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CHAPTER 1

Introduction

In the face of an uncertain future, humans have sought to shed light on forthcoming events for
a long time. However, “predictions are difficult, especially about the future”.1 A key message
underlying this famous saying is that the future is inherently uncertain, and that forecasts
ought to be probabilistic in nature. Scientific theories that challenged the prevalent believe of
a fully predictable, deterministic universe, such as chaos theory or quantum mechanics, have
stimulated the use of probabilistic forecasts that take the form of full predictive distributions.
Nowadays, quantifying forecast uncertainty provides valuable information for decision making
in fields such as economics, demography, or hydrology, among others.

Arguably, the most influential application of probabilistic forecasting is in weather prediction.
Based on the chaos theory (Lorenz, 1963), meteorologists found that the predictability
of the atmosphere is limited and identified the need to quantify the forecast uncertainty.
Due to the fact that making and evaluating forecasts goes hand in hand, meteorologists
contributed massively to research on statistical forecasting. Nowadays, weather prediction
is based on numerical models of the physics of the atmosphere that generate probabilistic
forecasts, which represent distinct scenarios of the future. Next to agricultural, economic,
recreational and transportation activities, weather forecasts (e.g., of wind and solar irradiance)
are becoming even more important in light of the shift towards renewable energy sources.
However, probabilistic forecasts from numerical weather prediction models are subject to
systematic errors such as biases and dispersion errors. In a nutshell, they lack accuracy and
do not quantify the forecast uncertainty adequately. Based on past forecast-observation pairs,
statistical methods can learn to correct the numerical forecasts for these errors, in order to
generate accurate and reliable probabilistic forecasts. We refer to this process as statistical
postprocessing.

In the last decade, methods from machine learning have seen unprecedented rise and success
1This Danish proverb has appeared in several variants and is often attributed to Niels Bohr, although emerging

earlier (https://quoteinvestigator.com/2013/10/20/no-predict/).

https://quoteinvestigator.com/2013/10/20/no-predict/
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in research and application. As a result, artificial intelligence is inevitably becoming an
indispensable aspect of daily life and receiving more and more attention in public, e.g., due
to artificial intelligence models such as ChatGPT.2 Artificial neural networks have proven
to be powerful methods for forecasting, and are therefore a promising pathway for progress
in probabilistic weather prediction. First applications of modern machine learning methods
in the context of probabilistic weather prediction have demonstrated huge potential benefits
(e.g., Rasp and Lerch, 2018; Haupt et al., 2021).

This thesis investigates the use of modern machine learning methods in the context of sta-
tistical postprocessing. Bridging a gap between the classic literature on statistical forecasting
and artificial neural networks, we specifically highlight aspects of aggregating distributional
forecasts of neural network ensembles. In doing so, we aim to develop concrete recommenda-
tions for the aggregation of probabilistic forecasts generated by the ensembles, finding the best
method for combination and the optimal ensemble size. Due to their potential hazardousness
in winter storms and relevance for energy generation, wind gusts are of special societal
importance. Still, research on statistical postprocessing of forecasts of wind gusts is scarce. In
this thesis, we present a wide range of statistical postprocessing methods for wind gusts based
on modern machine learning, with a focus on European winter storms. In comprehensive
case studies, we assess the predictive performance of the methods in order to identify the
best postprocessing method for wind gusts. Further, we investigate the additional value of
using machine learning for postprocessing. At last, we address the question of incorporating
domain knowledge into machine learning models, at the example of European winter storms.
To that end, we develop an objective identification of specific meteorological conditions, and
demonstrate how to evaluate what the model has learned, addressing the research question of
interpretable machine learning.

Statistical postprocessing exemplifies the duality of forecast generation and evaluation, as
it is motivated by systematic errors of numerical weather predictions. In order to correct
these errors, we first need to know how goodness in terms of distributional forecasts is
characterized. Chapter 2 introduces theoretical background for statistical forecasting, which
builds the foundation for the development of probabilistic forecasting methods. We introduce
the concepts of calibration and sharpness in order to formulate the central paradigm of
probabilistic forecasting. A predictive distribution can take different forms, we present three
exemplary types that are of particular importance throughout the work. Following the
introductory chapters, the thesis begins with Chapter 3, where we investigate a problem
that arises in the development of neural network-based postprocessing methods, namely, the
aggregation of distributional forecasts from ensembles of neural networks (so-called deep
ensembles). Since the scope of this problem is not bound to the application in statistical
postprocessing, we cover it in a general setting. As combining predictive distributions is a
well-known problem in the field of statistical forecasting, and deep ensembles have been proven

2https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt
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to generate state-of-the-art forecasts, the contribution of Chapter 3 is to perform a systematic
analysis of the aggregation of distributional forecasts from deep ensembles.

The main part of the thesis begins with Chapter 4, which illustrates the need for statistical
postprocessing and presents a wide range of techniques thereof. The complexity of the methods
introduced ranges from basic approaches rooted in classical statistics to complex machine
learning methods. We focus on the development of a neural network-based framework for
postprocessing building on ideas from Chapter 2 and the results of Chapter 3. In Chapter 5,
we apply the statistical postprocessing methods presented before and assess their predictive
performance with respect to the central concepts of calibration and sharpness. Three case
studies that highlight different aspects of statistical postprocessing are presented. An emphasis
lies on the third case study concerned with wind gust prediction, for which we perform a
systematic comparison of the methods presented before.

Generic machine learning methods are often able to achieve high-level predictive performance
without the integration of domain knowledge. However, in Chapter 6, we investigate the idea of
hybrid weather prediction models that integrate specific meteorological expertise to overcome
shortcomings of the approaches presented in the former, demonstrated through the example
of European winter storms and tropical cyclones in the North Atlantic. Chapter 7 concludes
the thesis with a summary of the findings and potential directions for future research.

1.1 Relation to previous and published work

Large parts of the work presented in this dissertation have resulted in publications over the
course of my doctoral studies. These are listed here in order of publication. Further, I state
where the publications are integrated in the thesis, and describe the contributions of myself and
the coauthors. Table 1.1 provides an overview of the integration of the publications. As the
publications cover related topics based on the same principles, the results have been merged,
rearranged or extended for a consistent thesis. Hence, direct quotes of these publications
appear throughout the thesis without being explicitly marked as such to ensure a better
readability. For all publications, all authors contributed to discussions and text revisions. For
code, we refer to the publications.

Note that two publications developed from collaborations with meteorologists, where I
mostly contributed to the statistical parts of the paper (Maier-Gerber et al., 2021; Eisenstein
et al., 2022). To provide context, meteorological parts that I did not substantially contribute
to are still included in this thesis. For those publications, we will describe my contributions
and those of my meteorological collaborators in more detail.

Schulz et al. (2021): B. Schulz, M. El Ayari, S. Lerch, and S. Baran (2021).
“Post-processing numerical weather prediction ensembles for probabilistic solar
irradiance forecasting”. Solar Energy, 220, 1016–1031.
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Table 1.1: Overview of the publications underlying this thesis.
Thesis Publication Part
Sct. 2.1 Schulz and Lerch (2022b) App. A
Sct. 2.2 Schulz and Lerch (2022b) App. A

Schulz and Lerch (2022a) Sct. 2.1
Sct. 2.3 Schulz et al. (2021) Sct. 3.1

Schulz and Lerch (2022b) Sct. 3c
Schulz and Lerch (2022a) Sct. 3

Ch. 3 Schulz and Lerch (2022a) All
Ch. 4 Schulz and Lerch (2022b) Sct. 3
Sct. 4.3 Schulz and Lerch (2022a) Sct. 3
Sct. 5.1.1 Schulz et al. (2021) Scts. 2.2 and 3.3
Sct. 5.2 Schulz et al. (2021) All
Sct. 5.3 Schulz and Lerch (2022b) Scts. 2–6, App. B
Sct. 5.4 Schulz et al. (2021) Sct. 6

Schulz and Lerch (2022b) Sct. 6
Sct. 6.2 Maier-Gerber et al. (2021) Scts. 1–3 and 5–7
Sct. 6.3 Eisenstein et al. (2022) Scts. 1, 3, 4, 6, 7.4 and 8, Apps. B–D

The publication was written jointly by all authors. I and Sebastian Lerch designed the project
and wrote the original manuscript based on the application in the case study over Germany.
Mehrez El Ayari and Sándor Baran integrated the case study over Hungary, developed the
advanced models and conducted the final case studies.

The publication is the basis of Section 5.2, parts of the description of the data in Section 5.1.1
and parts of the discussion in Section 5.4. Furthermore, the description of the censored logistic
distribution in Section 2.3.1 is taken from the paper.

Maier-Gerber et al. (2021): M. Maier-Gerber, A. H. Fink, M. Riemer, E.
Schoemer, C. Fischer, and B. Schulz (2021). “Statistical-dynamical forecasting of
sub-seasonal North Atlantic tropical cyclone occurrence”. Weather and Forecasting,
36 (6), 2127–2142.

Michael Maier-Gerber, the first author, developed the methods, conducted the case study and
wrote the paper. I developed the calibration method for the dynamical model forecast (Section
3b of the paper) and gave advice on the development of the statistical models (Section 5 of
the paper) and the forecast evaluation (Sections 2d and 6 of the paper).

The publication is the basis of Section 6.2, where we put an emphasis on the statistical
models and the forecast evaluation. The section includes parts of the publication that I
have not substantially contributed to, but are necessary to provide context. These are the
description of the setting (Section 1 of the paper), of the data (Sections 2a–c of the paper), of
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the climatological and unprocessed dynamical models (Sections 3a and b of the paper) and
concluding remarks in the context of tropical cyclone forecasting (Section 7 of the paper).

Schulz and Lerch (2022b): B. Schulz and S. Lerch (2022b). “Machine learn-
ing methods for postprocessing ensemble forecasts of wind gusts: A systematic
comparison”. Monthly Weather Review, 150 (1), 235–257.

I developed the postprocessing methods, conducted the systematic comparison and wrote the
paper under the supervision of Sebastian Lerch.

The publication is the basis for main parts of the thesis, specifically, Chapters 2 and 4,
Section 5.3 and parts of the discussion in Section 5.4.

Schulz and Lerch (2022a): B. Schulz and S. Lerch (2022a). “Aggregating
distribution forecasts from deep ensembles”. Journal of Machine Learning Research,
under revision. Preprint available at https://arxiv.org/abs/2204.02291v1.

Based on the problem of aggregating deep ensembles in Schulz and Lerch (2022b), I conducted
the simulation and case study, and wrote the paper under the supervision of Sebastian Lerch.

The preprint is the basis of Chapter 3 that is in large parts taken from the paper. The
description of the neural network-based postprocessing methods coincides with that in Schulz
and Lerch (2022b) and was also used to write Section 2.3 and 4.3. In addition, small parts of
Chapter 2 are taken from the paper.

Eisenstein et al. (2022): L. Eisenstein, B. Schulz, G. A. Qadir, J. G. Pinto, and
P. Knippertz (2022). “Identification of high-wind features within extratropical
cyclones using a probabilistic random forest – Part 1: Method and case studies”.
Weather and Climate Dynamics, 3 (4), 1157–1182.

The first author Lea Eisenstein wrote the paper and conducted the meteorological part of the
analysis, while I contributed the statistical part, specifically, the forecast evaluation (Section
3.4, Appendices B1 and C1 of the paper), the development and implementation of the random
forest method (Section 4.2, Appendix B2 of the paper), the application of the Kriging method
(Section 4.3, Appendix B3 of the paper) and the statistical evaluation (Sections 6.1 and large
parts of 6.2 of the paper). The (specific) Kriging method itself was developed and implemented
by Ghulam Qadir (Section 4.3, Appendix C2 of the paper).

The publication is the basis of Section 6.3, where an emphasis is put on the statistical
aspects of the study. This section includes parts of the publication that I have not substantially
contributed to, but are necessary to provide context. These are the description of the setting
(Section 1 of the paper), of the data (Sections 3.1–3 of the paper), the subjective labeling of
the data (Section 4.1 of the paper) and the meteorological interpretation of the results (parts
of Sections 6, 7.4 and 8 of the paper).

https://arxiv.org/abs/2204.02291v1




CHAPTER 2

Prelude: Theory on Statistical Forecasting

The prediction of the future concerns inherently uncertain events, hence forecasts ought to be
probabilistic. Probabilistic forecasts aim to quantify the uncertainty associated with predicting
a future quantity or event, while deterministic point forecasts consist only of one number.

In this section, we introduce the mathematical foundation for the theory of statistical
forecasting, in particular probabilistic forecasting, as reviewed by Gneiting and Katzfuss
(2014). First, we present the general framework for statistical forecasting including the central
notions of calibration, dispersion and sharpness following Gneiting and Ranjan (2013). Then,
we review techniques used to properly assess predictive performance. At last, we introduce
exemplary types of forecast distributions that are of importance throughout this thesis.

2.1 Prediction spaces, calibration and sharpness

In order to study forecasts and their behavior, we are interested in the joint distribution of
forecasts and observations. Based on the seminal work of Murphy and Winkler (1987), the
joint distribution is modeled via a probability space (Ω, A,Q) tailored to the task at hand,
which is referred to as prediction space. Restricting our attention to the case of real-valued
observations, each sample of the probability space is identified with a tuple of the form

(F1, . . . , FK , Y ) , (2.1)

where F1, . . . , FK , K ≥ 1, are probability measures on the real line, which we identify with their
associated cumulative distribution function (CDF) F . The probability measures F1, . . . , FK

are referred to as probabilistic forecasts and come from K distinct sources or forecasters such
as (statistical) models or experts. Hence, the probability measure Q on (Ω, A) models the
distribution of the probabilistic forecasts and the observation. In the following, all statements
will refer to prediction space setting and the joint distribution Q.
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The critical notions of calibration and dispersion are based on the probability integral
transform (PIT). For continuous CDFs F , the PIT is given by ZF = F (Y ), that is, the value
the CDF attains at the observation. In case of discontinuities, it is suitably adapted via
the randomized PIT ZF = F (Y −) + V (F (Y ) − F (Y −)), where F (y−) := limx↑y F (x) is the
left-hand limit of the CDF F at y ∈ R and V is a standard uniformly distributed random
variable that is independent of the forecasts and the observation. A well-known property of the
PIT is that if Y ∼ F , the PIT is standard uniform, that is, ZF ∼ U(0, 1). This property also
motivates the first and most critical notion of calibration. Namely, a probabilistic forecast F is
probabilistically calibrated if its PIT ZF is standard uniformly distributed. Closely connected
to probabilistic calibration are three kinds of dispersion that are used to draw conclusions
on the forecast behavior based on the distribution of the PIT. A forecast F with PIT ZF is
overdispersed if Var (ZF ) < 1/12, neutrally dispersed if Var (ZF ) = 1/12 and underdispersed if
Var (ZF ) > 1/12. As the variance of a standard uniform distribution is given by 1/12, it is
straightforward to see that probabilistic calibration implies neutral dispersion. In general, the
opposite does however not hold. Further, a forecast that is over- or underdispersed is thus
necessarily not probabilistically calibrated. In practice, the notions of dispersion are often
used interchangeably with that of confidence, where an overdispersed forecast corresponds to
an underconfident forecast and vice versa.

