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A B S T R A C T

A novel closure approximation method for fiber orientation tensors is proposed namely the fully symmetric
implicit closure. Besides the full index symmetry, implicitly formulated closures based on the contraction
condition fulfill the trace condition and the trace-preserving property of the Folgar–Tucker equation. As
a first example, the fully symmetric implicit quadratic closure is considered as a simple modification of
a recently proposed symmetric quadratic closure. It is shown that this closure can be realized by a fiber
orientation distribution function. Secondly, the fully symmetric implicit hybrid closure is proposed as a counter-
example of a closure not being based on a orientation distribution function. Both closures are compared
against classical approximations in view of orientation evolution in a simple shear flow. Furthermore, the
capability of predicting the effective viscous and elastic behavior of fiber suspensions and solid composites
is investigated for a given fiber orientation state. The results show that the proposed implicit closures can
be used to approximate the maximum entropy closure. Thereby, both the quadratic and the hybrid approach
alleviate the high computational burden of the maximum entropy closure, as their evaluation requires solving
a one-dimensional problem only. In addition, the predicted effective behavior based on the implicit closures
shows an overall good agreement with predictions based on measured orientation data.
. Introduction

.1. Motivation and state of the art

In the framework of lightweight composites, considering microstruc-
ural information is essential for industrial applications in view of
redicting anisotropic properties. For the special case of fiber rein-
orced composites, orientation tensors [1,2] are widely used as an
fficient way of describing strongly heterogeneous and anisotropic mi-
rostructures. Typically only the second-order fiber orientation tensor is
nown as a result of mold-filling simulations. In order to perform these
old-filling simulations, the fourth-order orientation tensor has to be

nown for solving the corresponding evolution equation for the second-
rder orientation tensor [2,3]. Also the approximation of the effective
iscous and elastic behavior [4] requires the fourth-order orientation
ensor in view of homogenization by using orientation averaging [2].
n this context, closure methods for fiber orientation tensors are used
o approximate the fourth-order orientation tensor as a function of the
econd-order orientation tensor. Designing an accurate closure under
onsideration of all necessary algebraic properties is a non-trivial task.

∗ Corresponding author at: Institute of Engineering Mechanics, Chair for Continuum Mechanics, Karlsruhe Institute of Technology (KIT), Kaiserstraße 10, 76131
arlsruhe, Germany.

E-mail address: tobias.karl@kit.edu (T. Karl).

A comprehensive listing of various closure approximations is given
in Breuer et al. [5] and in the recent publication of Al-Qudsi et al. [6]. A
novel orthotropic fitted closure was proposed by Al-Qudsi et al. [6] and
different well known closure approximations were compared against
each other in terms of Young’s moduli and experimental investigations.
Reasonable elasticity approximations were achieved except for the
so called ‘simple closures’: the linear closure [2,7,8], the quadratic
closure [9] and the hybrid closure [2,8]. Han and Im [10] developed
an improved hybrid closure. In addition, Petty et al. [11] proposed a
generalized hybrid closure approach in order to address the lack of
full index symmetry of the common hybrid closure. In this context,
Karl et al. [12] improved the quadratic closure approximation by
symmetrization and derived two versions of this symmetric quadratic
closure, one for orientation evolution prediction and the other one
for estimating effective viscous and elastic behavior. Based on the
angular central Gaussian distribution (ACG) [13], Montgomery–Smith
et al. [14,15] introduced the fast exact closure for the Folgar–Tucker
equation [2,16] without fiber–fiber interaction. Regarding the genera-
tion of straight short-fiber microstructures, the ACG closure was used
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by Schneider [17] and for the generation of curved fiber microstruc-
tures by Schneider [18], respectively. Köbler et al. [19] and Bertóti
et al. [20] used the algorithm of Schneider [17] to generate short-
fiber microstructures as a basis of full-field simulations. Regarding an
orientation-adapted integration scheme on the unit sphere, Goldberg
et al. [21] also used the ACG closure. Nabergoj et al. [22] used an ellip-
soid function in view of a function-based reconstruction method for the
orientation distribution function only dependent on the second-order
fiber orientation tensor. This function-based approach circumvents sev-
eral problems of the series-based approach, namely negative values and
sharp orientation distributions [5,22]. Based on the proposed function-
based approach, a closure of orthotropic nature for the fourth-order
orientation tensor was derived. Recently, Ogierman [23] proposed a
generic closure approximation based on an optimization procedure.
This closure led to precise results and offered the distribution of the
elastic constants, but appeared to be rather inefficient compared to
more common closures. Regarding the admissible parameter space,
Bauer and Böhlke [24] investigated the linear closure, the orthotropic
fitted closure [25], and the invariant-based optimal fitting closure [26].
In addition, the division of closure approximations into three groups
was addressed: closures with algebraic assumptions as a background,
closures based on material symmetry assumptions, and closures with
an assumed orientation distribution function. Recently Tucker [27]
proposed a new family of non-orthotropic closures for the special case
of planar fiber orientation states to overcome the orthotropic limitation
of closures depending on the intrinsically orthotropic second-order fiber
orientation tensor as discussed by Bauer and Böhlke [28].

1.2. Originality

Accurate and consistent closure methods estimating the fourth-order
orientation tensor needed for continuum mechanical computations are
non-trivial to develop, since many algebraic properties have to be
fulfilled: full index symmetry, trace condition, contraction condition,
and the trace-preserving property of fiber orientation evolution equa-
tions. Furthermore, it is important to avoid computational effort in
order to achieve attractive applications in numerical simulations. In
view of this, the present manuscript contributes to the field of closure
approximations with the following details:

• An implicit closure approach based on the contraction condition
of fiber orientation tensors is proposed.

• Since the novel approach is formulated in a fully symmetric way,
all necessary algebraic properties are fulfilled.

• Both the quadratic and the implicit formulation of the novel
closure approach can be reduced to a one-dimensional nonlinear
equation, whose unique solution is simple to determine.

• Besides both the quadratic and hybrid formulation of the novel
closure method, any fully symmetric implicit extensions are pos-
sible within the proposed closure approach.

• It is shown that both considered fully symmetric implicit closures
share the property of induced oscillations in simple shear flow.
This behavior is no coincidence, as both implicit closures may be
rigorously shown to approximate the maximum entropy closure.

.3. Notation

Throughout this manuscript, scalars are denoted by, e.g., 𝑎, 𝑏 and
ectors by, e.g., 𝒂, 𝒃. Tensors of second order are represented by,
.g., 𝑨,𝑩 and fourth-order tensors refer to, e.g., A,B. The scalar product
etween tensors of equal order is denoted by, e.g., 𝑨 ⋅𝑩 with the Carte-

sian index representation 𝐴𝑖𝑗𝐵𝑖𝑗 . Please note that the scalar product,
also known as complete contraction, is often denoted by, e.g., 𝑨 ⋅ ⋅𝑩 or
𝑨 ∶ 𝑩 alternatively. The dyadic product is represented by, e.g., 𝑨⊗𝑩
with the Cartesian index representation (𝑨⊗𝑩)𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑗𝐵𝑘𝑙. The dyadic
roduct between the same tensors is abbreviated by, e.g., 𝒏⊗𝒏 = 𝒏⊗2.
2

a

y, e.g., 𝑨□𝑩 the box product is denoted with (𝑨□𝑩)𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑘𝐵𝑙𝑗
s the corresponding index notation. Mappings of equal-order tensors
re given by, e.g., 𝑨𝑩 reading (𝑨𝑩)𝑖𝑗 = 𝐴𝑖𝑘𝐵𝑘𝑗 in index notation. A
apping of a second-order tensor over a fourth-order tensor is denoted

y, e.g., A[𝑩] with (A[𝑩])𝑖𝑗 = 𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙 as the Cartesian index repre-
entation. The second-order identity tensor is represented by 𝑰 and
1 = 𝑰⊗𝑰∕3 refers to the identity on spherical second-order tensors.

