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Abstract. We use free energy lattice Boltzmann methods to simulate shear

and extensional flows of a binary fluid in two and three dimensions. To this

end, two classical configurations are digitally twinned, namely a parallel-band
device for binary shear flow and a four-roller apparatus for binary extensional

flow. The free energy lattice Boltzmann method and the test cases are imple-

mented in the open-source parallel C++ framework OpenLB and evaluated for
several non-dimensional numbers. Characteristic deformations are captured,

where breakup mechanisms occur for critical capillary regimes. Though the

known mass leakage for small droplet-domain ratios and large Cahn numbers
is observed, suitable mesh sizes show good agreement to analytical predictions

and reference results.

1. Introduction. Fluid mixture flows are omnipresent in nature and essential to
many industrial processes [6]. Taylor [39] proposed machinery to examine the de-
formations of droplets induced by shear and extensional flow of fluids with two
components. In the present article, we refer to the latter as binary fluids. The de-
formation is governed by the balance of outer forces and surface tension. Once this
force balance is in favor of deformation, the droplet will break. Modifying the prop-
erties of the system, the breakup process can be adjusted in terms of number and size
of resulting droplets. These phenomena are essential in manufacturing processes,
for example in order to maximize the efficiency of creating emulsions [5, 41]. For
the computer simulation of binary fluid flow several methods have been employed in
the past. Due to the intrinsic parallelizability which enables the outsourcing of high
performance computing (HPC) machinery, the lattice Boltzmann method (LBM)
emerged as an unconventional alternative for multicomponent computational fluid
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dynamics (CFD). The popularity of LBM for CFD and beyond has increased sig-
nificantly [23]. Several data structures are available commercially and open-source.
Exemplarily for the latter, the highly parallel C++ framework OpenLB [18] has
been successfully used for simulations of various transport processes also on Top500
HPC machines (e.g. [18, 10, 30, 26, 7, 36, 32, 9, 35, 31, 33, 4]). Simulating mul-
tiphase and multicomponent flows in LBM is mostly based on phase field models
with diffuse interfaces. The interfacial zone brings forth additional physics captured
by the Cahn–Hilliard equation (CHE), though in turn upholds the high paralleliz-
ability of LBM. Several approaches for the underlying mixture dynamics exist [14],
for example the free energy model (FRE) [38, 27]. Tunable physical effects and a
top-down configuration of thermodynamics, are advantages of models akin to FRE.
Albeit a high potential for numerical simulations, applications with FRE LBM for
flows relevant to industrial processes are still rare.

The dynamic effects on an immiscible mixture of two components can be ab-
stracted into shear- and extension-dominated flows. For these two types of dynamic
mixture flows, the present work implements and tests the FRE LBM with a simple
binary fluid composition (equal density and viscosity). In particular, deformation
as well as breakup phenomena are distinctively assessed to determine the models
usability for more complex applications. As such, we approve the suitability of the
presented FRE LBM for numerically simulating these types of binary fluid flows via
digitally twinning classical devices and comparing the results to references.

This paper is structured as follows. Section 2 summarizes the methods, the
numerical results are described in Section 3 and Appendix A, and Section 4 draws
conclusions and closes the paper.

2. Methodology.

2.1. Target equations. A weakly compressible, isothermal fluid flow is described
via the Navier–Stokes equations (NSE)

∂tρ+ ∂α(ρuα) = 0, in R, (1)

∂t(ρuα) + ∂β(ρuαuβ) = ∂β [η (∂αuβ + ∂βuα) + ν∂γuγδαβ ]− ∂βP
th
αβ , in R, (2)

where ρ : R → R denotes the density, u : R → Rd is the fluid velocity, η > 0 is a
dynamic viscosity, the factor ν = (ηB−2η/3) ≥ 0 contains the bulk viscosity ηB ≥ 0,
and R = Ω × I is the space-time domain with Ω ⊆ Rd and I ⊆ R+, respectively.
Here, Pth : R→ Rd×d is the thermodynamic pressure tensor with

Pth = Pchem + P Id. (3)

For single phase and single component flow, Pth reduces to the isotropic pressure
P Id. In case of a multicomponent flow model the corresponding thermodynamics
are introduced by the partly anisotropic chemical pressure tensor Pchem [38, 15].