PIT histograms are used to qualitatively assess calibration and types of miscalibration.
Given a set of forecast-observation pairs {(F1, y1), . . . , (Fn, yn)}, we can calculate the PIT
values zj , e.g., via zj = Fj(yj) for a continuous CDF Fj , j = 1, . . . , n, and generate a histogram
of the observed PIT values. A flat histogram indicates a standard uniform distribution of
the PIT values and therefore probabilistic calibration (and neutral dispersion), hence we
refer to such a forecast as well-calibrated. In contrast, a U-shaped histogram corresponds
to underdispersion, a hump-shaped histogram to overdispersion and a skewed histogram
to a bias in the forecast. Figure 2.1 illustrates PIT histograms that exhibit those kinds of
miscalibration.

For probabilistic forecasts that are issued in form of a sample {x1, . . . , xm} with fixed size
m, the rank r of the observation y, that is, r = #{xi ≤ y, i = 1, . . . , m}, is calculated instead
of the PIT. Under the assumption of calibration, that is, the observation is indistinguishable
from the sample, each rank is equally likely and the ranks are thus uniformly distributed
on {1, . . . , m + 1}. As for the PIT, a histogram of the ranks, referred to as verification
rank histogram or Talagrand diagram can be used to check for calibration and is interpreted
analogously to a PIT histogram. If the forecast sample size m is not fixed, the calculation
of a rank histogram is not feasible. Instead, the unified PIT, a generalized version of the
PIT, is used to transform ranks to PIT values via (r − 1)/(m + 1) + U/(m + 1), where U is
standard uniform (Vogel et al., 2018). In this work, we calculate PIT values for continuous
distributions, randomized PIT values for mixed continuous-discrete distributions (such as the
censored logistic distribution introduced in Section 2.3.1) and unified PIT values for forecasts
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Figure 2.1: Typical shapes of PIT histograms. From left to right, the histograms indicate
probabilistic calibration, underdispersion, overdispersion and a bias. The his-
tograms are based on 10,000 observations of a standard normal distribution, which
is also the calibrated forecast. The underdispersed forecast is instead based on a
standard deviation of σ = 0.8, the overdispersed on σ = 1.2 and the biased on a
mean of µ = 0.2.

based on samples (of different sizes). As it should be apparent from the type of forecast
distribution what variant of the PIT is used, we will not distinguish between the different
variants of the PIT.

Prediction intervals (PIs) [a, b] at the (1 − α)-level provide another type of probabilistic
forecast, which is calibrated when Q(a ≤ Y ≤ b) = 1 − α holds. In this case, calibration can
be assessed quantitatively based on the empirical coverage, that is, the ratio of observations
falling in the PI. Given an interval at the (1−α)-level, we expect the same ratio of observations
to fall within the PI under the assumption of calibration. Given a predictive distribution, we
derive a central (1 − α) PI based on the quantiles at levels α/2 and 1 − α/2. Given a sample
{x1, . . . , xm} of size m ∈ N, we can calculate a PI at the (m − 1)/(m + 1)-level via a = x(1)

and b = x(m) based on the order statistics {x(1), . . . , x(m)}, e.g., for a sample of size 20, we
obtain a PI approximately at the 90.48% level.1

In order to state the central paradigm of probabilistic forecasting, we need to introduce the
term sharpness. A probabilistic forecast is said to be the sharper, the more concentrated, or
confident, it is. In probabilistic terms, this refers to the concentration or the spread of the
forecast distribution. In practice, sharpness is typically measured in terms of the length of PIs
or other quantities that measure the spread of the distribution such as the standard deviation,
where in both cases smaller values indicate a sharper forecast. While calibration is a joint
property of the forecast and the observation, sharpness is a property of the forecast alone.

The question whether a sharper forecast should be preferred brings us to the central
paradigm of probabilistic forecasting, that is, to maximize the sharpness of the predictive

1In general, a = x(i) and b = x(m+1−i) is a central PI at the (m + 1 − 2i)/(m + 1)-level with i = 1, . . . , ⌊m/2⌋.
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distribution subject to calibration (Gneiting et al., 2007). Thus, it is only preferable when it is
reasonably well-calibrated.

Before investigating the quantitative assessment of probabilistic forecasts, we briefly focus
on a popular, special case of probabilistic forecasts. Given a dichotomous target variable
Y ∈ {0, 1}, a probabilistic forecast takes the form of a Bernoulli distribution and can be
identified by the associated success probability p. Therefore, we refer to probability forecasts
in case of a binary target variable. Calibration can be reduced to one criterion, namely, a
probability forecast p for a binary variable Y is called (conditionally) calibrated if

Q (Y = 1 | p) = p almost surely. (2.2)

Gneiting and Ranjan (2013, Theorem 2.11) prove that conditional calibration is equivalent to
probabilistic calibration and other notions of calibration not presented in this work. Hence, it
is sufficient to consider only the calibration criterion of equation (2.2) in practice.

The calibration of probability forecasts is checked via reliability diagrams, which allow a
qualitative assessment of the calibration criterion (Sanders, 1963). Given a set of forecast-
observation pairs {(p1, y1), . . . , (pn, yn)}, a partition of the unit interval is used to assign each
pair to a bin. Within each bin, the observed relative frequencies are calculated as the average
of the observed values, which corresponds to the left-hand side of equation (2.2) conditioning
on the partition. The observed relative frequencies are then typically plotted against the
average forecast within the bin (or the midpoints) resulting in the so-called calibration curve.
If the calibration curve is close to the diagonal, equation (2.2) is approximately satisfied and
the forecasts are called calibrated or reliable. Figure 2.2 illustrates typical kinds of systematic
miscalibration such as an S-shaped curve for underconfidence, that is, the probabilities are too
close to the center, or an inverse S-shaped curve for overconfidence, that is, the probabilities
are too extreme. Biased probability forecasts result in a calibration curve that is below (above)
the diagonal for a positive (negative) bias meaning that the probability forecasts are larger
(smaller) than the observed frequencies.

A major drawback of reliability diagrams is that the bins have to be chosen subjectively,
typically a number of 10 to 20 equidistant bins are used, and different choices may result
in diverse shapes of calibration curves leading to contrary conclusions. In a recent work,
Dimitriadis et al. (2021) developed a novel approach that automatically chooses an optimal
binning based on the pool-adjacent-violators (PAV; de Leeuw et al., 2009) algorithm. In
this work, such as in Figure 2.2, we will utilize this approach, which is referred to as CORP
(Consistent, Optimal, Reproducible, PAV-based) approach.
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Figure 2.2: Typical shapes of reliability diagrams. From left to right, we observe calibration,
underconfidence, overconfidence and a bias. The blue regions show consistency
bands at the 90% level under the hypothesis of calibration. The diagrams are
based on 10,000 observations drawn from a binomial distribution with probability
p0 = Φ(a), where a is standard normal and known to all forecasters. The calibrated
forecast is given by p0, the underconfident by p1 = Φ(0.5a), the overconfident by
p2 = Φ(2a) and the biased by p3 = Φ(a − 0.5).

2.2 Forecast verification

PIT histograms and reliability diagrams are two tools to qualitatively assess the calibration
of a probabilistic forecast. Quantitatively, calibration can be assessed based on the empirical
coverage of a PI, sharpness by measures of the spread of the distribution such as the length
of a PI. However, we did not provide tools for a simultaneous evaluation of calibration
and sharpness. In the following, we will present a principled way to simultaneously assess
calibration and sharpness of probabilistic forecasts in order to compare and rank competing
forecasters following Gneiting and Raftery (2007).

2.2.1 Proper scoring rules

In the quantitative assessment of the predictive performance, we aim to summarize the
goodness of a probabilistic forecast with a numerical score, for a given observation. A scoring
rule is any extended real-valued function

S : F × R −→ R̄, (F, y) 7−→ S (F, y) (2.3)

such that S (F, ·) is F -quasi-integrable for all F ∈ F , where F is a suitable class of probability
measures. The score S(F, y) is negatively oriented and therefore interpreted as a penalty. A
scoring rule S is proper relative to the class F if

EG [S (G, Y )] ≤ EG [S (F, Y )] ∀F, G ∈ F . (2.4)
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It is strictly proper if equation (2.4) holds with equality only if F = G. Propriety is a
critical requirement for scoring rules as it prevents the forecaster from hedging its predic-
tion and thereby encourages honest forecasting. Given a set of forecast-observation pairs
{(F1, y1), . . . , (Fn, yn)}, the mean score S

F
n = 1

n

∑n
j=1 S(Fj , yj) is calculated in practice to

compare and rank different forecasting methods.
To assess the improvement of competing forecasting methods based on a proper scoring

rule with respect to a benchmark and allow comparability over different underlying datasets,
we can calculate the associated skill score. Let S

F
n denote the mean score of the forecasting

method of interest over a given dataset, S
F0
n the corresponding mean score of the benchmark

forecast, and S
F ∗

n that of the (typically hypothetical) optimal forecast. The associated skill
score SSF is then calculated via

SSF = S
F0
n − S

F
n

S
F0
n − S

F ∗

n

, (2.5)

and simplifies to

SSF = 1 − S
F
n

S
F0
n

(2.6)

if S
F ∗

n = 0. In contrast to proper scoring rules, skill scores are positively oriented with 1
indicating optimal predictive performance, 0 no improvement over the benchmark and a
negative skill a decrease in performance. Note that skill scores itself are not proper scoring
rules, even if the underlying scoring rule is proper.

Comparing two forecasting methods F and G, we can perform a statistical test of equal
predictive performance via the Diebold-Mariano test (DM test; Diebold and Mariano, 1995).
If the forecast cases are independent, the corresponding test statistic is given by

tn =
√

n
S

F
n − S

G
n

σ̂n
, (2.7)

where

σ̂2
n = 1

n

n∑
j=1

(S(Fj , yj) − S(Gj , yj))2 , (2.8)

and the forecast-observation triples (Fj , Gj , yj), j = 1, . . . , n, generate a test set of size n.
Subject to weak regularity conditions, the test statistic is asymptotically standard normal
under the null hypothesis of equal predictive performance, that is, S

F
n − S

G
n = 0. The null

hypothesis is rejected for large (absolute) values of tn, where F is preferred if the test statistic
is negative, and G if it is positive.
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In Chapter 5, we want to draw conclusions on the statistical significance of score differences
on a global level based on a set of DM tests performed on a local level, meaning at different
locations and forecast horizons, which confronts us with the problem of assessing significance to
a set of multiple tests. Following suggestions of Wilks (2016), we apply a Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995) that allows to account for multiple testing and to
control the false discovery rate, which we choose to be α = 0.05. Given the ordered p-values
{p(1), . . . , p(M)} of M hypothesis tests, a threshold p-value is determined via

p∗ = p(i∗), where i∗ = min
{

i = 1, . . . , M : p(i) ≤ α · i

M

}
. (2.9)

This threshold p∗ is then used to decide whether the null hypothesises of the individual tests
are rejected.

In the following, we will present some prominent proper scoring rules that are relevant
throughout this work. The continuous ranked probability score (CRPS; Matheson and Winkler,
1976) is one of the most prominent strictly proper scoring rules in atmospheric sciences and
given by

CRPS(F, y) =
∫ ∞

−∞
(F (z) − 1{y ≤ z})2 dz, (2.10)

= EF |Y − y| − 1
2EF

∣∣Y − Y ′∣∣ , (2.11)

for observations y ∈ R and forecast distributions F with finite first moment, where Y and
Y ′ are independent random variables with CDF F . The CRPS is given in the same unit as
the observation and generalizes to the absolute error in case of a deterministic forecast. The
integral can be calculated analytically for a wide range of forecast distributions, e.g., for a
normal distribution (e.g., Jordan et al., 2019). The energy score (ES; Gneiting and Raftery,
2007) is an extension of the CRPS towards multivariate forecasts based on the expectation
representation in equation (2.11):

ES(F,yyy) = EF ∥YYY − yyy∥ − 1
2EF ∥YYY − Y ′Y ′Y ′∥, yyy ∈ Rd, (2.12)

where d is the dimension of the variable of interest, ∥·∥ the Euclidean norm on Rd and F refers
to a multivariate forecast CDF on Rd with EF ∥YYY ∥ < ∞, where YYY and Y ′Y ′Y ′ are independent
random variables with CDF F . In practice, the ES is evaluated empirically based on a sample
of the forecast distribution (Jordan et al., 2019). Another popular strictly proper scoring rule
is the logarithmic score (LogS; Good, 1952) or ignorance score

LogS(f, y) = − log (f(y)) , y ∈ R, (2.13)

where f denotes the probability density function (PDF) of the probabilistic forecast.
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In addition to these proper scoring rules, we introduce two proper scoring rules that are
used for probability forecasts. The Brier score (BS; Brier, 1950) is defined by

BS(p, y) := (y − p)2 , p ∈ [0, 1] , y ∈ {0, 1}. (2.14)

In case of a continuous target variable, the BS can be used to assess forecasts of threshold
exceedance derived from the predictive distribution. Given a threshold z ∈ R, the probability
forecast p is given by F (z) and the binary observation y by 1{y ≤ z}.2 Note that the CRPS
is equivalent to the integral over the BS for threshold exceedance of the integration variable.
The LogS for probability forecasts, also referred to as log-loss, is defined by

LogS(p, y) := − (1 − y) log (1 − p) − y log p, p ∈ [0, 1] , y ∈ {0, 1}, (2.15)

where log(0) := −∞.
Strictly proper scoring rules are not only used for the comparison of probabilistic forecasts

but also for parameter estimation, which is then referred to as optimum score estimation
(Gneiting and Raftery, 2007). Let F (xxx; θ) be a parametric forecast distribution dependent on
the predictor variables xxx ∈ Rp and parameter (vector) θ ∈ Θ, where Θ ⊆ Rd is the parameter
space. We can estimate the optimal parameter (vector) θ by minimizing the mean score of a
strictly proper scoring rule S, that is,

θ̂ = arg min
θ∈Θ

1
n

n∑
j=1

S(F (xxxj ; θ), yj), (2.16)

where {(xxx1, y1), . . . , (xxxn, yn)} denotes a training set of size n. Note that minimizing the LogS
is equivalent to maximum likelihood estimation (MLE).

2.2.2 Consistent scoring functions

In practical situations, a probabilistic forecast might be reduced to a single value via a
statistical functional such as the mean, median or a quantile. For such cases, so-called
consistent scoring functions provide useful techniques for forecast evaluation and induce
corresponding proper scoring rules (Gneiting, 2011). A scoring function s : R × R 7−→ [0, ∞)
is called consistent for the functional T relative to the class F of probability measures if

EF [s (t, Y )] ≤ EF [s (x, Y )] ∀F ∈ F , t ∈ T (F ), y ∈ R. (2.17)

In particular, we use the quantile score (QS) or pinball loss at level τ ∈ (0, 1) that is
consistent for the quantile qτ at level τ

ρτ (qτ , y) = (qτ − y) (1{y ≤ qτ } − τ) , y ∈ R. (2.18)
2Note that this is equivalent to using p = 1 − F (z) and y = 1{y > z} but a more convenient notation.
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Figure 2.3: PDF, CDF and quantile function (left to right) of exemplary forecasts from a
zero-truncated logistic distribution, a Bernstein quantile function of degree 12 and
a piecewise uniform distribution based on 55 bins. The forecasts are taken from
the case study on wind gust forecasting in Section 5.3. Note that both the target
variable and the forecasts are positive.

