Goal-Conditioned Imitation Learning using Score-based Diffusion Policies

Moritz Reuss, Maximilian Li, Xiaogang Jia and Rudolf Lioutikov Intuitive Robots Lab, Karlsruhe Institute of Technology, Germany

Abstract-We propose a new policy representation based on score-based diffusion models (SDMs). We apply our new policy representation in the domain of Goal-Conditioned Imitation Learning (GCIL) to learn general-purpose goal-specified policies from large uncurated datasets without rewards. Our new goal-conditioned policy architecture "BEhavior generation with ScOre-based Diffusion Policies" (BESO) leverages a generative, score-based diffusion model as its policy. BESO decouples the learning of the score model from the inference sampling process, and, hence allows for fast sampling strategies to generate goalspecified behavior in just 3 denoising steps, compared to 30+ steps of other diffusion based policies. Furthermore, BESO is highly expressive and can effectively capture multi-modality present in the solution space of the play data. Unlike previous methods such as Latent Plans or C-Bet, BESO does not rely on complex hierarchical policies or additional clustering for effective goalconditioned behavior learning. Finally, we show how BESO can even be used to learn a goal-independent policy from play-data using classifier-free guidance. To the best of our knowledge this is the first work that a) represents a behavior policy based on such a decoupled SDM b) learns an SDM based policy in the domain of GCIL and c) provides a way to simultaneously learn a goal-dependent and a goal-independent policy from play-data. We evaluate BESO through detailed simulation and show that it consistently outperforms several state-of-the-art goal-conditioned imitation learning methods on challenging benchmarks. We additionally provide extensive ablation studies and experiments to demonstrate the effectiveness of our method for effective goalconditioned behavior generation.

I. INTRODUCTION

Goal-conditioned Behavior Learning aims to train generalpurpose embodied agents, that can solve a wide range of daily tasks. A common approach tackling this challenge is Goalconditioned Imitation Learning (GCIL). GCIL only requires an offline dataset without additional rewards or expensive environment interactions for training. However, GCIL typically requires a set of predefined tasks and a large number of labeled and segmented expert trajectories for each task, which can be costly and time-consuming. Additionally, it does not generalize well to new scenes and different tasks. Instead of teaching an agent a limited number of predefined goals, Learning from Play (LfP) [22] provides an effective way of collecting task-agnostic, teleoperated, uncurated, freeform datasets. Such datasets consist of rich, meaningful, multimodal interactions with the environment that cover different areas of the state space. Instead of manually labeling the trajectories, LfP pairs random sequences of each trajectory with one or more future states, i.e., the goal-state, of the respective trajectory. Goal-conditioned policies distill useful, goal-oriented behavior from this collected play interaction data. However,

learning from play data remains an open challenge, partially due to the multimodal nature of the demonstrations, e.g., the same task can be solved in very different ways and different tasks can be solved in very similar ways.

Effective behavior learning from these datasets requires policies that maintain such multimodal solutions and that are expressive enough to stay close to the seen state-action distribution of the offline data to execute long-term horizon skills. Most prior work tries to deal with this challenge, by combining generative models, such as Variational Autoencoders (VAEs) [12, 26, 32] and Generative Pretrained Transformer (GPTs) [6, 35], with additional models and networks to explicitly encode multimodality or hierarchy. However, these methods require supplementary networks or a separation of skill execution and planning within their architecture, as the policy expression is not sufficient or cannot handle the multimodality of the observed behaviors. Additionally, multiple learning objectives are typically required, e.g. for low- and high-level policies, which provides additional tuning challenges. In contrast, our novel policy architecture applies a single network for learning expressive goal-conditioned policies from multimodal play data. The policy leverages a score-based diffusion model and optimizes a single unified training objective.

Denoising Diffusion Probabilistic models (DDPMs) [37, 15] and Score-based Generative models (SGMs) [39, 40] are two recently emerged and well-received generative model architectures. Both methods use the same underlying principle of perturbing data with a sequence of noise distributions until it converges to random Gaussian noise. A neural network, i.e., the score or denoising model respectively, is learned to reverse this denoising process, which can be used to generate new samples. While the architectures have been proposed individually, it has been shown, that they belong to the same group of score-based diffusion models (SDMs). The diffusion process of both models can be described using stochastic-differential equations (SDEs) [41]. These models achieved state-of-the-art results in various tasks such as textbased image synthesis [7, 33], human motion generation [42] and offline reinforcement learning (Offline-RL) [15, 16, 45]. However, SDMs need to iteratively denoise each sample in many steps to generate good results [15]. This slow inference makes them unsuitable for step-based policies, especially in robotics.

We propose a new approach for **BE**havior Generation using **ScO**re-based Diffusion models (BESO) that is capable of learning goal-conditioned policies purely from reward free,

offline datasets and requires as little as 3 inference steps to produce good actions. We demonstrate several benefits of modeling the goal-conditioned action distribution using a scorebased diffusion model. First, we show, that the expressiveness of SDMs and ability to capture multimodal distributions is key for effective conditioned behavior generation. Our results show that BESO significantly outperforms state-of-theart methods including C-BeT and Latent Motor Plans [6, 22] on several challenging goal-conditioned benchmarks including conditioned Relay Kitchen, Block-Push environment [6]. Additionally, by leveraging Classifier-Free Guidance Training of SDMs, BESO effectively learns two policies simultaneously: a goal-dependent and goal-independent policy, which both can be used at test time. Further, our model is easy to train with a single training objective without additional rewards and does not suffer from training instabilities, unlike other state-of-theart generative models such as Implicit Behavior Cloning (IBC) [10] or hierarchical policies [12].

BESO's score model is designed as a Transformer augmented with preconditioning to synthesize step-based actions. It leverages recent advances in Score-based Diffusion Models, that separate the training and inference process [17]. We systemically evaluate key components of SDMs for fast and effective step-based action generation. BESO's action generation process can be viewed as solving a corresponding Ordinary Differential Equation (ODE). The determinism of ODE's allows us to use larger step sizes than classic diffusion models. Further, BESO can take advantage of fast, numerical solvers [38, 20]. Current diffusion-based policies [30] require 30+ denoising steps for a single action prediction to achieve good results. Our proposed approach, BESO, performs exceptionally on challenging GCIL benchmarks, outperforming state-of-theart goal-conditioned policies, while using only 3 denoising steps.

To summarize our contributions:

- BESO, a new policy representation based on score-based diffusion models for effective goal-conditioned behavior generation from uncurated play data
- Usage of Classifier-Free Guidance based Diffusion Policy to simultaneously learn a goal-dependent and goalindependent policy from play
- Systematic evaluation of key components for fast and efficient action generation using Score-based Diffusion policies combined with extensive experiments and ablation studies

II. RELATED WORK

Diffusion Generative Models Score-based generative models (SGMs) [39, 40] and Denoising Diffusion Probabilistic Models (DDPMs) [37, 15] are two types of generative models, that both corrupt a data distribution with increasing Gaussian noise. SGMs and DDPMs use neural networks to learn to reverse this corruption to generate new data samples from noise. The two different model types have been unified using the stochastic differential equation (SDE) framework [41]. SDEs describe the diffusion process as a time-continuous process instead of using discrete noise levels. BESO follows the SDE formulation proposed by Karras et al. [17]. To draw new samples from the diffusion models, they need to reverse the SDE discretized over T time steps. The SDE contains a *probability flow* ODE with the same marginal distributions, which allows for fast sampling [41]. ODE solvers do not add noise during the inference process, which can reduce the number of function evaluations and accelerate sampling [20]. Sampling can be further accelerated using specialized numerical ODE solvers designed for diffusion inference [15, 17, 21].

Goal-Conditioned Imitation Learning (GCIL) is a subdomain of Imitation Learning[29, 2], where each demonstration is augmented with one or more goal-states that are indicative of the task that the demonstration was provided for. The goal-state contains information that a learning method can leverage to disambiguate demonstrations. Consequently, a goal-conditioned policy, i.e., a policy that includes the goal-state in it's condition set, can use a given goal-state to adapt it's behavior accordingly. Similarly, goal-states have also extended the domain of reinforcement learning through Goal-Conditioned Reinforcement Learning (GCRL) [8, 9, 23, 32], where the agent is not provided expert demonstrations but reward signals instead. Typically these reward signals are difficult to define, especially for complex tasks and environments, providing demonstrations is often a more natural option in such situations. Additionally, the policy rollouts required by GCRL are often expensive in real-world settings. Recent work investigated Goal Conditioned Offline Reinforcement Learning [23, 34, 32, 46, 27], which does not require these expensive rollouts during training.

Learning from Play. The goal of *Learning from Play* (LfP) [22] is to learn goal-specified behavior from a diverse set of unlabeled state-action trajectories. Classical imitation learning datasets typically consist of uni-modal, segmented expert trajectories in a narrow state-space. Play data, on the other hand, is characterized by unsegmented, multimodal trajectories. This makes learning meaningful behaviors more challenging, as the policies need the ability to deal with multiple ways of solving a task, distinguish between similar ways to solve different tasks, as well as the ability of long-horizon planning to reach goals far into the future. Prior work aimed to extract representations from play data for effective downstream policy learning [47] or learned self-supervised representations of skills, referred to as latent plans, using Conditional Variational Autoencoders (CVAE) [12, 22, 26, 25]. Transformer-based architectures were also researched as a policy-class for task-agnostic behavior learning [6, 4]. Another body of work tries to improve learning from play, by focusing on the data aspect and learning from object-centric interactions, instead of random sampled sequences [3].