In contrast, P2 = I𝖲 − P1 refers to the identity on symmetric trace-
less second-order tensors with I𝖲 = (𝑰□𝑰 + (𝑰□𝑰)𝖳𝖱 )∕2 representing the
dentity on symmetric second-order tensors. The operation (⋅)𝖳𝖱 refers
o a transposition of the right index pair of fourth-order tensors. The
robenius tensor norm is denoted by ‖ ⋅‖ and tr(⋅) refers to the trace of
tensor.

. The implicit closure approach

The present study considers the second- and fourth-order fiber
rientation tensors of the first kind [1,2] defined as follows

= ∫
𝑓 (𝒏)𝒏⊗𝒏 d𝑆, N = ∫

𝑓 (𝒏)𝒏⊗𝒏⊗𝒏⊗𝒏 d𝑆, (1)

with the non-polar orientation distribution function 𝑓 , a probability
density function which satisfies the symmetry condition 𝑓 (𝒏) = 𝑓 (−𝒏),
where 𝒏 represents an arbitrary direction on the unit sphere . The
tensors given in Eq. (1) are totally symmetric, positive semi-definite and
their trace is equal to one: tr(𝑵) = 𝑵 ⋅ 𝑰 = 1 and tr(N) = N ⋅ (𝑰□𝑰) = 1.
Closure approximations seek to approximate the fourth-order fiber ori-
entation tensor N as a function F of the second-order fiber orientation
tensor 𝑵

N ≈ F(𝑵). (2)

Due to the relation N[𝑰] = 𝑵 [2] the second-order fiber-orientation
tensor may be extracted from the fourth-order fiber orientation tensor.
The inverse operation is not well-posed. In particular, there are differ-
ent second-order fiber-orientation tensors realizing one and the same
fourth-order fiber orientation tensor. It is noted that a closure is real-
izable if the value F(𝑵) arises as the fourth moment of an orientation-
distribution function. Different orientation distribution functions may
lead to identical 𝑵 and N, also with distinct sixth-order orientation
N
⟨6⟩. The novel implicit closure approach consists of using the property

N[𝑰] = 𝑵 in terms of an arbitrary fully symmetric closure function F
with an unknown positive semi-definite and symmetric tensor 𝑩 instead
of 𝑵 as the argument such that the contraction condition

F(𝑩)[𝑰] = 𝑵 (3)

is satisfied. Eq. (3) implies that 𝑩 is a function of 𝑵 for a chosen closure
function.1 In order to approximate the fourth-order orientation tensor
N in terms of F(𝑩) the equation

𝑭 (𝑩) = 𝟎 (4)

has to be solved for the tensor 𝑩 with the function 𝑭 (𝑩) defined as
follows

𝑭 (𝑩) = F(𝑩)[𝑰] −𝑵 . (5)

In general, 𝑭 (𝑩) is non-linear in 𝑩 which is why Newton’s method is
used as follows

𝑩𝑛+1 = 𝑩𝑛 −
(

𝜕𝑭 (𝑩𝑛)
𝜕𝑩𝑛

)−1
[𝑭 (𝑩𝑛)] (6)

with an appropriate initial guess, e.g., 𝑩0 = 𝑵 and 𝑛 as the iteration
index. The previously described relationship between the orientation

1 Formally, the approximation N ≈ F(𝑵) is replaced by N ≈ G(𝑩). In gen-
ral, the tensors 𝑩 and 𝑵 are connected via 𝑯(𝑩) = 𝑵 leading to the
lternative formulation of the closure approximation F(𝑵) = G(𝑯−1(𝑵)).



Journal of Non-Newtonian Fluid Mechanics 318 (2023) 105049T. Karl et al.

B
c

𝐹

3

a
s
t
c
u

w

𝑩

I
s
f

4

w
d

𝑓

Fig. 1. Graphical representation of the relationship between the orientation distribution
function 𝑓 and the fiber orientation tensors 𝑵 and N for a realizable closure function
F(𝑵).

distribution function 𝑓 and the fiber orientation tensors 𝑵 and N is
shown graphically for a realizable closure function F(𝑵) in Fig. 1. In
particular, it is illustrated that the implicit closure approach is located
between the fiber orientation tensors 𝑵 and N based on the contraction
property N[𝑰] = 𝑵 .

A fully symmetric closure that fulfills N[𝑰] = 𝑵 implies the trace
condition of the fourth-order orientation tensor tr(N) = 1 (see, e.g., Karl
et al. [12]). In addition, the consistency with the flow tr(N[𝑫]) = 𝑵 ⋅𝑫
in the context of the Folgar–Tucker equation [2,11,16] is also fulfilled
by imposing N[𝑰] = 𝑵 in view of the fully symmetric implicit approach
with 𝑫 representing the symmetric part of the velocity gradient

tr(N[𝑫]) = 𝑁𝑖𝑖𝑘𝑙𝐷𝑘𝑙 = N[𝑰] ⋅𝑫 = 𝑵 ⋅𝑫. (7)

It should be noted that 𝑵 is seen as the exact second-order orienta-
tion tensor fulfilling all necessary algebraic properties, e.g., the trace
condition, the symmetry condition and positive semi-definiteness.

3. The fully symmetric implicit quadratic closure

3.1. Definition

The closure function for the symmetric implicit quadratic closure
(SIQ) reads as follows

F(𝑩) = sym(𝑩⊗𝑩) = 1
3

(

𝑩⊗𝑩 + 𝑩□𝑩 + (𝑩□𝑩)𝖳𝖱
)

. (8)

y inserting Eq. (8) in Eq. (5) the function 𝑭 (𝑩) is derived for the SIQ
losure as follows given both in symbolic and in index notation

𝑭 (𝑩) = 1
3

(

tr(𝑩)𝑩 + 2𝑩2
)

−𝑵 ,

𝑖𝑗 (𝑩) = 1
3

(

𝐵𝑘𝑘𝐵𝑖𝑗 + 2𝐵𝑖𝑘𝐵𝑘𝑗

)

−𝑁𝑖𝑗 . (9)

.2. Solution procedure

In this section it is shown that Eq. (4) with 𝑭 (𝑩) given in Eq. (9)
dmits a symmetric positive semi-definite solution 𝑩 for any given
ymmetric positive semi-definite orientation tensor 𝑵 . A construc-
ive approach is used which turns out to be useful for numerical
omputations. This approach also shows that the solution is in fact
nique.

By using the abbreviation 𝑠 = tr(𝑩)∕4 the defining Eq. (9) can be
ritten in the form
2 + 2𝑠𝑩 = 3

2
𝑵 , (10)

which can be reformulated by completing the square as follows
(

𝑩 + 𝑠𝑰
)2 = 3𝑵 + 𝑠2𝑰 . (11)
3

2

Since 𝑵 is positive semi-definite, as addressed above, the following
representation of the sought tensor 𝑩 can be obtained

𝑩 =
√

3
2
𝑵 + 𝑠2𝑰 − 𝑠𝑰 . (12)

t should be noted that for computing 𝑩 based on Eq. (12), only the
calar variable 𝑠 has to be determined. In order to derive an equation
or 𝑠, the trace of both sides of Eq. (12) is taken, yielding

𝑠 = tr
(
√

3
2
𝑵 + 𝑠2𝑰

)

− 𝑑 𝑠, (13)

with 𝑑 = 2, 3 representing the dimension of the considered problem.
To proceed, it is noted that the tensors 𝑵 and 𝑩 share the same
eigensystem. That 𝑵 and 𝑩 commute and are thus jointly diagonizable
is shown by multiplying Eq. (9) on the left and on the right by the
tensor 𝑩 leading to

𝑵𝑩 = 1
3

(

tr(𝑩)𝑩2 + 2𝑩3
)

= 𝑩𝑵 . (14)

With 𝜆𝑖 representing the given eigenvalues of 𝑵 , the defining equa-
tion (13) for 𝑠 becomes

(𝑑 + 4)𝑠 =
𝑑
∑

𝑖=1

√

3𝜆𝑖
2

+ 𝑠2. (15)

Once Eq. (15) is solved for 𝑠, the eigenvalues 𝜇𝑖 of 𝑩 can be com-
puted based on the following equation representing Eq. (12) in the
eigensystem of 𝑩

𝜇𝑖 =

√

3𝜆𝑖
2

+ 𝑠2 − 𝑠. (16)

The eigenvalues 𝜇𝑖 refer to the diagonal matrix �̃�𝑖𝑗 as the eigensystem
representation of 𝐵𝑖𝑗 with 𝐵𝑖𝑗 = 𝑄𝑖𝑘�̃�𝑘𝑙𝑄𝖳

𝑙𝑗 being the eigendecomposi-
tion of 𝐵𝑖𝑗 with an orthogonal matrix 𝑄𝑖𝑗 ∈ Orth+.

