
Goal-Conditioned Imitation Learning using
Score-based Diffusion Policies
Moritz Reuss, Maximilian Li, Xiaogang Jia and Rudolf Lioutikov

Intuitive Robots Lab, Karlsruhe Institute of Technology, Germany

Abstract—We propose a new policy representation based on
score-based diffusion models (SDMs). We apply our new policy
representation in the domain of Goal-Conditioned Imitation
Learning (GCIL) to learn general-purpose goal-specified poli-
cies from large uncurated datasets without rewards. Our new
goal-conditioned policy architecture ”BEhavior generation with
ScOre-based Diffusion Policies” (BESO) leverages a generative,
score-based diffusion model as its policy. BESO decouples the
learning of the score model from the inference sampling process,
and, hence allows for fast sampling strategies to generate goal-
specified behavior in just 3 denoising steps, compared to 30+ steps
of other diffusion based policies. Furthermore, BESO is highly
expressive and can effectively capture multi-modality present in
the solution space of the play data. Unlike previous methods
such as Latent Plans or C-Bet, BESO does not rely on complex
hierarchical policies or additional clustering for effective goal-
conditioned behavior learning. Finally, we show how BESO can
even be used to learn a goal-independent policy from play-data
using classifier-free guidance. To the best of our knowledge this
is the first work that a) represents a behavior policy based on
such a decoupled SDM b) learns an SDM based policy in the
domain of GCIL and c) provides a way to simultaneously learn
a goal-dependent and a goal-independent policy from play-data.
We evaluate BESO through detailed simulation and show that it
consistently outperforms several state-of-the-art goal-conditioned
imitation learning methods on challenging benchmarks. We
additionally provide extensive ablation studies and experiments
to demonstrate the effectiveness of our method for effective goal-
conditioned behavior generation.

I. INTRODUCTION

Goal-conditioned Behavior Learning aims to train general-
purpose embodied agents, that can solve a wide range of daily
tasks. A common approach tackling this challenge is Goal-
conditioned Imitation Learning (GCIL). GCIL only requires
an offline dataset without additional rewards or expensive
environment interactions for training. However, GCIL typi-
cally requires a set of predefined tasks and a large number
of labeled and segmented expert trajectories for each task,
which can be costly and time-consuming. Additionally, it does
not generalize well to new scenes and different tasks. Instead
of teaching an agent a limited number of predefined goals,
Learning from Play (LfP) [22] provides an effective way
of collecting task-agnostic, teleoperated, uncurated, freeform
datasets. Such datasets consist of rich, meaningful, multimodal
interactions with the environment that cover different areas of
the state space. Instead of manually labeling the trajectories,
LfP pairs random sequences of each trajectory with one or
more future states, i.e., the goal-state, of the respective tra-
jectory. Goal-conditioned policies distill useful, goal-oriented
behavior from this collected play interaction data. However,

learning from play data remains an open challenge, partially
due to the multimodal nature of the demonstrations, e.g., the
same task can be solved in very different ways and different
tasks can be solved in very similar ways.

Effective behavior learning from these datasets requires
policies that maintain such multimodal solutions and that are
expressive enough to stay close to the seen state-action distri-
bution of the offline data to execute long-term horizon skills.
Most prior work tries to deal with this challenge, by combining
generative models, such as Variational Autoencoders (VAEs)
[12, 26, 32] and Generative Pretrained Transformer (GPTs) [6,
35], with additional models and networks to explicitly encode
multimodality or hierarchy. However, these methods require
supplementary networks or a separation of skill execution and
planning within their architecture, as the policy expression
is not sufficient or cannot handle the multimodality of the
observed behaviors. Additionally, multiple learning objectives
are typically required, e.g. for low- and high-level policies,
which provides additional tuning challenges. In contrast, our
novel policy architecture applies a single network for learning
expressive goal-conditioned policies from multimodal play
data. The policy leverages a score-based diffusion model and
optimizes a single unified training objective.

Denoising Diffusion Probabilistic models (DDPMs) [37, 15]
and Score-based Generative models (SGMs) [39, 40] are
two recently emerged and well-received generative model
architectures. Both methods use the same underlying principle
of perturbing data with a sequence of noise distributions until
it converges to random Gaussian noise. A neural network,
i.e., the score or denoising model respectively, is learned
to reverse this denoising process, which can be used to
generate new samples. While the architectures have been
proposed individually, it has been shown, that they belong
to the same group of score-based diffusion models (SDMs).
The diffusion process of both models can be described using
stochastic-differential equations (SDEs) [41]. These models
achieved state-of-the-art results in various tasks such as text-
based image synthesis [7, 33], human motion generation [42]
and offline reinforcement learning (Offline-RL) [15, 16, 45].
However, SDMs need to iteratively denoise each sample in
many steps to generate good results [15]. This slow inference
makes them unsuitable for step-based policies, especially in
robotics.

We propose a new approach for BEhavior Generation using
ScOre-based Diffusion models (BESO) that is capable of
learning goal-conditioned policies purely from reward free,

ar
X

iv
:2

30
4.

02
53

2v
1

 [
cs

.L
G

]
 5

 A
pr

 2
02

3

offline datasets and requires as little as 3 inference steps to
produce good actions. We demonstrate several benefits of mod-
eling the goal-conditioned action distribution using a score-
based diffusion model. First, we show, that the expressiveness
of SDMs and ability to capture multimodal distributions is
key for effective conditioned behavior generation. Our re-
sults show that BESO significantly outperforms state-of-the-
art methods including C-BeT and Latent Motor Plans [6, 22]
on several challenging goal-conditioned benchmarks including
conditioned Relay Kitchen, Block-Push environment [6]. Ad-
ditionally, by leveraging Classifier-Free Guidance Training of
SDMs, BESO effectively learns two policies simultaneously:
a goal-dependent and goal-independent policy, which both can
be used at test time. Further, our model is easy to train with a
single training objective without additional rewards and does
not suffer from training instabilities, unlike other state-of-the-
art generative models such as Implicit Behavior Cloning (IBC)
[10] or hierarchical policies [12].

BESO’s score model is designed as a Transformer aug-
mented with preconditioning to synthesize step-based actions.
It leverages recent advances in Score-based Diffusion Models,
that separate the training and inference process [17]. We
systemically evaluate key components of SDMs for fast and
effective step-based action generation. BESO’s action genera-
tion process can be viewed as solving a corresponding Ordi-
nary Differential Equation (ODE). The determinism of ODE’s
allows us to use larger step sizes than classic diffusion models.
Further, BESO can take advantage of fast, numerical solvers
[38, 20]. Current diffusion-based policies [30] require 30+
denoising steps for a single action prediction to achieve good
results. Our proposed approach, BESO, performs exceptionally
on challenging GCIL benchmarks, outperforming state-of-the-
art goal-conditioned policies, while using only 3 denoising
steps.

To summarize our contributions:
• BESO, a new policy representation based on score-based

diffusion models for effective goal-conditioned behavior
generation from uncurated play data

• Usage of Classifier-Free Guidance based Diffusion Pol-
icy to simultaneously learn a goal-dependent and goal-
independent policy from play

• Systematic evaluation of key components for fast and
efficient action generation using Score-based Diffusion
policies combined with extensive experiments and abla-
tion studies

II. RELATED WORK

Diffusion Generative Models Score-based generative mod-
els (SGMs) [39, 40] and Denoising Diffusion Probabilistic
Models (DDPMs) [37, 15] are two types of generative models,
that both corrupt a data distribution with increasing Gaussian
noise. SGMs and DDPMs use neural networks to learn to
reverse this corruption to generate new data samples from
noise. The two different model types have been unified using
the stochastic differential equation (SDE) framework [41].
SDEs describe the diffusion process as a time-continuous

process instead of using discrete noise levels. BESO follows
the SDE formulation proposed by Karras et al. [17]. To draw
new samples from the diffusion models, they need to reverse
the SDE discretized over T time steps. The SDE contains a
probability flow ODE with the same marginal distributions,
which allows for fast sampling [41]. ODE solvers do not
add noise during the inference process, which can reduce the
number of function evaluations and accelerate sampling [20].
Sampling can be further accelerated using specialized numeri-
cal ODE solvers designed for diffusion inference [15, 17, 21].