Generative Models in Policy Learning. Imitation Learning can be formulated as a state-occupancy matching problem, where the goal is to learn a policy that matches the stateoccupancy distribution of expert demonstrations. The unknown expert demonstration can now be approximated through modern generative model architectures. One popular approach is

Fig. 1. Overview of action generation process of BESO with the used model architecture. Left: General Action Generation Process using the Diffusion Process to denoise an action in *N*-steps. Middle: the high level score-model with its pre-conditioning layers and skip-connections. Right: the internal denoising score-model, which uses a transformer architecture to iteratively denoise the actions

the use of Generative Adversarial Networks (GANs) [13, 11]. These methods consist of a generator policy that learns to imitate the observed behavior of the expert and a discriminator, which distinguishes between real and fake trajectories. They require extensive rollouts during training, which is not feasible in our setting. Other approaches use CVAEs [24, 32, 12, 25, 34] to learn a latent embedding to represent the underlying skills. Recent work also applied Energy-based models as conditional policies for behavior cloning [10] or in an inverse RL setting [19]. Normalizing flows have been proposed as an alternative approach for policy learning [36].

Diffusion Generative Models in Robotics. Most approaches that apply diffusion models in robotics applications focus on the discrete DDPM variant [15]. The DDPM Diffusion model has been used in Offline-RL to generate stateaction or state-only trajectories using large U-net architectures [16, 1]. DDPM has also been applied as a policy regularization method in a step-based Offline-RL setting in combination with a learned Q-function [45]. Recently, score-based generative models have been leveraged to synthesize cost functions for grasp pose configurations [43]. In addition, Conditional scorebased generative models have been proposed to learn the reward function for inverse reinforcement learning [18]. The closest related work to BESO is Diffusion-BC [30], which proposes the use of conditional DDPM as a new policy class for Behavior Cloning. Diffusion-BC synthesizes new actions in 50 stochastic sampling steps. To improve the performance, Diffusion-BC uses X-extra inference steps at the lowest noise level without additional noise. However, this method results in even slower action generation. BESO leverages the probability flow ODE combined with fast, deterministic samplers and optimized noise levels. Hence, BESO requires significantly fewer function evaluations in every action prediction.

III. PROBLEM FORMULATION AND METHOD

In this section we describe our approach to goal-conditioned behavior generation using Score-based diffusion models.

A. Problem Formulation

The GCIL is to general-Goal of learn а purpose goal-conditioned policy from uncurated play data. Given a set of unstructured, task-agnostic trajectories, $\mathcal{T} = \{ \boldsymbol{\tau}_k | \boldsymbol{\tau}_k = ((\boldsymbol{s}_n^k, \boldsymbol{a}_n^k))_{n=1}^{N_k} \}$, each trajectory can be split into a set of tuples containing sub-trajectory sequences and goal-states _ $\Big\{(oldsymbol{o},oldsymbol{g})|oldsymbol{o}=(oldsymbol{s}_n,oldsymbol{a}_n)_{n=i}^{i_\dagger},oldsymbol{g}=(oldsymbol{s}_n)_{n=j}^{j_\dagger},(oldsymbol{s}_n,oldsymbol{a}_n)\inoldsymbol{ au}_k\Big\},$ with $i \leq i_{\dagger} < j \leq j_{\dagger}$ denoting start and end steps of the sequence and goal-state respectively. As this formulation makes clear, the goal-state has to be one or more states of the same trajectory as the sequence and has to begin at some step after the respective sequence has ended. The set \mathcal{D}_k can contain overlapping sequences and the final play dataset is given as $\mathcal{D} = \bigcup_{k=1}^{K} \mathcal{D}_k$. For simplicitly the indices of o_k and g_k simply indicate that the sequence and goal state belong together and the indices in $(s_n, a_n) \in o$ refer to the relative time step in the sequence. The state-action pairs in sequence o_k leading to the goal state g_k are now treated as the optimal behavior to reach g_k [12, 26]. Score-based Diffusion Models learn the general-purpose goal-conditioned policy by maximizing the log-likelihood objective over the play dataset

$$\mathcal{L}_{\text{play}} = \mathbb{E}_{(\boldsymbol{o},\boldsymbol{g})\in\mathcal{D}}\left[\sum_{(\boldsymbol{s},\boldsymbol{a})\in\boldsymbol{o}} \log \pi_{\theta}\left(\boldsymbol{a}|\boldsymbol{s},\boldsymbol{g}\right)\right].$$
(1)

Because of the multi-modal nature of the demonstrations, i.e. several trajectories leading to the same goal state, solving this objective successfully requires a policy that is capable of encoding such a multi-modal behavior.

B. Score-based Diffusion Policies

We now aim to learn the policy distribution $\pi_{\mathcal{D}}(\boldsymbol{a}|\boldsymbol{s},\boldsymbol{g})$ underlying the play dataset \mathcal{D} and, hence, the given demonstrations. We do so by defining a continuous diffusion process, which maps samples from our play dataset by gradually adding Gaussian noise to the intermediate distributions $p_t, t \in [0, T]$ with initial distribution $p_0 = \pi_D$ and final distribution p_T .

The continuous diffusion process can be described using a stochastic-differential equation (SDE) [41]. In this work we define the SDE analogously to a recently introduced formulation[17]:

$$d\mathbf{a} = -(\beta_t + \dot{\sigma}_t)\sigma_t \nabla_a \log p_t(\boldsymbol{a}|\boldsymbol{s}, \boldsymbol{g})dt + \sqrt{2\beta_t}\sigma_t d\omega_t, \quad (2)$$

where $\nabla_{\boldsymbol{a}} \log p_t(\boldsymbol{a}|\boldsymbol{s}, \boldsymbol{g})$ refer to the score-function, ω_t is the Standard Wiener process, σ_t is the noise scheduler and the term $\beta(t)$ describes the relative rate at which the current noise is replaced by new noise. In our case, we use $\sigma_t(t) = t$ which has been shown to work well in image generation tasks [17]. At every timestep t and related noise level σ_t there exists a corresponding marginal distribution $p_t(\boldsymbol{a}|\boldsymbol{s},\boldsymbol{g})$, which is the result of injecting Gaussian noise to samples from p_{play} , i.e. $p_t(\boldsymbol{a}_t|\boldsymbol{a}) = \mathcal{N}(\boldsymbol{a}, \sigma_t^2 \mathbf{I})$. The final action distribution of the diffusion process is a known tractable prior distribution $a_T = p_T$. Typically, an unstructured Gaussian distribution $p_T = \mathcal{N}(\mathbf{0}, \sigma_T^2 \mathbf{I})$ is chosen without any information about the play data distribution $p_0 = \pi_{\mathcal{D}}$.

Algorithm 1 BESO Training

- 1: **Require:** Play Dataset \mathcal{L}_{play} , Sequence Size c_o , Goal Sequence Size c_g 2: **Require:** Score Model $\mathbf{D}_{\theta}(\boldsymbol{a}, \boldsymbol{s}, \boldsymbol{g}, \sigma_t)$ 3: **Require:** Noise Distribution $\mathcal{N}(\sigma_{\text{mean}}, \sigma_{\text{std}}^2 \mathbf{I})$
- 4: for $i \in \{0, ..., N_{\text{train steps}}\}$ do
- Sample $(o, g) \sim \mathcal{L}_{\text{play}}$ 5:
- 6:
- Sample $(o, g) \sim \mathcal{L}_{\text{play}}$ Sample $\epsilon \sim \mathcal{N}(\sigma_{\text{mean}}, \sigma_{\text{std}}^2 \mathbf{I})$ $\mathcal{L}_{D_{\theta}} \leftarrow \mathbb{E}_{\sigma, \boldsymbol{a}, \epsilon} [\alpha(\sigma_t) \| D_{\theta}(\boldsymbol{a} + \epsilon, \boldsymbol{s}, \boldsymbol{g}, \sigma_t) \boldsymbol{a} \|_2^2]$ 7: 8: end for

In the case of BESO we are interested in the *Probability* Flow Ordinary Differential Equation (ODE) inside the SDE [5]. This ODE has the same marginal distributions $p_t(\boldsymbol{a}|\boldsymbol{s},\boldsymbol{g})$ as the SDE at every timestep but without the additional random noise injections. By setting $\beta(t) = 0$, we recover the Probability Flow ODE from Eq. (2):

$$d\boldsymbol{a} = -\dot{\sigma}_t \sigma_t \nabla_{\boldsymbol{a}} \log p_t(\boldsymbol{a}|\boldsymbol{s}, \boldsymbol{g}) dt \tag{3}$$