For any 𝜆𝑖 ≥ 0, Eq. (15) is uniquely solvable. Indeed, the following
continuous function is considered

𝑓 ∶ R≥0 → R, 𝑠 ↦ (𝑑 + 4)𝑠 −
𝑑
∑

𝑖=1

√

3𝜆𝑖
2

+ 𝑠2, (17)

hose roots 𝑠 correspond to solutions of Eq. (16). Estimating the
erivative of the function 𝑓 from below

′(𝑠) = 𝑑 + 4 −
𝑑
∑

𝑖=1

𝑠
√

3𝜆𝑖
2

+ 𝑠2
= 4 +

𝑑
∑

𝑖=1

⎛

⎜

⎜

⎜

⎜

⎝

1 − 𝑠
√

3𝜆𝑖
2

+ 𝑠2

⎞

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

≥ 4, (18)

it is observed that the function 𝑓 is strongly monotone. Indeed, due to
𝜆𝑖 ≥ 0 the following inequality holds
√

3𝜆𝑖
2

+ 𝑠2 ≥ 𝑠 implies 1 ≥ 𝑠
√

3𝜆𝑖
2

+ 𝑠2
. (19)

Thus, any root of the function 𝑓 is unique. To show the existence of a
root, it is observed that

𝑓 (0) = −
𝑑
∑

𝑖=1

√

3𝜆𝑖
2

≤ 0. (20)

Furthermore, the estimate (18) implies

𝑓 (𝑠) = 𝑓 (0) + ∫

𝑠

0
𝑓 ′(𝜏) d𝜏 ≥ 𝑓 (0) + 4 𝑠 → ∞ (21)

as 𝑠 → ∞. In particular 𝑓 attains the value 0 and Eq. (15) is solvable.
Concerning the uniqueness, notice that 𝑩 is determined, by the mean-
value theorem, solely from computed 𝑠 and given 𝑵 , see Eq. (12).
Moreover, Eq. (15) for 𝑠 is uniquely solvable. Thus, there is only one
solution 𝑩 to Eq. (9).
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3.3. Realizability by a fiber-orientation distribution

In two and three spatial dimensions (𝑑 = 2, 3), each completely
symmetric fourth-order tensor N can be written in the form

N =
𝑙

∑

𝑖=1
𝜅𝑖𝒓

⊗4
𝑖 (22)

for a non-negative integer 𝑙, non-negative numbers 𝜅𝑖 and vectors
𝒓𝑖 ∈ R𝑑 (𝑖 = 1,… , 𝑙) if and only if the tensor N is completely symmetric
and positive semi-definite in the sense

𝑺 ⋅ N[𝑺] ≥ 0 ∀ 𝑺 = 𝑺𝖳, (23)

see Bauer et al. [29]. Thus, the SIQ closure given in Eq. (8) is realized
by a fiber-orientation distribution precisely if the following condition
holds for all symmetric second-order tensors 𝑺

𝑺 ⋅ sym(𝑩⊗𝑩)[𝑺] ≥ 0. (24)

ext it is shown that this condition holds provided that 𝑩 is positive
emi-definite. Using Eq. (8) in index notation one can write

𝑺 ⋅ sym(𝑩⊗𝑩)[𝑺] = 𝑆𝑖𝑗𝐵𝑖𝑗𝐵𝑘𝑙𝑆𝑘𝑙 + 𝑆𝑖𝑗𝐵𝑖𝑘𝐵𝑙𝑗𝑆𝑘𝑙 + 𝑆𝑖𝑗𝐵𝑖𝑙𝐵𝑘𝑗𝑆𝑘𝑙

𝑆𝑖𝑗𝐵𝑖𝑗𝑆𝑘𝑙𝐵𝑘𝑙 + 2𝑆𝑖𝑗𝐵𝑗𝑙𝑆𝑙𝑘𝐵𝑘𝑖

(𝑺 ⋅ 𝑩)2 + 2tr(𝑺𝑩𝑺𝑩). (25)

oth summands are non-negative. For the first summand, this is trivial.
he assertion for the second summand follows from the fact that the
ollowing inequality holds for symmetric and positive semi-definite 𝑩
nd 𝑪

⋅ 𝑪 ≥ 0. (26)

ndeed, an eigendecomposition of the tensor 𝑩 shows the inequality
26)

=
𝑑
∑

𝑖=1
𝜇𝑖𝒓𝑖⊗𝒓𝑖, 𝑩 ⋅ 𝑪 =

𝑑
∑

𝑖=1
𝜇𝑖

⏟⏟⏟
≥0

𝑪 ⋅ (𝒓𝑖⊗𝒓𝑖)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

≥0

≥ 0. (27)

pplying this result to 𝑩 and the symmetric and non-negative tensor
= 𝑺𝑩𝑺 gives the following result that the condition (24) holds

r(𝑺𝑩𝑺𝑩) = 𝑩 ⋅ (𝑺𝑩𝑺) = 𝑩 ⋅ 𝑪 ≥ 0 (28)

nd the SIQ closure is realizable. With a similar line of reasoning it can
e shown that the symmetric quadratic closure [12] is also realizable
ith 𝑵 instead of 𝑩 in view of the calculations outlined above.

.4. Exactness for UD, ISO and PI orientation states

In this section it is considered whether the unidirectional (UD),
sotropic (ISO) and planar isotropic (PI) orientation states are exactly
ealized by the SIQ closure approach. For simplicity, it suffices to
onsider 𝑵 and 𝑩 in an eigensystem representation. Furthermore, is
oted that 𝜇𝑖 = 0 is a direct consequence of 𝜆𝑖 = 0 via the chain of
qualities

𝑖 =

√

3𝜆𝑖
2

+ 𝑠2 − 𝑠 =
√

𝑠2 − 𝑠 = 0. (29)

n addition, the latter equation also shows that if multiple eigenvalues
𝑖 = 𝜆𝑗 are given, the relation 𝜇𝑖 = 𝜇𝑗 will follow directly.

First, the UD case is considered with 𝜆1 = 1 and 𝜆2 = 𝜆3 = 0. As
consequence, 𝜇2 = 𝜇3 = 0 holds and the equation for 𝜇1 reduces

o 𝜇2
1 = 1 ↔ 𝜇1 = 1 by inserting 𝑠 = 𝜇1∕4. Therefore, the SIQ closure

(𝑩) = sym(𝑩⊗𝑩) results in the exact tensor for the UD case
N𝖴𝖣 = 𝒆⊗4

1 [12,30].
Second, the ISO case is considered with 𝜆1 = 𝜆2 = 𝜆3 = 𝜆 = 1∕3 and,

therefore, with the form 𝑩 = 𝜇𝑰 based on 𝜇1 = 𝜇2 = 𝜇3 = 𝜇. The gov-
erning equation (9) for the SIQ closure implies
1𝑰 = 1(3𝜇2𝑰 + 2𝜇2𝑰

)

↔
1 = 𝜇2 + 2𝜇2, (30)
4

3 3 3 3 f
eading to 1 = 5𝜇2 with the physically consistent solution 𝜇 = 1∕
√

5,
or 𝑩 = 𝑰∕

√

5, respectively. In a next step, this result is inserted into
Eq. (8), leading to

sym(𝑩⊗𝑩) = 1
15

(

𝑰⊗𝑰 + 𝑰□𝑰 + (𝑰□𝑰)𝖳𝖱
)

= 1
3
P1 +

2
15

P2 = N𝖨𝖲𝖮, (31)

epresenting the exact expression for the isotropic fourth-order orien-
ation tensor [12,30].