In case of the median, the QS reduces to the absolute error (AE)

AE(q0.5, y) = |q0.5 − y| , y ∈ R, (2.19)

which yields the mean absolute error (MAE). The difference between a point forecast and the
observation is not a (consistent) scoring function, but will be used to analyze the bias of the
median forecast. The QS also yields the CRPS via

CRPS(F, y) =
∫ 1

0
2ρτ (qτ , y)dτ, y ∈ R, (2.20)

where qτ denotes the quantile at level τ (Gneiting and Ranjan, 2011). Further, we use the
squared error (SE) that is consistent for the mean x

SE(x, y) = (x − y)2 , y ∈ R. (2.21)

In practice, the mean squared error is typically transformed via the square root to the root
mean squared error (RMSE) such that the score has the same unit as the observation.

2.3 Exemplary types of forecast distributions

As indicated in the previous sections, probabilistic forecasts may take different forms such as
a fully specified predictive distribution, an ensemble forecast, a PI or a set of quantiles. Here,
we introduce different types of predictive distributions that are used throughout this work.
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2.3.1 Truncated and censored logistic distribution

Distributions such as the normal and logistic distribution are popular for modeling variables
in statistics due to their appealing properties. However, if a variable is not real-valued but
instead positive or has a mixed discrete-continuous distribution, such as wind gusts or solar
irradiance, which we focus on in Section 5, these distributions are not suitable. Still, one
can utilize them by modification towards the variable of interest, for which truncation and
censoring are two options.

We will present both of these options based on the logistic distribution, which is given by
the CDF

F (y; µ, σ) = (1 + exp (−zy))−1 with zy := y − µ

σ
, y ∈ R, (2.22)

where µ ∈ R denotes the location and σ > 0 the scale parameter. Note that, in general,
truncation and censoring can be applied to other real-valued distributions such as the normal
distribution as well.

First, we present the concept of (left-)truncation, which is used to cut the support to a
subset thereof, such as the positive halfaxis. In general, let F be a CDF and t ∈ R the
truncation threshold. Then, the distribution (left-)truncated in t or t-truncated distribution
with support (t, ∞) is defined by the CDF

Ft(y) := F (y) − F (t)
1 − F (t) , y > t. (2.23)

From this formula, we can derive the associated PDF

ft(y) = f(y)
1 − F (t) , y > t, (2.24)

and, under the assumption of strict monotonicity, the quantile function

F −1
t (τ) = F −1 (F (t) + τ (1 − F (t))) , τ ∈ (0, 1) . (2.25)

In a nutshell, truncation cuts off the distribution at t and allocates the probability mass that
was cut off proportionally to the remainder of the distribution. For the logistic distribution
left-truncated in zero, we obtain the following formula for the CDF

F0 (y; µ, σ) := F (y; µ, σ) − F (0; µ, σ)
1 − F (0; µ, σ) = exp (zy) − exp (z0)

1 + exp (zy) , y > 0, (2.26)

where µ ∈ R and σ > 0 are again referred to as location and scale parameter, respectively,
and zy is defined as in equation (2.22). Note that in contrast to the logistic distribution, the
truncated variant is not symmetric and the location parameter is not identical to the mean
and median of the distribution. In particular, negative location parameters are still valid.
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Figure 2.4: (Generalized) PDF (left) and CDF (right) of a logistic distribution with location
parameter µ = 1 and scale parameter σ = 1.5 as well as the zero-truncated and
zero-censored variant thereof (adapted from Figure 1 in Schulz et al., 2021).

The mean of the zero-truncated logistic distribution is given by

µ − σ log (1 − F (z0))
1 − F (z0) (2.27)

and the median by

µ + σ log (1 + 2 exp (z0)) . (2.28)

Recalling the PDF of the truncated distribution in equation (2.24), we note that the mode
of the truncated logistic distribution is given by µ for µ > 0 and 0 otherwise. A forecast
in the form of a zero-truncated logistic distribution is simply given by the location and
scale parameter that define the full predictive distribution. Further, a mean, median and
quantile forecast can be derived using equations (2.27), (2.28) and (2.25). While the LogS is
straightforward to calculate by plugging in the PDF of the zero-truncated logistic distribution,
the CRPS can be calculated via an analytic formula that has been derived by Scheuerer and
Möller (2015). Figure 2.3 shows an exemplary forecast in the form of a zero-truncated logistic
distribution that is included in the case study on wind gust forecasting in Section 5.3, whereas
Figure 2.4 illustrates the effect of truncation for a logistic distribution.

While truncation distributes the probability mass that was cut off along the remaining
support, censoring assigns it as a point mass to the threshold resulting in a mixed discrete-
continuous distribution. Let F be a CDF and c ∈ R the censoring threshold, then the CDF of
a distribution (left-)censored in c or c-censored distribution is given by

Fc(y) :=

0, y < c,

F (y), y ≥ c.
(2.29)



18 Chapter 2 Prelude: Theory on Statistical Forecasting

The (generalized)3 PDF is given by

fc(y) = F (c) · 1{y = c} + f(c) · 1{y > c}, y ∈ R, (2.30)

and, under the assumption of strict monotonicity, the quantile function by

F −1
c (τ) =

c, τ < F (c),

F −1(τ), τ ≥ F (c).
(2.31)

Zero-censoring a logistic distribution has similar consequences as zero-truncation in that the
censored variant is not symmetric and the location parameter is not identical to the mean
anymore, which is given by

µ + σ log (1 + exp (−z0)) . (2.32)

Further, negative location parameter are valid choices. In contrast to truncation, the median
is still given by the location parameter for nonnegative choices and elsewise by 0, as the
quantile function in equation (2.31) shows. The same applies for the mode. The full predictive
distribution of a zero-censored distribution is given by the location and scale parameter, point
forecasts can be readily derived. The LogS can be calculated based on the generalized PDF
in equation (2.30), an analytic formula for the CRPS was derived by Taillardat et al. (2016).
A more general formula for the CRPS including both truncation and censoring of a logistic
distribution is given by Jordan et al. (2019). The effects of truncation and censoring of a
logistic distribution are illustrated and compared in Figure 2.4.

2.3.2 Bernstein quantile function

The second exemplary type of forecast distribution is based on the class of Bernstein polyno-
mials that have the property to approximate any continuous function on the unit interval
(Bustamante, 2017). Due to this and other appealing properties, Bernstein polynomials are
often used to model quantile functions (e.g., Wang and Ghosh, 2012). Hence, the idea of this
type of forecast distribution is to model the quantile function via a Bernstein polynomial,
which is a linear combination of Bernstein basis polynomials (Bremnes, 2020). We refer to
the forecast via the Bernstein quantile function, which is given by

Q (τ) :=
d∑

l=0
αlBl,d(τ), τ ∈ [0, 1] , (2.33)

3Generalized PDFs are a generalization from continuous to mixed discrete-continuous distributions.
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with basis coefficients α0 ≤ · · · ≤ αd, where

Bl,d(τ) =
(

d

l

)
τ l (1 − τ)d−l , l = 0, . . . , d, (2.34)

are the Bernstein basis polynomials of degree d ∈ N.

A critical requirement is that the coefficients are nondecreasing, because this implies that
the quantile function is also nondecreasing. If the coefficients are strictly increasing, the same
holds for the quantile function. Following Wang and Ghosh (2012), the derivative of equation
(2.33) is given by

Q′(τ) = d
d−1∑
l=0

(αl+1 − αl)Bl,d−1(τ). (2.35)

The Bernstein polynomials are positive on the open unit interval, that is, Bl,d(τ) > 0 for
τ ∈ (0, 1) and l = 0, . . . , d, therefore the derivative is nonnegative (positive) for τ ∈ (0, 1) if
the coefficients are (strictly) increasing.

The mean of the Bernstein forecast distribution can be calculated using the following
property of the Bernstein basis polynomials (Bustamante, 2017):

∫ 1

0
Bld(τ) dτ = 1

d + 1 , l = 0, . . . , d. (2.36)

Based on this property, the mean of a random variable with a Bernstein quantile function is
calculated via

∫ 1

0
Q (τ) dτ =

d∑
l=0

αl

∫ 1

0
Bl,d(τ)dτ = 1

d + 1

d∑
l=0

αl. (2.37)

Further, the support of the distribution is given by [α0, αd], which directly follows from
Q(0) = α0 and Q(1) = αd. Hence, a positive first coefficient results in a positive support
of the forecast distribution. Figure 2.3 illustrates an exemplary forecast from a Bernstein
quantile function of degree d = 12 taken from the case study on wind gust prediction in
Section 5.3. We can observe that the forecast distribution is smooth and more flexible than
that of a truncated logistic distribution, where the shape of the distribution is predetermined.
Further, the finite support becomes apparent for the PDF of the forecast distribution.

From the point of forecast verification, one downside of the Bernstein quantile function is
that in general the CDF and PDF cannot be calculated analytically. Therefore, the LogS and
the CRPS cannot be calculated analytically. Hence, we approximate both scores based on a
set of equidistant quantiles, which is also used to calculate the PIT values for the forecast
evaluation.
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2.3.3 Piecewise uniform distribution

The motivation for the last exemplary type of forecast distribution is to approximate the
predictive density with a histogram, which corresponds to the idea of transforming the
probabilistic forecasting problem into a classification task. Here, the histogram is based on a
partition of the observation range, where each bin can be interpreted as a class, for which
the bin frequency is the associated class probability. On the other hand, a histogram can be
interpreted as a piecewise constant function that yields a density (up to a scaling factor). A
piecewise constant PDF corresponds to a piecewise uniform distribution, where we implicitly
assume a uniform distribution within each bin. Hence, we can create a predictive distribution
by solving a discrete classification problem.

To formally introduce the piecewise uniform distribution, let N be the number of histogram
bins and b0 < · · · < bN the edges of the bins Il = [bl−1, bl) with probabilities pl, l = 1, . . . , N ,
where it holds that ∑N

l=1 pl = 1. For completeness, we define b−1 = −∞ and bN+1 = ∞,
which yield the bins I0 = (−∞, b0) and IN+1 = [bN , ∞), to which we both assign probability
p0 = pN+1 = 0, meaning that we only consider partitions that yield a distribution with finite
support. Further, the projection of y ∈ R to the interval [a, b) is given by

(y|[a,b)) := max{a, min{y, b}} =


a, y < a,

y, a ≤ y < b,

b, b ≤ y.

(2.38)

Now, we can define the bin in which a realization y ∈ R falls via

κ := κ(y) :=
N+1∑
l=0

l · 1{y ∈ Il} (2.39)

= min{l : y < bl, 0 ≤ l ≤ N + 1} = max{l : bl−1 ≤ y, 0 ≤ l ≤ N + 1}.

As mentioned before, the PDF of the corresponding probabilistic forecast is a piecewise
constant function given by

f(y) =
N∑

l=1

pl

bl − bl−1
· 1{y ∈ Il} = pκ

bκ − bκ−1
, y ∈ R. (2.40)

Note that the PDF reduces to the values of the associated bin probability when the bin lengths
are equidistant with length 1, that is, bl − bl−1 = 1 for l = 1, . . . , N .

Due to the fact that the PDF is defined as a histogram, the CDF is a piecewise linear
function given by

F (y) =
N∑

l=1
pl

(
y − bl−1
bl − bl−1

· 1{y ∈ Il} + 1{bl ≤ y}
)

=
N∑

l=1
pl

(y|Il
) − bl−1

bl − bl−1
· 1{bl−1 ≤ y}, (2.41)
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for y ∈ R or, equivalently, by

F (y) = p∗
(κ−1) + pκ

y − bκ−1
bκ − bκ−1

, y ∈ R, (2.42)

where p∗
(l) := ∑l

j=0 pj is the accumulated probability up to the lth bin for l = 0, . . . , N .

Hence, the quantile function is also a piecewise linear function, for which we characterize
the bins in terms of the accumulated probabilities via P ∗

l := [p∗
(l−1), p∗

(l)) for l = 1, . . . , N

with P ∗
l = ∅ for pl = 0. Using the characterization of the bins in terms of the accumulated

probability, we define the bin of a certain quantile level τ ∈ (0, 1) by

κ := κ(τ) :=
N∑

l=1
l · 1{τ ∈ P ∗

l } (2.43)

= min{l : τ < p∗
(l), 1 ≤ l ≤ N} = max{l : p∗

(l−1) ≤ τ, 1 ≤ l ≤ N}

with κ ∈ {l = 1, . . . , N : pl > 0}. Based on the bin κ, the quantile function is given by

Q(τ) = bκ−1 + (bκ − bκ−1)
τ − p∗

(κ−1)
pκ

, τ ∈ (0, 1) . (2.44)

Note that pκ > 0 and that the denominator results from the fact that pl = p∗
(l) − p∗

(l−1)
for l = 1, . . . , N . Analogous to equation (2.41), we can formulate the quantile function
alternatively via

Q(τ) = b0 +
N∑

l=1
(bl − bl−1)

(
τ − p∗

(l−1)
pl

· 1{τ ∈ P ∗
l } + 1{p∗

(l) ≤ τ}
)

(2.45)

= b0 +
N∑

l=1
(bl − bl−1)

(τ |P ∗
l
) − p∗

(l−1)
pl

· 1{p∗
(l−1) ≤ τ}, (2.46)

where τ ∈ (0, 1). In equation (2.45), we can neglect the special case of division by pl = 0 for
l = 1, . . . , N , as we have P ∗

l = ∅ and 1{τ ∈ P ∗
l } = 0 in that case. For equation (2.45), we

define 0/0 = 1. Note that the predictive distribution is defined by the binning scheme and
the corresponding bin probabilities. Figure 2.3 shows an exemplary forecast of a piecewise
uniform distribution with N = 55 nonequidistant bins from the case study on probabilistic
wind gust forecasting in Section 5.3, where the piecewise constant structure of the PDF is
apparent.

The structure of the predictive distribution allows for a straightforward computation of
the quantities of interest such as the CRPS, LogS or mean. The mean of a piecewise uniform
distribution can be calculated as

∫ ∞

−∞
xf(x)dx = 1

2

N∑
l=1

pl (bl−1 + bl) . (2.47)
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The CRPS of the piecewise uniform distribution can be calculated using the CRPS of an
uniform distribution with point masses on the left and right boundaries, for which an analytic
solution is given by Jordan et al. (2019).

Proposition 2.1. Let F be the predictive CDF as defined in equation (2.41) and y ∈ R. With
the definition of I := ⋃N

l=1 Il = [b0, bN ), and the uniform distribution on Il with point masses
p∗

(l−1) on the lower and 1 − p∗
(l) on the upper boundary given by the CDF

Fl(y) :=


0, y < bl−1,

p∗
(l−1) + pl

y − bl−1
bl − bl−1

, bl−1 ≤ y < bl,

1, bl ≤ y,

(2.48)

the CRPS can be calculated via

CRPS(F, y) = |y − (y|I)| +
N∑

l=1
CRPS (Fl, (y|Il

)) . (2.49)

Note that |y − (y|I)| = 0 for y ∈ I and (y|Il
) = y for y ∈ Il. Figure 2.5 illustrates the CRPS

of a piecewise uniform distribution and explains why we need to transform the observations
via equation (2.38) for the individual CRPS calculations corresponding to the bins.

Further, note that the CRPS formula in equation (2.49) is a special case of a result from
Jordan (2016, Proposition 6.1(d)), which states that the CRPS of a distribution can be split
into the CRPSs of censored distributions on a pairwise disjoint cover of the real line. Using
the cover I = (I0, . . . , IN+1) and the CDF in equations (2.41) and (2.42), we obtain the CRPS
in equation (2.49). Here, we provide a proof for the CRPS formula, independent of the result
in Jordan (2016).4

Proof. Let y ∈ R and F be the CDF of a piecewise uniform distribution. Further, we define
h(z; y, G) := (G(z) − 1{y ≤ z})2 for z ∈ R and a CDF G. First, we state the following
properties for l = 1, . . . , N :

(A1) Fl(z) = F (z) for z ∈ Il.