The negative score-function $-\nabla_{\boldsymbol{a}} \log p_t(\boldsymbol{a}|\boldsymbol{s}, \boldsymbol{g})$ specifies the vector field of the current marginal distribution $p_t(\boldsymbol{a}|\boldsymbol{s},\boldsymbol{g})$, that points towards regions of low data density, which is scaled with the current change of the noise level $\dot{\sigma}_t$. In order to generate new samples, we need an estimate of the score function $\nabla_{\boldsymbol{a}} \log p_t(\boldsymbol{a}|\boldsymbol{s}, \boldsymbol{g})$ for all marginal distributions p_t . To achieve this, we use a neural network $D_{\theta}(\boldsymbol{a}, \boldsymbol{s}, \boldsymbol{g}, \sigma_t)$ that matches the score for all marginal distributions in our diffusion

Algorithm 2 Action Generation Process using DDIM based Sampler (DPM-1) adapted for BESO [20, 38]

- 1: **Require:** Current state *s*, goal *g*
- 2: **Require:** Score-Denoising Model $D_{\theta}(\boldsymbol{a}, \boldsymbol{s}, \boldsymbol{g}, \sigma_t)$
- 3: **Require:** Noise scheduler $\sigma_t = \sigma(t)$
- 4: **Require:** Discrete time steps $t_{i \in \{0,..,N\}}$
- 5: **Require:** $f_{\lambda}(t) = -\log(t)$
- 6: **Require:** $f_t(\lambda) = \log(-\lambda)$
- 7: Draw sample $a_0 \sim \mathcal{N}(\mathbf{0}, \sigma_{t_0}^2 \mathbf{I})$ 8: for $i \in \{0, ..., N-1\}$ do
- $\mathbf{d}_i \leftarrow (\boldsymbol{a}_i D_{\theta}(\boldsymbol{a}_i, \boldsymbol{s}, \boldsymbol{g}, \sigma_t))/t_i$ 9:
- 10:

11:

 $\begin{aligned} \lambda_{t_i}, \lambda_{t_{i+1}} \leftarrow f_{\lambda}(t_i), f_{\lambda}(t_{i+1}) \\ h_i \leftarrow \lambda_{t_i} - \lambda_{t_{i-1}} \\ \boldsymbol{a}_{i+1} \leftarrow (\frac{t_{i+1}}{t_i}) \boldsymbol{a}_i - (e^{(-h_i)} - 1) \mathbf{d}_i \end{aligned}$ 12:

13: end for

14: return \mathbf{a}_N

process.

$$\nabla_{\boldsymbol{a}} \log p_t(\boldsymbol{a}|\boldsymbol{s}, \boldsymbol{g}) = \left(D(\boldsymbol{a}, \boldsymbol{s}, \boldsymbol{g}, \sigma_t) - \boldsymbol{a} \right) / \sigma_t^2.$$
(4)

We train the neural network using the denoising score matching objective [44, 39], where we add Gaussian noise to the actions and minimize the difference between the output of the network and the original actions:

$$\mathcal{L}_{D_{\theta}} = \mathbb{E}_{\sigma_{\mathbf{t}}, \boldsymbol{a}, \boldsymbol{\epsilon}} \left[\alpha(\sigma_{t}) \| D_{\theta}(\boldsymbol{a} + \boldsymbol{\epsilon}, \boldsymbol{s}, \boldsymbol{g}, \sigma_{t}) - \boldsymbol{a} \|_{2}^{2} \right], \quad (5)$$

where a is an action sample and $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma_t^2 \mathbf{I})$ is Gaussian noise. The individual noise level losses are weighted according to $\alpha(\sigma_t)$ and the current σ_t is sampled from $p_{\text{train}} \sim \mathcal{N}(\sigma_{\text{mean}}, \sigma_{\text{std}}^2 \mathbf{I})$. The training process is summarized in Alg. 1. This allows us to effectively learn the score function and generate samples from the conditional density, $p_t(\boldsymbol{a}|\boldsymbol{s},\boldsymbol{q})$, using the Probability Flow ODE. Therefore, we numerically approximate the reverse ODE using our learned model as the score-function in Eq. (3). We begin by selecting a random sample from our prior distribution, $a_T \sim \mathcal{N}(\mathbf{0}, \sigma_T^2 \mathbf{I})$, and then iteratively denoise this sample. Utilizing a random sample as a starting point enables the creation of diverse and multimodal actions, even when the underlying ODE is deterministic. Detailed evaluations on how to effectively simulate the reverse ODE are discussed in Section IV-B.

IV. GOAL-GUIDED SCORE-BASED DIFFUSION POLICIES

In this section, we introduce two variants of BESO.

Conditioned Policy (C-BESO). We define a goalconditioned diffusion policy, $\pi(a|s,g)$, by directly learning the goal-and state-conditioned distribution with our score-based generative model. In contrast to standard goalconditioned behavior cloning, our diffusion policy allows us to capture multiple solutions present in the play data while still being expressive enough to solve long-term goals.

Goal-Classifier-Free Guided Policy (CFG-BESO). We additionally combine BESO with a popular conditioning method for diffusion models, Classifier-Free Guidance (CFG) [14]. We train a goal-conditioned diffusion policy $\pi(a|s, g)$ by applying a dropout rate of 0.1 to the goal g, which also trains an implicit goal-independent policy $\pi(a|s)$ within our goalconditioned model. The generation process uses a combined gradient for the denoising process

$$\nabla_a \log p_{t,\lambda}(\boldsymbol{a}|\boldsymbol{s}, \boldsymbol{g}) = \lambda \nabla_a \log p_t(\boldsymbol{a}|\boldsymbol{s}, \boldsymbol{g}) + (1 - \lambda) \nabla_a \log p_t(\boldsymbol{a}|\boldsymbol{s}),$$
(6)

where the guidance factor λ controls the influence of the goalconditioned and goal-independent gradient. In diffusion literature, λ commonly ranges from 2 to 7.5, to guide the diffusion model towards goal-conditional distribution $\pi(a|s, g)$. CFG has shown significant performance improvements compared to other conditioning methods [14, 20, 28]. Even though CFG has also been successfully applied for generating state-only trajectories in Offline-RL [1], recent work on behavioral cloning suggests that CFG performs significantly worse than simpler conditioning methods [30] for step-based action generation. We provide a detailed analysis of CFG for goal-guided action generation in our experiment section.

A. Model Architecture

One of the main challenges of training the score-based diffusion model is the big range of noise levels $\sigma_t \in \{0.001, 40\}$ To address this challenge, we use an improved architecture Karras et al. [17] including additional skip-connections and two preconditioning layers, which are conditioned on the current noise level σ_t

$$D_{\theta}(\boldsymbol{a}|\boldsymbol{s},\boldsymbol{g},\sigma_{t}) = c_{\text{skip}}(\sigma_{t})\boldsymbol{a} + c_{\text{out}}(\sigma_{t})F_{\theta}(c_{\text{in}}(\sigma_{t})\boldsymbol{a},\boldsymbol{s},\boldsymbol{g},c_{\text{noise}}(\sigma_{t})),$$
(7)

The conditioning functions are described in detail in Section A of the Appendix.

These additional skip connections help the score model to scale the output to a large range of noise levels σ_t , by either estimating the denoised sample a_{t-1} , directly predicting the noise n or something in between these two. BESO uses transformer based architecture with casual masking as the inner model $F_{\theta}(\boldsymbol{a}, \boldsymbol{s}, \boldsymbol{g}, \sigma_t)$ and a linear embedding for the noise. Additionally, three linear embedding layers encode the states s_n , noise σ_t and the noisy actions a_n into a linear representation of the same dimension, $l_{s}(s), l_{a}(a), l_{\sigma}(\sigma)$, where the position embedding information is added on the linear representations. The noise embedding is concatenated with the desired future states and all state-noise-action pairs in a large sequence for the model. During training the denoised actions for all timesteps in the input series are inferred, but only the last predicted action is used during inference. To take advantage of the casual masking in the transformer, we concatenate the goal-sequence before the current observation sequence Cui et al. [6], allowing for a sequence of goal-states. An overview of our proposed architecture is shown in Figure 1.

Fig. 2. Simulation environments for testing the performance of BESO: Multi-Modal Block-push (left); Relay Kitchen (middle); CALVIN (right)

B. Efficient Action Generation using Deterministic Samplers

New actions are generated by sampling from the prior distribution $a_T \sim \mathcal{N}(\mathbf{0}, \sigma_T^2 \mathbf{I})$ and numerically simulating the reverse ODE or SDE by substituting the score-function with our learned model in Eq. (3). This ODE or SDE can be solved numerically, by discretizing the differential equation starting from T to 0. During the action prediction, we iteratively denoise the sample at N-discrete noise levels. A detailed comparison of state-of-the-art diffusion samplers are provided in Sec. C of the Appendix. An additional evaluation on the influence of noise concludes that ODE solvers are competitive with SDE variants for action prediction tasks. BESO uses the DDIM solver as described in detail in Alg. 2 [21, 38], which has been designed for fast, deterministic sampling in guided image generation. The solver is a first-order deterministic sampler that is based on an exponential integrator method. The ablation studies in Section C show, that 3 denoising steps are enough for BESO to generate actions with high accuracy. Further increasing the number of inference steps comes at the cost of a slower inference, while only marginally increasing the overall performance. Therefore, we decided to use 3 as the ideal trade-off between computation cost and performance. For inference, we are able to adapt the range of noise and the distribution of discrete timesteps for the prediction steps. Based on empirical evaluations, we decide to use an exponential noise scheduler with a noise range of $\sigma \in \{0.25, 40\}$ for most applications.