In the present work, we use

∂βP
chem
αβ = ρ∂αµρ + ϕ∂αµϕ (4)

to model a binary fluid system. Capturing additional physics of the diffuse interface,
the Cahn–Hilliard equation (CHE)

∂tϕ+∇ · (ϕu) = Mϕ∆µϕ, in R (5)

is coupled to (2), where ϕ : R → R is the order parameter, µρ and µϕ denote the
chemical potentials and Mϕ > 0 is related to the mobility of the interface. The
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latter three quantities are specified further below. Complemented with respective
initial and boundary conditions, equations (1), (2), and (5) are to be approximated
with a FRE LBM.

y

x
(a) D2Q9

y

xz

(b) D3Q19

Figure 1. Discrete velocity sets.

2.2. Free energy lattice Boltzmann method. We assume a classical discretiza-
tion of the phase space and the time domain [20] such that the following derivation
is done completely in (dimensionless) lattice units (△tL = 1 = △xL).

The present LBM is based on the lattice Boltzmann equation (LBE)

fi (x+ ci, t+ 1) = fi (x, t) + Ji (x, t) + Si (x, t) , (6)

where i = 0, 1, . . . , q − 1 counts the discrete velocities ci in DdQq and f (x, t) =
(fi(x, t))

T
i denotes the populations in discrete space-time (x, t) ∈ (Ωh, Ih) ⊆ R

and maps to Rq. The here used velocity stencils are given in Figure 1. The clas-
sical Bhatnagar–Gross–Krook (BGK) collision model [2] implements the collision
operator

J (x, t) = −1

τ
[f (x, t)− f eq (x, t)] , (7)

where τ > 0.5 denotes the relaxation time at which f relaxes towards the equilib-
rium

f eq
i (x, t) = wiρ (x, t)

[
1 +

ciαuα (x, t)

c2s
+

uα (x, t)uβ (x, t)
(
ciαciβ − c2sδαβ

)
2c4s

]
(8)
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with wi denoting the lattice weights and cs being the lattice speed of sound. The
term Si (x, t) obeys Guo’s forcing scheme [8]

Si (x, t) =

(
1− 1

2τ

)
wi

[
ci − u (x, t)

c2s
+

(ci · u (x, t))ci
c4s

]
· F (x, t) , (9)

where F is a force field. The macroscopic flow variables are recovered via the
discrete moments of the populations

ρ (x, t) =

q−1∑
i=0

fi (x, t) , (10)

ρ (x, t)u (x, t) =

q−1∑
i=0

cifi (x, t) +
1

2
F (x, t) , (11)

respectively. As such, we use (6) to approximate the conservative variables in the
NSE (1) and (2). Formal Chapman–Enskog expansions are given in [20] and limit
consistency is proven force-free in [34]. Both establish the relation

η = ρc2s

(
τ − 1

2

)
(12)

and implicitly ηB = 2η/3. The appropriate body force to recover the divergence of
the chemical pressure (4) is defined as the residual

Fα = −∂β(P th
αβ − c2sρδαβ)

= −∂βP chem
αβ

= −ρ∂αµρ − ϕ∂αµϕ. (13)

For coupling the approximations of (1), (2) and (5) through the force (13), the
thermodynamics can be consistently derived for a binary fluid via the free energy
functional [16, 27]

Ψ =

∫
Ω

[κ1

32
(ρ+ ϕ)2(ρ+ ϕ− 2)2 +

α2κ1

8
(∇ρ+∇ϕ)2

+
κ2

32
(ρ− ϕ)2(ρ− ϕ− 2)2 +

α2κ2

8
(∇ρ−∇ϕ)2

]
dx, (14)

where κ1, κ2, and α are tunable parameters for the interface tension, and arguments
are neglected where unambiguous. The auxiliary variables ρ and ϕ are defined as

ρ = C1 + C2, (15)

ϕ = C1 − C2, (16)

respectively, where C1 and C2 are the concentration fractions of the respective
components. The chemical potentials µρ and µϕ are defined as functional derivatives
of the free energy

µρ =
δΨ

δρ
=
κ1

8
(ρ+ ϕ)(ρ+ ϕ− 2)(ρ+ ϕ− 1)