(A2) 1{(y|Il
) ≤ z} = 1{y ≤ z} for z ∈ Il, as (y|Il

) = y for y ∈ Il, (y|Il
) = bl−1 for y < bl−1 ≤ z

and (y|Il
) = bl for y ≥ bl > z.

(A3) Fl(z) = 0 = 1{(y|Il
) ≤ z} for z < bl−1 ≤ (y|Il

).

(A4) Fl(z) = 1 = 1{(y|Il
) ≤ z} for z ≥ bl ≥ (y|Il

).

(A5) From (A3) and (A4), it follows that h(z; (y|Il
), Fl) = 0 for z /∈ Il.

4Jordan (2016) concluded that the result “follow[s] straightforwardly from the threshold decomposition”
(equation (2.10)).
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Figure 2.5: Illustration of the CRPS of a piecewise uniform distribution F0 based on the bin
edges (b0, b1, b2, b3) = (0, 1, 2, 3) and bin probabilities (p1, p2, p3) = (0.5, 0.3, 0.2),
together with the observation y = 1.5. The left panel shows the CDF F0 (green)
and the indicator function based on y (orange), together with the purple area that
is equivalent to the CRPS. Instead of F0, the following panels show the CDFs
F1, F2 and F3 of uniform distributions with point masses on the edges, as defined
in equation (2.48). The striped, purple area corresponds to the additional value
when using y instead of (y|Il

) for the calculation of the individual CRPS values in
equation (2.49).

Next, we show that
∫ b0

−∞
h(z; y, F )dz +

∫ ∞

bN

h(z; y, F )dz = |y − (y|I)| . (2.55)

We have∫ b0

−∞
h(z; y, F )dz +

∫ ∞

bN

h(z; y, F )dz =
∫ b0

−∞
(0 − 1{y ≤ z})2dz +

∫ ∞

bN

(1 − 1{y ≤ z})2dz

=
∫ b0

−∞
1{y ≤ z}dz +

∫ ∞

bN

1{y > z}dz

We consider the three following cases. For y < b0, we have (y|I) = b0 and obtain

∫ b0

−∞
1{y ≤ z}dz +

∫ ∞

bN

1{y > z}︸ ︷︷ ︸
=0

dz =
∫ y

−∞
0dz +

∫ b0

y
1dz = b0 − y = yI − y = |y − (y|I)| .

For y ∈ I, we have (y|I) = y and obtain

∫ b0

−∞
1{y ≤ z}︸ ︷︷ ︸

=0

dz +
∫ ∞

bN

1{y > z}︸ ︷︷ ︸
=0

dz = 0 = y − yI = |y − (y|I)| .

For y ≥ bN , we have (y|I) = bN and obtain

∫ b0

−∞
1{y ≤ z}︸ ︷︷ ︸

=0

dz +
∫ ∞

bN

1{y > z}dz =
∫ y

bN

1dz +
∫ ∞

y
0dz = y − bN = y − (y|I) = |y − (y|I)| .
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At last, we calculate the CRPS of the piecewise uniform distribution:

CRPS(F, y) =
∫ ∞

−∞
h (z; y, F ) dz

=
∫ b0

−∞
h (z; y, F ) dz +

N∑
l=1

∫
Il

h (z; y, F ) dz +
∫ ∞

bN

h (z; y, f) dz

(2.55)= |y − (y|I)| +
N∑

l=1

∫
Il

h (z; y, F ) dz

(A1),(A2)= |y − (y|I)| +
N∑

l=1

∫
Il

h (z; (y|Il
), Fl) dz

(A5)= |y − (y|I)| +
N∑

l=1

∫ ∞

−∞
h (z; (y|Il

), Fl) dz

= |y − (y|I)| +
N∑

l=1
CRPS (Fl, (y|Il

)) .

As the LogS is a local scoring rule that only depends on the value the predictive PDF
attains at the observation, the LogS reduces to the simple form

LogS(f, y) = − log pκ

bκ − bκ−1
= log (bκ − bκ−1) − log (pκ) . (2.56)

In the aforementioned case of equidistant bins of length 1, the LogS becomes even simpler:

LogS(f, y) = log (1) − log (pκ) = − log (pκ) . (2.57)

At the end of the section, we again draw a connection to classification problems. The LogS in
equation (2.57) is equivalent to the categorical cross-entropy, a loss function frequently used
in machine learning (ML) to fit statistical models for classification. Minimizing the LogS with
fixed, equidistant bins of length 1 to find class probabilities is therefore equivalent to using
the categorical cross-entropy in the discrete classification problem. As the term log(bκ − bκ−1)
is constant for fixed bins and κ depends on the observation only, MLE for a piecewise uniform
distribution is for fixed bins in general equivalent to using the categorical cross-entropy in the
associated classification problem.



CHAPTER 3

Aggregating Distribution Forecasts from Deep
Ensembles

Motivated by their superior performance on a wide variety of ML tasks, much recent research
interest has focused on the use of deep neural networks (NNs) for probabilistic forecasting.
Different approaches for obtaining a forecast distribution as the output of an NN have
been proposed over the past years, including parametric methods where the NN outputs
parameters of a parametric probability distribution such as the truncated logistic distribution
described in Section 2.3.1 (Lakshminarayanan et al., 2017; D’Isanto and Polsterer, 2018; Rasp
and Lerch, 2018), semiparametric approximations of the quantile function of the forecast
distribution such as the Bernstein quantile function described in Section 2.3.2 (Bremnes, 2020)
and nonparametric methods where the forecast density is modeled as a histogram such as
for the piecewise uniform distribution described in Section 2.3.3 (Gasthaus et al., 2019; Li
et al., 2021). To account for the randomness of the training process based on stochastic
gradient descent methods, NNs are often run several times from different random initializations.
Lakshminarayanan et al. (2017) refer to this simple to implement and readily parallelizable
approach as deep ensembles. Deep ensembles of NN models for probabilistic forecasting thus
yield an ensemble of predictive probability distributions. To provide a final probabilistic
forecast, the ensemble of predictive distributions needs to be aggregated to obtain a single
forecast distribution.

The problem of combining predictive distributions has been studied extensively in the
statistical literature, see Gneiting and Ranjan (2013) and Petropoulos et al. (2022, Section 2.6)
for overviews. Combining probabilistic forecasts from different sources has been successfully
used in a wide variety applications including economics (Aastveit et al., 2018), epidemiology
(Cramer et al., 2022; Taylor and Taylor, 2023), finance (Berkowitz, 2001), signal processing
(Koliander et al., 2022) and weather forecasting (Baran and Lerch, 2016, 2018), and constitutes
one of the typical components of winning submissions to forecasting competitions (Bojer
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and Meldgaard, 2021; Januschowski et al., 2022). On the other hand, forecast combination
also forms the theoretical framework of some of the most prominent techniques in ML such
as boosting (Freund and Schapire, 1996), bagging (Breiman, 1996) or random forests (RFs;
Breiman, 2001), which are based on the idea of building ensembles of learners and combining
the associated predictions. Generally, the individual component models (or ensemble members)
can be based on entirely distinct modeling approaches, or on a common modeling framework
where the model training is subject to different input datasets of other sources of stochasticity.
The latter is the case for deep ensembles where the main sources of uncertainty in the
estimation are the random initialization of the network parameters and the stochastic gradient
descent algorithm for the optimization. For general reviews on ensemble methods in ML, we
refer to Dietterich (2000), Zhou et al. (2002) and Ren et al. (2016).

While the arithmetic mean is a powerful and widely accepted method for aggregating
single-valued point forecasts, the question how probabilistic forecasts should be combined
is more involved and has been a focus of research interest in the literature on statistical
forecasting (Gneiting and Ranjan, 2013; Lichtendahl et al., 2013; Petropoulos et al., 2022).
We will focus on readily applicable aggregation methods for the combination of probabilistic
forecasts from deep ensembles. A widely used approach is the linear aggregation of the forecast
distributions, an approach that is often referred to as linear (opinion) pool (LP). In the
context of deep ensembles, Lakshminarayanan et al. (2017) apply the LP and linearly combine
density forecasts. An alternative is given by aggregating the forecast distributions on the
scale of quantiles by linearly combining the corresponding quantile functions, an approach
that is commonly referred to as Vincentization (VI).

The main aim of this chapter is to consolidate findings from the statistical and ML literature
on forecast combination and ensembling for probabilistic forecasting. Using theoretical
arguments (Sections 3.1 and 3.2), simulation experiments (Section 3.3) and a case study on
probabilistic wind gust forecasting (Section 3.4), we systematically investigate and compare
aggregation methods for probabilistic forecasts based on deep ensembles, with different ways
to characterize the corresponding forecast distributions. In the following, we apply a two-step
procedure by first generating an ensemble of probabilistic forecasts and then aggregating
them into a single final forecast, which matches the typical workflow of forecast combination
from a forecasting perspective. Alternatively, it is also possible to incorporate the aggregation
procedure directly into the model estimation (Kim et al., 2021).

The remainder of the chapter starts with Section 3.1 that introduces the forecast aggregation
methods. For the three exemplary distributions presented in Section 2.3, which will form
the basis for the NNs in Chapter 4, we discuss in Section 3.2 how the different aggregation
methods can be used to combine the corresponding predictive distributions of an ensemble of
such forecasts. In Section 3.3, we conduct a comprehensive simulation study that is followed
up by a case study on probabilistic weather prediction in Section 3.4. Section 3.5 concludes
with a discussion.
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3.1 Combining predictive distributions

Here, we formally introduce the LP and VI methods for aggregating probabilistic forecasts.
Given K ∈ N individual probabilistic forecasts we aim to aggregate, we will denote their
CDFs by F1, . . . , FK and their quantile functions by Q1, . . . , QK . The aggregation meth-
ods introduced below will typically assign weights w1, . . . , wK to the individual forecast
distributions.

3.1.1 Linear pool

The most widely used approach for forecast combination is the LP, which is the arithmetic
mean of the individual forecasts (Stone, 1961). For probabilistic forecasts, the LP is calculated
as the (in our case equally) weighted average of the predictive CDFs and results in a mixture
distribution. Equivalently, the LP can be calculated by averaging the PDFs. We define the
predictive CDF of the LP via

Fw(y) :=
K∑

i=1
wiFi(y), y ∈ R, (3.1)

where wi ≥ 0 for i = 1, . . . , K with ∑K
i=1 wi = 1. Note that the weights need to sum up to 1

to ensure that Fw yields a valid CDF.
The LP has some appealing theoretical properties and has been the prevalent forecast

aggregation method over the last decades.1 For example, Lakshminarayanan et al. (2017) use
the LP to combine density forecasts of multiple NNs introducing the term deep ensembles.
However, there are disadvantages to the use of the LP that is known to have suboptimal
properties when aggregating probabilities, since a linear combination of probability forecasts
results in less sharp and more underconfident forecasts (Ranjan and Gneiting, 2010). Gneiting
and Ranjan (2013) extend this result to the general case of predictive distributions by showing
that in case of distribution forecasts sharpness decreases and dispersion increases. In particular,
a (nontrivial) combination of calibrated forecasts is not calibrated anymore. In the context of
deep ensembles, these downsides have also been observed in recent studies (Rahaman and
Thiery, 2021; Wu and Gales, 2021).

In our simulation and case study conducted in the following, we apply the aggregation
methods to forecasts produced by the same data-generating mechanism based on an ensemble
of NNs, which differ only in the random initialization. Therefore, we do not expect systematic
differences between the individual forecasts and only consider equally weighted averages. In
the following, we will refer to the LP as the equally weighted average given by wi = 1/K for
i = 1, . . . , K in equation (3.1). Figure 3.1 illustrates the effect of forecast combination via the
LP.

1For example, Lichtendahl et al. (2013) and Abe et al. (2022) show that the score of the LP forecast is at
least as good as the average score of the individual components in terms of different proper scoring rules.
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Figure 3.1: PDF, CDF and quantile function of two normally distributed forecasts F1 and F2
(µ1 = 7, µ2 = 10, σ1 = σ2 = 1) together with forecasts aggregated via the methods
presented in Section 3.1. V=

a and Vw
a use the intercept a = −6, Vw

0 and Vw
a the

weight w0 = 0.6.

3.1.2 Vincentization

While the LP aggregates the forecasts on a probability scale, VI performs a quantile-based
linear aggregation (Vincent, 1912; Ratcliff, 1979; Genest, 1992). We extend the standard VI
framework by defining the VI quantile function via

Qa
w(τ) := a +

K∑
i=1

wiQi(τ), τ ∈ [0, 1] , (3.2)

where a ∈ R and wi ≥ 0 for i = 1, . . . , K.2 In contrast to the LP, the weights do not need to
sum to 1 and only their nonnegativity is required to ensure the monotonicity of the resulting
quantile function Qa

w.3 Further, a real-valued intercept a is added to the aggregated quantile
functions to correct for systematic biases.

As for the LP, we only consider equally weighted averages for VI, that is, wi = w0 > 0
for i = 1, . . . , K. Given equal weights, we consider four different variants of VI. First, with
weights that sum up to 1 and no intercept, that is, a = 0 and w0 = 1/K, which is referred to
by V=

0 . Similar to the LP, V=
0 does not require the estimation of any parameters. Further, we

consider VI variants where we estimate the parameters a and w0 both independently (while
the other is fixed at the values of V=

0 ) and also simultaneously, resulting in the three variants
V=

a (where w0 = 1/K and a is estimated), Vw
0 (where a = 0 and w0 is estimated) and Vw

a

(where both a and w0 are estimated). The parameters are estimated minimizing the CRPS
following the optimum scoring principle. The standard procedure for training ML models
where the available data is split into training, validation and test datasets offers a natural

2To the best of our knowledge, VI is usually only applied with standardized weights wi, i = 1, . . . , K, with∑K

i=1 wi = 1, and without the intercept a. Exceptions include Wolffram (2021) and related, unpublished
simulation experiments by Anja Mühlemann (University of Bern, 2020, personal communication).

3Note that in general Qa
w is not the quantile function corresponding to the CDF Fw of the LP, even for a = 0

and equal weights.
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Table 3.1: Overview of the aggregation methods for probabilistic forecasts, with Fi and Qi

denoting the predictive CDFs and quantile functions of the individual components
models. The column ‘Parameters’ indicates which parameters are estimated based
on data, following the procedure described in Section 3.1.2.

Abbr. Scale Formula Parameters Estimation
LP Probability Fw = 1

n

∑n
i=1 Fi - -

V=
0 Quantile Qw = 1

n

∑n
i=1 Qi - -

V=
a Quantile Qw = 1

n

∑n
i=1 Qi + a a ∈ R CRPS

Vw
0 Quantile Qw = w0

∑n
i=1 Qi w0 ≥ 0 CRPS

Vw
a Quantile Qw = w0

∑n
i=1 Qi + a w0 ≥ 0, a ∈ R CRPS

choice for estimating the combination parameters. Given NN models estimated based on the
training set (where the validation set is used to determine hyperparameters), we estimate
the coefficients of the VI approaches separately in a second step based on the validation set,
which can be seen as a post-hoc calibration step (Guo et al., 2017). During this second step,
the component models with quantile functions Qi, i = 1, . . . , K, are considered fixed and we
only vary the combination parameters in equation (3.2). In the following, we will restrict our
attention to fixed training and validation sets, but an extension of the approach described
here to a cross-validation (CV) setting is straightforward. Table 3.1 provides an overview of
the abbreviations and important characteristics of the different forecast aggregation methods
we will consider below.