V. EVALUATION

The objective of our experiments was to answer the following key questions: I) Is BESO competitive on goal-conditioned environments against state-of-the-art baselines? II) What are the key components to enable fast sampling of Diffusion policies with good performance? III) Does Classifier-Free Guidance work for goal-conditional behavior synthesis? To answer these questions, we evaluated BESO on several challenging simulation benchmarks. First we compared the performance of BESO against other state-of-the-art methods. Afterward, we examined BESO's individual components with respect to their contribution to the performance.

A. Baselines

We compare BESO against several state-of-the-art methods:

		GCBC	C-IBC	LMP	RIL	C-BeT	CX-Diff	C-BESO	CFG-BESO
Block-Push	Reward Result	$\begin{array}{c} 0.13 \ (\pm \ 0.04) \\ 0.13 \ (\pm \ 0.04) \end{array}$	$\begin{array}{c} 0.46 \ (\pm \ 0.06) \\ 0.29 \ (\pm \ 0.10) \end{array}$	$\begin{array}{c} 0.04 \ (\pm \ 0.03) \\ 0.04 \ (\pm \ 0.03) \end{array}$	$\begin{array}{c} 0.06 \ (\pm \ 0.01) \\ 0.02 \ (\pm \ 0.01) \end{array}$	$\begin{array}{c} 0.91 \ (\pm \ 0.03) \\ 0.86 \ (\pm \ 0.07) \end{array}$	$\begin{array}{c} 0.92 \ (\pm \ 0.03) \\ 0.90 \ (\pm \ 0.04) \end{array}$	0.96 (± 0.02) 0.94 (± 0.02)	$\begin{array}{c} 0.95 \ (\pm \ 0.02) \\ 0.90 \ (\pm \ 0.03) \end{array}$
Relay-Kitchen	Reward Result	$\begin{array}{c} 2.65 \ (\pm \ 0.25) \\ 2.57 \ (\pm \ 0.26) \end{array}$	$\begin{array}{c} 0.50 \ (\pm \ 0.09) \\ 0.45 \ (\pm \ 0.08) \end{array}$	$\begin{array}{c} 1.45 \ (\pm \ 0.22) \\ 1.41 \ (\pm \ 0.22) \end{array}$	$\begin{array}{c} 0.31 \ (\pm \ 0.15) \\ 0.23 \ (\pm \ 0.11) \end{array}$	$\begin{array}{c} 2.73 \ (\pm \ 0.28) \\ 2.69 \ (\pm \ 0.28) \end{array}$	$\begin{array}{c} 3.64 \ (\pm \ 0.14) \\ 3.20 \ (\pm \ 0.15) \end{array}$	3.90 (± 0.08) 3.69 (± 0.08)	$\begin{array}{c} 3.68 \ (\pm \ 0.15) \\ 3.38 \ (\pm \ 0.19) \end{array}$

TABLE I

MEAN AND STD ON THE GOAL-CONDITIONED BLOCK-PUSH AND KITCHEN ENVIRONMENT, OVER 20 SEEDS WITH 100 RUNS EACH. C-BESO AND CFG-BESO CONSISTENTLY OUTPERFORMED ALL BASELINES, DESPITE ONLY USING 3 INFERENCE STEPS. CX-DIFF WITH 3 INFERENCE STEPS ACHIEVES A RESULT OF 2.74(±0.26) ON RELAY-KITCHEN. BOTH BESO APPROACHES SHOW A LOW DEVIATION ACROSS SEEDS, INDICATING THEIR ROBUSTNESS.

- **Goal-conditioned Behavior Cloning (GCBC)** learns a unimodal policy encoded as a simple multi-layer perceptron (MLP) with an trained with an MSE loss [22].
- **Relay Imitation Learning (RIL)** is a hierarchical policy, that learns a high-level sub-goal generator, which is used to condition a low-level MLP policy [12].
- Latent Motor Plans (LMP) is a hierarchical goalconditioned policy, which consists of a seq2seq CVAE and an action decoder policy [22]. We use an adapted KL-weighting term and a transformer encoder, which has been shown to improve the performance of LMP [25].
- **Conditional Implicit Behavior Cloning (C-IBC)** uses an energy-based model as an implicit policy [10]. We use a goal-conditioned extension of IBC to study the importance of the selected generative model architecture.
- **Conditional-Behavior Transformer (C-BeT)** is a GPTlike transformer-based policy, that predicts discrete action labels together with a continuous offset vector to learn multimodal behavior [35, 6]. The action labels are determined a priori via K-means clustering.
- Diffusion-X (CX-Diff) [30] is a DDPM [15] based policy with improved inference. It uses stochastic sampling and additional X-extra inference steps at the lowest noise level to synthesize actions in 50+X steps. While performing only slightly worse than the closely related KDE-Diff [30] is has a significantly lower computational cost.

To ensure a fair evaluation of all methods we kept the general hyperparameters, e.g., layer size and number, as consistent as possible while tuning the method-specific hyperparameters. A detailed summary of the baseline architectures and hyperparameters is provided in Sec. B of the Appendix. Additionally, we evaluated all models on the kitchen and block-push task with 20 seeds and 100 rollouts each. Given the high computational costs and time of training models for CALVIN, we restricted the tested methods to 3 seeds and limited the number of baselines.

B. Simulation Experiments

We evaluated BESO against the baselines on three simulation benchmarks, shown in Figure 2:

• CALVIN Benchmark [26]: We used the LfP benchmark, with a dataset consisting of 6 hours of unstructured play data. We restricted all methods on using a single static RBG image as observation input and predicedrelative Cartesian actions as output [34]. We evaluated the methods on single tasks and 2 tasks in a row from a single goal image, both variants were conditioned on goal-images outside the training distribution, that did not contain the end-effector in the correct position.

- Block-Push Environment [10]: We used the adapted goal-conditioned variant from Cui et al. [6]. The Block-Push Environment, which consists of an XARm robot that must push two blocks, a red and a green one, into red and green squared target area. The dataset consists of 1000 demonstrations collected by a deterministic controller with 4 possible goal configurations. The methods got 0.5 credit for every block pushed into one of the targets with a maximum score of 1.0.
- Relay Kitchen Environment[12]: A multi-task kitchen environment with objects such as a kettle, door, and lights that the agent can interact with. The data consists of 566 human-collected trajectories with sequences of 4 executed skills. We used the same experiment settings as described in [6] to allow for fair comparisons. The models were evaluated using a pre-defined goal state, that consisted of 4 tasks for each rollout. Each correctly completed task gives 1 credit with a maximum of 4.

The methods were evaluated on two metrics: **result** evaluates how many of the desired goals of each rollout are achieved, while **reward** measures the overall performance by giving credit for reaching any goal defined in the environment.

C. Simulation Results

We compared BESO to the baselines on the Relay-Kitchen and Block-Push environments. The results are summarized in Table I. As shown in the table, BESO consistently outperformed the competitors on both tasks across 20 seeds. The low variance of BESO, additionally, indicates the robustness of our approach. Among the baselines, Diffusion-X and C-BeT perform well on the kitchen task and block-push environment, respectively. The diffusion policies best all other baselines on the kitchen and the block-push task, while C-BeT achieves similar performance on the block-push environment. Considering that BESO only used 3 denoising steps on both environments, compared to the 50(20) + 8 steps of CX-Diff, makes BESO's performance even more impressive. In contrast, CX-Diff with 3 denoising steps only managed an average result of $2.74(\pm 0.26)$ on the kitchen environment. This highlights the advantage of BESO's architecture combined with improved

Fig. 3. Average Success rate of all tested models on the executing single hard tasks in the CALVIN environment conditioned on a single goal image, that does not contain the end-effector of the robot .

noise scheduling and sampler to achieve good results with fast sampling. On a modern desktop PC, BESO took 0.012 seconds to predict an action, while the CX-Diffusion model took an average of 0.15 seconds. This makes BESO 10x faster.

In a more challenging simulation environment, the CALVIN environment, BESO showed its ability to generalize to unseen goal states by achieving the best overall performance on 13 difficult single tasks. Each task was conditioned on a single goal image, that has not been seen during training and required long-term planning of the models. The goal image did not contain the end-effector near the related task. This is particularly challenging because the models need to reason about changes in the environment state and generalize to the new goal and cannot rely on the end-effector position in the image to reason about the required task. The results of this experiment are summarized in Figure 4 and the individual success rates of the tasks are summarized in Figure 3. As shown, BESO achieved the best overall performance on the single hard tasks, which demonstrates its ability to also generalize to unseen goalstates. Additionally, the models were evaluated on solving two tasks with a single goal image. The goal image does contain the end-effector at a different position and the model needs to reason about the tasks required to achieve the desired state. Again, BESO showed strong performance overall, while the CFG-variant was also able to learn conditional behavior. However, it struggled more on the 2 tasks challenge, where the performance dropped compared to the standard conditional one. The results illustrate that BESO is able to effectively learn meaningful behavior to solve downstream short-term and long-term goals by learning from random windows of play trajectories. This further supports the conclusion that BESO's ability to learn multimodal and expressive action-distributions are key for effective learning from play. In addition, this experiment demonstrates, that BESO can be learned effectively from visual data. Overall, our results indicate that BESO is competitive against state-of-the-art baselines and capable of effectively learning from play data, making it a promising approach for goal-conditioned behavior learning. Hence, we can answer Question I) in the affirmative.