Goal-Conditioned Imitation Learning (GCIL) is a sub-
domain of Imitation Learning[29, 2], where each demon-
stration is augmented with one or more goal-states that are
indicative of the task that the demonstration was provided for.
The goal-state contains information that a learning method
can leverage to disambiguate demonstrations. Consequently,
a goal-conditioned policy, i.e., a policy that includes the
goal-state in it’s condition set, can use a given goal-state to
adapt it’s behavior accordingly. Similarly, goal-states have also
extended the domain of reinforcement learning through Goal-
Conditioned Reinforcement Learning (GCRL) [8, 9, 23, 32],
where the agent is not provided expert demonstrations but
reward signals instead. Typically these reward signals are diffi-
cult to define, especially for complex tasks and environments,
providing demonstrations is often a more natural option in
such situations. Additionally, the policy rollouts required by
GCRL are often expensive in real-world settings. Recent work
investigated Goal Conditioned Offline Reinforcement Learning
[23, 34, 32, 46, 27], which does not require these expensive
rollouts during training.

Learning from Play. The goal of Learning from Play (LfP)
[22] is to learn goal-specified behavior from a diverse set of
unlabeled state-action trajectories. Classical imitation learning
datasets typically consist of uni-modal, segmented expert tra-
jectories in a narrow state-space. Play data, on the other hand,
is characterized by unsegmented, multimodal trajectories. This
makes learning meaningful behaviors more challenging, as the
policies need the ability to deal with multiple ways of solving a
task, distinguish between similar ways to solve different tasks,
as well as the ability of long-horizon planning to reach goals
far into the future. Prior work aimed to extract representations
from play data for effective downstream policy learning [47]
or learned self-supervised representations of skills, referred
to as latent plans, using Conditional Variational Autoencoders
(CVAE) [12, 22, 26, 25]. Transformer-based architectures were
also researched as a policy-class for task-agnostic behavior
learning [6, 4]. Another body of work tries to improve learn-
ing from play, by focusing on the data aspect and learning
from object-centric interactions, instead of random sampled
sequences [3].

Generative Models in Policy Learning. Imitation Learning
can be formulated as a state-occupancy matching problem,
where the goal is to learn a policy that matches the state-
occupancy distribution of expert demonstrations. The unknown
expert demonstration can now be approximated through mod-
ern generative model architectures. One popular approach is

𝑷𝒐𝒍𝒊𝒄𝒚:

1. Sample ~𝜨 𝟎, 𝝈𝑻
𝟐𝑰

2. Diffuse 𝒂𝑻 using
Score-Model
𝑫𝜽(𝒂, 𝒔, 𝒈, 𝝈𝒕)

3. Return

𝒈States and goal states𝒔, 𝒂 𝒏:𝒏+𝒌

× 𝑁

𝝈𝒕

Sample
Method

𝒂𝟎

𝒂𝑵

𝑭𝝑(𝒂, 𝒔, 𝒈, 𝝈)𝒄𝒏𝒐𝒊𝒔𝒆(𝝈𝒕)

𝒄𝒊𝒏(𝝈𝒕)

𝒄𝒔𝒌𝒊𝒑(𝝈𝒕)

𝒄𝒐𝒖𝒕(𝝈𝒕) ×

𝑫𝜽(𝒂, 𝒔, 𝒈, 𝝈𝒕):

𝒔, 𝒂 𝒏:𝒏+𝒌 𝒈𝒂𝒕𝝈𝒕

×

+×

𝒂𝒕−𝟏

Linear Output Layer

PE

Transformer

𝑭𝝑 𝒂, 𝒔, 𝒈, 𝝈𝒕 :

AE : Linear Action Encoder

SE : Linear State Encoder : Position EmbeddingPE

AESE AE

𝒔, 𝒂 𝒏−𝟐

SE

𝒔, 𝒂 𝒏−𝟏

: Linear Noise EncoderNE

𝒂𝒕

AE

+

𝒔𝒏

SE

++

𝝈𝒕

NE SE

𝒈

+ + ++

Fig. 1. Overview of action generation process of BESO with the used model architecture. Left: General Action Generation Process using the Diffusion
Process to denoise an action in N -steps. Middle: the high level score-model with its pre-conditioning layers and skip-connections. Right: the internal denoising
score-model, which uses a transformer architecture to iteratively denoise the actions

the use of Generative Adversarial Networks (GANs) [13, 11].
These methods consist of a generator policy that learns to
imitate the observed behavior of the expert and a discrim-
inator, which distinguishes between real and fake trajecto-
ries. They require extensive rollouts during training, which
is not feasible in our setting. Other approaches use CVAEs
[24, 32, 12, 25, 34] to learn a latent embedding to represent
the underlying skills. Recent work also applied Energy-based
models as conditional policies for behavior cloning [10] or
in an inverse RL setting [19]. Normalizing flows have been
proposed as an alternative approach for policy learning [36].

Diffusion Generative Models in Robotics. Most ap-
proaches that apply diffusion models in robotics applications
focus on the discrete DDPM variant [15]. The DDPM Dif-
fusion model has been used in Offline-RL to generate state-
action or state-only trajectories using large U-net architectures
[16, 1]. DDPM has also been applied as a policy regularization
method in a step-based Offline-RL setting in combination with
a learned Q-function [45]. Recently, score-based generative
models have been leveraged to synthesize cost functions for
grasp pose configurations [43]. In addition, Conditional score-
based generative models have been proposed to learn the
reward function for inverse reinforcement learning [18]. The
closest related work to BESO is Diffusion-BC [30], which
proposes the use of conditional DDPM as a new policy class
for Behavior Cloning. Diffusion-BC synthesizes new actions
in 50 stochastic sampling steps. To improve the performance,
Diffusion-BC uses X-extra inference steps at the lowest noise
level without additional noise. However, this method results in
even slower action generation. BESO leverages the probability
flow ODE combined with fast, deterministic samplers and
optimized noise levels. Hence, BESO requires significantly
fewer function evaluations in every action prediction.

III. PROBLEM FORMULATION AND METHOD

In this section we describe our approach to goal-conditioned
behavior generation using Score-based diffusion models.

A. Problem Formulation

The Goal of GCIL is to learn a general-
purpose goal-conditioned policy from uncurated play
data. Given a set of unstructured, task-agnostic
trajectories, T =

{
τ k|τ k = ((skn,a

k
n))

Nk
n=1

}
, each

trajectory can be split into a set of tuples containing
sub-trajectory sequences and goal-states Dk ={
(o, g)|o = (sn,an)

i†
n=i, g = (sn)

j†
n=j , (sn,an) ∈ τ k

}
,

with i ≤ i† < j ≤ j† denoting start and end steps of the
sequence and goal-state respectively. As this formulation
makes clear, the goal-state has to be one or more states of
the same trajectory as the sequence and has to begin at some
step after the respective sequence has ended. The set Dk
can contain overlapping sequences and the final play dataset
is given as D =

⋃K
k=1Dk. For simplicitly the indices of

ok and gk simply indicate that the sequence and goal state
belong together and the indices in (sn,an) ∈ o refer to the
relative time step in the sequence. The state-action pairs in
sequence ok leading to the goal state gk are now treated
as the optimal behavior to reach gk[12, 26]. Score-based
Diffusion Models learn the general-purpose goal-conditioned
policy by maximizing the log-likelihood objective over the
play dataset

Lplay = E(o,g)∈D

 ∑
(s,a)∈o

log πθ (a|s, g)

 . (1)

Because of the multi-modal nature of the demonstrations, i.e.
several trajectories leading to the same goal state, solving
this objective successfully requires a policy that is capable
of encoding such a multi-modal behavior.

B. Score-based Diffusion Policies

We now aim to learn the policy distribution πD (a|s, g)
underlying the play datatset D and, hence, the given demon-
strations. We do so by defining a continuous diffusion process,
which maps samples from our play dataset by gradually adding
Gaussian noise to the intermediate distributions pt, t ∈ [0, T]
with initial distribution p0 = πD and final distribution pT .

The continuous diffusion process can be described using
a stochastic-differential equation (SDE) [41]. In this work
we define the SDE analogously to a recently introduced
formulation[17]:

da = −
(
βt + σ̇t

)
σt∇a log pt(a|s, g)dt+

√
2βtσtdωt, (2)

where ∇a log pt(a|s, g) refer to the score-function, ωt is the
Standard Wiener process, σt is the noise scheduler and the
term β(t) describes the relative rate at which the current noise
is replaced by new noise. In our case, we use σt(t) = t
which has been shown to work well in image generation tasks
[17]. At every timestep t and related noise level σt there
exists a corresponding marginal distribution pt(a|s, g), which
is the result of injecting Gaussian noise to samples from pplay,
i.e. pt(at|a) = N (a, σ2

t I). The final action distribution of
the diffusion process is a known tractable prior distribution
aT = pT . Typically, an unstructured Gaussian distribution
pT = N (0, σ2

T I) is chosen without any information about
the play data distribution p0 = πD.