+
κ2

8
(ρ− ϕ)(ρ− ϕ− 2)(ρ− ϕ− 1)

+
α2

4

[
(κ1 + κ2)(−∇2ρ) + (κ2 − κ1)∇2ϕ

]
(17)
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and

µϕ =
δΨ

δϕ
=
κ1

8
(ρ+ ϕ)(ρ+ ϕ− 2)(ρ+ ϕ− 1)

− κ2

8
(ρ− ϕ)(ρ− ϕ− 2)(ρ− ϕ− 1)

+
α2

4

[
(κ1 + κ2)(−∇2ϕ) + (κ2 − κ1)∇2ρ

]
, (18)

respectively. The free energy of the system is minimized at equilibrium through
the thermodynamic force induced by the chemical pressure. In case of a planar
interface, the minimization of the free energy yields a simplified interface solution

ϕ (x) = tanh

(
x

ξ

)
, (19)

where ξ = 2α is the interface width and the bulk components are identified by
ϕ = ±1 at x = ±∞ [22]. For approximating the CHE (5), a second population
gi(x, t) is required such that its zeroth moment yields the order parameter

ϕ (x, t) =
∑
i

gi (x, t) . (20)

This population evolves according to a second LBE

gi (x+ ci, t+ 1) = gi (x, t)−
1

τg
[gi (x, t)− geqi (x, t)] , (21)

where τg > 0.5. To recover the coupled CHE (5) in the continuum limit [20, 27],
the corresponding equilibrium reads

geqi (x, t) = wi

[
Γϕµϕ (x, t)

c2s
+

ϕ (x, t) ciαuα (x, t)

c2s

+
ϕ (x, t)uα (x, t)uβ (x, t)

(
ciαciβ − c2sδαβ)

)
2c4s

]
, (22)

if i ̸= 0, and

geq0 (x, t) = ϕ (x, t)−
∑
i ̸=0

geqi (x, t) , (23)

otherwise, where Γϕ relates to the mobility [17]

Mϕ = Γϕ(τg − 0.5). (24)

It is to be noted that a flow with three or more components can be realized in a
straightforward extension of the equation system {(1), (2), (5)}, by adding a simi-
larly coupled CHE for each additional order parameter [27] and thus one population
for each additional component.

2.3. Implementation. The evolution equations for f (6) and g = (gi)
T
i (21) are

split into local collision at (x, t) which computes the post-collision populations f⋆

and g⋆, respectively, and streaming to evolve

f(x+ ci, t+ 1) = f⋆(x, t) (25)

and

g(x+ ci, t+ 1) = g⋆(x, t) (26)
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through the space-time cylinder. The computing steps implemented in one collision
are summarized in Algorithm 1 and the streaming is realized as a mere pointer shift
[21]. The present work illustrates only the bulk solver.

Standard LBM boundary methods are applied to impose velocity boundary con-
ditions for the binary fluid. The macroscopic initial conditions are implemented via
initialization of the populations to the corresponding equilibrium and alignment of
kinetic moments through collisions [25] preceding the actual simulation time hori-
zon.

Algorithm 1 FRE LBM bulk collision kernel

1: procedure collide(f) ▷ Input: pre-collision f and g at local node (x, t)

2: compute zeroth moments:

3: mixture density ρ←∑
i fi ▷ (10)

4: order parameter ϕ←∑
i gi ▷ (20)

5: compute potentials: µρ ← (ρ, ϕ) and µϕ ← (ρ, ϕ) ▷ (17), (18)

6: compute forcing, via:

7: force F ← (ρ, µρ, ϕ, µϕ) ▷ (13)

8: velocity u← (f , ρ,F ) ▷ (11)

9: force term S ← (u,F ) ▷ (9)

10: compute equilibria: f eq ← (ρ,u) and geq ← (ϕ, µϕ,u) ▷ (8) , (22)

11: local collision of f⋆ ← (f ,f eq,S) and g⋆ ← (g, geq) ▷ (6), (21)

12: return f⋆, g⋆

13: end procedure ▷ Output: post-collision f⋆ and g⋆ at local node (x, t)

3. Numerical results. To assess the capability of the FRE LBM for recovering
shear and extensional binary flows, we emulate Taylor’s parallel-band and four-roller
devices [39] by means of numerical simulations in two dimensions (2D). The former
is also tested for three dimensions (3D). The geometric setup of the 2D simulations
is sketched in Figure 2.