VI (in the form of V=
0 ) has recently received more research interest in the ML literature

and has for example been used by Kirkwood et al. (2021) and Kim et al. (2021) to aggregate
probabilistic predictions. Related work in the statistical literature includes comparisons to
the LP which demonstrate that VI tends to perform better than the LP (Lichtendahl et al.,
2013; Busetti, 2017).

Regarding the different NN-based methods for probabilistic forecasting that will be intro-
duced in Section 3.2, we now consider the special case of VI for location-scale families. Given
a CDF F(0), a distribution is said to be an element of a location-scale family if its CDF F

satisfies

F (y; µ, σ) = F(0)

(
y − µ

σ

)
, y ∈ R, (3.3)

where µ ∈ R denotes the location and σ > 0 the scale parameter. Popular examples of
location-scale families include the normal and logistic distributions. Unlike the LP, which
results in a widespread, multimodal distribution, VI is shapepreserving for location-scale
families (Thomas and Ross, 1980). Shapepreserving here means that if the individual forecasts
are elements of the same location-scale family, the aggregated forecast is as well. Further, the
parameters of the aggregated forecast µVI and σVI are given by the weighted averages of the
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individual parameters µi and σi, i = 1, . . . , K, together with the intercept a in case of the
location parameter, that is,

µVI = a +
K∑

i=1
wiµi, and σVI =

K∑
i=1

wiσi. (3.4)

Here, we will only consider the case of wi = w0 for i = 1, . . . , K. Lichtendahl et al. (2013),
who compare the theoretical properties of the LP and V=

0 , note that the aggregated predictive
distributions both yield the same mean but the VI forecasts are sharper, that is, the VI
predictive distribution has a variance smaller or equal to that of the LP.

To highlight the effects of the individual VI parameters, we note that the intercept a only
has an effect on the location of the resulting aggregated distribution, while the weight w0

has an effect on both the location and the spread. If it is larger than 1, the spread increases
compared to the average spread of the individual forecasts, and it decreases for values smaller
than 1. However, a weight not equal to 1 also shifts the location of the distribution. Figure 3.1
illustrates this in the exemplary case of two normal distributions.

3.2 Aggregating exemplary types of forecast distributions

In the context of weather prediction, we propose a framework for NN-based probabilistic
forecasting in Section 4.3 that encompasses different approaches to obtain distribution forecasts
as the output of an NN and forms the basis of our work here. However, we will leave the
introduction of this framework that includes three network variants to Section 4.3. Here, we
will consider only the associated types of forecast distribution, which coincide with those
presented in Section 2.3.

While the three network variants differ in their characterization of the forecast distribution,
their use in practice shares a common methodological feature that constitutes the main
motivation for our work here. As discussed at begin of the section, extant practice in NN-
based forecasting often relies on an ensemble of NN models trained based on randomly
initialized weights and batches to account for the randomness of the stochastic gradient
descent methods applied in the training process. This raises the question of how the three
types of distribution forecasts can be combined using the aggregation methods described in
Section 3.1, which we will discuss below.

3.2.1 Parametric forecast distribution

In the distributional regression network (DRN) approach, the forecasts are issued in the form
of a parametric distribution. Under the parametric assumption Fθ, the predictive distribution
is characterized by the distribution parameter (vector) θ ∈ Θ ⊂ Rd, where Θ is the parameter
space. Different variants of the DRN approach have been proposed over the past years and
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can be traced back to at least Bishop (1994). While Lakshminarayanan et al. (2017) and
Rasp and Lerch (2018) use a normal distribution with θ = (µ, σ), where µ ∈ R is the mean
and σ > 0 the standard deviation, Bishop (1994) and D’Isanto and Polsterer (2018) use a
mixture of normal distributions. In the case studies on probabilistic wind gust forecasting
(Sections 3.4 and 5.3), we use a zero-truncated logistic distribution with θ = (µ, σ), where
µ ∈ R is the location and σ > 0 the scale parameter.4 Extensions of the DRN approach to
other parametric families are generally straightforward provided that analytical closed-form
expressions of the selected loss function are available (e.g., Ghazvinian et al., 2021; Chapman
et al., 2022).

Both Lakshminarayanan et al. (2017) and Rasp and Lerch (2018) generate an ensemble of
networks based on random initialization. While Lakshminarayanan et al. (2017) propose to
use the LP to aggregate the forecast distributions, Rasp and Lerch (2018) instead combine the
forecasts by averaging the distribution parameters. Since the normal distribution (which we
will also employ in the simulation study below) is a location-scale family, parameter averaging
is equivalent to V=

0 . Although the logistic distribution also forms a location-scale family, the
truncated variant does not, and parameter averaging is not equivalent to V=

0 . However, in the
context of the case study, we found the differences between parameter averaging and V=

0 to
be negligibly small and, in this particular case, therefore approximated the VI approaches
by the corresponding parameter averages. To evaluate the LP forecasts, we draw a random
sample of size 1,000 from the mixture distribution by first randomly choosing an ensemble
member and then generating a random draw from the corresponding distribution.

3.2.2 Bernstein quantile function

Bremnes (2020) proposes a semiparametric extension of the DRN approach we refer to as
Bernstein quantile network (BQN), where the probabilistic forecast is given by the Bernstein
quantile function in equation (2.33). To aggregate ensembles of BQN forecasts, Bremnes (2020)
average the individual basis coefficient values across ensemble members. This is equivalent to
V=

0 , which can be seen by plugging in Bernstein quantile functions (equation (2.33)) in the VI
quantile function in equation (3.2),

Qw(τ) = a +
K∑

i=1
wi

(
d∑

l=0
αilBld(τ)

)

= a +
d∑

l=0

(
K∑

i=1
wiαil

)
Bld(τ), τ ∈ [0, 1] , (3.5)

where αil is the coefficient of the lth basis polynomial of the ith ensemble member, i = 1, . . . , K,
l = 0, . . . , d.

4In the context of weather prediction, the choice of a (parametric) forecast distribution is discussed in
Section 4.2.1.
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Since a closed form of the CDF or density of a BQN forecast is not readily available, the
LP cannot be expressed in a similar fashion. Analogous to DRN, the evaluation of the LP
forecasts will therefore be based on a random sample of size 1,000 drawn from the aggregated
distribution. Here, the inversion method allows to sample from the individual BQN forecasts.
Further, the VI forecasts are evaluated based on a sample of 100 equidistant quantiles.5

3.2.3 Piecewise uniform distribution

The last method considered here is the histogram estimation network (HEN), which is based on
the piecewise uniform distribution presented in Section 2.3.3. Variants of this approach have
been proposed in a variety of applications (e.g., Gasthaus et al., 2019; Li et al., 2021). Here,
we consider the case of fixed bins, i.e., the output of the network is a set of bin probabilities.

Regarding the aggregation of an ensemble of piecewise uniform distributions with fixed
bins, the LP is equivalent to averaging the bin probabilities. To see this, we apply the LP
(equation (3.1)) to CDFs of a piecewise uniform distribution (equation (2.41)), that is,

Fw(y) =
K∑

i=1
wi

[
N∑

l=1

(
pil

(y|Il
) − bl−1

bl − bl−1
· 1{bl−1 ≤ y}

)]

=
N∑

l=1

[(
K∑

i=1
wipil

)
(y|Il

) − bl−1
bl − bl−1

· 1{bl ≤ y}
]

, (3.6)

where y ∈ R and pil is the probability of the lth bin for the ith ensemble member, i = 1, . . . , K,
l = 1, . . . , N . An exemplary application of the LP for an approach akin to HEN forecasts in a
stacked NN can be found in Clare et al. (2021).

By contrast to the LP, the VI approach exhibits a particular advantage for HEN forecasts
in that it results in a finer binning than the individual HEN models. To illustrate this effect,
we recall that the quantile function of a piecewise uniform distribution is a piecewise linear
function with edges depending on the accumulated bin probabilities (equations (2.44)–(2.46)).
Therefore, the resulting VI quantile function is a piecewise linear function with one edge for
each accumulated probability of the individual forecasts. As the forecast probabilities differ
for each member of the deep ensemble, the associated quantile functions are subject to a
different binning. Since the set of edges of the aggregated VI forecast is given by the union of
all individual edges, this leads to a smoothed final forecast distribution with a finer binning
than the individual model runs that differs for every forecast case, and eliminates the potential
downside of too coarse fixed bin edges. Figure 3.2 illustrates the effects of the LP and V=

0 for
two exemplary piecewise uniform distributions. In the simulations study, the edges are given
by 50 equidistant empirical quantiles of the training data (unique to the second digit), and

5The numbers of samples and quantiles were chosen based on simulation experiments and theoretical
considerations. Compared to random samples from the forecast distributions, a smaller number of equidistant
quantiles is required to achieve approximations of the same accuracy, see Krüger et al. (2021) and references
therein for a discussion of sample-based estimation of the CRPS.
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F2 together with forecasts aggregated via the LP and V=

0 . The dashed vertical
lines indicate the binning with respect to F1, F2 and Fw for the CDF plot and
with respect to Qw in the quantile function plot.

for the case study, we use a semiautomated procedure specific to the application, which is
described in detail in Section 5.3.2.

3.3 Simulation study

We compare the performance of the five aggregation methods for each of the three network
variants in a simulation study. The simulation setting is adopted from Li et al. (2021),
who investigate a variant of the HEN approach. From the six models they propose for the
data-generating process, we consider two and skip results for the remaining four, as they
provide no further insights.

We do not tune the specific architectures and hyperparameters of the individual NN models
in each of the scenarios of the simulation study, but instead use the configurations described
in Section 5.3.2 that have proven to work well in the corresponding application. This is done
intentionally in order to also generate forecasts that are not well-calibrated or subject to
systematic biases, which allows us to assess the performance of the aggregation methods in
situations when the forecasts are not optimal, see, in particular, the results for Scenario 2
reported below.

For each scenario, we generate training sets of size 6,000 and test sets of size 10,000. The
simulations are repeated 50 times. We generate a series of 40 individual network ensemble
members for each of the three network variants and consider aggregation of the first K

members, where K ∈ {2, 4, . . . , 40}. As benchmark, we will consider an optimal probabilistic
forecast based on the inherent uncertainty of the data-generating process denoted by the
noise term ϵ.6 In the following, the continuous ranked probability skill score (CRPSS) will be
calculated via equation (2.5) using the average CRPS of the individual networks for S

F0
n and

6Note that the simulations are based on a finite sample, so even the optimal forecast might result in a small
bias or an empirical coverage not equal to the nominal value.
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the CRPS of the optimal forecast for S
F ∗

n with n being the size of the underlying sample.7

Scenario 1

As our first simulation scenario, we consider a linear model with normally distributed errors.
Based on a random vector of predictors X ∈ R5, which serves as the input of the networks,
and the random coefficient vectors β1, β2 ∈ R5, which are fixed for each run of the simulation
and unknown to the forecaster, the target variable Y is calculated via

Y = XT β1 + ϵ · exp
(
XT β2

)
, (3.7)

where X ∼ N (0, I5), β1 ∼ N (0, I5), β2 ∼ N
(
0, 0.452I5

)
and ϵ ∼ N (0, 1). The optimal

forecast F ∗ is then given by

Y | X, β1, β2 ∼ N
(
XT β1, exp

(
2XT β2

))
= F ∗. (3.8)

The key results for this simulation scenario are summarized in Figure 3.3, which shows
different evaluation metrics averaged over the 50 repetitions of the simulation study. We start
by comparing the aggregation methods for DRN, where the CRPSS indicates that aggregation
via the VI approaches improves the network average by up to 12.5%, while the LP improves
the forecast performance by at most 2.5%. Here, the best VI approach is to fix the intercept
and weights instead of estimating them from the training data. In Figure 3.3, the relative
weight difference of the estimated weight w0 and a standardized weight for an ensemble of
size K, given by δK(w0) := Kw0 − 1, illustrates that the estimated weights are not equal
to standardized weights. The flat PIT histograms in Figure 3.4 indicate that the individual
component forecasts are already well-calibrated and corrections via coefficient estimation are
not necessary. The average PI length of the network forecasts, which is identical to that of
V=

0 and V=
a , is smaller than that of the optimal forecast. Note that having sharper forecasts

than F ∗ comes at the cost of a lack in calibration. Comparing the aggregation methods, we
find that the LP increases the PI length as expected due to its theoretical properties. Vw

0 and
Vw

a here increase the PI length because their estimated weights are larger than standardized
ones. All aggregation methods increase the empirical coverage, which improves the predictive
performance, because the coverage of the network average is smaller than the nominal value.
In terms of accuracy, all methods are unbiased, since they are approximately as accurate as
the optimal forecast.

For BQN, the results are qualitatively similar, however, since the BQN forecasts are not
as well-calibrated as those of DRN, there are some differences which we highlight in the
following. The estimated weights of Vw

0 and Vw
a are larger than standardized ones and result

7Note that this does not correspond to the mean improvement over the individual forecasts. However,
averaging the median skill scores of the individual ensemble member predictions over the repetitions of the
simulations yields qualitatively analogous results (not shown).
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Figure 3.3: Different evaluation metrics, the estimated intercept a and the relative weight
difference δn for the three network variants in Scenario 1 of the simulation study,
where DE denotes the average score of the deep ensemble members. Note the
different scales on the y-axis.
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Figure 3.4: PIT histograms for the three network variants of the deep ensemble (DE) and
aggregated forecasts for an ensemble of size 2 in Scenario 1.

in a smaller CRPSS difference to V=
0 , which still performs best. The Vw

0 and Vw
a forecasts are

therefore less sharp than the network average and as sharp as the LP. The empirical coverage
of the individual BQN forecasts is larger than the nominal value, thus that of the forecasts
aggregated via VI approaches is as well. Interestingly, the LP decreases the coverage and
is closest to the nominal value. Further, the VI forecasts are positively biased, the LP is
instead close to being unbiased. Although the LP performs favorable in terms of the empirical
coverage and accuracy, it performs worse than the VI approaches, even though the difference
is smaller than in the case of DRN.

In contrast to DRN and BQN, the HEN forecasts are not well-calibrated but instead
overdispersed, as indicated by the bulk-shaped histograms in Figure 3.4. In addition to the
lack of calibration, the forecasts are also not sharp since the PIs are more than twice as large
as those of the optimal forecast. These deficiencies result in a substantially worse CRPS
compared to DRN and BQN. While the LP, V=

0 and V=
a are unable to correct the systematic

miscalibration, Vw
0 and Vw

a result in well-calibrated forecasts, which is indicated by the flat
PIT histograms in Figure 3.4. The estimated weights are smaller than standardized ones for all
ensemble sizes, therefore the forecasts become sharper. The PI coverage of the overdispersed
forecasts is, as expected, 2.5% larger than the nominal value. The corrections of Vw

0 and Vw
a

result in coverages closer to and even smaller than the nominal value. Further, note that Vw
a

estimates smaller weights than Vw
0 , but also a positive intercept larger than that of V=

a in order
to balance the effect of the weights on the location of the aggregated distribution. However,
the positive intercepts estimated by V=

a and Vw
a result in a larger bias. The correction of

the overdispersion is also reflected in the CRPSS, where Vw
a and then Vw

0 outperform the
other approaches by a wide margin. Note that the LP improves the predictive performance
and performs equally well as V=

0 and V=
a . However, although all aggregation methods correct

systematic errors and improve predictive performance, the aggregated forecasts are still not
competitive to those of DRN and BQN in terms of the CRPS.
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Figure 3.5: Boxplots over the CRPSS values of the 50 runs in Scenario 1 of the simulation
study. Note some outliers and that the boxes of the LP for BQN and DRN are
cut off to improve readability.