Third, the PI case is considered with 𝜆1 = 𝜆2 = 𝜆 = 1∕2 and 𝜆3 = 0.
herefore, the relations 𝜇1 = 𝜇2 = 𝜇 and 𝜇3 = 0 hold. By using the
overning equation (9) for the SIQ closure, one deduces with the
wo-dimensional identity tensor 𝑰 (2)

1
2
𝑰 (2) =

1
3

(

2𝜇2𝑰 (2) + 2𝜇2𝑰 (2)

)

↔
1
2
= 4

3
𝜇2, (32)

leading to the physically consistent solution 𝜇 =
√

3∕8 or 𝑩 =
√

3∕8𝑰 ,
respectively. Proceeding as for the previous cases, inserting this result
into Eq. (8) leads to

sym(𝑩⊗𝑩) = 1
8

(

𝑰 (2)⊗𝑰 (2) + 𝑰 (2)□𝑰 (2) + (𝑰 (2)□𝑰 (2))
𝖳𝖱
)

, (33)

r equivalently

ym(𝑩⊗𝑩)𝑖𝑗𝑘𝑙 =
1
8

(

𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑙𝑗 + 𝛿𝑖𝑙𝛿𝑘𝑗
)

, (34)

, 𝑗, 𝑘, 𝑙 ∈ {1, 2}, which corresponds to the exact expression for the pla-
ar isotropic fourth-order orientation tensor [12,30].

. The fully symmetric implicit hybrid closure

.1. Definition and solution procedure

The second proposed closure combines the SIQ closure discussed in
he previous Section 3 with the well-known hybrid approach [2,8]. This
losure is named fully symmetric implicit hybrid closure (SIHYB) and
ixes the lack of symmetry of the original hybrid closure addressed by,
.g., Petty et al. [11]. The respective closure function reads

(𝑩) = (1 − 𝑘)
(

− 3
35

sym(𝑰⊗𝑰) + 6
7
sym(𝑰⊗𝑩)

)

+ 𝑘 sym(𝑩⊗𝑩), (35)

ith 𝑘 = 1 − 27det(𝑵) for three-dimensional fiber orientation states.
he two-dimensional case proceeds similarly by adapting the definition
f 𝑘 and the prefactors of the linear part in Eq. (35) as given in,
.g., Advani and Tucker [8]. Analogous to the SIQ closure, the function
(𝑩) defined in Eq. (5) is formulated as follows given both in symbolic
nd in index notation for the SIHYB closure in order to compute the
ensor 𝑩 based on Eq. (4)

𝑭 (𝑩) = 1 − 𝑘
7

(

tr(𝑩) − 1
)

𝑰 +
(

1 − 𝑘 + 𝑘
3
tr(𝑩)

)

𝑩 + 2𝑘
3
𝑩2 −𝑵 ,

𝐹𝑖𝑗 (𝑩) = 1 − 𝑘
7

(

𝐵𝑛𝑛 − 1
)

𝛿𝑖𝑗 +
(

1 − 𝑘 + 𝑘
3
𝐵𝑛𝑛

)

𝐵𝑖𝑗 +
2𝑘
3
𝐵𝑖𝑛𝐵𝑛𝑗 −𝑁𝑖𝑗 .

(36)

Similar to SIQ, SIHYB can be reduced to a one-dimensional formulation
as shown in Appendix A. It should by noted that the symmetric hybrid
closure proposed by Petty et al. [11] differs in the quadratic term and,
in particular, no implicit formulation was addressed.

4.2. Exactness for UD, ISO and PI orientation states

For the UD case, 𝑘 = 1 holds and the SIHYB closure corresponds to
he SIQ closure, for which the exactness for UD is shown in Section 3.4.
or the ISO case, 𝑘 = 0 follows, leading to the linear equation for 𝑩
1
7

(

tr(𝑩) − 1
)

𝑰 + 𝑩 − 1
3
𝑰 = 𝟎. (37)

s a consequence, 𝑩 is also isotropic with 𝑩 = 𝜇𝑰 leading to 𝜇 = 1∕3. By
nserting the latter result into the linear part of Eq. (35), the isotropic
ourth-order orientation tensor is obtained. Within a three-dimensional
escription, a PI orientation state leads to 𝑘 = 1 with SIHYB correspond-
ng to SIQ. As already addressed in Section 3.4, the SIQ closure is exact

or PI.
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4.3. Remarks on the realizability by a fiber-orientation distribution

Since the realizability by a fiber-orientation distribution is shown
above for the SIQ closure, the linear closure as the second part of the
SIHYB closure is discussed in the section at hand. As pointed out by
Bauer and Böhlke [24], the linear closure approximation represents
a purely algebraic assumption. In addition, the corresponding fourth-
order orientation tensor of the third kind [1], representing a measure
of anisotropy, is zero. It was also addressed by Bauer and Böhlke [24]
that the linear closure may violate the allowed parameter space. As
a consequence, orientation states exist for which the linear closure
predicts non-realizable fourth-order orientation tensors. Since the hy-
brid closure approach is based on a linear interpolation between the
linear and the quadratic closure, the realizability by a fiber-orientation
distribution is not ensured, in general. Nevertheless, the SIHYB closure
approach is used in the following Section 5 together with the SIQ
closure in order to investigate the applicability in view of orientation
evolution and prediction of anisotropic viscous and elastic properties.

5. Numerical examples

5.1. Prediction of fiber orientation evolution

In the present section, the proposed SIQ and SIHYB closures are
investigated with respect to the predicted orientation evolution. For
clarity, only a simple shear flow is considered, with the strain rate
tensor 𝑫 and the spin tensor 𝑾 prescribed as follows

𝑫 = �̇�(𝒆1⊗ 𝒆2 + 𝒆2⊗ 𝒆1)∕2,

𝑾 = �̇�(𝒆1⊗ 𝒆2 − 𝒆2⊗ 𝒆1)∕2. (38)

The tensor 𝑫 is the symmetric part of the velocity gradient 𝑳 = �̇� 𝒆1⊗ 𝒆2
nd 𝑾 is the skew-symmetric part of 𝑳, respectively. The shear rate �̇�
an be chosen arbitrarily since the results are considered in view of
he total shear �̇� 𝑡, 𝑡0 = 0. The orientation evolution is governed by the
olgar–Tucker equation [2,16]

̇ = 𝑾𝑵 −𝑵𝑾 + 𝜉
(

𝑫𝑵 +𝑵𝑫 − 2F[𝑫]
)

+ 2𝐶𝖨�̇�(𝑰 − 3𝑵). (39)

In Eq. (39), the shape parameter 𝜉 depends on the fiber aspect ratio
𝛼 via 𝜉 = (𝛼2 − 1)∕(𝛼2 + 1). The intensity of fiber–fiber interaction is
represented by the fiber interaction parameter 𝐶𝖨 (also called interac-
tion coefficient or Folgar–Tucker diffusivity) and �̇� =

√

2𝑫 ⋅𝑫 refers to
the equivalent shear rate. Depending on the closure approach in use,
the closure function F refers to F(𝑩) in terms of the proposed implicit
closures SIQ and SIHYB. Regarding the classical closures, the closure
function F refers to F(𝑵). Within the present study, the following
closures and fiber orientation distribution estimations are considered
in order to compare the results with the SIQ and SIHYB closures:

• Quadratic closure (QC) [2,8,9]

F(𝑵) = 𝑵⊗𝑵 (40)

• Symmetric quadratic closure (SQC) for fiber orientation evolution
description [12]

2F(𝑵) = 𝜅 sym(𝑵⊗𝑵) (41)

with

𝜅 =

{

0, 𝑵 = 𝑵 𝖨𝖲𝖮,𝑫 = 𝟎
6𝑵 ⋅𝑫

𝑵 ⋅𝑫+2𝑫⋅𝑵2 , 𝑵 ≠ 𝑵 𝖨𝖲𝖮,𝑫 ≠ 𝟎
(42)

• Hybrid closure (HYB) [2,8]

F(𝑵) = (1 − 𝑘)
(

− 3
35

sym(𝑰⊗𝑰) + 6
7
sym(𝑰⊗𝑵)