All computations are done with OpenLB release 1.4 [19] on several HPC ma-
chines, using for example 16 nodes with five quad-core Intel Xeon E5-2609v2 cores
each, or up to 75 nodes with respectively two deca-core Intel Xeon E5-2660v3.

The deformation of the C1 droplet

D =
L−B

L+B
, (27)

where L is the longer axis halved and B the shorter one, is measured via intrinsic
functors of OpenLB [18]. In case of a horizontally measured inclination angle θ = 0◦,
an interpolation along the space directions recovers the location of the interface. If
a simultaneous deformation and inclination of the droplet occurs, L and B are
approximated through concentric circles and θ can be computed at the respective
intersection points with the interface.
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Though essential differences between 2D and 3D deformations are known [37],
certain non-dimensional regimes still allow a side-by-side comparison. Based on
that we compare the FRE LBM solutions to 3D reference computations [17, 24]
and analytical predictions [28, 39].

Lx

C2

Ly

uw

−uw

C1

(a) Shear flow

ab

C1

−urot urot

−uroturot

C2

l

l

(b) Extensional flow

Figure 2. Geometric setup of numerical test cases for binary flow
in two dimensions. Scales differ for the purpose of representation.

3.1. Binary shear flow. We define the non-dimensional Reynolds number, capil-
lary number, Péclet number, and Cahn number, respectively as

Re =
γa2ρ

η
, (28)

Ca =
aγµc

σ
, (29)

Pe =
γaξ

MϕA
, (30)

Ch =
ξ

a
, (31)
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where γ, a, µ, σ, ξ are shear rate, droplet radius, viscosity, surface tension, inter-
face thickness, respectively, and A = 3σ/(2ξ) is a mobility parameter. The ratios
of viscosity and density of the components are unity and time is understood as
normalized via t = γt.

2D FRE LBM a = 30
2D FRE LBM a = 64
2D FRE LBM a = 128
3D FRE LBM a = 30

3D Komrakova et al. [17]

3D Li et al. [24]

Taylor [39]

Shapira and Haber [28]

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

Ca

D

(a) Deformation

0 0.2 0.4 0.6
0

10

20

30

40

Ca

45
◦
−
θ

(b) Inclination

Figure 3. Deformation and inclination of a droplet in binary shear
flow simulated with FRE LBM for varying capillary numbers.

3.1.1. Steady state validation. In the case of Ca < Cac, the droplet deforms until it
reaches a steady state. For Re = 0.1, Pe = 0.43, and Ch = 0.0379, Ca is varied over
the interval (0.02, 0.6). The results are plotted in Figure 3b and agree well with the
literature for small Ca. Refining the mesh over several droplet radii in lattice units
a = 30, 64, 128, indicates convergence to the reference results and allows to simulate
validly for higher Ca. Notably, in the transition regime towards Cac, the droplet
tilts and deforms towards an elongated thread and falls back into the stationary
shape. This physical effect leads to an increased difference in results for lower grid
resolutions.

3.1.2. Breakup. The first breakup occurs for a = 30 approximately at Cac ≈ 0.7
(2D) and Cac ≈ 0.42 (3D). Three different categories are known [3, 43], namely

(i) pseudo steady-state Ca ≲ Cac,
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(a) t = 8

(b) t = 14

(c) t = 15

(d) t = 18.8

(e) t = 19.4

(f) t = 20.4

Figure 4. Droplet breakup in 2D binary shear flow at Ca = 3.5.
Components C1 (red) and C2 (blue) are plotted at normalized time
steps.

(ii) end-pinching Cac ≲ Ca ≲ 2Cac, and
(iii) capillary wave breakup Ca ≳ 2Cac.