Fig. 4. Average performance of goal-conditioned policy on the CALVIN environment. The first column shows the average success rate of 13 individual tasks. The other three columns show the average success rate of all models conditioned on a single goal image with 2 tasks.

D. BESO design choices

In order to answer Question **II**, we evaluated different components of BESO to study their contribution to the overall performance.

Conditioning Method First, we evaluated different methods to condition the behavior generation on the desired goal state. We tested the FiLM-conditioning [31] and the sequential conditioning method used in C-BeT [6]. FiLM requires additional MLP-models, which input the goal and scale the latent representations inside the transformer layers. The sequential conditioning method, simply includes desired goal-states at the beginning of our sequence as depicted in the model overview of Figure 1. We tested both conditioning variants using the same transformer score model and evaluated it on the blockpush and kitchen environment on 20 seeds. FiLM conditioning resulted in a performance drop compared to the sequential conditioning method from an average result of 0.94 to 0.91 and 3.65 to 3.4 on the block-push and kitchen environment respectively. Moreover, FiLM requires additional MLP models, which increase the overall model capacity. Hence, BESO uses the sequential conditioning method.

Sampling Algorithm BESO generates actions by numerically approximating the reverse ODE with its learned score-

		Deterministic Sampling	Stochastic Sampling
Block- Push	Reward Result	$\begin{array}{c} 0.95 \ (\pm \ 0.03) \\ 0.93 \ (\pm \ 0.03) \end{array}$	$\begin{array}{c} 0.95 \ (\pm \ 0.03) \\ 0.92 \ (\pm \ 0.03) \end{array}$
Relay- Kitchen	Reward Result	$\begin{array}{c} 3.88 \ (\pm \ 0.08) \\ 3.67 \ (\pm \ 0.08) \end{array}$	$\begin{array}{c} 3.86 \ (\pm \ 0.10) \\ 3.65 \ (\pm \ 0.08) \end{array}$

TABLE	Π
-------	---

Evaluation of the Influence of Noise Injection for Goal-conditional Behavior Generation averaged over 3 samplers using 10 models and 100 rollouts each.

model starting from a sample generated from our Gaussian prior distribution p_T . We investigated several numerical sampling algorithms used in diffusion research, such as DDIM [38], DPM [20], DPM++ [21], and Heun [17], to assess their contribution to BESO's performance. The samplers were evaluated on the block-push and kitchen environments. The results show that the performance gap between the individual samplers is small, with DDIM achieving the best overall performance. Surprisingly, the second order Heun solver has the worst average performance. Detailed results of this experiment are summarized in Table VII in the Appendix. Overall BESO is robust to the number of sampling steps and chosen sampler type, maintaining a similar performance from 3 to 50 inference steps.

Stochastic vs. Deterministic Sampling Current diffusion literature supports the assumption that stochastic samplers have a better overall performance compared to deterministic samplers [17, 41]. We tested this assumption with respect to step-based action generation. We evaluated the same models with 3 sampling algorithms DPM++(2M), the first-order Euler sampler and the DPM sampler [20, 21, 15], each with and without noise injection. The noise scheduling was performed via the ancestral sampling strategy, as used in the DPPM variant [15, 41] and described in Alg. C. Experiments were again conducted in the block-push and relay kitchen environments. The results were averaged over 10 seeds with 100 rollouts each. As shown in Table II, the results suggest that the addition of noise does not offer a significant benefit to the action generation of step-based diffusion policies. The discrepancy compared to common diffusion applications such as image synthesis [7] could be rooted in high-dimensional image spaces, making the generation process more difficult and requiring more steps for good results. In these highdimensional spaces, errors are more likely to occur and accumulate over time. Adding noise during the inference process helps the model to correct errors of the gradient approximation, resulting in a better overall performance [17]. In contrast, step-based action-distributions are significantly lower dimensional than the high-dimensional latent spaces of image generation, hence, the addition of noise does not appear to benefit the average performance of step-based policies, as supported by our experimental results.

Classifier-Free-Guidance (CFG)

Finally, we investigate Question **III** by evaluating the effect of Classifier Free Guidance (CFG) for step-based action

ock-Push	Relay Kitchen		
Result	Reward	Result	
) 0.94 (± 0.03)	3.88 (± 0.08)	3.69 (± 0.08)	
) $0.43 (\pm 0.05)$	3.52 (± 0.25)	2.01 (± 0.24)	
) $0.89 (\pm 0.03)$	$3.75 (\pm 0.08)$	$3.37 (\pm 0.07)$	
$0.90 (\pm 0.03)$	$3.68 (\pm 0.08)$	3.38 (± 0.19)	
) $0.86 (\pm 0.03)$	$3.01 (\pm 0.08)$	$2.69 (\pm 0.21)$	
) $0.75 (\pm 0.09)$	1.49 (± 0.08)	1.12 (± 0.25)	
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Sck-Push Relay Result Reward 0.94 (\pm 0.03) 3.88 (\pm 0.08) 1) 0.43 (\pm 0.05) 3.52 (\pm 0.25) 3) 0.89 (\pm 0.03) 3.75 (\pm 0.08) 2) 0.90 (\pm 0.03) 3.68 (\pm 0.08) 4) 0.86 (\pm 0.03) 3.01 (\pm 0.08) 5) 0.75 (\pm 0.09) 1.49 (\pm 0.08)	

TABLE III

Comparison of CFG Method for Goal-conditioned Behavior Learning from Play data. We report the mean and standard deviation over 10 seeds and 100 rollouts each. For CFG-BESO we use the same per-trained models for all conditioning

METHODS.

generation with goal-conditioned policies. The results of this experiment, reported in Table III, indicate that CFG is an effective method for goal-conditioning in a step-based setting. The average performance for the block-push and kitchen tasks is slightly worse than the standard goal-conditioned variant, while the average reward is almost equal. The performance of the CFG-model with $\lambda = 0$ demonstrates, that CFG-BESO is capable of learning a well-performing, unconditional policy $\pi(a|s)$. The low average result shows that the policy ignores the goal-state and aims to achieve a high reward solely based on the current state. This gives CFG-BESO a unique advantage over common play-based policies. However, CFG has a trade-off: it lowers the average result for more diverse rollouts. Empirical evaluations suggest the best λ -value for both environments to be in the range of [1, 1.5]. Experiments with higher values resulted in lower average performance, indicating instability in the action generation. We hypothesize, that the guidance provided by the goal-conditioning is only crucial in certain steps during the rollouts, specifically when the policy is deciding which task to solve.

VI. CONCLUSION

We introduced BESO, a new policy model for goalconditioned behavior generation that leverages score-based diffusion models. We leveraged the expressiveness and multimodal properties of score-based diffusion models to learn taskagnostic behavior from offline, reward-free play datasets, without requiring hierarchical structures or additional clustering. Additionally, we showed the effectiveness of Classifier-Free Guidance for simultaneously learning a goal-dependent and goal-independent policy in a sequential setting. Experiments on the relay kitchen and block-push benchmarks showed that BESO significantly improves upon several state-of-the-art GCIL algorithms, which is further supported by it's strong performance on the CALVIN benchmark. Our experiments and ablation studies have demonstrated the key components of BESO that enable fast, deterministic behavior generation. We have shown that stochastic samplers do not provide significant benefits over deterministic samplers for action synthesis. BESO further outperformed standard DDPM policies with only 3 denoising steps, alleviating prior drawbacks of slow diffusion sampling. To the best of our knowledge this was

the first work that a) defined a score-based policy using a probability flow ODE with numerical solvers b) learned a score-based policy in the domain of goal-condition imitation learning and c) prove the effectiveness of CFG in a sequential setting for simultaneously learn a goal-dependent and a goalindependent policy from play-data. In the future, we aim to extend BESO for language-guided behavior generation, offering a more intuitive goal guidance for humans. Furthermore, we plan to collect a large set of play data on real robots to demonstrate how BESO can be leveraged in real-world applications.

VII. ACKNOWLEDGMENTS

The work presented here was funded by the German Research Foundation (DFG) – 448648559.

REFERENCES

- Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal. Is conditional generative modeling all you need for decision making? In *International Conference on Learning Representations*, 2023. URL https://openreview.net/forum? id=sP1fo2K9DFG.
- [2] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning from demonstration. *Robotics and autonomous systems*, 57 (5):469–483, 2009.
- [3] Suneel Belkhale and Dorsa Sadigh. PLATO: Predicting latent affordances through object-centric play. In 6th Annual Conference on Robot Learning, 2022. URL https://openreview.net/forum?id=UAA5bNospA0.
- [4] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale. In arXiv preprint arXiv:2212.06817, 2022.
- [5] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. Advances in neural information processing systems, 31, 2018.
- [6] Zichen Jeff Cui, Yibin Wang, Nur Muhammad Mahi Shafiullah, and Lerrel Pinto. From play to policy: Conditional behavior generation from uncurated robot

data. In *International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id= c7rM7F7jQjN.

