing 5 E- and M-steps or if the lower
bound L(ψ, q) converges. Moreover, we use automatic
per-component curriculum pacing (Section 3.5) for all ex-
periments. For the table tennis and obstacle avoidance task,
we experimented with experts with 1 and 2 layer neural
networks. We found that using 1 layer with 32 neurons
performs best on the table tennis task and 2 layer with 64
neurons for the obstacle avoidance task. For the block push-
ing and Franka kitchen experiments, we considered 3 and
4 layers. We found that 3 layers with 64 neurons yield the
best results for the block pushing task and 4 layer with 100
for Franka kitchen. For all experiments except the kitchen
task, we used an effective number of samples Ns = 50 to
calculate the minimal per-component entropyHmin. For the
kitchen task, we used Ns = 150. We found that an expert
learning rate of 10−3 leads to good results on all experi-
ments. For the inference network, we used a fixed set of

parameters that are listed in Table 2. For the entropy scal-
ing factor η we performed a hyperparameter sweep using
Bayesian optimization. The respective values are η = 1/30
for obstacle avoidance, η ≈ 45 for block pushing and η = 1
for Franka kitchen and η = 1 for table tennis. To find an
appropriate model complexity we added up to 50 compo-
nents for the obstacle avoidance and table tennis task and
30 for the block pushing and Franka kitchen task. For the
former two, the best results were obtained using 50 com-
ponents. For the latter 10 components were sufficient to
achieve the results reported in the main manuscript. We
always evaluated the model after adding 5 components.

Table 2. IMC Hyperparameter.

PARAMETER VALUE

EXPERT LEARNING RATE 10−3

EXPERT BATCHSIZE 512
EXPERT VARIANCE (σ2

y) 1
INFERENCE NET HIDDEN LAYER 4
INFERENCE NET HIDDEN UNITS 200
INFERENCE NET EPOCHS 800
INFERENCE NET LEARNING RATE 10−3

INFERENCE NET BATCHSIZE 512

C.3. Baselines and Hyperparameter

We now briefly mention the baselines and their hyperpa-
rameters. We used Bayesian optimization to tune the most
important hyperparameters.

Mixture of Experts trained with Expectation-
Maximization (EM). The architecture of the mixture of
experts model trained with EM (Jacobs et al., 1991) is
identical to the one optimized with IMC: We employ a
parameterized inference network and conditional Gaussian
distributions to represent experts. For the latter, we also use
a fixed variance of 1 and parameterize the means as shallow
neural networks. For all experiments, we train the model
for 100 EM steps or until the lower bound on the marginal
likelihood converges. Equal to IMC, EM trains each expert
for 5 epochs per M-step. However, the two approaches
differ in the optimization scheme: While IMC trains the
inference network once, EM updates the parameters in
every M-step. We therefore optimize the inference network
for 8 epochs resulting in a total of 800 epochs using 100
expectation maximization steps which is equivalent to
the number used for IMC. Moreover, EM initialized all
components at the beginning of the training whereas IMC
incrementally adds components during training. For the
table tennis and obstacle avoidance task we experimented
using experts with 1 and 2 layer neural networks. We
found that using 1 layer with 64 neurons performed best.
For the block pushing and Franka kitchen experiments we
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considered 3 and 4 layers. We found that 3 layers with
100 neurons yield the best results. To find an appropriate
model complexity we tested up to 50 components for the
obstacle avoidance and table tennis task and 30 for the
block pushing and Franka kitchen task. For the former two,
the best results were obtained using 25 and 50 components
respectively. For the latter 20 and 25 components. For the
remaining hyperparamter choices see Table 3.

Table 3. EM Hyperparameter.

PARAMETER VALUE

EXPERT LEARNING RATE 10−3

EXPERT BATCHSIZE 512
EXPERT VARIANCE (σ2

y) 1
INFERENCE NET HIDDEN LAYER 4
INFERENCE NET HIDDEN UNITS 200
INFERENCE NET EPOCHS 800
INFERENCE NET LEARNING RATE 10−3

INFERENCE NET BATCHSIZE 512

Mixture Density Network (MDN). The mixture density
network (Bishop, 1994) uses a shared backbone neural net-
work with multiple heads for predicting component indices
as well as the expert likelihood. For the experts, we employ
conditional Gaussians with a fixed variance. The model
likelihood is maximized in an end-to-end fashion using
stochastic gradient ascent. We experimented with differ-
ent backbone and expert architectures. However, we found
that the MDN is not able to partition the input space in a
meaningful way, often resulting in sub-optimal outcomes,
presumably due to mode averaging. To find an appropriate
model complexity we tested up to 50 expert heads for the
obstacle avoidance and table tennis task and 30 for the block
pushing and Franka kitchen task. We found that the number
of experts heads did not significantly influence the results,
further indicating the the MDN is not able to utilize multiple
experts to solve sub-tasks. We additionally experimented
with a version of the MDN that adds an entropy bonus to
the objective (Zhou et al., 2020) to encourage more diverse
and multimodal solutions. However, we did not find signifi-
cant improvements compared to the standard version of the
MDN. For a list of hyperparameter choices see 4.