)

+ 𝑘𝑵⊗𝑵 ,

𝑘 = 1 − 27det(𝑵) (43)
5

i

• Invariant-based optimal fitting closure (IBOF) with 𝛽𝑖 depending
on the invariants of 𝑵 [26]

F(𝑵) = 𝛽1 sym
(

𝑰⊗𝑰
)

+ 𝛽2 sym
(

𝑰⊗𝑵
)

+𝛽3 sym
(

𝑵⊗𝑵
)

+ 𝛽4 sym
(

𝑰⊗𝑵2)

+ 𝛽5 sym
(

𝑵⊗𝑵2) + 𝛽6 sym
(

𝑵2⊗𝑵2) (44)

• Maximum entropy closure (MEM) based on the Bingham distribu-
tion [31–35]2

𝑓 (𝒏)𝖬𝖤𝖬 = 𝑐 exp(�̃� ⋅ 𝒏⊗𝒏) = exp(𝑮 ⋅ 𝒏⊗𝒏) (45)

• Fast exact closure based on the angular central Gaussian distribu-
tion (ACG) [13–15] also known as the natural closure of Verleye
and Dupret [37]

𝑓 (𝒏)𝖠𝖢𝖦 = 1
4𝜋

(𝑮 ⋅ 𝒏⊗𝒏)−
3
2 (46)

As pointed out by Mehta and Schneider [38] the tensor 𝑮 has to be
computed for both the MEM and ACG closure based on

𝟎 = 𝑵 − ∫
𝑓 (𝒏)𝒏⊗𝒏 d𝑆, (47)

ith 𝑓 (𝒏) representing either Eq. (45) or (46). For details about the ACG
olution procedure, the reader is referred to Mehta and Schneider [38]
nd for the MEM solution procedure, further details can be found in
üller and Böhlke [35]. Within this study, the numerical integration

cheme of Lebedev and Laikov [39] is used with the implementation
f Parrish [40] for evaluating the integrals over the unit sphere  in
rder to determine 𝑮 and the sought tensor N. The maximum number
f 5810 integration points on  is used, and the tolerance for ACG and
EM is set to 10−8. The initial guess 𝑠0 = 0.25 is fixed for both SIQ and

IHYB.
In Fig. 2, the evolution of the orientation component 𝑁11 is shown

or the fiber interaction parameters 𝐶𝖨 = 0 and 𝐶𝖨 = 0.005 in response
o the total shear �̇� 𝑡. In addition, the shape parameter 𝜉 = 1 (𝛼 → ∞)
s fixed. The Folgar–Tucker equation (39) is integrated with a fourth-
rder Runge–Kutta method [41] and a time step size of ▵𝑡 = 0.01 s. As
reference solution without closure-induced errors the numerical solu-

ion of the Fokker–Planck equation [42] for the orientation distribution
unction 𝑓 (𝑡,𝒙,𝒏) additionally depending on the spatial position 𝒙 and
he time 𝑡 extended by the isotropic diffusion term on the unit sphere

[15,43]

̇ + div (𝑓 �̇�) = 𝐶𝖨�̇�𝛥 (𝑓 ) (48)

s also shown in Fig. 2. In Eq. (48) �̇� and 𝐶𝖨 refer to the definitions
n the context of the Folgar–Tucker equation (39), ̇𝑓 represents the
aterials time derivative with respect to 𝑡 and 𝒙. The divergence and

he Laplacian on the unit sphere are denoted by div (⋅) and 𝛥 (⋅).
ucker’s implementation [44] is used for the numerical solution of
q. (48) with 150 × 150 grid points on the unit hemisphere and a
aximum Courant number of 0.1. The well-known periodic orientation

ehavior [14,45], which is also called Jeffery orbits [46–48] is not
resent for 𝐶𝖨 = 0 in the left part of Fig. 2 since the period length
= 2𝜋∕(�̇�

√

1 − 𝜉2) [14,46] is infinitely large for 𝜉 = 1. On the other
hand, a non-zero fiber interaction parameter 𝐶𝖨 = 0.005 reduces the
high alignment level of a vanishing fiber interaction parameter 𝐶𝖨 = 0
due to the present diffusive effect towards the isotropic state. The
behavior of the common closures is well studied in the literature
and, therefore, not focused in the present study: QC and HYB [2,8],
SQC [12], IBOF [26,49,50] and ACG [14]. In summary, QC and HYB
overestimate the alignment of the fibers and SQC is a useful ad-hoc
improvement of QC. In particular, the ACG closure is exact for the

2 In the recent publication of Papenfuss [36] an explicit MEM-based
stimation of 𝑓 (𝒏) is proposed using a function regarding the underlying
nformation-theoretic entropy.
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Fig. 2. Evolution of the orientation tensor component 𝑁11 plotted over the total shear �̇� 𝑡 for two different values of fiber interaction parameter 𝐶𝖨 with respect to different closure
approximations in a simple shear flow given in Eq. (38).
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case of absent fiber–fiber interaction [14,15,37] (and, therefore, repre-
sents the solution of the Fokker–Planck equation for a vanishing fiber
interaction parameter 𝐶𝖨 = 0) and the IBOF closure approximates the
ACG-related orientation results closely. Therefore, the IBOF results are
not shown in Fig. 2. It should be noted that the overshoot of IBOF and
ACG with respect to the Fokker–Planck solution is well known [26,50].
Regarding the proposed implicit closures and the MEM-related results,
a distinct oscillatory orientation behavior is observed for 𝐶𝖨 = 0.005
compared to all other shown closures. The oscillations increase in the
order SIQ→MEM→SIHYB. In particular, IBOF and ACG also show a
weak oscillatory orientation behavior with one single peak at �̇� 𝑡 ≈ 10. In
contrast, vanishing fiber interaction parameter 𝐶𝖨 = 0 leads to a stable
solution behavior as shown in the left plot in Fig. 2. This suggests
that for SIQ, SIHYB, and MEM the fiber interaction parameter 𝐶𝖨 has a
destabilizing effect and induces the oscillations due to the interaction
between the closure term and the diffusion term within the Folgar–
Tucker equation. Surprisingly, the proposed implicit closures show very
good agreement with the MEM approach. In conclusions, SIQ and
SIHYB are capable of replacing the MEM with regard to a low-cost
computation. In this context, SIHYB is more accurate than SIQ in view
of approximating the MEM results with respect to orientation evolution.

To further investigate the oscillatory behavior, the ACG, MEM and
both new closures SIQ and SIHYB are compared against each other
for various interaction parameters 𝐶𝖨. In addition, the solution of the
Fokker–Planck equation is used as the reference in Fig. 3 showing
the orientation evolution of the tensor component 𝑁11 with respect
to the total shear �̇� 𝑡. The results show that both proposed implicit
closures behave similar to MEM over the considered range of the
fiber interaction parameter 𝐶𝖨. With decreasing values of the fiber
interaction parameter 𝐶𝖨 the period length of the oscillation increases
and for 𝐶𝖨 = 5 ⋅ 10−5 and 𝐶𝖨 = 5 ⋅ 10−6 oscillations induced by parameter
values 𝐶𝖨 > 0 are not observed in the shown range of total shear.
For SIQ, the amplitude of the oscillations halved at a total shear
�̇� 𝑡 ≈ 1000, while for SIHYB this occurs at a total shear �̇� 𝑡 ≈ 1700. For
high values of 𝐶𝖨 (higher than 0.05 which is typically not realized
in physical situations) the oscillations are damped due to the strong
diffusion towards the isotropic state. For typical values of 𝐶𝖨 in the
interval [5 ⋅ 10−4, 5 ⋅ 10−3] the oscillations for MEM, SIQ, and SIHYB
are distinct in the shown range and lead to inadequate accuracy of
the orientation tensor results compared to the Fokker–Planck solution.
It should be noted that the fiber interaction parameter 𝐶𝖨 is typically
selected accounting for the fiber aspect ratio and the fiber volume
fraction [51,52]. Additional computational experiments regarding the
widely used reduced-strain closure model (RSC) [53] and anisotropic
rotary diffusion model (ARD) [54] show that the oscillations are still
present with the oscillations of SIHYB being more distinct compared to
SIQ.