Finally, we investigate the effect of the ensemble size on the performance of the aggregation
methods, in particular on the CRPSS, considering the variability over the 50 runs (Figure 3.5).
For all network variants and aggregation methods, most improvement is obtained up to
ensembles of size 10. The median CRPSS increases up to a size of 20, after which only minor
further improvements can be observed. Interestingly, the variability over the runs does not
decrease for larger ensemble sizes. Comparing the aggregation methods, more outliers are
observed for methods that estimate parameters. For DRN, we see that parameter estimation
may result in forecasts worse than the network average in a few cases, on the other hand the
same results are obtained for V=

0 forecasts in case of HEN. Regarding systematic differences
between the network variants, we find that the variation across simulation runs is notably
lower for HEN. This can partly be explained by the fact that the DRN and BQN forecasts are
much closer to the optimal forecasts and thus small absolute deviations in the CRPS result in
larger differences in the skill.
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Figure 3.6: PIT histograms for the three network variants of the deep ensemble (DE) and
aggregated forecasts for an ensemble of size 2 in Scenario 2.

Scenario 2

In the second scenario, we consider a skewed distribution with a nonlinear mean function.
The target variable Y is defined by

Y = 10 sin (2πX1X2) + 20 (X3 − 0.5)2 + 10X4 + 5X5 + ϵ, (3.9)

where X = (X1, . . . , X5)T , X1, . . . , X5
iid∼ U (0, 1), and ϵ ∼ SkewNormal (0, 1, −5). The

optimal forecast is given by the conditional distribution of Y | X, that is,

F ∗ = SkewNormal
(
10 sin (2πX1X2) + 20 (X3 − 0.5)2 + 10X4 + 5X5, 1, −5

)
. (3.10)

PIT histograms of the individual and aggregated forecasts for the different network variants
are shown in Figure 3.6. In contrast to the first scenario, none of the network variants
produces calibrated forecasts and their PIT histograms indicate systematic deviations from
uniformity. As to be expected due to the wrong distributional assumption, DRN based on a
normal distribution is not able to yield calibrated forecasts for an underlying skewed normal
distribution, but also the semiparametric BQN and HEN forecasts fail to provide calibrated
forecasts. The HEN forecasts are strongly overdispersed and again result in the worst CRPS
among the network variants (Figure 3.7). None of the aggregation methods is able to correct
the systematic lack of calibration for all of the network variants. That said, aggregation still
improves the overall predictive performance in terms of the CRPS.

For DRN, we find that the LP outperforms the VI approaches. Interestingly, this is the
case even though the LP forecasts are the least sharp and have a higher PI coverage that is
farther away from the nominal value. In contrast to the first scenario, even the aggregated
DRN forecasts perform notably worse than BQN. The VI approaches perform equally well and
increase the coverage of the forecasts such that they are closer to the nominal value. While
V=

a and Vw
0 estimate coefficients close to the nominal values, Vw

a estimates larger weights,



3.3 Simulation study 39

DE F* LP V0
= Va

= V0
w Va

w

DRN

10 20 30 40

0.4

0.5

0.6

10

15

20

0.00

0.05

0.10

2.00

2.25

2.50

2.75

3.00

89

90

91

92

−0.050

−0.025

0.000

0.0

0.1

0.2

0.3

0.4

0.5

V
al

ue

BQN

10 20 30 40

0.4

0.5

0.6

6

8

10

12

14

0.00

0.03

0.06

0.09

2.0

2.5

3.0

3.5

4.0

4.5

91

92

93

94

−0.050

−0.025

0.000

0.0

0.1

0.2

0.3

0.4

0.5

Network ensemble size

HEN

C
R

P
S

C
R

P
S

S
 in %

B
ias

P
I length

P
I coverage in %

Intercept
R

el. w
eight diff. in %

10 20 30 40

0.4

0.5

0.6

2

3

4

0.00

0.03

0.06

0.09

2

3

4

5

92.5

95.0

97.5

−0.050

−0.025

0.000

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3.7: Evaluation metrics for the three network variants in Scenario 2, where DE denotes
the average score of the deep ensemble members. Mind the different scales on the
y-axis.
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Figure 3.8: Boxplots over the CRPSS values of the 50 runs in Scenario 2 of the simulation
study.

and therefore yields larger PIs, and a negative intercept in order to balance the shift in the
location. Still, Vw

a does not outperform the other VI approaches.
The results are again qualitatively similar for BQN. The main difference is that the LP does

not outperform the VI approaches, as all aggregation methods result in an improvement in
terms of the mean CRPS of up to 16%. Further, the LP again yields the least sharp forecasts
and all methods increase the PI coverage.

Next, we consider the HEN forecasts. In contrast to Scenario 1, weight estimation via Vw
0

and Vw
a is not able correct the systematic errors and outperform the other approaches. All VI

approaches perform equally well and outperform the LP, which still improves the network
average. The LP yields the least sharp forecasts, followed by Vw

a that estimates weights larger
than standardized ones together with a negative intercept, as for DRN and BQN. The negative
intercepts of V=

a and Vw
a improve the accuracy, as they decrease the forecast bias.

Regarding the effect of the ensemble size, the largest improvements of the aggregation
methods are again obtained for up to 10 ensemble members and only minor improvements
can be observed for sizes larger than 20 (Figure 3.8). In contrast to Scenario 1, it can be
noted that the variability over the runs decreases as the ensemble size increases, and that
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the degree of variability is similar for all aggregation methods within one network variant. A
direct comparison of the network variants indicates that the variability generally increases
with the overall skill of the aggregated forecast.

3.4 Case study

Our case study focuses on the application of the aggregation methods to probabilistic wind
gust forecasting over Germany using forecast distributions obtained as the output of NN
methods. For context on the underlying problem, we refer the reader to Section 4.1, while
the case study on probabilistic wind gust forecasting including a description of the data, the
configuration of the NN models and a comparison to other probabilistic forecasting methods
can be found in Section 5.3.

Here, we focus on different subsets of the data, namely, we consider 4 of the 22 forecast
horizons (0, 6, 12, 18 hours), which are referred to as lead times in the context of weather
predictions. In the following, we will typically evaluate the predictive performance aggregated
over those lead times and note that while there are minor differences across lead times, the
results are qualitatively similar and all the main conclusions are valid for all the considered
lead times.

For each of the lead times, we generate an ensemble of 100 models for each of the network
variants based on random initialization, which form the basis for our study of the different
aggregation methods. We randomly draw a subset of these 100 models for each of the
considered ensemble sizes K ∈ {2, 4, . . . , 40} and repeat this procedure 20 times to account
for uncertainties. Therefore, 20 aggregated forecasts based on a pool of 100 network ensemble
members are generated for each model variant and each ensemble size.

Note that the underlying distribution of the target variable is of course unknown in the
case study, and following common practice the observed value is used as the (hypothetical)
optimal forecast resulting in a CRPS of 0. Hence, we calculate the CRPSS via equation (2.6).
The magnitude of the CRPSS values of the simulation and case study is thus not directly
comparable.

Figure 3.9 summarizes the key results of the case study. Applying the aggregation methods
to the DRN and BQN forecasts leads to similar results as in the simulation study. Although
the LP improves predictive performance with a skill of up to 1.6%, the VI approaches are
superior to the LP. Among the considered VI approaches, coefficient estimation leads to better
predictions with Vw

a and V=
a performing best, followed by Vw

0 and V=
0 .

As expected, the LP yields less sharp forecasts than the network average indicated by
larger PIs, which are the least sharp for DRN. Vw

a also issues less sharp forecasts than the
network average, which is identical to that of V=

0 and V=
a , and Vw

0 produces the sharpest
forecasts. This is due to the fact that Vw

0 estimates weights smaller and Vw
a larger than the

nominal value of V=
0 . As in the simulation study, Vw

a estimates a more extreme intercept
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Figure 3.9: Evaluation metrics for the three network variants aggregated over all lead times
considered in the case study, where DE denotes the average score of the deep
ensemble members. Note the different scales on the vertical axis.
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Figure 3.10: Boxplots over the CRPSS values of the 20 draws for each ensemble size in the
case study for a lead time of 18 hours.

than V=
a , which balances the effect of the weight estimation. The PI coverage increases for all

aggregation methods and both network variants. For both network variants, the Vw
0 forecasts

have the smallest coverage closest to the nominal value, whereas Vw
a results in a coverage

larger than the other VI approaches. Only for DRN, the LP has a larger PI coverage.
The results of the aggregated HEN forecasts are again qualitatively different from those

of DRN and BQN, as the HEN method does not perform as well as the other two methods
and is subject to more systematic errors. Although the ranking of the aggregation methods is
identical to that of DRN and BQN, the magnitude of the differences in the CRPSS for the
superior method is notably larger, and since Vw

a is able to improve some of the systematic
errors, it clearly outperforms the other approaches. The most significant difference to the
other aggregation methods is that Vw

a estimates more extreme coefficients. As for BQN, this
results in the largest PIs and largest coverage, in both cases followed by the LP.

Regarding the accuracy of the forecasts produced by the different aggregation methods, the
results are qualitatively similar for all three network variants. The two methods that estimate
an intercept have the largest absolute biases. This is a somewhat counterintuitive result, since
it can be expected that including an intercept should enable the correction of systematic
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biases. As noted in Section 5.3, there are minor structural differences in the distribution of
the observed values in the test and validation datasets. Due to the average observed values
in the test data being somewhat smaller than those in the validation dataset, the data the
coefficients are estimated on is not fully representative of the test data.

To assess the effect of the ensemble size on the predictive performance in Figure 3.10, we
pick one specific lead time, namely 18 hours, to avoid distortions in the boxplots caused by the
minor variations in the magnitude of the improvements over lead times. The results coincide
with the corresponding main conclusions of the simulation study in that we observe most
improvement up to ensembles of size 10 and only minor for ensembles of size larger than 20.
In the case study, the improvement up to size 10 is more pronounced than in the simulation
study and strongly suggests that a network ensemble should include at least 10 members.
Finally, we note that the variability of the CRPSS decreases for larger ensemble sizes.

3.5 Discussion and conclusions

We have conducted a systematic comparison of aggregation methods for the combination
of distribution forecasts from ensembles of NNs based on random initialization, so-called
deep ensembles. In doing so, this section aims to reconcile and consolidate findings from the
statistical literature on forecast combination and the ML literature on ensemble methods.
Specifically, we propose a general VI framework where quantile functions of the forecast
distributions can be flexibly combined, and compare to the results of the widely used LP,
where the probabilistic forecasts are linearly combined on the scale of probabilities. For deep
ensembles of three variants of NN-based models for probabilistic forecasting that differ in the
characterization of the output distribution, aggregation with both the LP and VI improves
the predictive performance. The VI approaches show superior performance compared to
the LP. For example, given ensemble members that are already calibrated, V=

0 preserves
the calibration and improves the predictive accuracy while the LP decreases sharpness with
more dispersed forecasts. If the individual forecast distributions are subject to systematic
errors such as biases and dispersion errors, coefficient estimation via V=

a , Vw
0 and Vw

a is able
to correct these errors and improve the predictive performance considerably, otherwise V=

0
should be preferred. While these combination approaches require the estimation of additional
combination coefficients, the computational costs are negligible compared to the generation of
the NN-based probabilistic forecasts and can be performed on the validation data without
restricting the estimation of the NNs.

Even though forecast combination generally improves the predictive performance, Scenario
2 of the simulation study demonstrates that for example the lack of calibration of the severely
misspecified individual forecast distributions cannot be corrected by the aggregation methods
considered here. In the context of NNs and deep ensembles, the calibration of (ensemble)
predictions and recalibration procedures have been a focus of much recent research interest
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(Guo et al., 2017; Ovadia et al., 2019). For example, in line with the results of Gneiting and
Ranjan (2013), deep ensemble predictions based on the LP were found to be miscalibrated and
should be recalibrated after the aggregation step (Rahaman and Thiery, 2021; Wu and Gales,
2021). A wide range of recalibration methods, which simultaneously aggregate and calibrate
the ensemble predictions (such as the V=

a , Vw
0 and Vw

a approaches presented in Section 3.1.2
for VI), have been proposed in order to correct the systematic errors introduced by the LP in
the context of probability forecasting for binary events (Allard et al., 2012). For example, the
beta-transformed LP composites the CDF of a beta distribution with the LP (Ranjan and
Gneiting, 2010), and Satopää et al. (2014) propose to aggregate probabilities on a log-odds
scale. Some of these approaches can be readily extended to the case of forecast distributions
(Gneiting and Ranjan, 2013). For VI, more sophisticated approaches that allow the weights
to depend on the quantile levels might improve the predictive performance (Kim et al., 2021).
Further, moving from a linear combination function towards more complex transformations
allowing for nonlinearity might help to correct more involved calibration errors.

We have restricted our attention to ensembles of NN-based probabilistic forecasts generated
based on random initialization. While such deep ensembles have been demonstrated to work
well in many settings (Lee et al., 2015; Fort et al., 2019; Ovadia et al., 2019), a variety
of alternative approaches for uncertainty estimation in NNs has been proposed including
Bayesian NNs (Neal, 2012) or generative models (Mohamed and Lakshminarayanan, 2016).
A particularly prominent approach to deal with the uncertainty in the estimation of NNs is
dropout (Srivastava et al., 2014; Gal and Ghahramani, 2016). Dropout can not only be used as
a regularization method during estimation but also for prediction, which results in an ensemble
of forecasts and is readily applicable for the different variants of NN methods considered
here. Compared to deep ensembles based on random initialization, a potential advantage
of dropout-based ensembles is that the lower computational costs make the generation of
larger ensembles more feasible. The aggregation methods we investigated are agnostic to the
generation of the ensembles provided that they can be considered as realizations of the same
basic type of model, and are thus readily applicable to dropout-based ensembles.8 Therefore,
an interesting avenue for future work is to investigate the performance of the combination
methods for different approaches to generate NN-based probabilistic forecasts, e.g., within the
framework of comprehensive simulation testbeds (Osband et al., 2021).

Concerning the network variants considered in this chapter, averaging the output parameters
is equivalent to V=

0 for BQN, and DRN based on a location-scale family. However, in case of
HEN, averaging the bin probabilities, which are the output of the NN, is equivalent to the
LP, while quantile averaging results in a refinement of the binning underlying the forecast
distribution. This property offers an interesting pathway for future work, as deep ensembles

8In experiments with dropout ensembles in the context of the case study (not shown), we found that aggregating
forecast distributions improves the predictions, but the overall performance of both the individual and
combined dropout-based forecasts is substantially worse compared to the ensembles considered here.
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of classification NNs for ordinal target variables can be used to approximate a continuous
forecast based on piecewise uniform distributions. This might be of particular interest in
cases, where the target variable is observed only in ordinal classes, but a continuous forecast
is desired. First, we define a fixed binning that allows to identify a set of class probabilities
with a piecewise uniform distribution, ideally the underlying class definition already provides
a binning. Therefore, we can create an ensemble of piecewise uniform distributions based on
a classification NN.9 Now, aggregating this ensemble of distribution forecasts with VI, we
obtain a much finer binning. Using dropout, we can efficiently generate large ensembles that
result in a fine binning that approximates the desired continuous distribution.