The bounds between these regimes however are not sharp, such that the droplet
may pass through multiple types during the breakup process. Due to differences
between 2D and 3D droplet deformations, Cac in 2D is significantly larger than in
3D. The latter agrees well with the literature [17], and so does the breakup scenario
(see Figure 5). In 2D for Ca = 5Cac at Re = 1, Pe = 0.2 and a = 40 we observe
end-pinching as well as a capillary wave breakup (see Figure 4).
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(a) t = 3

(b) t = 26.25

(c) t = 27.5

(d) t = 30

(e) t = 32.25

0 5 · 10−2 0.1 0.15 0.2
|u|

Figure 5. Droplet breakup in 3D binary shear flow at normalized
time steps for Re = 0.0625, Ca = 0.42, Ch = 0.0379, Pe = 0.43.

3.2. Binary extensional flow. The sizing of the four-roller device ensures a uni-
form extension rate ϵ [11] which now replaces γ [12, 40, 1] in the π-group. For fixed
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2D FRE LBM a = 20

3D Hoang and Park [12]

3D Hsu and Leal [13]

0 0.1 0.2

0

0.2

0.4

0.6

Ca

D

Figure 6. Deformation of a droplet in binary extensional flow
simulated with FRE LBM for varying capillary numbers.

Re = 0.0625, Ch = 0.57, Pe = 0.1 and Ca ∈ [0.01, 0.3] the droplet is observed to
break for Ca > 0.25.

3.2.1. Steady state validation. The droplet radius is set to a = 20, which corre-
sponds to a ratio of 40 between domain length and radius. Figure 6 summarizes
the deformation in the subcritical capillary regime. For Ca = 0.01, 0.02, 0.04 the
droplet shows little to no deformation. Beginning at Ca = 0.05 the deformation be-
comes significant and increases rapidly with increasing Ca and with a considerably
faster rate than in the shear flow. Our simulation results and the reference data
from [12, 13] agree from the perspective of an overall trend but differ at individual
values. Based on the same reasoning as above, we conclude that a 3D extensional
flow produces a higher deformation at lower Ca than in 2D.

3.2.2. Breakup. Figure 7 visualizes a breakup for Ca = 0.42. At first, the droplet
stretches into a long thread of equal width with rounded ends. Instead of end-
pinching, the droplet breaks by overstretching, forming several sub-satellite droplets.
After the droplets exceed the rollers’ gap, their velocity declines and the tails re-
tract quickly. Despite the successful reproduction of these phenomena, the results
show heavy satellite shrinkage due to the high domain-droplet ratio. The apparent
shrinkage of sub-critical droplets is further discussed in Appendix A.
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(a) t = 0.25 (b) t = 1.25

(c) t = 4 (d) t = 4.75

(e) t = 5 (f) t = 5.5

0 5 · 10−2 0.1 0.15 0.2 0.25
|u|

Figure 7. Droplet breakup in 2D binary extensional flow at nor-
malized time steps for Re = 0.0625, Ca = 0.42, Ch = 0.057,
Pe = 0.43.
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4. Conclusion. We set up a FRE LBM algorithm implementation in OpenLB
and test it for shear and extensional binary fluid flow in two and three dimensions.
Taylor’s parallel-band and four-roller devices are digitally twinned in a simplified
manner and used for validation of the numerical scheme. To the authors’ knowl-
edge, the present work is the first application of LBM for simulating a four-roller
apparatus. Characteristic deformations for steady states and breakup scenarios in
critical capillary regimes are captured. Though the known satellite loss for very
small droplet-domain ratios is observed, with suitably fine meshes we find good
agreement to references.