Denoising Diffusion Probabilistic Models (DDPM). We
consider the denoising diffusion probabilistic model pro-
posed by (Ho et al., 2020). Following common practice we
parameterize the model as neural network with a sinusoidal
positional encoding for the diffusion steps (Vaswani et al.,
2017). Moreover, we use the a cosine-based variance sched-
uler proposed by (Nichol & Dhariwal, 2021). For further
details on hyperparameter choices see Table 5.

Normalizing Flow (NF). For all experiments, we build the
normalizing flow by stacking masked autoregressive flows

Table 4. MDN Hyperparameter. The ‘Value’ column indicates
sweep values for the obstacle avoidance task, the block pushing
task, the Franka kitchen task and the table tennis task (in this
order).

PARAMETER SWEEP VALUE

EXPERT HIDDEN LAYER {1, 2} 1, 1, 1, 1
EXPERT HIDDEN UNITS {30, 50} 50, 30, 30, 50
BACKBONE HID. LAYER {2, 3, 4, 6, 8, 10} 3, 2, 4, 3
BACKBONE HID. UNITS {50, 100, 150, 200} 200, 200, 200, 200
LEARNING RATE ×10−3 [0.1, 1] 5.949, 7.748, 1.299, 2.577
EXPERT VARIANCE (σ2

y) − 1
MAX. EPOCHS − 2000
BATCHSIZE − 512

Table 5. DDPM Hyperparameter. The ‘Value’ column indicates
sweep values for the obstacle avoidance task, the block pushing
task, the Franka kitchen task and the table tennis task (in this
order).

PARAMETER SWEEP VALUE

HIDDEN LAYER {4, 6, 8, 10, 12} 6, 6, 8, 6
HIDDEN UNITS {50, 100, 150, 200} 200, 150, 200, 200
DIFFUSION STEPS {5, 15, 25, 50} 15, 15, 15, 15
VARIANCE SCHEDULER − COSINE
LEARNING RATE − 10−3

MAX. EPOCHS − 2000
BATCHSIZE − 512

(Papamakarios et al., 2017) paired with permutation layers
(Papamakarios et al., 2021). As base distribution, we use
a conditional isotropic Gaussian. Following common prac-
tice, we optimize the model parameters by maximizing its
likelihood. See Table 6 for a list of hyperparamters.

Table 6. NF Hyperparameter. The ‘Value’ column indicates
sweep values for the obstacle avoidance task, the block push-
ing task, the Franka kitchen task and the table tennis task (in this
order).

PARAMETER SWEEP VALUE

NUM. FLOWS {4, 6, 8, 10, 12} 6, 6, 4, 4
HIDDEN UNITS PER FLOW {50, 100, 150, 200} 100, 150, 200, 150
LEARNING RATE ×10−4 [0.01, 10] 7.43, 4.5, 4.62, 7.67
MAX. EPOCHS − 2000
BATCHSIZE − 512

Conditional Variational Autoencoder (CVAE). We con-
sider the conditional version of the autoencoder proposed
by Sohn et al. (2015). We parameterize the encoder and
decoder with a neural network with mirrored architecture.
Moreover, we consider an additional scaling factor (β) for
the KL regularization in the lower bound objective of the
VAE as suggested by Higgins et al. (2017).
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Table 7. CVAE Hyperparameter. The ‘Value’ column indicates
sweep values for the obstacle avoidance task, the block pushing
task, the Franka kitchen task and the table tennis task (in this
order).

PARAMETER SWEEP VALUE

HIDDEN LAYER {4, 6, 8, 10, 12} 8, 10, 4, 4
HIDDEN UNITS {50, 100, 150, 200} 100, 150, 100, 100
LATENT DIMENSION {4, 16, 32, 64} 32, 16, 16, 16
DKL SCALING (β) [10−3, 102] 1.641, 1.008, 0.452, 0.698
LEARNING RATE − 10−3

MAX. EPOCHS − 2000
BATCHSIZE − 512

Implicit Behavior Cloning (IBC). IBC was proposed by
Florence et al. (2022) and uses energy-based models to learn
a joint distribution over inputs and targets. Following com-
mon practice we parameterize the model as neural network.
Moreover, we use the version that adds a gradient penalty
to the InfoNCE loss (Florence et al., 2022). For sampling,
we use gradient-based Langevin MCMC (Du & Mordatch,
2019). Despite our effort, we could not achieve good results
with IBC. A list of hyperparameters is shown in Table 8.