Algorithm 1 BESO Training
1: Require: Play Dataset Lplay, Sequence Size co, Goal

Sequence Size cg
2: Require: Score Model Dθ(a, s, g, σt)
3: Require: Noise Distribution N (σmean, σ

2
stdI)

4: for i ∈ {0, ..., Ntrain steps} do
5: Sample (o, g) ∼ Lplay
6: Sample ε ∼ N (σmean, σ

2
stdI)

7: LDθ ← Eσ,a,ε
[
α(σt)‖Dθ(a+ ε, s, g, σt)− a‖22

]
8: end for

In the case of BESO we are interested in the Probability
Flow Ordinary Differential Equation (ODE) inside the SDE
[5]. This ODE has the same marginal distributions pt(a|s, g)
as the SDE at every timestep but without the additional
random noise injections. By setting β(t) = 0, we recover the
Probability Flow ODE from Eq. (2):

da = −σ̇tσt∇a log pt(a|s, g)dt (3)

The negative score-function −∇a log pt(a|s, g) specifies the
vector field of the current marginal distribution pt(a|s, g),
that points towards regions of low data density, which is
scaled with the current change of the noise level σ̇t. In order
to generate new samples, we need an estimate of the score
function ∇a log pt(a|s, g) for all marginal distributions pt.
To achieve this, we use a neural network Dθ(a, s, g, σt) that
matches the score for all marginal distributions in our diffusion

Algorithm 2 Action Generation Process using DDIM based
Sampler (DPM-1) adapted for BESO [20, 38]

1: Require: Current state s, goal g
2: Require: Score-Denoising Model Dθ(a, s, g, σt)
3: Require: Noise scheduler σt = σ(t)
4: Require: Discrete time steps ti∈{0,..,N}
5: Require: fλ(t) = − log(t)
6: Require: ft(λ) = log(−λ)
7: Draw sample a0 ∼ N (0, σ2

t0I)
8: for i ∈ {0, ..., N − 1} do
9: di ←

(
ai −Dθ(ai, s, g, σt)

)
/ti

10: λti , λti+1
← fλ(ti), fλ(ti+1)

11: hi ← λti − λti−1

12: ai+1 ← (ti+1

ti
)ai −

(
e(−hi) − 1

)
di

13: end for
14: return aN

process.

∇a log pt(a|s, g) = (D(a, s, g, σt)− a) /σ2
t . (4)

We train the neural network using the denoising score match-
ing objective [44, 39], where we add Gaussian noise to the
actions and minimize the difference between the output of the
network and the original actions:

LDθ = Eσt,a,ε

[
α(σt)‖Dθ(a+ ε, s, g, σt)− a‖22

]
, (5)

where a is an action sample and ε ∼ N (0, σ2
t I) is Gaus-

sian noise. The individual noise level losses are weighted
according to α(σt) and the current σt is sampled from
ptrain ∼ N (σmean, σ

2
stdI). The training process is summarized

in Alg. 1. This allows us to effectively learn the score function
and generate samples from the conditional density, pt(a|s, g),
using the Probability Flow ODE. Therefore, we numerically
approximate the reverse ODE using our learned model as the
score-function in Eq. (3). We begin by selecting a random
sample from our prior distribution, aT ∼ N (0, σ2

T I), and then
iteratively denoise this sample. Utilizing a random sample as
a starting point enables the creation of diverse and multimodal
actions, even when the underlying ODE is deterministic.
Detailed evaluations on how to effectively simulate the reverse
ODE are discussed in Section IV-B.

IV. GOAL-GUIDED SCORE-BASED DIFFUSION POLICIES

In this section, we introduce two variants of BESO.
Conditioned Policy (C-BESO). We define a goal-

conditioned diffusion policy, π (a|s, g), by directly learn-
ing the goal-and state-conditioned distribution with our
score-based generative model. In contrast to standard goal-
conditioned behavior cloning, our diffusion policy allows us
to capture multiple solutions present in the play data while
still being expressive enough to solve long-term goals.

Goal-Classifier-Free Guided Policy (CFG-BESO). We ad-
ditionally combine BESO with a popular conditioning method
for diffusion models, Classifier-Free Guidance (CFG) [14].

We train a goal-conditioned diffusion policy π (a|s, g) by
applying a dropout rate of 0.1 to the goal g, which also trains
an implicit goal-independent policy π (a|s) within our goal-
conditioned model. The generation process uses a combined
gradient for the denoising process

∇a log pt,λ(a|s, g) =
λ∇a log pt(a|s, g) + (1− λ)∇a log pt(a|s),

(6)

where the guidance factor λ controls the influence of the goal-
conditioned and goal-independent gradient. In diffusion litera-
ture, λ commonly ranges from 2 to 7.5, to guide the diffusion
model towards goal-conditional distribution π (a|s, g). CFG
has shown significant performance improvements compared to
other conditioning methods [14, 20, 28]. Even though CFG has
also been successfully applied for generating state-only tra-
jectories in Offline-RL [1], recent work on behavioral cloning
suggests that CFG performs significantly worse than simpler
conditioning methods [30] for step-based action generation.
We provide a detailed analysis of CFG for goal-guided action
generation in our experiment section.

A. Model Architecture

One of the main challenges of training the score-based diffu-
sion model is the big range of noise levels σt ∈ {0.001, 40} To
address this challenge, we use an improved architecture Karras
et al. [17] including additional skip-connections and two pre-
conditioning layers, which are conditioned on the current noise
level σt

Dθ(a|s, g, σt) =
cskip(σt)a+ cout(σt)Fθ(cin(σt)a, s, g, cnoise(σt)),

(7)

The conditioning functions are described in detail in Section
A of the Appendix.

These additional skip connections help the score model
to scale the output to a large range of noise levels σt, by
either estimating the denoised sample at−1, directly predicting
the noise n or something in between these two. BESO uses
transformer based architecture with casual masking as the
inner model Fθ(a, s, g, σt) and a linear embedding for the
noise. Additionally, three linear embedding layers encode the
states sn, noise σt and the noisy actions an into a linear rep-
resentation of the same dimension, ls(s), la(a), lσ(σ), where
the position embedding information is added on the linear
representations. The noise embedding is concatenated with
the desired future states and all state-noise-action pairs in a
large sequence for the model. During training the denoised
actions for all timesteps in the input series are inferred, but
only the last predicted action is used during inference. To
take advantage of the casual masking in the transformer, we
concatenate the goal-sequence before the current observation
sequence Cui et al. [6], allowing for a sequence of goal-states.
An overview of our proposed architecture is shown in Figure
1.

Fig. 2. Simulation environments for testing the performance of BESO: Multi-
Modal Block-push (left); Relay Kitchen (middle); CALVIN (right)

B. Efficient Action Generation using Deterministic Samplers

New actions are generated by sampling from the prior
distribution aT ∼ N (0, σ2

T I) and numerically simulating the
reverse ODE or SDE by substituting the score-function with
our learned model in Eq. (3). This ODE or SDE can be solved
numerically, by discretizing the differential equation starting
from T to 0. During the action prediction, we iteratively
denoise the sample at N -discrete noise levels. A detailed
comparison of state-of-the-art diffusion samplers are provided
in Sec. C of the Appendix. An additional evaluation on the
influence of noise concludes that ODE solvers are competitive
with SDE variants for action prediction tasks. BESO uses the
DDIM solver as described in detail in Alg. 2 [21, 38], which
has been designed for fast, deterministic sampling in guided
image generation. The solver is a first-order deterministic
sampler that is based on an exponential integrator method.
The ablation studies in Section C show, that 3 denoising
steps are enough for BESO to generate actions with high
accuracy. Further increasing the number of inference steps
comes at the cost of a slower inference, while only marginally
increasing the overall performance. Therefore, we decided to
use 3 as the ideal trade-off between computation cost and
performance. For inference, we are able to adapt the range
of noise and the distribution of discrete timesteps for the
prediction steps. Based on empirical evaluations, we decide
to use an exponential noise scheduler with a noise range of
σ ∈ {0.25, 40} for most applications.

V. EVALUATION

The objective of our experiments was to answer the follow-
ing key questions: I) Is BESO competitive on goal-conditioned
environments against state-of-the-art baselines? II) What are
the key components to enable fast sampling of Diffusion poli-
cies with good performance? III) Does Classifier-Free Guid-
ance work for goal-conditional behavior synthesis? To answer
these questions, we evaluated BESO on several challenging
simulation benchmarks. First we compared the performance
of BESO against other state-of-the-art methods. Afterward,
we examined BESO’s individual components with respect to
their contribution to the performance.