- [7] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in Neural Information Processing Systems, 34:8780–8794, 2021.
- [8] Benjamin Eysenbach, Soumith Udatha, Ruslan Salakhutdinov, and Sergey Levine. Imitating past successes can be very suboptimal. In Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/ forum?id=iqCO3jbPjYF.
- [9] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Ruslan Salakhutdinov. Contrastive learning as goalconditioned reinforcement learning. In Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=vGQiU5sqUe3.
- [10] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In *Conference on Robot Learning*, pages 158–168. PMLR, 2022.
- [11] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse reinforcement learning. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum? id=rkHywl-A-.
- [12] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy learning: Solving long horizon tasks via imitation and reinforcement learning. *Conference on Robot Learning (CoRL)*, 2019.
- [13] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. *Advances in neural information processing systems*, 29, 2016.
- [14] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications*, 2021.
- [15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33:6840–6851, 2020.
- [16] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for flexible behavior synthesis. In *International Conference on Machine Learning*, 2022.
- [17] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=k7FuTOWMOc7.
- [18] Kuno Kim, Akshat Jindal, Yang Song, Jiaming Song, Yanan Sui, and Stefano Ermon. Imitation with neural density models. *Advances in Neural Information Processing Systems*, 34:5360–5372, 2021.
- [19] Minghuan Liu, Tairan He, Minkai Xu, and Weinan Zhang. Energy-based imitation learning. In Proceedings of the 20th International Conference on Au-

tonomous Agents and MultiAgent Systems, AAMAS '21, page 809–817. International Foundation for Autonomous Agents and Multiagent Systems, 2021. ISBN 9781450383073.

- [20] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095, 2022.
- [21] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver: A fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id= 2uAaGwlP_V.
- [22] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and Pierre Sermanet. Learning latent plans from play. In *Conference on robot learning*, pages 1113–1132. PMLR, 2020.
- [23] Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. Offline goal-conditioned reinforcement learning via *f*-advantage regression. In *Thirty-Sixth Conference on Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=_h29VprPHD.
- [24] Ajay Mandlekar, Danfei Xu, Roberto Martín-Martín, Silvio Savarese, and Li Fei-Fei. GTI: Learning to Generalize across Long-Horizon Tasks from Human Demonstrations. In *Proceedings of Robotics: Science and Systems*, July 2020. doi: 10.15607/RSS.2020.XVI.061.
- [25] Oier Mees, Lukas Hermann, and Wolfram Burgard. What matters in language conditioned robotic imitation learning over unstructured data. *IEEE Robotics and Automation Letters (RA-L)*, 7(4):11205–11212, 2022.
- [26] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for languageconditioned policy learning for long-horizon robot manipulation tasks. *IEEE Robotics and Automation Letters*, 2022.
- [27] Lina Mezghani, Sainbayar Sukhbaatar, Piotr Bojanowski, Alessandro Lazaric, and Karteek Alahari. Learning goalconditioned policies offline with self-supervised reward shaping. In *CoRL-Conference on Robot Learning*, 2022.
- [28] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob Mcgrew, Ilya Sutskever, and Mark Chen. GLIDE: Towards photorealistic image generation and editing with text-guided diffusion models. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pages 16784– 16804. PMLR, 17–23 Jul 2022.
- [29] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al. An algorithmic perspective on imitation learning. *Foundations and Trends*® *in Robotics*, 7(1-2):1–179, 2018.
- [30] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave

Bignell, Mingfei Sun, Raluca Georgescu, Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, and Sam Devlin. Imitating human behaviour with diffusion models. In *International Conference on Learning Representations*, 2023. URL https: //openreview.net/forum?id=Pv1GPQzRrC8.

- [31] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual reasoning with a general conditioning layer. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018.
- [32] Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned skill priors. In *Conference on robot learning*, pages 188–204. PMLR, 2021.
- [33] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings* of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.
- [34] Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard. Latent plans for task-agnostic offline reinforcement learning. In 6th Annual Conference on Robot Learning, 2022. URL https://openreview.net/forum?id=ViYLaruFwN3.
- [35] Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ariuntuya Altanzaya, and Lerrel Pinto. Behavior transformers: Cloning k modes with one stone. In *Thirty-Sixth Conference on Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=agTr-vROsa.
- [36] Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot: Datadriven behavioral priors for reinforcement learning. In *International Conference on Learning Representations*, 2020.
- [37] Jascha Sohl-Dickstein. Weiss. Eric Niru Maheswaranathan, and Surya Ganguli. Deep learning using nonequilibrium unsupervised thermodynamics. In International Conference on Machine Learning, pages 2256-2265. PMLR, 2015.
- [38] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *ICLR*, 2021.
- [39] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. *Advances in Neural Information Processing Systems*, 32, 2019.
- [40] Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. *Advances in neural information processing systems*, 33:12438–12448, 2020.
- [41] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Scorebased generative modeling through stochastic differential equations. In *International Conference on Learning Representations*, 2020.
- [42] Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Amit Haim Bermano, and Daniel Cohen-or. Hu-

man motion diffusion model. In *International Conference on Learning Representations*, 2023. URL https: //openreview.net/forum?id=SJ1kSyO2jwu.

- [43] Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki. Se(3)-diffusionfields: Learning smooth cost functions for joint grasp and motion optimization through diffusion. *IEEE International Conference on Robotics* and Automation (ICRA), 2023.
- [44] Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural Computation*, 23(7): 1661–1674, 2011. doi: 10.1162/NECO_a_00142.
- [45] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy class for offline reinforcement learning. In *International Conference on Learning Representations*, 2023. URL https: //openreview.net/forum?id=AHvFDPi-FA.
- [46] Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie Zhang. Rethinking goal-conditioned supervised learning and its connection to offline rl. In *International Conference on Learning Representations*, 2021.
- [47] Sarah Young, Jyothish Pari, Pieter Abbeel, and Lerrel Pinto. Playful interactions for representation learning. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 992–999, 2022. doi: 10.1109/IROS47612.2022.9981307.

APPENDIX

A. Overview of BESO Hyperparameters

An summary of key hyperparameters of BESO is listed in Table VI. We use the skip connections proposed in Karras et al. [17] to balance different noise levels:

•
$$c_{\rm skip} = \sigma_{\rm data}^2 / (\sigma_{\rm data}^2 + \sigma_t^2)$$

•
$$c_{\text{skip}} = \sigma_{\text{data}} / (\sigma_{\text{data}} + \sigma_t)$$

• $c_{\text{out}} = \sigma_t \sigma_{\text{data}} / \sqrt{\sigma_{\text{data}}^2 + \sigma_t^2}$

•
$$c_{\rm in} = 1/\sqrt{\sigma_{\rm data}^2 + \sigma_t^2}$$

• $c_{\text{noise}} = 0.25 \ln(\sigma_t)$

Additionally, we use the Exponential Moving Average (EMA) to optimize the weights our models. BESO has several architecture-specific hyperparameters that need to be finetuned for optimal performance and can be grouped into training-and inference parameters The training parameters are the following: σ_{std} , σ_{mean} , σ_{data} . Table VI shows that we tried to maintain consistency across environments for the training hyperparameters. During inference one can improve the performance of a trained model further by adapting the inference parameters according the task: σ_{max} , σ_{min} , noise scheduler, sampler type, $n_{\sigma,\text{inference}}$. We use the exponential noise scheduler from the Variance Exploding SDE model [41]:

$$t_i = \sigma_{\max}^2 (\sigma_{\min} / \sigma_{\max})^{\frac{i}{N-1}}.$$
(8)

B. Baselines Implementation

In order to ensure fairness in comparison, we maintained a similar number of hidden layers and dimensions for all models. The MLP-based models have 4 layers with 512 neurons and use the ReLU activation function. All diffusion models have the same transformer backbone, and C-BeT uses the same number of hidden neurons and layers as the other tested diffusion models. During training, the Adam optimizer was used with a learning rate of 0.001 for MLP models and 5e-4for transformer models. The batch size for MLP models was 512, while it was 1024 for transformer models, except for BeT, which used a batch size of 64 as recommended in [6].

GCBC For the GCBC model, the goal is concatenated with the state and fed into the 4-layer MLP architecture with a dropout rate of 0.1.

GC-IBC The GC-IBC model uses the same MLP architecture as GCBC and is optimized using the InfoNCE loss with additional energy-regularization and Wasserstein Gradient loss. During experiments, adding a penalty term with $\lambda =$ 0.005 to restrict the average energy improved training stability [10]. Given the large number of tunable hyperparamters for IBC, we ran an hyperparameter search to determine the best ones. We want to note, that the model results of EBM were very sensitive to initial seeds and we had troubles to get consistent results for the models. Similar observations of IBC performance have been reported in related work [30].

C-BeT For the performance of C-BeT, we use the recommended parameters from Cui et al. [6] for all tested environments. Our reported results are slightly worse, than the ones reported in the original work, since they do not average it over 20 seeds.