Table 8. IBC Hyperparameter. The ‘Value’ column indicates
sweep values for the obstacle avoidance task and the table tennis
task (in this order). We do not get any good results for the block
push task and the Franka kitchen task.

PARAMETER SWEEP VALUE

HIDDEN DIM {50, 100, 150, 200, 256} 200, 256
HIDDEN LAYERS {4, 6, 8, 10} 4, 6
NOISE SCALE [0.1, 0.5] 0.1662, 0.1
TRAIN SAMPLES [8, 64] 44, 8
NOISE SHRINK − 0.5
TRAIN ITERATIONS − 20
INFERENCE ITERATIONS − 40
LEARNING RATE − 10−4

BATCH SIZE − 512
EPOCHS − 1000

Behavior Transformer (BET). Recently, Shafiullah et al.
(2022) proposed the behavior transformer which employs a
minGPT transformer (Brown et al., 2020) to predict targets
by decomposing them into cluster centers and residual off-
sets. To obtain a fair comparison, we compare our method
to the version with no history. A comprehensive list of
hyperparameters is shown in Table 9.

D. Connection to Expectation Maximization
In this section we want to highlight the commonalities
and differences between our algorithm and the expectation-
maximization (EM) algorithm for mixtures of experts. First,
we look at the updates of the variational distribution q. Next,

Table 9. BET Hyperparameter. The ‘Value’ column indicates
sweep values for the obstacle avoidance task, the block pushing
task, the Franka kitchen task and the table tennis task (in this
order).

PARAMETER SWEEP VALUE

TRANSFORMER BLOCKS {2, 3, 4, 6} 3, 4, 6, 2
OFFSET LOSS SCALE {1.0, 100.0, 1000.0} 1.0, 1.0, 1.0, 1.0
EMBEDDING WIDTH {48, 72, 96, 120} 96, 72, 120, 48
NUMBER OF BINS {8, 10, 16, 32, 50, 64} 50, 10, 64, 64
ATTENTION HEADS {4, 6} 4, 4, 6, 4
CONTEXT SIZE − 1
TRAINING EPOCHS − 500
BATCH SIZE − 512
LEARNING RATE − 10−4

we compare the expert optimization. Lastly, we take a closer
look at the optimization of the gating distribution.

The EM algorithm sets the variational distribution during
the E-step to

q(o|xn) = p(o|xn,yn) =
pθ(yn|xn, o)p(o|xn)∑
o pθo

(yn|xn, o)p(o|xn)
,

(7)
for all samples n and components o. In the M-step, the
gating distribution p(o|x) is updated such that the KL di-
vergence between q(o|x) and p(o|x) is minimized. Using
the properties of the KL divergence, we obtain a global
optimum by setting p(o|xn) = q(o|xn) for all n and all o.
This allows us to rewrite Equation 7 using the recursion in
q, giving

q(o|xn)(i+1) =
pθ(yn|xn, o)q(o|xn)(i)∑
o pθ(yn|xn, o)q(o|xn)(i)

,

where (i) denotes the iteration of the EM algorithm. The
update for the variational distribution of the IMC algorithm
is given by

q(o|Dn)(i+1) =
p̃(Dn|o)(i+1)∑
o p̃(Dn|o)(i+1)

=
pθ(yn|xn, o)1/ηq(o|Dn)(i)∑
o pθo

(yn|xn, o)1/ηq(o|Dn)(i)
.

Consequently, we see that q(o|x) = q(o|D) for η = 1. How-
ever, the two algorithms mainly differ in the M-step for the
experts: The EM algorithm uses the variational distribution
to assign weights to samples, i.e.

max
θo

N∑
n=1

q(o|xn) log pθo
(yn|xn, o),

whereas IMC uses the curricula as weights, that is,

max
θo

N∑
n=1

p(Dn|o) log pθo(yn|xn, o).
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This subtle difference shows the properties of moment and
information projection: In the EM algorithm each sample
xn contributes to the expert optimization as

∑
o q(o|xn) =

1. However, if all curricula ignore the nth sample, it will not
have impact on the expert optimization. Assuming that the
curricula ignore samples which the corresponding experts
are not able to represent, IMC prevents experts having to
average over ‘too hard’ samples. Furthermore, this results
in reduced outlier sensitivity as they are likely to be ignored
for the expert optimization. Lastly, we highlight the differ-
ence between the gating optimization: Assuming that both
algorithms train a gating network gφ(o|x) we have

max
φ

∑
n

∑
o

q(o|xn) log gφ(o|xn),

for the EM algorithm and

max
φ

∑
n

∑
o

p̃(Dn|o) log gφ(o|xn),

for IMC. Similar to the expert optimization, EM includes all
samples to fit the parameters of the gating network, whereas
IMC ignores samples where the unnormalized curriculum
weights p̃(Dn|o) are zero for all components.