A. Baselines

We compare BESO against several state-of-the-art methods:

GCBC C-IBC LMP RIL C-BeT CX-Diff C-BESO CFG-BESO

Block-Push Reward 0.13 (± 0.04) 0.46 (± 0.06) 0.04 (± 0.03) 0.06 (± 0.01) 0.91 (± 0.03) 0.92 (± 0.03) 0.96 (± 0.02) 0.95 (± 0.02)
Result 0.13 (± 0.04) 0.29 (± 0.10) 0.04 (± 0.03) 0.02 (± 0.01) 0.86 (± 0.07) 0.90 (± 0.04) 0.94 (± 0.02) 0.90 (± 0.03)

Relay-Kitchen Reward 2.65 (± 0.25) 0.50 (± 0.09) 1.45 (± 0.22) 0.31 (± 0.15) 2.73 (± 0.28) 3.64 (± 0.14) 3.90 (± 0.08) 3.68 (± 0.15)
Result 2.57 (± 0.26) 0.45 (± 0.08) 1.41 (± 0.22) 0.23 (± 0.11) 2.69 (± 0.28) 3.20 (± 0.15) 3.69 (± 0.08) 3.38 (± 0.19)

TABLE I
MEAN AND STD ON THE GOAL-CONDITIONED BLOCK-PUSH AND KITCHEN ENVIRONMENT, OVER 20 SEEDS WITH 100 RUNS EACH. C-BESO AND

CFG-BESO CONSISTENTLY OUTPERFORMED ALL BASELINES, DESPITE ONLY USING 3 INFERENCE STEPS. CX-DIFF WITH 3 INFERENCE STEPS ACHIEVES
A RESULT OF 2.74(±0.26) ON RELAY-KITCHEN. BOTH BESO APPROACHES SHOW A LOW DEVIATION ACROSS SEEDS, INDICATING THEIR ROBUSTNESS.

• Goal-conditioned Behavior Cloning (GCBC) learns a
unimodal policy encoded as a simple multi-layer percep-
tron (MLP) with an trained with an MSE loss [22].

• Relay Imitation Learning (RIL) is a hierarchical policy,
that learns a high-level sub-goal generator, which is used
to condition a low-level MLP policy [12].

• Latent Motor Plans (LMP) is a hierarchical goal-
conditioned policy, which consists of a seq2seq CVAE
and an action decoder policy [22]. We use an adapted
KL-weighting term and a transformer encoder, which has
been shown to improve the performance of LMP [25].

• Conditional Implicit Behavior Cloning (C-IBC) uses
an energy-based model as an implicit policy [10]. We
use a goal-conditioned extension of IBC to study the
importance of the selected generative model architecture.

• Conditional-Behavior Transformer (C-BeT) is a GPT-
like transformer-based policy, that predicts discrete action
labels together with a continuous offset vector to learn
multimodal behavior [35, 6]. The action labels are deter-
mined a priori via K-means clustering.

• Diffusion-X (CX-Diff) [30] is a DDPM [15] based policy
with improved inference. It uses stochastic sampling and
additional X-extra inference steps at the lowest noise
level to synthesize actions in 50+X steps. While perform-
ing only slightly worse than the closely related KDE-Diff
[30] is has a significantly lower computational cost.

To ensure a fair evaluation of all methods we kept the
general hyperparameters, e.g., layer size and number, as con-
sistent as possible while tuning the method-specific hyperpa-
rameters. A detailed summary of the baseline architectures
and hyperparameters is provided in Sec. B of the Appendix.
Additionally, we evaluated all models on the kitchen and
block-push task with 20 seeds and 100 rollouts each. Given
the high computational costs and time of training models for
CALVIN, we restricted the tested methods to 3 seeds and
limited the number of baselines.

B. Simulation Experiments

We evaluated BESO against the baselines on three simula-
tion benchmarks, shown in Figure 2:

• CALVIN Benchmark [26]: We used the LfP benchmark,
with a dataset consisting of 6 hours of unstructured play
data. We restricted all methods on using a single static
RBG image as observation input and predicedrelative

Cartesian actions as output [34]. We evaluated the meth-
ods on single tasks and 2 tasks in a row from a single goal
image, both variants were conditioned on goal-images
outside the training distribution, that did not contain the
end-effector in the correct position.

• Block-Push Environment [10]: We used the adapted
goal-conditioned variant from Cui et al. [6]. The Block-
Push Environment, which consists of an XARm robot that
must push two blocks, a red and a green one, into red and
green squared target area. The dataset consists of 1000
demonstrations collected by a deterministic controller
with 4 possible goal configurations. The methods got 0.5
credit for every block pushed into one of the targets with
a maximum score of 1.0.

• Relay Kitchen Environment[12]: A multi-task kitchen
environment with objects such as a kettle, door, and lights
that the agent can interact with. The data consists of 566
human-collected trajectories with sequences of 4 executed
skills. We used the same experiment settings as described
in [6] to allow for fair comparisons. The models were
evaluated using a pre-defined goal state, that consisted of
4 tasks for each rollout. Each correctly completed task
gives 1 credit with a maximum of 4.

The methods were evaluated on two metrics: result evaluates
how many of the desired goals of each rollout are achieved,
while reward measures the overall performance by giving
credit for reaching any goal defined in the environment.

C. Simulation Results

We compared BESO to the baselines on the Relay-Kitchen
and Block-Push environments. The results are summarized in
Table I. As shown in the table, BESO consistently outper-
formed the competitors on both tasks across 20 seeds. The
low variance of BESO, additionally, indicates the robustness
of our approach. Among the baselines, Diffusion-X and C-BeT
perform well on the kitchen task and block-push environment,
respectively. The diffusion policies best all other baselines on
the kitchen and the block-push task, while C-BeT achieves
similar performance on the block-push environment. Consid-
ering that BESO only used 3 denoising steps on both environ-
ments, compared to the 50(20) + 8 steps of CX-Diff, makes
BESO’s performance even more impressive. In contrast, CX-
Diff with 3 denoising steps only managed an average result of
2.74(±0.26) on the kitchen environment. This highlights the
advantage of BESO’s architecture combined with improved

LMP RIL BESO CFG-BESO

Turn on
LED

Open
Drawer

Push in
Drawer

Move Slider
left

Place in
Drawer

Turn off
LED

Turn
on LB

Move Slider
Right

Place in
Slider

Close
Drawer

Turn
off LB

Stack
Block

Unstack
Block

0

0.2

0.4

0.6

0.8

1

su
cc
es
s
ra
te

Fig. 3. Average Success rate of all tested models on the executing single hard tasks in the CALVIN environment conditioned on a single goal image, that
does not contain the end-effector of the robot .

noise scheduling and sampler to achieve good results with
fast sampling. On a modern desktop PC, BESO took 0.012
seconds to predict an action, while the CX-Diffusion model
took an average of 0.15 seconds. This makes BESO 10x faster.

In a more challenging simulation environment, the CALVIN
environment, BESO showed its ability to generalize to unseen
goal states by achieving the best overall performance on 13
difficult single tasks. Each task was conditioned on a single
goal image, that has not been seen during training and required
long-term planning of the models. The goal image did not con-
tain the end-effector near the related task. This is particularly
challenging because the models need to reason about changes
in the environment state and generalize to the new goal and
cannot rely on the end-effector position in the image to reason
about the required task. The results of this experiment are
summarized in Figure 4 and the individual success rates of the
tasks are summarized in Figure 3. As shown, BESO achieved
the best overall performance on the single hard tasks, which
demonstrates its ability to also generalize to unseen goal-
states. Additionally, the models were evaluated on solving
two tasks with a single goal image. The goal image does
contain the end-effector at a different position and the model
needs to reason about the tasks required to achieve the desired
state. Again, BESO showed strong performance overall, while
the CFG-variant was also able to learn conditional behavior.
However, it struggled more on the 2 tasks challenge, where
the performance dropped compared to the standard conditional
one. The results illustrate that BESO is able to effectively
learn meaningful behavior to solve downstream short-term and
long-term goals by learning from random windows of play
trajectories. This further supports the conclusion that BESO’s
ability to learn multimodal and expressive action-distributions
are key for effective learning from play. In addition, this
experiment demonstrates, that BESO can be learned effectively
from visual data. Overall, our results indicate that BESO is
competitive against state-of-the-art baselines and capable of
effectively learning from play data, making it a promising
approach for goal-conditioned behavior learning. Hence, we
can answer Question I) in the affirmative.

LMP RIL BESO CFG-BESO

Single
Task

First
Task

Sec.
Task

2 Task
Avrg.

0

0.2

0.4

0.6

0.8

1

su
cc
es
s
ra
te

Fig. 4. Average performance of goal-conditioned policy on the CALVIN
environment. The first column shows the average success rate of 13 individual
tasks. The other three columns show the average success rate of all models
conditioned on a single goal image with 2 tasks.