Hyperparameter	Block Push	Relay Kitchen
Hidden dimension	128	128
Hidden layers	6	6
Train steps	5000	1000
Noise Scale	0.3	0.3
Loss	InfoNCE	InfoNCE
Train samples	64	64
Noise shrink	0.5	0.5
Learning rate	0.001	0.001

TABLE IV OVERVIEW OF THE USED HYPERPARAMETERS OF GC-IBC FOR BOTH ENVIRONMENTS

Hyperparameter	Block-Push	Relay-Kitchen	CALVIN
Decoder Hidden Dimension	{128, 256, 512, 1024 }	{128, 256, 512}	2048
n-Mixtures	10	10	10
n-Classes	{10, 32, 64, 128, 256 }	10	10
Policy-dropout	{0.1, 0.2 , 0.3}	{0.1, 0.2 , 0.3}	0.1
Plan Features	{16, 32 , 64, 128}	{16, 32, 64 , 128}	32
Plan Recognition Features	{64, 128, 256 , 512}	{64, 128, 256, 512 }	2048
Replan Freq	<i>{</i> 5, 10 , 16, 32 <i>}</i>	{5, 10, 16, 32 }	2
Planner Hidden Layers	2	2	2
Window size	{10, 16, 32, 48 }	{10, 16, 32, 48, 64}	16
Goal window size	1	1	1
kl-beta	{0.001, 0.005, 0.01}	{0.001, 0.005, 0.01}	0.01
Learning rate	{0.001, 0.0005, 0.0001}	{0.001, 0.0005, 0.0001}	0.0001
Optimizer	Adam	Adam	Adam

TABLE V

OVERVIEW OF THE HYPERPARAMETER-SWEEP FOR LATENT PLANS AND THE FINAL PARAMETERS USED FOR THE EVALUATION FOR EACH TESTED SIMULATION ENVIRONMENT

Latent Motor Plans The LMP model was evaluated on the Kitchen and Block Push environments with extensive hyperparameter sweeps to find the best performing configuration. An detailed overview of the sweeped parameters and the chosen ones is shown in Table V. On the CALVIN environment, the proposed parameters from prior work were used [34]. We used the improved LMP variant from [25], which uses a different Kl-divergence weighting term and a transformer model the Seq2Seq CVAE.

RIL For the low-level policy of kitchen and block push we use 4 layers with 512 neurons each. For the CALVIN task, we use the baseline version from [34] and kept the hyperparameters the same for training.

Diffusion-X The baseline from [30] uses the same hyperparameters of our transformer model reported in VI to guarantee a fair comparison. Diffusion-X uses 50 inference steps on the kitchen task combined with additional 10 fine-tuning steps at the lowest noise level, while we use 20 inference steps for the block-push environment and additional 8 fine-tuning steps. Diffusion-X uses a discrete variant of the Euler sampling method with ancestral noise scheduler, which is reported in Alg. C [15, 41]. Further, it applies X-additional denoising steps with adding noise at the lowest noise level.

C. Sampler Ablation studies

We evaluate various state-of-the-art ODE samplers and their SDE counterparts in different environments. To determine the best solver for conditional-behavior generation, we analyze their average performance of 10 different seeds with 100 rollouts each in different environments. In general we differentiate

Hyperparameter	Block-Push	Relay-Kitchen	CALVIN
Hidden Dimension	74	120	480
Hidden Layers	4	6	6
Window size	3	5	5
Goal window size	1	3	1
Learning rate	5e-4	5e-4	5e-4
Optimizer	Adam	Adam	Adam
$\sigma_{ m max}$	40.5	33	40
$\sigma_{ m min}$	0.39	0.39	0.2
$\sigma_{ m mean}$	-0.17	-2	-2
$\sigma_{ m std}$	-2	-2	-2
$\sigma_{ m data}$	0.5	0.5	0.5
Type of distribution	Log-Normal	Log-Normal	Log-Normal
EMA	True	True	True
Sampler Type	DDIM	DDIM	DDIM
Noise scheduler	Exp	Exp	Exp

TABLE VI

OVERVIEW OF THE MOST IMPORTANT HYPERPARAMETERS FOR THE DIFFERENT MODEL ARCHITECTURES

		Block	-Push	Relay Kitchen		
		Reward	Result	Reward	Result	
ODE	Euler DPM DPM++(2S)	$ \begin{array}{c c} 0.95 \ (\pm \ 0.02) \\ 0.96 \ (\pm \ 0.01) \\ 0.95 \ (\pm \ 0.03) \end{array} $	$\begin{array}{c} 0.94 \ (\pm \ 0.02) \\ 0.94 \ (\pm \ 0.01) \\ 0.92 \ (\pm \ 0.03) \end{array}$	$ \begin{vmatrix} 3.87 \ (\pm \ 0.09) \\ 3.86 \ (\pm \ 0.08) \\ 3.88 \ (\pm \ 0.08) \end{vmatrix} $	$\begin{array}{c} 3.66 \ (\pm \ 0.07) \\ 3.67 \ (\pm \ 0.10) \\ 3.67 \ (\pm \ 0.09) \end{array}$	
SDE	EA DPM-AC DPM++(2SA)	$ \begin{array}{c c} 0.90 \ (\pm \ 0.03) \\ 0.92 \ (\pm \ 0.03) \\ 0.95 \ (\pm \ 0.02) \end{array} $	$\begin{array}{c} 0.90 \ (\pm \ 0.03) \\ 0.88 \ (\pm \ 0.04) \\ 0.92 \ (\pm \ 0.03) \end{array}$	$ \begin{array}{c c} 3.82 \ (\pm \ 0.10) \\ 3.90 \ (\pm \ 0.09) \\ 3.86 \ (\pm \ 0.10) \end{array} $	$\begin{array}{c} 3.63 \ (\pm \ 0.09) \\ 3.65 \ (\pm \ 0.08) \\ 3.65 \ (\pm \ 0.07) \end{array}$	

TABLE VII Evaluation of the Influence of Noise Injection for Goal-conditional Behavior Generation averaged over 3 samplers with and without additional noise using 10 models and 100 rollouts each.

first order and second order solvers: the first order solver is Euler [15] and the tested second order solver is Heun [17]. The tested samplers include:

- Euler ODE (Euler): A first-order ODE sampler from [17] without the additional addition and deleting of noise. The algorithm is summarized in C.
- Euler-Ancestral (EA): A continuous-time version of the standard DDPM sampler [15] introduced in [41].
- 2nd Order Heun Solver (Heun): A second-order ODE solver using the Heun method [17].
- **DPM:** An exponential ODE integrator solver designed for synthesis in a few inference steps [21]. We use the second order method.
- **DDIM:** A first order variant of DPM, which has been introduced individually [38, 21] and has been designed for fast inference and CFG.
- DPM-Ancestral: A stochastic variant of DPM with ancestral noise injections.
- **DPM++(2S):** An improved version of the second order DPM sampler for classifier-free guidance based conditional diffusion models with a single inference step [20]
- **DPM++(2SA):** A stochastic variant of the DPM++(2S), which also uses the ancestral noise injection
- **DPM++(2M):** An improved version of the second-order DPM sampler for classifier-free guidance based conditional diffusion models [20], which is a second order

method using two model predictions per step.

• **DPM++(2MA):** A stochastic variant of the DPM++(2M), which also uses the ancestral noise injection

Several previous studies have compared the performance of ODE samplers in the context of image generation [17, 20]. However, these comparisons may not be entirely indicative as image generation tasks have unique challenges and requirements not relevant for action synthesis. To ensure a fair comparison, we evaluated all samplers on the same models across several simulation environments and report their average performance based on 100 runs for each environment. This allows us to accurately compare the effectiveness of each deterministic solver in the context of step-based action generation. The results for the kitchen environment are shown in Table VIII and the performance for the block push is reported in Table IX. As shown in both tables, the first order exponential integrator solver DDIM achieves the best overall performance. Increasing the number of inference steps does not have significant impact on the average performance, while even reducing the average result of some samplers. Overall the performance differences of all evaluated samplers is small.