To push forward the FRE LBM application in industrial processes, future studies
should include model extensions to non-uniform viscosity and density ratios as well
as conservative formulations and discretizations.
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Appendix A. Mass leakage. Zheng et al. [44] derived a formula for computing
the critical value for an initial droplet radius such that any smaller droplet will dis-
appear in a FRE LBM multiphase flow simulation. Though the results are derived
for liquid-vapor systems with a different free energy functional, the fundamental
FRE derivation and the CHE is similar to our approach. Previous results, relating
the spontaneous drop shrinkage to the interface thickness, have been obtained for
phase-field finite-element simulations by Yue et al. [42]. The source of leakage is
identified therein as follows. The requirement of ϕ = ±1 in the bulk essentially
depends on the interface having negligible volume compared to the bulk so that
solely the bulk free energy (non-gradient terms in brackets of (14)) matters in the
energy minimization. For non-planar interfaces as apparent here (see Figure 2), this
is analytically not the case. Hence, the free energy is concentrated on the interface.
Due to the bulk volume being finite, the total energy can be reduced by shifting
the initial values of ϕ and shrinking the drop at the same time (cf. [42, Figure 1]).
As such, the volume loss is a fundamental mechanism inherent to free energy dy-
namics governed by the CHE. It can however be reduced to an acceptable amount
by careful parameter selection or advanced discretization, which both have to en-
sure a very small ratio of interface width to drop volume or equivalently Ch ≪ 1.
Depending additionally on the volume of the initial drop and the volume of the
computational domain, a relative critical radius ac can be derived [42, 44]. Based
on that, if the ratio of critical and initial drop radius exceeds unity (ac/a0 > 1),
the drop will shrink and eventually disappear [44]. The derivation of such a bound
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for the present FRE LBM is deferred to future studies. It is however left to be
noted that the suggested bound on the Cahn number (Ch ≲ 0.01) [42] has been
found suitable also for our purposes. We ascribe the validity of this bound to the
observation that in the incompressible limit we may express the Landau free energy
[20] as a special case of the present one.

Possible solution approaches which modify only the FRE to delay the droplet
shrinkage at large Ch to later timesteps have been proposed recently by Shin et
al. [29]. As a first step towards reducing the droplet shrinkage in the present FRE
LBM, we adapt the methodology from [29]. We refer to the non-gradient terms in
(14) as h(m)(ρ, ϕ) where m = 2 and rewrite the free energy functional as

Ψ(m) =

∫
Ω

[
h(m)(ρ, ϕ) +

α2κ1

8
(∇ρ+∇ϕ)2 +

α2κ2

8
(∇ρ−∇ϕ)2

]
dx. (32)

Setting κ := κ1 = κ2, we obtain

h(m)(ρ, ϕ) =
κ

16

[
(ϕm + 3ρ2 − 6ρ+ 2)2 − (3ρ2 − 6ρ+ 2)2 + ρ4 − 4ρ3 + 4ρ2

]
. (33)

Taking the formal non-dimensional incompressible limit, (33) becomes

lim
ρ→1

h(m) (ρ, ϕ) =
κ

16
(ϕm − 1)

2
=: h̃(m)(ϕ). (34)

It is to be noted that the derivation in [29] is carried out for the limit free energy

h̃(m) with κ = 4 in (34) only. Therein [29], a higher-order free energy polynomial
setting m > 2 counteracts the vanishing sub-critical sized droplets via penalizing
the steepness near the minima of the double-well potential. Conclusively, a positive
recommendation is given towards m = 6, while m≫ 6 results in non-physical effects
on the interface shape. To investigate the effects of the higher order polynomial

−2 −1 0 1 2

−1

0

1

x

φ

m = 2, t = 1
m = 2, t = 5
m = 2, t = 10
m = 6, t = 1
m = 6, t = 5
m = 6, t = 10

Figure 8. Static droplet test case in 2D computed with FRE
LBM. The order parameter ϕ is plotted over the cross section y = 0
for the free energy functional Ψ(m) with m = 2 and m = 6 at sev-
eral time steps.

for the present FRE LBM, the modified Ψ(6) is evaluated against the standard
Ψ = Ψ(2) in a static 2D test case where a circular droplet (ϕ = 1) is immersed
in a quadratic domain filled with the other component (ϕ = −1). The velocity
field and the external forces are nulled out. The droplet has a radius of a = 20
with an interface thickness ξ = 2.27 which results in Ch = 0.1135 and thus is
prone to strong shrinkage. Figure 8 visualizes the cross section of ϕ at different
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time steps. In the case of m = 2, we observe that the order parameter reaches
a shifted value of ϕ ≈ −1.027 at the center of the droplet, as well as a decreased
value in the surrounding fluid region. This observation agrees well with results from
Komrakova et al. [17] who identified the so-called contamination to be caused by
residual diffusion of the interface. It is to be stressed that, though the higher order
polynomial with m = 6 corrects the unwanted shift from the local minima and
prevents the contamination, the shrinkage of the droplet is still present and seems
to even be increased for larger times. We thus postpone further investigations and
model development to future studies and presently use m = 2 throughout the paper.
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