D. BESO design choices

In order to answer Question II, we evaluated different
components of BESO to study their contribution to the overall
performance.

Conditioning Method First, we evaluated different methods
to condition the behavior generation on the desired goal state.
We tested the FiLM-conditioning [31] and the sequential
conditioning method used in C-BeT [6]. FiLM requires addi-
tional MLP-models, which input the goal and scale the latent
representations inside the transformer layers. The sequential
conditioning method, simply includes desired goal-states at the
beginning of our sequence as depicted in the model overview
of Figure 1. We tested both conditioning variants using the
same transformer score model and evaluated it on the block-
push and kitchen environment on 20 seeds. FiLM conditioning
resulted in a performance drop compared to the sequential
conditioning method from an average result of 0.94 to 0.91
and 3.65 to 3.4 on the block-push and kitchen environment
respectively. Moreover, FiLM requires additional MLP mod-
els, which increase the overall model capacity. Hence, BESO
uses the sequential conditioning method.

Sampling Algorithm BESO generates actions by numeri-
cally approximating the reverse ODE with its learned score-

Deterministic Sampling Stochastic Sampling

Block-
Push

Reward 0.95 (± 0.03) 0.95 (± 0.03)
Result 0.93 (± 0.03) 0.92 (± 0.03)

Relay-
Kitchen

Reward 3.88 (± 0.08) 3.86 (± 0.10)
Result 3.67 (± 0.08) 3.65 (± 0.08)

TABLE II
EVALUATION OF THE INFLUENCE OF NOISE INJECTION FOR

GOAL-CONDITIONAL BEHAVIOR GENERATION AVERAGED OVER 3
SAMPLERS USING 10 MODELS AND 100 ROLLOUTS EACH.

model starting from a sample generated from our Gaussian
prior distribution pT . We investigated several numerical sam-
pling algorithms used in diffusion research, such as DDIM
[38], DPM [20], DPM++ [21], and Heun [17], to assess
their contribution to BESO’s performance. The samplers were
evaluated on the block-push and kitchen environments. The
results show that the performance gap between the individual
samplers is small, with DDIM achieving the best overall per-
formance. Surprisingly, the second order Heun solver has the
worst average performance. Detailed results of this experiment
are summarized in Table VII in the Appendix. Overall BESO
is robust to the number of sampling steps and chosen sampler
type, maintaining a similar performance from 3 to 50 inference
steps.

Stochastic vs. Deterministic Sampling Current diffusion
literature supports the assumption that stochastic samplers
have a better overall performance compared to deterministic
samplers [17, 41]. We tested this assumption with respect to
step-based action generation. We evaluated the same models
with 3 sampling algorithms DPM++(2M), the first-order Euler
sampler and the DPM sampler [20, 21, 15], each with and
without noise injection. The noise scheduling was performed
via the ancestral sampling strategy, as used in the DPPM
variant [15, 41] and described in Alg. C. Experiments were
again conducted in the block-push and relay kitchen envi-
ronments. The results were averaged over 10 seeds with 100
rollouts each. As shown in Table II, the results suggest that
the addition of noise does not offer a significant benefit to
the action generation of step-based diffusion policies. The
discrepancy compared to common diffusion applications such
as image synthesis [7] could be rooted in high-dimensional
image spaces, making the generation process more difficult
and requiring more steps for good results. In these high-
dimensional spaces, errors are more likely to occur and
accumulate over time. Adding noise during the inference
process helps the model to correct errors of the gradient
approximation, resulting in a better overall performance [17].
In contrast, step-based action-distributions are significantly
lower dimensional than the high-dimensional latent spaces of
image generation, hence, the addition of noise does not appear
to benefit the average performance of step-based policies, as
supported by our experimental results.

Classifier-Free-Guidance (CFG)
Finally, we investiagte Question III by evaluating the ef-

fect of Classifier Free Guidance (CFG) for step-based action

Block-Push Relay Kitchen
Model Reward Result Reward Result

C-BESO 0.96 (± 0.02) 0.94 (± 0.03) 3.88 (± 0.08) 3.69 (± 0.08)

CFG 0 0.95 (± 0.02) 0.43 (± 0.05) 3.52 (± 0.25) 2.01 (± 0.24)
CFG 1 0.96 (± 0.03) 0.89 (± 0.03) 3.75 (± 0.08) 3.37 (± 0.07)
CFG 1.5 0.95 (± 0.02) 0.90 (± 0.03) 3.68 (± 0.08) 3.38 (± 0.19)
CFG 2.5 0.93 (± 0.04) 0.86 (± 0.03) 3.01 (± 0.08) 2.69 (± 0.21)
CFG 5 0.79 (± 0.10) 0.75 (± 0.09) 1.49 (± 0.08) 1.12 (± 0.25)

TABLE III
COMPARISON OF CFG METHOD FOR GOAL-CONDITIONED BEHAVIOR
LEARNING FROM PLAY DATA. WE REPORT THE MEAN AND STANDARD

DEVIATION OVER 10 SEEDS AND 100 ROLLOUTS EACH. FOR CFG-BESO
WE USE THE SAME PER-TRAINED MODELS FOR ALL CONDITIONING

METHODS.

generation with goal-conditioned policies. The results of this
experiment, reported in Table III, indicate that CFG is an
effective method for goal-conditioning in a step-based setting.
The average performance for the block-push and kitchen tasks
is slightly worse than the standard goal-conditioned variant,
while the average reward is almost equal. The performance
of the CFG-model with λ = 0 demonstrates, that CFG-
BESO is capable of learning a well-performing, unconditional
policy π (a|s). The low average result shows that the policy
ignores the goal-state and aims to achieve a high reward solely
based on the current state. This gives CFG-BESO a unique
advantage over common play-based policies. However, CFG
has a trade-off: it lowers the average result for more diverse
rollouts. Empirical evaluations suggest the best λ-value for
both environments to be in the range of [1, 1.5]. Experiments
with higher values resulted in lower average performance,
indicating instability in the action generation. We hypothesize,
that the guidance provided by the goal-conditioning is only
crucial in certain steps during the rollouts, specifically when
the policy is deciding which task to solve.

VI. CONCLUSION

We introduced BESO, a new policy model for goal-
conditioned behavior generation that leverages score-based
diffusion models. We leveraged the expressiveness and multi-
modal properties of score-based diffusion models to learn task-
agnostic behavior from offline, reward-free play datasets, with-
out requiring hierarchical structures or additional clustering.
Additionally, we showed the effectiveness of Classifier-Free
Guidance for simultaneously learning a goal-dependent and
goal-independent policy in a sequential setting. Experiments
on the relay kitchen and block-push benchmarks showed
that BESO significantly improves upon several state-of-the-art
GCIL algorithms, which is further supported by it’s strong
performance on the CALVIN benchmark. Our experiments
and ablation studies have demonstrated the key components
of BESO that enable fast, deterministic behavior generation.
We have shown that stochastic samplers do not provide signif-
icant benefits over deterministic samplers for action synthesis.
BESO further outperformed standard DDPM policies with
only 3 denoising steps, alleviating prior drawbacks of slow
diffusion sampling. To the best of our knowledge this was

the first work that a) defined a score-based policy using a
probability flow ODE with numerical solvers b) learned a
score-based policy in the domain of goal-condition imitation
learning and c) prove the effectiveness of CFG in a sequential
setting for simultaneously learn a goal-dependent and a goal-
independent policy from play-data. In the future, we aim to
extend BESO for language-guided behavior generation, offer-
ing a more intuitive goal guidance for humans. Furthermore,
we plan to collect a large set of play data on real robots
to demonstrate how BESO can be leveraged in real-world
applications.

VII. ACKNOWLEDGMENTS

The work presented here was funded by the German Re-
search Foundation (DFG) – 448648559.

REFERENCES

[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenen-
baum, Tommi S. Jaakkola, and Pulkit Agrawal. Is
conditional generative modeling all you need for decision
making? In International Conference on Learning Rep-
resentations, 2023. URL https://openreview.net/forum?
id=sP1fo2K9DFG.

[2] Brenna D Argall, Sonia Chernova, Manuela Veloso,
and Brett Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57
(5):469–483, 2009.

[3] Suneel Belkhale and Dorsa Sadigh. PLATO: Predicting
latent affordances through object-centric play. In 6th
Annual Conference on Robot Learning, 2022. URL
https://openreview.net/forum?id=UAA5bNospA0.