As already addressed, the proposed SIQ and SIHYB closures behave
like the MEM closure. This empirical observation may be backed up
6

o

by theoretical arguments. In general, the closure principle of the MEM
is based on maximizing the information-theoretic entropy 𝜂 which
eads to an orientation distribution function that is as isotropic (or
s uniform) as possible [27], but reproduces a given finite number of
tatistical moments. In the recent publication of Papenfuss [36] the
eries expansion

= 𝜂0 +
1
2
𝜂2tr(𝑵 ′2) + 1

6
𝜂3tr(𝑵 ′3) + (𝑵 ′4) (49)

of the information-theoretic entropy [27,31]

𝜂 = −∫
𝑓 (𝒏)ln(𝑓 (𝒏)) d𝑆 (50)

is considered in terms of the symmetric and traceless (also known
as irreducible) second-order fiber orientation tensor of the third kind
𝑵 ′ [1]. Is should be noted that orientation tensors of the third kind
represent measures of anisotropy. Therefore, the 𝜂0-term in Eq. (49)
represents the isotropic part and all other terms of the power se-
ries (49) contain information about the microstructure’s anisotropy.
Papenfuss [36] derived the following lowest order MEM approximation
for the irreducible fourth-order orientation tensor N′ based on the series
expansion (49)

N′ ≈
4𝜂22
315

(𝑵 ′⊗𝑵 ′)′. (51)

Eq. (51) is reformulated as follows in terms of N and 𝑵 using the
relationships between the tensors N and N′ and between the tensors
𝑵 and 𝑵 ′ [1,2]

N ≈ − 3
35

sym(𝑰⊗𝑰) + 6
7
sym(𝑰⊗𝑵) +

4𝜂22
315

𝜟
⟨8⟩

[

(

𝑵 − 𝑰∕3
)

⊗
(

𝑵 − 𝑰∕3
)

]

,

(52)

with 𝜟
⟨8⟩ as the identity on irreducible fourth-order tensors. Eq. (52)

states that the lowest order approximation of the MEM closure refers
to a fully symmetric expressions of linear and quadratic order in the ori-
entation tensor 𝑵 . Thus, the proposed implicit closures SIQ and SIHYB
may be interpreted as lowest order MEM approximations accounting for
the constraint N[𝑰] = 𝑵 which refers to the formulation F(𝑵)[𝑰] = 𝑵
n terms of the closure function F. The difference to the MEM lies in
he implicit procedure represented by replacing the orientation tensor

by the closure tensor 𝑩 within the closure function F. It is noticed
n the computational experiments that SIHYB is a better approximation
f the MEM compared to SIQ. This is because SIHYB is closer to the
owest order approximation of MEM than SIQ due to the combination
f linear and quadratic terms in the hybrid approach. Interestingly, the
lassical QC and HYB closures do not show oscillations. However, these
losures do not have the required full index symmetry and, therefore,
annot be understood as a lowest order approximation of the MEM.

The recent publication of Tucker [27] also addresses non-physical
scillations of the MEM closure within a simple shear flow for typical
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Fig. 3. Evolution of the orientation tensor component 𝑁11 plotted over the total shear �̇� 𝑡 for different values of fiber interaction parameter 𝐶𝖨 with respect to ACG, MEM, SIQ
and SIHYB in a simple shear flow given in Eq. (38).
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fiber interaction parameter values 𝐶𝖨. It is stated that the MEM closure
(or the underlying Bingham distribution) is not an accurate approxima-
tion of orientation distributions which occur during flow processes. As
SIQ and SIHYB may be considered as approximations of the MEM, it
does not come as a surprise that these closures feature oscillations in
shear flow, as well. It should be noted that the MEM closure is evaluated
as accurate by Chaubal and Leal [33] and Feng et al. [55] with
respect to non-approximated solutions for liquid-crystalline polymers.
However, these studies are based on a different orientation evolution
equation, which differs from the Folgar–Tucker equation by a nematic
term.

To conclude this section, reference is made to Montgomery–Smith
[56–58] addressing instabilities (growth of perturbations) of Jeffery’s
equation in the context of flow-fiber coupling caused by fiber-induced
anisotropic viscosity within the balance of linear momentum.

5.2. Prediction of anisotropic viscosity and stiffness

In the present section all considered closure approximations are
compared in view of predicting the viscous and elastic anisotropy for
the following measured orientation state3 [59]

𝑁𝑖𝑗 =
⎛

⎜

⎜

⎝

0.392 0.111 −0.006
0.111 0.584 −0.005

−0.006 −0.005 0.024

⎞

⎟

⎟

⎠

. (53)

The matrix representation of the measured fourth-order orientation
tensor N in Voigt notation [60] (non-normalized, see, e.g., Cowin [61])

3 Internal database, Institute of Engineering Mechanics - Chair for
ontinuum Mechanics, Karlsruhe Institute of Technology (KIT)
7

reads as follows

𝑁𝑖𝑗𝑘𝑙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.2780 0.1060 0.0080 −0.0007 −0.0049 0.0474
0.1060 0.4680 0.0100 −0.0035 −0.0007 0.0622
0.0080 0.0100 0.0060 −0.0007 0.0000 0.0014

−0.0007 −0.0035 −0.0007 0.0100 0.0015 −0.0010
−0.0049 −0.0007 0.0000 0.0015 0.0080 −0.0010
0.0474 0.0622 0.0014 −0.0010 −0.0010 0.1060

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (54)

t should be noted that N given in Eq. (54) has to be transferred to the
ormalized Voigt notation [62] first in order to apply tensor operations.
n addition, the SQC proposed by Karl et al. [12] for estimating the
ffective anisotropic behavior reads

(𝑵) =
sym(𝑵⊗𝑵)
1
3 (1 + 2‖𝑵‖

2)
, (55)

whereas all other closures listed in Section 5.1 remain unchanged.
In general, the matrix representation of the fourth-order orientation
tensor N is based on proposing the complete index symmetry first and
then approximating the components depending on the closure in use.
For details, the reader is referred to Karl et al. [12]. As the matrix
material, polypropylene (PP) is considered with the Young’s modulus
𝐸𝖬 = 1.6 GPa and Poisson’s ratio 𝜈𝖬 = 0.4 [63]. Glass fibers serve as the
reinforcement material with 𝐸𝖥 = 73 GPa and 𝜈𝖥 = 0.22 [63]. Both the
matrix and the fibers are assumed to be isotropic with homogeneous
elastic properties. Based on the data of Müller et al. [59], the mean fiber
aspect ratio 𝛼 ≈ 26 is used combined with the fiber volume fraction
𝑐𝖥 = 0.13 (PP-GF30). For predicting the effective properties, the mean-
field model of Mori and Tanaka [64] is used for both the effective
stiffness tensor C̄ and the effective viscosity tensor V̄ [4,20,65–67]

C̄ = C𝖬 + 𝑐𝖥
(

𝑐𝖥𝛿C−1 + 𝑐𝖬
⟨(

𝛿C−1 + P0,𝖲
)−1⟩−1

𝖥

)−1
,

V̄ = V𝖬 +
𝑐𝖥
𝑐𝖬

⟨

P−1
0,𝖵

⟩

𝖥
. (56)

In Eq. (56), the abbreviation 𝛿C = C𝖥 − C𝖬 is used with the index
F indicating the fiber phase and M referring to the matrix phase,
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Fig. 4. Direction-dependent normalized effective Young’s modulus �̄�(𝜑)∕𝐸𝖬 in the 𝒆1−𝒆2-plane for the considered orientation state with respect to different closure approximations.
Fig. 5. Direction-dependent normalized effective shear viscosity �̄�(𝜑)∕𝜇𝖬 in the 𝒆1 − 𝒆2-plane for the considered orientation state with respect to different closure approximations.
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espectively. The polarization tensor for the solid [68] is denoted by
0,𝖲 and the incompressible representation for the fiber suspension [4]
eads as P0,𝖵, respectively. To account for the fiber orientation state, the
perator ⟨⋅⟩𝖥 refers to the orientation averaging procedure introduced
y Advani and Tucker [2]. The results presented in this section are
ased on the following scalar representation of the effective directional
oung’s modulus �̄� and the direction-dependent shear viscosity �̄� [4,
2,67]
1