Finally, we summarize three key recommendations for aggregating distribution forecasts
from deep ensembles based on our results:

– To optimize the final predictive performance of the aggregated forecast, the individ-
ual component forecasts should be optimized as much as possible.10 While forecast
combination improves predictive performance, it generally did not effect the ranking
of the different NN-variants for generating probabilistic forecasts, and is unable to fix
substantial systematic errors.

– Generating an ensemble with a size of a least 10 appears to be a sensible choice, with
only minor improvements being observed for more than 20 members. This corresponds
to the results in Fort et al. (2019) and ensemble sizes typically chosen in the literature
(Lakshminarayanan et al., 2017; Rasp and Lerch, 2018), but the benefits of generating
more ensemble members need to be balanced against the computational costs, and
sometimes smaller ensembles have been suggested (Ovadia et al., 2019; Abe et al., 2022).

– Aggregating forecast distributions via VI is often superior to the LP. Thereby, the choice
of the specific variant within the general framework depends on potential misspecifications
of the individual component distributions, as discussed above.

Note that these conclusions, in particular the superiority of the quantile aggregation ap-
proaches, refer to the specific situation of deep ensembles considered here. The property of
shapepreservation justifies the use of VI from a theoretical perspective in a setting where the
ensemble members are based on the same model and data. If the ensemble members differ in
terms of the model used to generate the forecast distribution or the input data they are based
on, shapepreservation might not be desired. Instead, a model selection approach based on the
LP, which allows for obtaining a multimodal forecast distribution, might better represent the
possible scenarios that may materialize.

9This does not only hold for NNs, but instead for any ensemble of classification models.
10Abe et al. (2022) find that deep ensembles do not offer benefits compared to single larger (that is, more

complex) NNs. Our results do not contradict their findings, since we address a conceptually different
question and argue that given the generation of a deep ensemble, the individual members’ forecasts should
be optimized as much as possible. In this situation, a single NN will generally not be able to match the
predictive performance of the associated deep ensemble.



CHAPTER 4

Statistical Postprocessing: Methods

Due to the chaotic nature of the atmosphere, weather prediction is a prime example of
statistical forecasting. The meteorological community has acknowledged the need to quantify
the uncertainty associated with weather prediction and attention has been shifting towards
probabilistic forecasting with the first probabilistic prediction systems becoming operational
at the European Centre for Medium-Range Weather Forecasts (ECMWF) and the US National
Meteorological Center in 1992 (Toth and Kalnay, 1993; Molteni et al., 1996). Nowadays, these
so-called ensemble forecasts are key components of operational systems at many national
and international weather services. Despite substantial improvements over the past decades
(Bauer et al., 2015), ensemble forecasts continue to exhibit systematic errors that require sta-
tistical postprocessing to achieve accurate and reliable probabilistic forecasts, where statistical
postprocessing comprises techniques that learn to correct theses errors based on past forecasts
and observations. Statistical postprocessing has therefore become an integral part of weather
forecasting and standard practice in research and operations.

After giving a brief description of the generation of weather forecasts and the need for statis-
tical postprocessing, we present a wide range of methods for statistical postprocessing ranging
from classic techniques established at meteorological weather services to novel approaches
based on modern ML. While Chapter 4 gives a theoretical overview of the postprocessing
methods, Chapter 5 includes concrete applications of the methods in different case studies.

4.1 Numerical weather prediction and the need for
statistical postprocessing

The goal of weather forecasting is to describe the future state of the atmosphere, which
is a complex, physical system that can be modeled using a set of fundamental differential
equations, referred to as the primitive equations. From a mathematical point of view, the
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problem of weather prediction is an initial value problem, which cannot be solved analytically
for the underlying system of nonlinear partial differential equations. Therefore, numerical
models are applied to solve the problem, a process referred to as numerical weather prediction
(NWP). While the underlying mathematical problem is clearly defined, the development of an
NWP model includes a multitude of choices to make. In this section, we will describe the
challenges of NWP that result in the need for statistical postprocessing. We refer to Warner
(2010) for a detailed description of NWP and to Bauer et al. (2015) for a review on the past,
present and future of NWP.

One of the biggest challenges in weather prediction is that the atmosphere is a chaotic system
meaning that its predictability is inherently limited, even though an exact mathematical
formulation of the system is available. Lorenz (1963), one of the founders of the chaos
theory, describes that smallest changes in the initial values amplify over time and result
in unpredictable behavior, an effect that was later famously coined as the butterfly effect.
Next to chaos theory, there are more practical challenges to weather prediction. In order
to represent the continuous meteorological variables modeled by the differential equations,
NWP models operate on a discretization of time and space that depends on the model at
hand. In general, NWP models become more accurate, the finer the resolution. However,
the finer the resolution, the more computationally expensive the prediction becomes. The
refinement of the numerical grid is therefore limited by the computational resources available.
Due to the discretization, some physical processes cannot be directly resolved by the model,
e.g., processes on a small scale within the grid cells, and need to be incorporated by so-called
parameterizations. The prediction of meteorological variables becomes the more challenging,
the more of the processes involved are affected by parameterizations. Wind gusts and solar
irradiance, which are the main predictands in the case studies of Chapter 5, are two examples
of meteorological variables that are more challenging to predict due to the parameterizations
involved. In theory, the initial values of the numerical problem are given by the current state
of the atmosphere at the grid points when the models are initialized. In practice, it is however
not feasible to measure the desired meteorological variables at the given points in time and
space. Instead, observations from weather stations, airplanes, satellites and other sources are
gathered to approximate the current state of the atmosphere, a process referred to as data
assimilation. Methods of data assimilation combine those observations with first guesses of the
NWP model, while also taking into account other sources of information, in order to generate
the initial values of the numerical models. Due to the limited predictability of chaotic systems
and other sources of uncertainty in NWP models such as the discretization, parameterizations
and the data assimilation, the necessity to quantify the uncertainty in weather prediction
becomes apparent. The idea behind the aforementioned ensemble forecasts is to generate a
set of equally likely future scenarios by running the NWP model multiple times based on
perturbed initial values or different model specifications. We refer to an NWP model that
generates ensemble forecasts as an ensemble prediction system (EPS).
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In this thesis, we will focus on two NWP models from Deutscher Wetterdienst (DWD;
German weather service), namely the ICOsahedral Nonhydrostatic model (ICON; Zängl et al.,
2015) and the COnsortium for Small-scale MOdeling model for Germany (COSMO-DE;
Baldauf et al., 2011). The (global) 40-member ICON-EPS is based on an icosahedral grid and
has a horizontal resolution of 40 km.1 In order to obtain more accurate predictions, DWD
uses a finer resolution for their regional model over Europe, ICON-EU-EPS, which has a
horizontal resolution of 13 km and is nested by the global ICON-EPS. From 2012 to 2018, the
operational model of DWD over Germany was the 20-member COSMO-DE-EPS with a much
finer horizontal resolution of 2.8 km, which allows to resolve more processes relevant for the
prediction of wind gusts.2

Although the quality of ensemble forecasts has continuously increased since their introduction
(Bauer et al., 2015), they are subject to systematic errors. The first typical type of error is a
systematic bias of the ensemble members, meaning that they frequently over- or underforecast
the variable of interest. An example of a biased ensemble forecast is given in the left panel
of Figure 4.1. Assessing the calibration of ensemble forecasts typically reveals that the
forecasts are strongly underdispersed resulting in U-shaped verification rank histograms. This
can be explained by the fact that the ensemble spread is too small, that is, the forecast is
too sharp. The right panel in Figure 4.1 illustrates such an dispersion error for exemplary
COSMO-DE-EPS forecasts of wind gusts. In general, it can be said that ensemble forecasts do
not adequately represent the forecast uncertainty. Note that we verify the ensemble forecasts
against station observations in our work and that, depending on the local characteristics of
the station, the degree of the systematic errors might therefore be larger.

Due to the systematic errors exhibited by ensemble forecasts, statistical postprocessing
is required to achieve accurate and reliable probabilistic forecasts. Methods for statistical
postprocessing are based on techniques from statistical learning and aim to correct the
systematic errors of the ensemble forecasts based on a set of past predictions and observations.
Figure 4.1 illustrates how biased or underdispersed ensemble forecasts can be corrected using
statistical postprocessing for exemplary forecasts from the case study on wind gust prediction
in Section 5.3.

1Here, we refer to the discretization that was used before an model update on 23 November 2022, when the
grid of the ICON-EPS and ICON-EU-EPS was refined (https://www.dwd.de/DE/leistungen/opendata/
neuigkeiten/opendata_mai2022_1.html).

2In 2018, the horizontal resolution of the COSMO-DE model changed to 2.2 km and the model was afterwards
referred to as COSMO-D2 (Deutscher Wetterdienst, 2018). Three years later, the COSMO-D2 model
was succeeded by the ICON-D2 model, which integrated the regional model for Germany in the ICON
framework, also with a horizontal resolution of 2.2 km (Deutscher Wetterdienst, 2021).

https://www.dwd.de/DE/leistungen/opendata/neuigkeiten/opendata_mai2022_1.html
https://www.dwd.de/DE/leistungen/opendata/neuigkeiten/opendata_mai2022_1.html
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Figure 4.1: Illustration of ensemble forecasts that are subject to a bias (left) and underdis-
persion (right). The exemplary time series of COSMO-DE-EPS forecasts (grey),
station observations (red) and statistically postprocessed forecasts (yellow) are
taken from the case study on wind gust prediction in Section 5.3. The left panel
is based on 6 hour forecasts for the station Mühlacker in January 2016, the right
is based on 5 hour forecasts for the station Stötten in February 2016. The post-
processed forecasts were generated using EMOS, a method that will be presented
in Section 4.2.1. The yellow dashes correspond to quantile forecasts at the levels
1/21, . . . , 20/21 derived from the predictive distribution they represent.

4.2 Established methods for postprocessing

We start the review of statistical postprocessing methods with established benchmark methods
of different complexity that are in use at weather services. We use the prediction of the speed
of wind gusts as running example, as it is the main application in the thesis.

We begin by introducing the notation. The weather variable of interest will be denoted by Y

when we refer to the associated random variable and by y when we refer to the observed value.
In our running example, we consider the speed of wind gusts which only takes positive values,
therefore y > 0. Further, the ensemble forecasts of the variable of interest will be denoted by
x. Note that x = (x1, . . . , xm) is an m-dimensional vector, where m is the ensemble size and
xi the ith ensemble member for i = 1, . . . , m. The ensemble mean of x is denoted by x and
the standard deviation by s(x).

We will use the term predictor or feature interchangeably to denote a predictor variable
that is used as an input to a postprocessing model, while we will refer to the vector including
all predictors by xxx ∈ Rp, where p is the number of predictors and xxxi is the ith predictor
for i = 1, . . . , p. For most meteorological variables, we will typically use the ensemble mean
as predictor. A set of past observations, ensemble forecasts of the variable of interest and
predictor vectors is denoted by {(y1, x·1,xxx·1), . . . , (yn, x·n,xxx·n)}, where n is the size of the set,
x·j = (x1j , . . . , xmj) and xxx·j = (xxx1j , . . . ,xxxpj) for j = 1, . . . , n.
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4.2.1 Ensemble model output statistics

Ensemble model output statistics (EMOS), originally proposed by Gneiting et al. (2005) and
sometimes referred to as nonhomogeneous regression, is one of the most prominent statistical
postprocessing methods. EMOS is a distributional regression approach, which assumes that,
given the predictor vector xxx, the weather variable of interest Y follows a parametric distribution
L (θ) with θ ∈ Θ, where Θ denotes the parameter space of L. The distribution parameter
(vector) θ is connected to the ensemble forecast via a link function g such that

Y | xxx ∼ L (θ) , θ = g (xxx) ∈ Θ. (4.1)

Typically, the predictor variables are given by the ensemble members x1, . . . , xm, or summary
statistics of the ensemble such as the mean x and the standard deviation s(x), which are
linked to the parameter (vector) θ via a linear transformation depending on a set of regression
coefficients that are estimated via optimum score estimation using the CRPS or LogS.

The choice of the parametric family for the forecast distribution depends on the weather
variable of interest. Gneiting et al. (2005) use a Gaussian distribution for temperature and
sea level pressure forecasts. More complex variables like precipitation or solar irradiance
have been modeled via zero-censored distributions, whose mixed discrete-continuous nature
enables point masses for the events of no rain or no irradiance.3 In contrast to these variables,
wind speed is assumed to be strictly positive and modeled via distributions that are left-
truncated at zero. In the extant literature, positive distributions that have been employed
include truncated normal (Thorarinsdottir and Gneiting, 2010), truncated logistic (Scheuerer
and Möller, 2015), log-normal (Baran and Lerch, 2015) or truncated generalized extreme
value (GEV; Baran et al., 2021b) distributions. While the differences observed in terms
of the predictive performance for different distributional models are generally only minor,
combinations or weighted mixtures of several parametric families have been demonstrated to
improve calibration and forecast performance for extreme events (Lerch and Thorarinsdottir,
2013; Baran and Lerch, 2016, 2018). While the parametric families employed for wind speed
can be assumed to be appropriate to model wind gusts as well, specific studies tailored to wind
gusts are scarce. For our main application on wind gust predictions, we therefore focus on the
distributions applied to wind speed. In agreement with Pantillon et al. (2018), preliminary
results for the comparison of the distribution types used for wind speed for data from the case
study on wind gust forecasting in Section 5.3 have shown that the differences among them
are minor. In the following, we will focus on the truncated logistic distribution, which was
introduced in Section 2.3.1.

After identifying a distribution for our EMOS model, the location parameter µ ∈ R and
scale parameter σ > 0 need to be linked to the ensemble forecast x. We are using the link

3In the case studies in Sections 5.1 and 5.2, we will model precipitation and solar irradiance variables with
the zero-censored logistic distribution, which was introduced in Section 2.3.1.
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function

g(x; a, b, c, d) := (µ(x; a, b), σ(x; c, d)) , (4.2)

where

µ (x; a, b) := a + exp (b) x, σ (x; c, d) := exp (c + d log (s(x))) (4.3)

and a, b, c, d ∈ R are the EMOS parameters that are estimated via optimum score estimation.
At this point, we want to comment on the implementation of the EMOS approach used in the
case study on wind gust predictions in Section 5.3. We start with the general distributional
regression setting based on optimum score estimation, where we specify neither a forecast
distribution nor a link function. Let S be the corresponding strictly proper scoring rule, then
the general optimization problem we have to solve is given by

min
g∈H

S̄n (g) with S̄n (g) := 1
n

n∑
j=1

S (L (g (xxx·j)) , yj) , (4.4)

where H is a suitable function space, L(θ) the forecast distribution dependent on the parameter
vector θ = g(xxx) and {(xxx·1, y1), . . . , (xxx·n, yn)} a training set of size n. As aforementioned, the
link function g is typically a linear function or a transformation thereof based on the ensemble
members or ensemble summary statistics such as the link function used in equations (4.2)
and (4.3). Denoting the coefficients of the linear combination within the link function g by
ϑ ∈ Rd, where d denotes the number of coefficients, we can rewrite the problem in equation
(4.4) as follows

min
ϑ∈Rd

S̄n (ϑ) with S̄n (ϑ) := 1
n

n∑
j=1

S (L (g (xxx·j ; ϑ)) , yj) . (4.5)

Now, we return to the case of a logistic distribution left-truncated at zero and the parame-
terization of location and scale parameter as in equations (4.2) and (4.3). In practice, the
optimization problem in equation (4.5) must be solved numerically for the CRPS and LogS,
whose variants for the truncated logistic distribution have been introduced in Section 2.3.1.
Typically, this is done using gradient-based optimizers. Although an analytic formula of
the gradient is not required for such optimization routines, providing them reduces the
computational efforts and results in closer approximations to the optimal values. Given the
parameterization in equations (4.2) and (4.3), we can calculate the partial derivatives with
respect to the EMOS parameter vector ϑ := (a, b, c, d):

∂aS̄n (ϑ) = 1
n

n∑
j=1

∂µS (L (g (x·j ; ϑ)) , yj) , (4.6)
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∂bS̄n (ϑ) = 1
n

n∑
j=1

x·j · exp(b) · ∂µS (L (g (x·j ; ϑ)) , yj) , (4.7)

∂cS̄n (ϑ) = 1
n

n∑
j=1

σ (x·j ; c, d) · ∂σS (L (g (x·j ; ϑ)) , yj) , (4.8)

∂dS̄n (ϑ) = 1
n

n∑
j=1

(log s(x·j)) · σ (x·j ; c, d) · ∂σS (L (g (x·j ; ϑ)) , yj) , (4.9)

where {(x·1, y1), . . . , (x·n, yn)} is a training set of size n. The gradient of both the CRPS and
LogS can be calculated analytically for truncated or censored logistic distributions (Jordan
et al., 2019). Hence, we can implement a gradient-based optimization in order to solve
the optimization problem underlying our EMOS variant based on the partial derivatives in
equations (4.6)–(4.9).