[4] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas
Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian,
Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-
Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina
Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jor-
nell Quiambao, Kanishka Rao, Michael Ryoo, Grecia
Salazar, Pannag Sanketi, Kevin Sayed, Jaspiar Singh,
Sumedh Sontakke, Austin Stone, Clayton Tan, Huong
Tran, Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei
Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Bri-
anna Zitkovich. Rt-1: Robotics transformer for real-world
control at scale. In arXiv preprint arXiv:2212.06817,
2022.

[5] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt,
and David K Duvenaud. Neural ordinary differential
equations. Advances in neural information processing
systems, 31, 2018.

[6] Zichen Jeff Cui, Yibin Wang, Nur Muhammad Mahi
Shafiullah, and Lerrel Pinto. From play to policy:
Conditional behavior generation from uncurated robot

data. In International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=
c7rM7F7jQjN.

[7] Prafulla Dhariwal and Alexander Nichol. Diffusion
models beat gans on image synthesis. Advances in Neural
Information Processing Systems, 34:8780–8794, 2021.

[8] Benjamin Eysenbach, Soumith Udatha, Ruslan Salakhut-
dinov, and Sergey Levine. Imitating past successes can
be very suboptimal. In Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/
forum?id=iqCO3jbPjYF.

[9] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and
Ruslan Salakhutdinov. Contrastive learning as goal-
conditioned reinforcement learning. In Advances in
Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=vGQiU5sqUe3.

[10] Pete Florence, Corey Lynch, Andy Zeng, Oscar A
Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong,
Johnny Lee, Igor Mordatch, and Jonathan Tompson.
Implicit behavioral cloning. In Conference on Robot
Learning, pages 158–168. PMLR, 2022.

[11] Justin Fu, Katie Luo, and Sergey Levine. Learning
robust rewards with adverserial inverse reinforcement
learning. In International Conference on Learning Rep-
resentations, 2018. URL https://openreview.net/forum?
id=rkHywl-A-.

[12] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey
Levine, and Karol Hausman. Relay policy learning: Solv-
ing long horizon tasks via imitation and reinforcement
learning. Conference on Robot Learning (CoRL), 2019.

[13] Jonathan Ho and Stefano Ermon. Generative adversar-
ial imitation learning. Advances in neural information
processing systems, 29, 2016.

[14] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In NeurIPS 2021 Workshop on Deep Genera-
tive Models and Downstream Applications, 2021.

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[16] Michael Janner, Yilun Du, Joshua Tenenbaum, and
Sergey Levine. Planning with diffusion for flexible
behavior synthesis. In International Conference on
Machine Learning, 2022.

[17] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based genera-
tive models. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=k7FuTOWMOc7.

[18] Kuno Kim, Akshat Jindal, Yang Song, Jiaming Song,
Yanan Sui, and Stefano Ermon. Imitation with neural
density models. Advances in Neural Information Pro-
cessing Systems, 34:5360–5372, 2021.

[19] Minghuan Liu, Tairan He, Minkai Xu, and Weinan
Zhang. Energy-based imitation learning. In Pro-
ceedings of the 20th International Conference on Au-

https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=UAA5bNospA0
https://openreview.net/forum?id=c7rM7F7jQjN
https://openreview.net/forum?id=c7rM7F7jQjN
https://openreview.net/forum?id=iqCO3jbPjYF
https://openreview.net/forum?id=iqCO3jbPjYF
https://openreview.net/forum?id=vGQiU5sqUe3
https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=k7FuTOWMOc7

tonomous Agents and MultiAgent Systems, AAMAS
’21, page 809–817. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2021. ISBN
9781450383073.

[20] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-
uan Li, and Jun Zhu. Dpm-solver++: Fast solver for
guided sampling of diffusion probabilistic models. arXiv
preprint arXiv:2211.01095, 2022.

[21] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-
uan Li, and Jun Zhu. DPM-solver: A fast ODE solver
for diffusion probabilistic model sampling in around 10
steps. In Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=
2uAaGwlP V.

[22] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar,
Jonathan Tompson, Sergey Levine, and Pierre Sermanet.
Learning latent plans from play. In Conference on robot
learning, pages 1113–1132. PMLR, 2020.

[23] Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and
Osbert Bastani. Offline goal-conditioned reinforcement
learning via f -advantage regression. In Thirty-Sixth Con-
ference on Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id= h29VprPHD.

[24] Ajay Mandlekar, Danfei Xu, Roberto Martı́n-Martı́n,
Silvio Savarese, and Li Fei-Fei. GTI: Learning to
Generalize across Long-Horizon Tasks from Human
Demonstrations. In Proceedings of Robotics: Science and
Systems, July 2020. doi: 10.15607/RSS.2020.XVI.061.

[25] Oier Mees, Lukas Hermann, and Wolfram Burgard.
What matters in language conditioned robotic imitation
learning over unstructured data. IEEE Robotics and
Automation Letters (RA-L), 7(4):11205–11212, 2022.

[26] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and
Wolfram Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot ma-
nipulation tasks. IEEE Robotics and Automation Letters,
2022.

[27] Lina Mezghani, Sainbayar Sukhbaatar, Piotr Bojanowski,
Alessandro Lazaric, and Karteek Alahari. Learning goal-
conditioned policies offline with self-supervised reward
shaping. In CoRL-Conference on Robot Learning, 2022.

[28] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya
Ramesh, Pranav Shyam, Pamela Mishkin, Bob Mcgrew,
Ilya Sutskever, and Mark Chen. GLIDE: Towards photo-
realistic image generation and editing with text-guided
diffusion models. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pages 16784–
16804. PMLR, 17–23 Jul 2022.

[29] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J An-
drew Bagnell, Pieter Abbeel, Jan Peters, et al. An al-
gorithmic perspective on imitation learning. Foundations
and Trends® in Robotics, 7(1-2):1–179, 2018.

[30] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave

Bignell, Mingfei Sun, Raluca Georgescu, Sergio Valcar-
cel Macua, Shan Zheng Tan, Ida Momennejad, Katja
Hofmann, and Sam Devlin. Imitating human be-
haviour with diffusion models. In International Con-
ference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=Pv1GPQzRrC8.

[31] Ethan Perez, Florian Strub, Harm De Vries, Vincent
Dumoulin, and Aaron Courville. Film: Visual reasoning
with a general conditioning layer. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32,
2018.

[32] Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accel-
erating reinforcement learning with learned skill priors.
In Conference on robot learning, pages 188–204. PMLR,
2021.

[33] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10684–10695, 2022.

[34] Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka
Boedecker, and Wolfram Burgard. Latent plans for
task-agnostic offline reinforcement learning. In 6th
Annual Conference on Robot Learning, 2022. URL
https://openreview.net/forum?id=ViYLaruFwN3.

[35] Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ariun-
tuya Altanzaya, and Lerrel Pinto. Behavior transformers:
Cloning k modes with one stone. In Thirty-Sixth Con-
ference on Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=agTr-vRQsa.

[36] Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu,
Nicholas Rhinehart, and Sergey Levine. Parrot: Data-
driven behavioral priors for reinforcement learning. In
International Conference on Learning Representations,
2020.

[37] Jascha Sohl-Dickstein, Eric Weiss, Niru
Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium
thermodynamics. In International Conference on
Machine Learning, pages 2256–2265. PMLR, 2015.

[38] Jiaming Song, Chenlin Meng, and Stefano Ermon. De-
noising diffusion implicit models. In ICLR, 2021.

[39] Yang Song and Stefano Ermon. Generative modeling by
estimating gradients of the data distribution. Advances
in Neural Information Processing Systems, 32, 2019.

[40] Yang Song and Stefano Ermon. Improved techniques
for training score-based generative models. Advances in
neural information processing systems, 33:12438–12448,
2020.

[41] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. In International Conference on Learning
Representations, 2020.

[42] Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir,
Amit Haim Bermano, and Daniel Cohen-or. Hu-

https://openreview.net/forum?id=2uAaGwlP_V
https://openreview.net/forum?id=2uAaGwlP_V
https://openreview.net/forum?id=_h29VprPHD
https://openreview.net/forum?id=Pv1GPQzRrC8
https://openreview.net/forum?id=Pv1GPQzRrC8
https://openreview.net/forum?id=ViYLaruFwN3
https://openreview.net/forum?id=agTr-vRQsa

man motion diffusion model. In International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=SJ1kSyO2jwu.

[43] Julen Urain, Niklas Funk, Jan Peters, and Georgia Chal-
vatzaki. Se(3)-diffusionfields: Learning smooth cost
functions for joint grasp and motion optimization through
diffusion. IEEE International Conference on Robotics
and Automation (ICRA), 2023.