Algorithm	3	Ancestral	Noise	Scheduler	fa	[/1	151	
Algoriumn	Э	Ancestral	noise	Schedulei	JANC	141,	131	

1: **Require:** t_{from} , t_{to} 2: $t_{\text{up}} \leftarrow \min(t_{\text{to}}, \sqrt{\frac{t_{\text{to}}^2(t_{\text{to}}^2 - t_{\text{from}}^2)}{t_{\text{from}}^2}})$ 3: $t_{\text{to}} \leftarrow \sqrt{(t_{\text{to}}^2 - t_{\text{from}}^2)}$ 4: **return** t_{down} , t_{up}

Algorithm	4	Deterministic	1st	Order	Euler	Sampler	[17]

- 1: **Require:** Current state *s*, goal g
- 2: **Require:** Score-Denoising Model $D_{\theta}(\mathbf{a}, \boldsymbol{s}, \mathbf{g}, \sigma_t)$
- 3: **Require:** Noise scheduler $\sigma_t = \sigma(t_i)$
- 4: **Require:** Discrete time steps $t_{i \in \{0,...,N\}}$
- 5: Draw sample $\mathbf{a}_0 \sim \mathcal{N}(\mathbf{0}, \sigma_{t_0}^2 \mathbf{I})$
- 6: for $i \in \{0, ..., N-1\}$ do
- 7: $\mathbf{d}_i \leftarrow (\mathbf{a}_i D_\theta(\mathbf{a}_i, \boldsymbol{s}, \mathbf{g}, \sigma_t))/t_i$
- 8: $\mathbf{a}_{i+1} \leftarrow \mathbf{a}_i + (t_{i+1} t_i)\mathbf{d}_i$
- 9: end for
- 10: return \mathbf{a}_N

	Steps	Euler	Heun	DDIM	DPM	DPM++(2S)	DPM++(2M)
Reward	3 5 10 20	$\begin{vmatrix} 3.87 & (\pm 0.09) \\ 3.87 & (\pm 0.07) \\ 3.85 & (\pm 0.08) \\ 3.86 & (\pm 0.10) \\ 2.82 & (\pm 0.08) \end{vmatrix}$	$3.80 (\pm 0.03) 3.84 (\pm 0.06) 3.86 (\pm 0.09) 3.91 (\pm 0.08) 2.02 (\pm 0.04) $	$3.92 (\pm 0.07) 3.88 (\pm 0.06) 3.88 (\pm 0.06) 3.87 (\pm 0.07) 2.88 (\pm 0.06) 3.87 (\pm 0.07) 3.88 (\pm 0.06) 3.88 (\pm 0.06) \\ 3.88 (\pm 0.06$	$3.86 (\pm 0.08) 3.90 (\pm 0.09) 3.87 (\pm 0.10) 3.88 (\pm 0.09) 2.82 (\pm 0.10) 3.81 (\pm 0.10) 3.82 (\pm 0.10) 3.82 (\pm 0.10) 3.82 (\pm 0.10) 3.82 (\pm 0.10) 3.83 (\pm 0.09) 3.84 (\pm 0.09) 3.85 (\pm 0.09) \\ 3.85 (\pm 0.09) \\ 3.85 (\pm 0.09) \\ 3.85 (\pm 0.09) \\ 3.85 (\pm 0.09$	$3.88 (\pm 0.08) 3.87 (\pm 0.06) 3.88 (\pm 0.07) 3.89 (\pm 0.07) 2.67 (\pm 0.04)$	$3.89 (\pm 0.08) 3.87 (\pm 0.06) 3.89 (\pm 0.05) 3.88 (\pm 0.06) 2.80 (\pm 0.06) 2.80 (\pm 0.06) 3.81 (\pm 0.06) 3.82 (\pm 0.06) 3.83 (\pm 0.06) (\pm 0.06)$
Result	3 5 10 20 50	$\begin{array}{c c} 3.82 (\pm 0.08) \\ \hline 3.66 (\pm 0.09) \\ 3.66 (\pm 0.07) \\ 3.65 (\pm 0.06) \\ 3.64 (\pm 0.07) \\ 3.62 (\pm 0.04) \end{array}$	$\begin{array}{c} 3.63 \ (\pm \ 0.04) \\ \hline 3.62 \ (\pm \ 0.07) \\ 3.66 \ (\pm \ 0.06) \\ 3.63 \ (\pm \ 0.06) \\ 3.65 \ (\pm \ 0.09) \\ 3.67 \ (\pm \ 0.04) \end{array}$	$\begin{array}{c} 3.88 (\pm 0.06) \\ \hline 3.69 (\pm 0.07) \\ 3.67 (\pm 0.08) \\ 3.67 (\pm 0.07) \\ 3.66 (\pm 0.09) \\ 3.67 (\pm 0.09) \end{array}$	$\begin{array}{c} 3.82 (\pm 0.10) \\ \hline 3.67 (\pm 0.10) \\ 3.67 (\pm 0.08) \\ 3.66 (\pm 0.07) \\ 3.66 (\pm 0.07) \\ 3.62 (\pm 0.07) \end{array}$	$\begin{array}{c} 3.67 (\pm 0.04) \\ \hline 3.67 (\pm 0.09) \\ 3.66 (\pm 0.07) \\ 3.66 (\pm 0.08) \\ 3.68 (\pm 0.09) \\ 3.67 (\pm 0.07) \end{array}$	$\begin{array}{c} 3.67 \ (\pm \ 0.08) \\ 3.67 \ (\pm \ 0.08) \\ 3.67 \ (\pm \ 0.08) \\ 3.67 \ (\pm \ 0.07) \\ 3.67 \ (\pm \ 0.08) \\ 3.67 \ (\pm \ 0.08) \\ 3.67 \ (\pm \ 0.08) \end{array}$

TABLE VIII

COMPARISON OF THE PERFORMANCE OF DETERMINISTIC SAMPLERS ON THE KITCHEN ENVIRONMENT AVERAGED OVER 10 SEEDS WITH 100 ROLLOUTS EACH

	Steps	Euler	Heun	DDIM	DPM	DPM++(2S)	DPM++(2M)
Reward	3	0.95 (± 0.02)	$0.92 (\pm 0.02)$	$0.97 (\pm 0.02)$	$0.96 (\pm 0.02)$	$0.95 (\pm 0.03)$	$0.97 (\pm 0.02)$
	5	$0.94 (\pm 0.04)$	$0.95~(\pm~0.02)$	$0.96 (\pm 0.02)$	$0.97 (\pm 0.01)$	$0.94~(\pm 0.02)$	$0.93~(\pm 0.02)$
	10	$0.97 (\pm 0.03)$	$0.93 (\pm 0.02)$	$0.96~(\pm~0.01)$	$0.95~(\pm 0.03)$	$0.96 (\pm 0.02)$	$0.96~(\pm 0.03)$
	20	$0.98 (\pm 0.02)$	$0.96 (\pm 0.03)$	$0.98~(\pm~0.02)$	$0.96 (\pm 0.03)$	$0.96 (\pm 0.02)$	$0.97~(\pm 0.03)$
	50	$0.98~(\pm~0.01)$	$0.96~(\pm~0.01)$	$0.97~(\pm~0.02)$	$0.97~(\pm~0.05)$	$0.97~(\pm~0.01)$	$0.94~(\pm~0.05)$
Result	3	0.94 (± 0.02)	$0.90 (\pm 0.05)$	0.94 (± 0.04)	0.94 (± 0.01)	0.92 (± 0.03)	0.95 (± 0.03)
	5	$0.91 (\pm 0.06)$	$0.93 (\pm 0.03)$	$0.95~(\pm 0.02)$	$0.95~(\pm 0.02)$	$0.91 (\pm 0.03)$	$0.93 \ (\pm \ 0.03)$
	10	$0.94 (\pm 0.02)$	$0.91~(\pm 0.04)$	$0.95~(\pm~0.02)$	$0.91~(\pm 0.04)$	$0.94~(\pm 0.02)$	$0.96~(\pm~0.02)$
	20	$0.96 (\pm 0.02)$	$0.94~(\pm 0.03)$	$0.95~(\pm~0.04)$	$0.95~(\pm~0.04)$	$0.93~(\pm 0.03)$	$0.96~(\pm 0.03)$
	50	0.98 (± 0.01)	$0.95~(\pm~0.02)$	$0.95~(\pm~0.01)$	$0.93~(\pm~0.03)$	$0.94~(\pm~0.03)$	$0.92~(\pm~0.06)$

TABLE IX

Comparison of the performance of deterministic samplers on the Block Push environment averaged over 10 seeds with 100 ROLLOUTS EACH

Algorithm 5 Stochastic 1st Order Euler sampler [17]

- 1: **Require:** Current state *s*, goal g
- 2: **Require:** Score-Denoising Model $D_{\theta}(\mathbf{a}, \boldsymbol{s}, \mathbf{g}, \sigma_t)$
- 3: **Require:** Noise scheduler $\sigma_t = \sigma(t_i)$, f_{ANC} from Alg. C
- 4: **Require:** Discrete time steps $t_{i \in \{0,..,N\}}$
- 5: Draw sample $\mathbf{a}_0 \sim \mathcal{N}(\mathbf{0}, \sigma_{t_0}^2 \mathbf{I})$ 6: for $i \in \{0, ..., N-1\}$ do
- $\mathbf{d}_i \leftarrow (\mathbf{a}_i D_{\theta}(\mathbf{a}_i, \mathbf{s}, \mathbf{g}, \sigma_t))/t_i$ 7:
- 8:
- $\begin{aligned} & t_{\text{down}}, t_{\text{up}} \leftarrow f_{\text{ANC}}(t_i, t_{i+1}) \\ & \mathbf{a}_{i+1} \leftarrow \mathbf{a}_i + (t_{\text{down}} t_i) \mathbf{d}_i \\ & \epsilon_{\text{up}} \sim \mathcal{N}(\mathbf{0}, \sigma_{t_{\text{up}}}^2 \mathbf{I}) \end{aligned}$ 9:
- 10:
- $\mathbf{a}_{i+1} \leftarrow \mathbf{a}_{i+1} + \epsilon_{up}$ 11:
- 12: end for
- 13: return \mathbf{a}_N