�̄�(𝒅)
= 𝒅⊗𝒅 ⋅ C̄−1[𝒅⊗𝒅],

1
2�̄�(𝒅,𝒑)

=
√

2 sym(𝒅⊗𝒑) ⋅ V̄−1[
√

2 sym(𝒅⊗𝒑)]. (57)

In Eq. (57), the tensile or the shear direction is indicated by 𝒅 and 𝒑
tands for normal vector of the shear plane. Within this study, both
̄ (𝒅) and �̄�(𝒅,𝒑) are restricted to the 𝒆1 − 𝒆2-plane with 𝒑 = 𝒆3. As

consequence, the argument list of �̄� and �̄� is reduced to an angle
∈ [0, 2𝜋]. Please note that Eq. (57) only represents the instantaneous

nisotropic viscosity and any reorientation of the fibers is not con-
idered [4,12]. Further information about the basic assumptions of
ean-field homogenization and the unified homogenization of viscous

iber suspensions and solid fiber reinforced composites are given in Karl
nd Böhlke [4] and the references therein.

In Fig. 4, the direction-dependent normalized effective Young’s
odulus �̄�(𝜑)∕𝐸𝖬 is shown for all considered closure approximations.
y comparing the closure-related results with the stiffness prediction
ased on the exact fourth-order orientation tensor (𝜇CT), the predictive
apabilities of the closures can be assessed. In the following, the 𝜇CT-
urve is assumed to represent the exact result. The anisotropic elastic
8

S

ehavior is not predicted well by both QC [12] and HYB based on
he missing total index symmetry of the respective closure function.
s already shown by Karl et al. [12] the SQC improves the QC-
elated results significantly, but the IBOF closure still achieves a better
pproximation of the real anisotropic stiffness. In contrast, the proposed
mplicit closures SIQ and SIHYB deviate only slightly from the IBOF
losure, which in turn approximates the ACG closure. As in the previous
ection 5.1, it is observed that both implicit closures are capable of
ubstituting the MEM closure.

In Fig. 5, the direction-dependent normalized effective shear vis-
osity �̄�(𝜑)∕𝜇𝖬 is shown for all considered closure approximations. In
articular, the performance of different closure approximations within
nisotropic viscosity models is important in the context of flow-fiber
oupled mold-filling simulation. Further details about flow-fiber cou-
ling are provided in recent publications, e.g., [50,69–75]. Compared
o Fig. 4, the proposed implicit closures deviate more from 𝜇CT, IBOF
nd ACG regarding the viscous anisotropy. Both IBOF and ACG predict
he effective viscosity accurately based on the prediction with the
easured orientation tensor in use. It is observed that both implicit

losures improve the prediction compared to their explicit formulation.
n case of QC and HYB, no anisotropy errors related to the violated full
ndex symmetry of both closures are present. Using QC leads to a small
verestimation, whereas HYB predicts the highest effective viscosity.
QC leads to a slight underestimation and SIQ lies between QC and
QC. In view of approximating the results of the MEM closure, SIQ is
ore suitable than SIHYB in case of anisotropic viscosity. In addition,
IQ is evaluated more accurately with respect to SIHYB.
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Table 1
Absolute computation time 𝑡𝖼 and approxi-
mate relative computation time 𝑡𝗋𝖾𝗅 for all
considered closure approximations.
Closure 𝑡𝖼 in s 𝑡𝗋𝖾𝗅 in %

MEM 0.31688170 486024
ACG 0.11489970 176230
SIHYB 0.00011718 180
SIQ 0.00007490 115
IBOF 0.00006520 100
HYB 0.00001681 26
SQC 0.00000697 11
QC 0.00000186 3

5.3. Computational effort

Finally, to evaluate the numerical effort of the different closures, the
absolute computation time 𝑡𝖼 needed to approximate the fourth-order
fiber orientation tensor N for a specific closure is measured relative to
the computation time of the IBOF closure 𝑡𝖨𝖡𝖮𝖥𝖼 . With both measures at
hand, the relative computation time 𝑡𝗋𝖾𝗅 is defined as follows

𝑡𝗋𝖾𝗅 =
𝑡𝖼

𝑡𝖨𝖡𝖮𝖥𝖼

. (58)

n the case of orientation evolution, the data refer to the effort in each
emporal integration step, whereas for the prediction of anisotropic
roperties the fourth-order fiber orientation tensor N only needs to
e calculated once. Table 1 lists the timings recorded on a Lenovo
hinkPad X1 Yoga with Intel® Core™ i7-10510U CPU (1.80 GHz) and
6 GB RAM using Matlab®. As previously reported, 5810 integration
oints on the unit sphere are used for MEM and ACG, the tolerance
s fixed to 10−8 and the initial guess of Newton’s method for SIQ and
IHYB is 𝑠0 = 0.25. The results show that the highest numerical effort
s required by MEM followed by ACG. The closures HYB, SQC and QC
ome with the least effort. In addition, the computational efforts for
BOF and the new closures SIQ and SIHYB are on the same order of
agnitude. It is noted that no runtime-optimized implementation of
EM [76] and ACG [14,15] is used.

. Summary and conclusion

In the present manuscript a novel implicit closure approach is
roposed based on the contraction condition N[𝑰] = 𝑵 involving ori-
ntation tensors of the first kind [1,2]. By considering fully symmetric
pproximations, additional requirements are fulfilled, namely the trace
ondition and the consistency with the flow in view of the trace-
reserving property of the Folgar–Tucker equation [2,16]. Two fully
ymmetric implicit closures are investigated representing an innovative
lass of closure approaches, namely the symmetric implicit quadratic
losure (SIQ) and the symmetric implicit hybrid closure (SIHYB). The
IQ closure approach extends the symmetric quadratic closure (SQC)
roposed by Karl et al. [12] and SIHYB combines both approaches in
iew of the classical hybrid closure [2,8]. The present analysis shows
hat SIQ represents a realizable closure meaning that it is based on
n orientation distribution function. In contrast, the SIHYB approach
s not based on an orientation distribution function in general, since
he linear part represents a non-realizable closure [24]. Both proposed
mplicit closures are able to exactly recover the correct fourth-order
rientation tensor for the unidirectional, isotropic and planar isotropic
ase. In the context of fiber orientation evolution within a simple shear
low and the prediction of the effective viscous and elastic anisotropy
or a given orientation state, SIQ and SIHYB are compared with well-
nown closure schemes. In the following, the results are summarized
9

nd the related conclusions are drawn:
• In case of orientation evolution, the SIQ and SIHYB closures show
oscillatory behavior, closely following the maximum entropy clo-
sure (MEM) [31–35] over the entire considered range of the fiber
interaction parameter 𝐶𝖨. The SIHYB approach is capable of ap-
proximating the MEM results with respect to lower computational
cost. Of course, MEM is able to be extended to known higher order
orientation tensors improving the approximation, which is not
possible for SIHYB. In contrast to the estimation of the effective
stiffness, the fiber orientation evolution is not well-approximated
compared to IBOF and ACG, even for typical values of the fiber
interaction parameter 𝐶𝖨 in the interval [5⋅10−4, 5⋅10−3]. Likewise,
the accuracy of SIQ and SIHYB compared to the solution of the
Fokker–Planck equation is rated as insufficient. In addition, the
oscillations of SIQ and SIHYB also occur within the more relevant
RSC [53] and ARD [54] models. This allows the conclusion that
the implicit approaches in a non-stabilized formulation should not
be used in engineering practice.

• The MEM-approximating property of the proposed SIQ and SIHYB
closures originates from an approximation of the lowest order
MEM-formulation recently published by Papenfuss [36].