[44] Pascal Vincent. A connection between score matching
and denoising autoencoders. Neural Computation, 23(7):
1661–1674, 2011. doi: 10.1162/NECO a 00142.

[45] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou.
Diffusion policies as an expressive policy class for of-
fline reinforcement learning. In International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=AHvFDPi-FA.

[46] Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng
Fang, Yali Du, Xiu Li, Lei Han, and Chongjie Zhang.
Rethinking goal-conditioned supervised learning and its
connection to offline rl. In International Conference on
Learning Representations, 2021.

[47] Sarah Young, Jyothish Pari, Pieter Abbeel, and Lerrel
Pinto. Playful interactions for representation learning. In
2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 992–999, 2022. doi:
10.1109/IROS47612.2022.9981307.

https://openreview.net/forum?id=SJ1kSyO2jwu
https://openreview.net/forum?id=SJ1kSyO2jwu
https://openreview.net/forum?id=AHvFDPi-FA
https://openreview.net/forum?id=AHvFDPi-FA

APPENDIX

A. Overview of BESO Hyperparameters

An summary of key hyperparameters of BESO is listed in
Table VI. We use the skip connections proposed in Karras
et al. [17] to balance different noise levels:
• cskip = σ2

data/(σ
2
data + σ2

t)
• cout = σtσdata/

√
σ2

data + σ2
t

• cin = 1/
√
σ2

data + σ2
t

• cnoise = 0.25 ln(σt)

Additionally, we use the Exponential Moving Average (EMA)
to optimize the weights our models. BESO has several
architecture-specific hyperparameters that need to be fine-
tuned for optimal performance and can be grouped into
training-and inference parameters The training parameters are
the following: σstd, σmean, σdata. Table VI shows that we
tried to maintain consistency across environments for the
training hyperparameters. During inference one can improve
the performance of a trained model further by adapting the
inference parameters according the task: σmax, σmin, noise
scheduler, sampler type, nσ,inference. We use the exponential
noise scheduler from the Variance Exploding SDE model [41]:

ti = σ2
max(σmin/σmax)

i
N−1 . (8)

B. Baselines Implementation

In order to ensure fairness in comparison, we maintained a
similar number of hidden layers and dimensions for all models.
The MLP-based models have 4 layers with 512 neurons and
use the ReLU activation function. All diffusion models have
the same transformer backbone, and C-BeT uses the same
number of hidden neurons and layers as the other tested
diffusion models. During training, the Adam optimizer was
used with a learning rate of 0.001 for MLP models and 5e−4
for transformer models. The batch size for MLP models was
512, while it was 1024 for transformer models, except for BeT,
which used a batch size of 64 as recommended in [6].

GCBC For the GCBC model, the goal is concatenated with
the state and fed into the 4-layer MLP architecture with a
dropout rate of 0.1.

GC-IBC The GC-IBC model uses the same MLP archi-
tecture as GCBC and is optimized using the InfoNCE loss
with additional energy-regularization and Wasserstein Gradient
loss. During experiments, adding a penalty term with λ =
0.005 to restrict the average energy improved training stability
[10]. Given the large number of tunable hyperparamters for
IBC, we ran an hyperparameter search to determine the best
ones. We want to note, that the model results of EBM were
very sensitive to initial seeds and we had troubles to get
consistent results for the models. Similar observations of IBC
performance have been reported in related work [30].

C-BeT For the performance of C-BeT, we use the rec-
ommended parameters from Cui et al. [6] for all tested
environments. Our reported results are slightly worse, than the
ones reported in the original work, since they do not average
it over 20 seeds.

Hyperparameter Block Push Relay Kitchen

Hidden dimension 128 128
Hidden layers 6 6

Train steps 5000 1000
Noise Scale 0.3 0.3

Loss InfoNCE InfoNCE
Train samples 64 64
Noise shrink 0.5 0.5
Learning rate 0.001 0.001

TABLE IV
OVERVIEW OF THE USED HYPERPARAMETERS OF GC-IBC FOR BOTH

ENVIRONMENTS.

Hyperparameter Block-Push Relay-Kitchen CALVIN

Decoder Hidden Dimension {128, 256, 512, 1024} {128, 256, 512} 2048
n-Mixtures 10 10 10
n-Classes {10, 32, 64, 128, 256} 10 10
Policy-dropout {0.1, 0.2, 0.3} {0.1, 0.2, 0.3} 0.1
Plan Features {16, 32, 64, 128} {16, 32, 64, 128} 32
Plan Recognition Features {64, 128, 256, 512} {64, 128, 256, 512} 2048
Replan Freq {5, 10, 16, 32} {5, 10, 16, 32 } 2
Planner Hidden Layers 2 2 2
Window size {10, 16, 32, 48} {10, 16, 32, 48, 64} 16
Goal window size 1 1 1
kl-beta {0.001, 0.005, 0.01} {0.001, 0.005, 0.01} 0.01
Learning rate {0.001, 0.0005, 0.0001} {0.001, 0.0005, 0.0001} 0.0001
Optimizer Adam Adam Adam

TABLE V
OVERVIEW OF THE HYPERPARAMETER-SWEEP FOR LATENT PLANS AND
THE FINAL PARAMETERS USED FOR THE EVALUATION FOR EACH TESTED

SIMULATION ENVIRONMENT

Latent Motor Plans The LMP model was evaluated on the
Kitchen and Block Push environments with extensive hyper-
parameter sweeps to find the best performing configuration. An
detailed overview of the sweeped parameters and the chosen
ones is shown in Table V. On the CALVIN environment, the
proposed parameters from prior work were used [34]. We used
the improved LMP variant from [25], which uses a different
Kl-divergence weighting term and a transformer model the
Seq2Seq CVAE.

RIL For the low-level policy of kitchen and block push
we use 4 layers with 512 neurons each. For the CALVIN
task, we use the baseline version from [34] and kept the
hyperparameters the same for training.

Diffusion-X The baseline from [30] uses the same hyper-
parameters of our transformer model reported in VI to guar-
antee a fair comparison. Diffusion-X uses 50 inference steps
on the kitchen task combined with additional 10 fine-tuning
steps at the lowest noise level, while we use 20 inference steps
for the block-push environment and additional 8 fine-tuning
steps. Diffusion-X uses a discrete variant of the Euler sampling
method with ancestral noise scheduler, which is reported in
Alg. C [15, 41]. Further, it applies X-additional denoising
steps with adding noise at the lowest noise level.

C. Sampler Ablation studies

We evaluate various state-of-the-art ODE samplers and their
SDE counterparts in different environments. To determine the
best solver for conditional-behavior generation, we analyze
their average performance of 10 different seeds with 100 roll-
outs each in different environments. In general we differentiate

Hyperparameter Block-Push Relay-Kitchen CALVIN

Hidden Dimension 74 120 480
Hidden Layers 4 6 6
Window size 3 5 5
Goal window size 1 3 1
Learning rate 5e-4 5e-4 5e-4
Optimizer Adam Adam Adam
σmax 40.5 33 40
σmin 0.39 0.39 0.2
σmean -0.17 -2 -2
σstd -2 -2 -2
σdata 0.5 0.5 0.5
Type of distribution Log-Normal Log-Normal Log-Normal
EMA True True True
Sampler Type DDIM DDIM DDIM
Noise scheduler Exp Exp Exp

TABLE VI
OVERVIEW OF THE MOST IMPORTANT HYPERPARAMETERS FOR THE

DIFFERENT MODEL ARCHITECTURES

Block-Push Relay Kitchen
Reward Result Reward Result

ODE
Euler 0.95 (± 0.02) 0.94 (± 0.02) 3.87 (± 0.09) 3.66 (± 0.07)
DPM 0.96 (± 0.01) 0.94 (± 0.01) 3.86 (± 0.08) 3.67 (± 0.10)
DPM++(2S) 0.95 (± 0.03) 0.92 (± 0.03) 3.88 (± 0.08) 3.67 (± 0.09)

SDE
EA 0.90 (± 0.03) 0.90 (± 0.03) 3.82 (± 0.10) 3.63 (± 0.09)
DPM-AC 0.92 (± 0.03) 0.88 (± 0.04) 3.90 (± 0.09) 3.65 (± 0.08)
DPM++(2SA) 0.95 (± 0.02) 0.92 (± 0.03) 3.86 (± 0.10) 3.65 (± 0.07)

TABLE VII
EVALUATION OF THE INFLUENCE OF NOISE INJECTION FOR

GOAL-CONDITIONAL BEHAVIOR GENERATION AVERAGED OVER 3
SAMPLERS WITH AND WITHOUT ADDITIONAL NOISE USING 10 MODELS

AND 100 ROLLOUTS EACH.

first order and second order solvers: the first order solver is
Euler [15] and the tested second order solver is Heun [17].
The tested samplers include:

• Euler ODE (Euler): A first-order ODE sampler from
[17] without the additional addition and deleting of noise.
The algorithm is summarized in C.

• Euler-Ancestral (EA): A continuous-time version of the
standard DDPM sampler [15] introduced in [41].

• 2nd Order Heun Solver (Heun): A second-order ODE
solver using the Heun method [17].

• DPM: An exponential ODE integrator solver designed
for synthesis in a few inference steps [21]. We use the
second order method.

• DDIM: A first order variant of DPM, which has been
introduced individually [38, 21] and has been designed
for fast inference and CFG.

• DPM-Ancestral:A stochastic variant of DPM with an-
cestral noise injections.

• DPM++(2S): An improved version of the second order
DPM sampler for classifier-free guidance based condi-
tional diffusion models with a single inference step [20]

• DPM++(2SA): A stochastic variant of the DPM++(2S),
which also uses the ancestral noise injection

• DPM++(2M): An improved version of the second-order
DPM sampler for classifier-free guidance based condi-
tional diffusion models [20], which is a second order

method using two model predictions per step.
• DPM++(2MA): A stochastic variant of the DPM++(2M),

which also uses the ancestral noise injection
Several previous studies have compared the performance of
ODE samplers in the context of image generation [17, 20].
However, these comparisons may not be entirely indicative
as image generation tasks have unique challenges and re-
quirements not relevant for action synthesis. To ensure a fair
comparison, we evaluated all samplers on the same models
across several simulation environments and report their aver-
age performance based on 100 runs for each environment.
This allows us to accurately compare the effectiveness of
each deterministic solver in the context of step-based action
generation. The results for the kitchen environment are shown
in Table VIII and the performance for the block push is
reported in Table IX. As shown in both tables, the first order
exponential integrator solver DDIM achieves the best overall
performance. Increasing the number of inference steps does
not have significant impact on the average performance, while
even reducing the average result of some samplers. Overall the
performance differences of all evaluated samplers is small.

Algorithm 3 Ancestral Noise Scheduler fANC [41, 15]
1: Require: tfrom, tto

2: tup ← min(tto,

√
t2to(t

2
to−t2from)

t2from
)

3: tto ←
√
(t2to − t2from)

4: return tdown, tup

Algorithm 4 Deterministic 1st Order Euler Sampler [17]
1: Require: Current state s, goal g
2: Require: Score-Denoising Model Dθ(a, s,g, σt)
3: Require: Noise scheduler σt = σ(ti)
4: Require: Discrete time steps ti∈{0,..,N}
5: Draw sample a0 ∼ N (0, σ2

t0I)
6: for i ∈ {0, ..., N − 1} do
7: di ←

(
ai −Dθ(ai, s,g, σt)

)
/ti

8: ai+1 ← ai + (ti+1 − ti)di
9: end for

10: return aN

Steps Euler Heun DDIM DPM DPM++(2S) DPM++(2M)

Reward

3 3.87 (± 0.09) 3.80 (± 0.03) 3.92 (± 0.07) 3.86 (± 0.08) 3.88 (± 0.08) 3.89 (± 0.08)
5 3.87 (± 0.07) 3.84 (± 0.06) 3.88 (± 0.06) 3.90 (± 0.09) 3.87 (± 0.06) 3.87 (± 0.06)

10 3.85 (± 0.08) 3.86 (± 0.09) 3.88 (± 0.06) 3.87 (± 0.10) 3.88 (± 0.07) 3.89 (± 0.05)
20 3.86 (± 0.10) 3.91 (± 0.08) 3.87 (± 0.07) 3.88 (± 0.09) 3.89 (± 0.07) 3.88 (± 0.06)
50 3.82 (± 0.08) 3.93 (± 0.04) 3.88 (± 0.06) 3.82 (± 0.10) 3.67 (± 0.04) 3.89 (± 0.06)

Result

3 3.66 (± 0.09) 3.62 (± 0.07) 3.69 (± 0.07) 3.67 (± 0.10) 3.67 (± 0.09) 3.67 (± 0.08)
5 3.66 (± 0.07) 3.66 (± 0.06) 3.67 (± 0.08) 3.67 (± 0.08) 3.66 (± 0.07) 3.66 (± 0.08)

10 3.65 (± 0.06) 3.63 (± 0.06) 3.67 (± 0.07) 3.66 (± 0.07) 3.66 (± 0.08) 3.67 (± 0.07)
20 3.64 (± 0.07) 3.65 (± 0.09) 3.66 (± 0.09) 3.66 (± 0.07) 3.68 (± 0.09) 3.67 (± 0.08)
50 3.62 (± 0.04) 3.67 (± 0.04) 3.67 (± 0.09) 3.62 (± 0.07) 3.67 (± 0.07) 3.67 (± 0.08)

TABLE VIII
COMPARISON OF THE PERFORMANCE OF DETERMINISTIC SAMPLERS ON THE KITCHEN ENVIRONMENT AVERAGED OVER 10 SEEDS WITH 100 ROLLOUTS

EACH

Steps Euler Heun DDIM DPM DPM++(2S) DPM++(2M)

Reward

3 0.95 (± 0.02) 0.92 (± 0.02) 0.97 (± 0.02) 0.96 (± 0.02) 0.95 (± 0.03) 0.97 (± 0.02)
5 0.94 (± 0.04) 0.95 (± 0.02) 0.96 (± 0.02) 0.97 (± 0.01) 0.94 (± 0.02) 0.93 (± 0.02)

10 0.97 (± 0.03) 0.93 (± 0.02) 0.96 (± 0.01) 0.95 (± 0.03) 0.96 (± 0.02) 0.96 (± 0.03)
20 0.98 (± 0.02) 0.96 (± 0.03) 0.98 (± 0.02) 0.96 (± 0.03) 0.96 (± 0.02) 0.97 (± 0.03)
50 0.98 (± 0.01) 0.96 (± 0.01) 0.97 (± 0.02) 0.97 (± 0.05) 0.97 (± 0.01) 0.94 (± 0.05)

Result

3 0.94 (± 0.02) 0.90 (± 0.05) 0.94 (± 0.04) 0.94 (± 0.01) 0.92 (± 0.03) 0.95 (± 0.03)
5 0.91 (± 0.06) 0.93 (± 0.03) 0.95 (± 0.02) 0.95 (± 0.02) 0.91 (± 0.03) 0.93 (± 0.03)

10 0.94 (± 0.02) 0.91 (± 0.04) 0.95 (± 0.02) 0.91 (± 0.04) 0.94 (± 0.02) 0.96 (± 0.02)
20 0.96 (± 0.02) 0.94 (± 0.03) 0.95 (± 0.04) 0.95 (± 0.04) 0.93 (± 0.03) 0.96 (± 0.03)
50 0.98 (± 0.01) 0.95 (± 0.02) 0.95 (± 0.01) 0.93 (± 0.03) 0.94 (± 0.03) 0.92 (± 0.06)

TABLE IX
COMPARISON OF THE PERFORMANCE OF DETERMINISTIC SAMPLERS ON THE BLOCK PUSH ENVIRONMENT AVERAGED OVER 10 SEEDS WITH 100

ROLLOUTS EACH

Algorithm 5 Stochastic 1st Order Euler sampler [17]
1: Require: Current state s, goal g
2: Require: Score-Denoising Model Dθ(a, s,g, σt)
3: Require: Noise scheduler σt = σ(ti), fANC from Alg. C
4: Require: Discrete time steps ti∈{0,..,N}
5: Draw sample a0 ∼ N (0, σ2

t0I)
6: for i ∈ {0, ..., N − 1} do
7: di ←

(
ai −Dθ(ai, s,g, σt)

)
/ti

8: tdown, tup ← fANC(ti, ti+1)
9: ai+1 ← ai + (tdown − ti)di

10: εup ∼ N (0, σ2
tup
I)

11: ai+1 ← ai+1 + εup
12: end for
13: return aN

	I Introduction
	II Related Work
	III Problem Formulation and Method
	III-A Problem Formulation
	III-B Score-based Diffusion Policies

	IV Goal-Guided Score-based Diffusion Policies
	IV-A Model Architecture
	IV-B Efficient Action Generation using Deterministic Samplers

	V Evaluation
	V-A Baselines
	V-B Simulation Experiments
	V-C Simulation Results
	V-D BESO design choices

	VI Conclusion
	VII Acknowledgments
	Appendix
	A Overview of BESO Hyperparameters
	B Baselines Implementation
	C Sampler Ablation studies