• For estimating the effective stiffness with different closure ap-
proaches, the computational experiments demonstrate that the
implicit closures strongly improve the results with respect to
their explicit formulation. Both SIQ and SIHYB are capable of
approximating the MEM prediction and the results lie close to
the IBOF and ACG. Overall, there is a rather good agreement
with the prediction of effective stiffness based on the measured
fourth-order tensor, which is considered accurate.

• Provided that all necessary algebraic conditions are satisfied by
the closure (excluding QC and HYB), the anisotropy plots of
Figs. 4 and 5 look similar for all applied closures. The considered
common closures and the new approaches SIQ and SIHYB depend
on the intrinsically orthotropic second-order fiber orientation
tensor and this implies the orthotropic symmetry of the closed
fourth-order orientation tensor. Therefore, the maximal class of
anisotropy predicted by the new closure approach is orthotropy.
This issue is discussed in the recent publications of Bauer and
Böhlke [28] and of Tucker [27]. Conversely, this apparent re-
striction means that the quality of standard closures depending
on the second-order fiber orientation tensor should not be judged
solely on the basis of estimating the effective properties. In order
to comprehend the quality of closures holistically, the behavior
with regard to the prediction of the fiber orientation evolution in
flow simulations must also be examined. A closure that is suitable
for engineering practice is characterized by the fact that both the
effective properties and the orientation evolution are predicted
accurately.

• Analogously, the implicit closures strongly improve the predic-
tions of the effective viscosity. However, the difference between
the implicit closures and IBOF/ACG is more distinct in the case of
anisotropic linear elastic properties. In this context, SIQ is capable
of approximating the MEM results and an overall good agreement
of SIQ with the measured data is observed.

• Since both SIQ and SIHYB can be reduced to a one-dimensional
Newton’s method, these closures are simple to compute and repre-
sent accurate approximations with respect to anisotropic property
predictions.
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Appendix A. One-dimensional formulation of SIHYB

Analogous to the SIQ closure, the SIHYB closure can also be for-
mulated one-dimensionally, which allows the simple application of
Newton’s method. The closure function F(𝑩) and the corresponding
function 𝑭 (𝑩) whose roots 𝑩 are sought read as follows according to
Eqs. (35) and (36) with 𝑘 = 1 − 27det(𝑵)

F(𝑩) = (1 − 𝑘)
(

− 3
35

sym(𝑰⊗𝑰) + 6
7
sym(𝑰⊗𝑩)

)

+ 𝑘 sym(𝑩⊗𝑩),

𝑭 (𝑩) = 1 − 𝑘
7

(

tr(𝑩) − 1
)

𝑰 +
(

1 − 𝑘 + 𝑘
3
tr(𝑩)

)

𝑩 + 2𝑘
3
𝑩2 −𝑵 . (A.1)

By using the results already discussed in Section 4.2, the isotropic
state (𝑘 = 0) leads to the linear Eq. (37) having the unique solution
𝑩 = 𝑵 = 𝑰∕3. For the unidirectional state (𝑘 = 1) the SIHYB closure
reduces to the SIQ closure whose unique solution 𝑩 = 𝑵 = 𝒆1⊗ 𝒆1
ollows from the discussion in Section 3.4.

For orientation-dependent parameter values 𝑘 ∈ (0, 1) the
one-dimensional formulation of the SIHYB closure is derived as follows.
By using both 𝑠 = tr(𝑩)∕4 analogous to SIQ and 𝑭 (𝑩) = 𝟎 one can write
Eq. (A.1) in the following form with the abbreviations 𝑎(𝑠, 𝑘) and 𝑏(𝑠, 𝑘)

𝟎 = 𝑩2 + 𝑎𝑩 + 𝑏𝑰 − 3
2𝑘

𝑵 ,

=
3 + (4𝑠 − 3)𝑘

2𝑘
,

𝑏 =
3(1 − 𝑘)(4𝑠 − 1)

14𝑘
. (A.2)

Completing the square analogous to SIQ leads to

𝟎 =
(

𝑩 + 𝑎
2
𝑰
)2

+
(

𝑏 − 𝑎2

4

)

𝑰 − 3
2𝑘

𝑵 (A.3)

with the solution

𝑩 = −𝑎
2
𝑰 +

√

3
2𝑘

𝑵 +
(

𝑎2
4

− 𝑏
)

𝑰 . (A.4)

It should be noted that 𝑩𝑵 = 𝑵𝑩 holds based on Eq. (A.2) which
means that 𝑵 and 𝑩 commute and are thus jointly diagonizable. By
omputing the trace of both sides of Eq. (A.4) on can derive the implicit
quation for 𝑠

4𝑠 = −𝑎
2
𝑑 +

𝑑
∑

𝑖=1

√

3𝜆𝑖
2𝑘

+ 𝑎2
4

− 𝑏. (A.5)

Please note that 𝑎 and 𝑏 depend on 𝑠 and 𝑑 = 2, 3 represents the spatial
dimension. The eigenvalues 𝜇𝑖 of 𝑩 can be computed with the solution
𝑠 as follows

𝜇 = −𝑎 +

√

3𝜆𝑖 + 𝑎2 − 𝑏. (A.6)
10

𝑖 2 2𝑘 4
In order to apply one-dimensional Newton’s method, the following
function 𝑓 (𝑠) is defined

(𝑠) = 4𝑠 + 𝑎
2
𝑑 −

𝑑
∑

𝑖=1

√

3𝜆𝑖
2𝑘

+ 𝑎2
4

− 𝑏 (A.7)

ith the corresponding derivative 𝑓 ′(𝑠) for 𝑘 ∈ (0, 1)

′(𝑠) = 4 +
𝑑
∑

𝑖=1

⎛

⎜

⎜

⎜

⎜

⎝

1 −
9(1 − 𝑘) + 28𝑠𝑘

28𝑘
√

3𝜆𝑖
2𝑘

+ 𝑎2

4
− 𝑏

⎞

⎟

⎟

⎟

⎟

⎠

. (A.8)

t is shown in the following that the function 𝑓 is strongly monotone
and 𝑓 ′(𝑠) ≥ 4 holds referring to

1 −
9(1 − 𝑘) + 28𝑠𝑘

28𝑘
√

3𝜆𝑖
2𝑘

+ 𝑎2

4
− 𝑏

≥ 0 (A.9)

which is equal to

28𝑘

√

3𝜆𝑖
2𝑘

+ 𝑎2
4

− 𝑏 ≥ 9(1 − 𝑘) + 28𝑠𝑘. (A.10)

Squaring both sides and using the definitions of 𝑎(𝑠, 𝑘) and 𝑏(𝑠, 𝑘) leads
to the following condition which is independent of 𝑠

𝑔(𝑘) = 192𝑘2 + (1176𝜆𝑖 − 552)𝑘 + 360 ≥ 0, (A.11)

with 𝜆𝑖 ∈ [0, 1] and 𝑘 ∈ (0, 1). The lower bound 𝑘 → 0 leads to 360 ≥ 0
whereas the upper bound 𝑘 → 1 refers to 1176𝜆𝑖 ≥ 0, 𝜆𝑖 ∈ [0, 1]. In
general, the roots of the function 𝑔 read

𝑘1,2 = −
49𝜆𝑖
16

+ 23
16

± 7
16

√

49𝜆2𝑖 − 46𝜆𝑖 + 1. (A.12)

The roots 𝑘1,2 are real numbers only for 49𝜆2𝑖 − 46𝜆𝑖 + 1 ≥ 0 which is
valid for

0 ≤ 𝜆𝑖 ≤
23
49

−
4
√

30
49

(A.13)

and

23
49

+
4
√

30
49

≤ 𝜆𝑖 ≤ 1. (A.14)

For the above intervals of 𝜆𝑖, 𝑘1,2 ∉ (0, 1) holds and Eq. (A.11) is valid.
s a consequence, the function 𝑓 is strongly monotone with 𝑓 ′(𝑠) ≥ 4.
he sought root 𝑠 of the function 𝑓 can be computed using one-
imensional Newton’s method and 𝑩 is obtained via Eq. (A.6) and
back transformation into the spatial coordinate system using the

igenvectors of 𝑵 .

ppendix B. Supplementary material

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.jnnfm.2023.105049.
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