4.2.2 Gradient-boosting extension of EMOS

The general distribution regression framework in equation (4.1) allows for any real-valued
predictor vector xxx, still most EMOS approaches rely only on forecasts of the weather variable of
interest or a small selection of carefully chosen variables, although a large variety of additional
meteorological predictor variables is available. For the fact that the classic EMOS approach
from Section 4.2.1 is not appropriate for a (large) set of multiple predictor variables, there are
two main explanations, which mirror problems from deterministic regression settings such as
the linear least squares regression.

The first is the specification of the underlying link function g, which connects the predictor
variables and the distribution parameters. Based on the assumption that ensemble forecasts
are biased and subject to dispersion errors such as underdispersion, a linear transformation of
the ensemble mean or members and of the standard deviation of the ensemble forecasts is a
straightforward choice for the type of the link function. However, if we include forecasts of
other meteorological variables, we have to make an assumption on the influence of this variable
on the distributional parameters, which define the forecast distribution. Given the example of
wind gusts, it is not straightforward to see how forecasts of temperature or precipitation are
connected to the target variable. Often, nonlinear relations and interactions between different
meteorological variables are present, which are difficult to incorporate in the link function.
Even though a linear relation between the predictor variable and the predictand might not be
supported from a meteorological point of view, using a linear link function based on a set of
predictor variables might still result in superior predictive performance.

Introducing a large set of predictor variables typically results in a more complex model
and one is confronted with the problem of overfitting, which is strongly connected to the
bias-variance trade-off (e.g., Hastie et al., 2009). A complex model with a large degree of
freedom has the capability to learn complex relations from the data, but may also (over-)adapt
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to spurious patterns in the training data that are the result of data sampling, therefore
the model has a large estimation variance. On the other side, a parsimonious model is not
capable of adapting to complex patterns in the data, but its estimation is much more robust
due to the lower number of parameters to be estimated. The first case, where a model
overadapts to the training data and does not generalize well on unseen data, is referred to
as overfitting. Returning back to EMOS, we face the problem of overfitting when using a
large set of predictors, as the number of coefficients becomes large. If one does not want to
carefully select the predictor variables by hand with the risk of finding a suboptimal set of
variables, one has to make use of automated regularization techniques, i.e., modifications of
the model estimation that prevent the model from overfitting. There exists a large variety of
regularization techniques, especially in modern ML where complex models with enormous
numbers of parameters are used, much focus lies on regularization (e.g., Hastie et al., 2009).

Here, we rely on a gradient-boosting technique for statistical postprocessing of ensemble
forecasts via EMOS. Messner et al. (2017) introduce the gradient-boosting extension of EMOS
(EMOS-GB) for distributions that are defined by a real-valued location parameter µ and a
positive scale parameter σ > 0, that is, θ = (µ, σ) ∈ R × R>0. Examples are the normal and
logistic distribution or truncated and censored variants thereof. Adaptation towards other
parametric distributions is straightforward. In line with most EMOS approaches and our
parameterization in equations (4.2) and (4.3), Messner et al. (2017) introduce their approach
for linear parameterizations of the form

µ (xxx; a, b1, . . . , bp) := a +
p∑

i=1
bi xxxi, a, b1, . . . , bp ∈ R, (4.10)

σ (xxx; c, d1, . . . , dp) := exp
(

c +
p∑

i=1
di xxxi

)
, c, d1, . . . , dp ∈ R. (4.11)

Again, EMOS-GB can be easily adapted towards other (differentiable) parameterizations.
EMOS-GB solves the optimum score minimization problem in equation (4.5) iteratively using
a gradient-boosting algorithm. The idea of boosting is to initialize all coefficient values at zero,
and to update only the coefficients of the predictor that improves the predictive performance
most. Based on the gradient of the loss function that can be calculated analogously to
equations (4.6)–(4.9), the predictor variables with the highest correlation to the gradients of
the location and scale parameter are selected. Then, that of the two updates that improves the
current fit most is applied, where update refers to taking a step in the direction of the steepest
descent. The size of the step is fixed and predetermined by the user as a hyperparameter.
This procedure is repeated until a stopping criterion such as a maximum number of iterations
or a threshold for the improvement of the fit is reached.
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4.2.3 Member-by-member postprocessing

Member-by-member postprocessing (MBM; van Schaeybroeck and Vannitsem, 2015) is based
on the idea to adjust each member individually in order to generate a calibrated ensemble.
Wilks (2018) highlights several variants of MBM, which are of the general form

x̃i := (a + bx) + γ (xi − x) , i = 1, . . . , m, a, b, γ ∈ R, (4.12)

where x̃ = (x̃1, . . . , x̃m) denotes the postprocessed ensemble. The first term in equation (4.12)
represents a bias-corrected ensemble mean, whereas the second term includes the individual
members with γ scaling the distance to the ensemble mean.

Note that the mean of the adjusted ensemble depends only on the parameters a and b and
not the stretch coefficient γ:

x̃ = 1
m

m∑
i=1

[(a + bx) + γ (xi − x)]

= (a + bx) + γ

(
1
m

m∑
i=1

xi − x

)
= a + bx (4.13)

Our implementation of MBM postprocessing follows van Schaeybroeck and Vannitsem
(2015), who let the stretch coefficient γ depend on the ensemble mean difference via

γ := c + d

δ(x) , (4.14)

where c, d ∈ R and the ensemble mean difference δ is defined by

δ(x) := 1
m2

m∑
i,l=1

|xi − xl| . (4.15)

Note that the definition of the stretch coefficient in equation (4.14) results in an ensemble
mean difference of the adjusted ensemble that is a linear transformation of that of the original
ensemble, as the following calculation shows:

δ(x̃) = 1
m2

m∑
i,l=1

|x̃i − x̃l|

= 1
m2

m∑
i,l=1

|γ (xi − xl)|

= |γ| δ(x)

= |cδ(x) + d| . (4.16)
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Hence, the parameters c and d can be used to adjust the ensemble mean difference of the
MBM ensemble forecast, which is a measure of the sharpness of the forecast distribution.

Following the paradigm of Gneiting et al. (2007), we want to estimate the MBM parameters
via optimum score estimation. However, the MBM forecasts are given in form of an ensemble
and not a full predictive distribution. Therefore, one either has to resort on assumptions for
the distribution of the ensemble forecasts or estimate the parameters in a distribution-free
approach. Here, we consider two techniques presented in Wilks (2018), which include one
approach based on MLE and one on CRPS estimation.

The first approach is based on the assumption that the AE of the mean of the adjusted
ensemble follows an exponential distribution with mean δ(x̃), that is, the ensemble mean
difference of the adjusted ensemble. Altogether, that is,

∣∣x̃ − Y
∣∣ | x ∼ Exp

(
δ (x̃)−1

)
. (4.17)

Under this distributional assumption, we can now calculate the LogS for a given observation
y ∈ R. Let f be the PDF of an exponential distribution with mean δ(x̃), then

LogS
(
f,
∣∣x̃ − y

∣∣) = − log
(
f(
∣∣x̃ − y

∣∣))
= − log

(
δ (x̃)−1 exp

(
−
∣∣x̃ − y

∣∣
δ (x̃)

))

=
∣∣x̃ − y

∣∣
δ (x̃) + log δ (x̃)

= |(a + bx) − y|
|cδ(x) + d|

+ log |cδ(x) + d| . (4.18)

Note that the LogS does not depend on the accuracy of the adjusted ensemble members but
only on the accuracy of the corresponding mean forecast. Analogous to the optimization
problem in equation (4.5), the MBM parameters are estimated by minimizing the mean LogS
over the training set.

The other variant for the estimation of the MBM parameters is a distribution-free approach
based on the sample CRPS. The advantage of this method is that by using the empirical
distribution function to calculate the CRPS no assumption on the distribution is required.
Using the expectation representation of the CRPS in equation (2.11), the CRPS for the
empirical distribution function F̂ based on the sample x̃ = (x̃1, . . . , x̃m) is given by

CRPS
(
F̂, y

)
= 1

m

m∑
i=1

|x̃i − y| − 1
2δ(x̃), y ∈ R, (4.19)

according to Jordan et al. (2019). The accuracy of each ensemble member is penalized in
the first term, the second term penalizes the sharpness via the ensemble mean difference.
In line with the MLE approach, the MBM parameters can be estimated by minimizing the
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mean CRPS on the training set. Note that the calibrated ensemble x̃ depends on the MBM
parameters via equations (4.12) and (4.14).

A main advantage of MBM compared to all other approaches is that the rank correlation
structure of the ensemble forecasts is preserved by postprocessing, since each member is
transformed individually by the same linear transformation. MBM thus results in forecasts
that are physically consistent over time, space and also different weather variables, even if
MBM is applied for each component separately (van Schaeybroeck and Vannitsem, 2015;
Schefzik, 2017; Wilks, 2018).

4.2.4 Isotonic distributional regression

Henzi et al. (2021b) propose isotonic distributional regression (IDR), a novel nonparametric
regression technique, which results in simple and flexible probabilistic forecasts as it depends
neither on distributional assumptions nor prespecified transformations. Since it requires no
parameter tuning and minimal implementation choices, it is an ideal generic benchmark in
probabilistic forecasting tasks.

IDR is built on the assumption of an isotonic relationship between the predictors and the
target variable. Given a partial order ⪯ on the covariate space, IDR generates probabilistic
forecasts such that F (xxx) ⪯st F (x′x′x′) if xxx ⪯ x′x′x′, where F (xxx) and F (xxx′) denote the IDR forecasts
dependent on the predictor vectors xxx and x′x′x′ respectively and ⪯st is the stochastic order
defined by

F ⪯st G :⇐⇒ F (y) ≥ G(y) ∀y ∈ R, (4.20)

for two probability measures F and G. In the univariate case with only one predictor,
isotonicity is based on the linear ordering on the real line, that is, z ⪯ z′ if, and only if, z ≤ z′

for z, z′ ∈ R. When multiple predictors (such as multiple ensemble members) are given, the
multivariate covariate space is equipped with a partial order. Then, the only implementation
choice required for IDR is the selection of a partial order on the covariate space. Among the
choices introduced in Henzi et al. (2021b), the componentwise order defined by

z ⪯comp z′ :⇐⇒ zi ≤ z′
i, i = 1, . . . , p, (4.21)

for z ∈ Rp is not appropriate under the assumption of exchangeability among the ensemble
members. On the other side, the empirical stochastic order

z ⪯sd z′ :⇐⇒ F̂ (z) ⪯st F̂
(
z′) , z ∈ Rp, (4.22)

where F̂ (z) denotes the empirical distribution of z ∈ Rp, and the empirical increasing convex
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order, which we define for z ∈ Rp via

z ⪯icx z′ :⇐⇒
p∑

i=l

zi ≤
p∑

i=l

z′
i, l = 1, . . . , p, (4.23)

are appropriate for the situation at hand when all ensemble members are used as predictors for
the IDR model. Note that the empirical stochastic order is equivalent to the componentwise
order on the order statistics of the predictor vector and is a stronger notion than the empirical
increasing convex order, meaning that the stronger order implies the weaker.

Under those order restrictions, a conditional distribution that is optimal with respect
to a broad class of relevant loss functions including proper scoring rules is then estimated.
Conceptually, IDR can be seen as a far-reaching generalization of widely used isotonic regression
techniques that are based on the PAV-algorithm (de Leeuw et al., 2009). To the best of
our knowledge, the case study on probabilistic wind gust forecasting in Section 5.3 is the
first application of IDR in a postprocessing context besides the case study on precipitation
accumulation in Henzi et al. (2021b), who find that IDR forecasts were competitive to EMOS.

4.2.5 Quantile regression forests

A nonparametric, data-driven technique that neither relies on distributional assumptions, link
functions nor parameter estimation is quantile regression forests (QRF), which was first used
in the context of postprocessing by Taillardat et al. (2016). RFs are randomized ensembles
of decision trees, which operate by splitting the predictor space in order to create an analog
forecast (Breiman, 1984). This is done iteratively by first finding an order criterion based
on the predictor that explains the variability within the training set best, and then splitting
the predictor space according to this criterion. This procedure is repeated on the resulting
subsets until a stopping criterion is reached, thereby creating a partition of the predictor
space. Following the decisions at the so-called nodes, one then obtains an analog forecast
based on the training samples. RFs create an ensemble of decision trees by considering only a
randomly chosen subset of the training data at each tree and of the predictors at each node,
aiming to reduce correlation between individual decision trees (Breiman, 2001). QRF extends
the RF framework by performing a quantile regression that generates a probabilistic forecast
(Meinshausen, 2006). The QRF forecast thus approximates the forecast distribution by a set
of quantiles derived from the set of analog observations.

4.3 Neural network-based postprocessing

Over the past decade, NNs have become ubiquitous in data-driven scientific disciplines and
have in recent years been increasingly used in the postprocessing literature (see Vannitsem
et al., 2021, for a recent review). NNs are universal function approximators for which a variety
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Figure 4.2: Graphical illustration of the framework for NN-based postprocessing presented in
Section 4.3.1.

of highly complex extensions has been proposed. However, NN models often require large
datasets and computational efforts, and are sometimes perceived to lack interpretability.

In the following, we will present a group of postprocessing methods based on NNs that
has already been investigated regarding the aggregation of distributional forecasts from deep
ensembles in Chapter 3, but not been properly introduced yet. Following the introduction of
a general framework of our network-based postprocessing methods, we will introduce three
model variants that are based on the forecast distributions introduced in Section 2.3. In the
interest of brevity, we will assume a basic familiarity with NNs and the underlying terminology.
We refer to McGovern et al. (2019) for an accessible introduction in a meteorological context
and to Goodfellow et al. (2016) for a detailed review.

4.3.1 A framework for neural network-based postprocessing

The use of NNs in a distributional regression-based postprocessing context was first proposed in
Rasp and Lerch (2018). Our framework for NN-based postprocessing builds on their approach
and subsequent developments in Bremnes (2020), Scheuerer et al. (2020), and Veldkamp et al.
(2021), among others. In particular, we propose three model variants that utilize a common
basic NN architecture, but differ in terms of the form that the probabilistic forecasts take
which governs both the output of the NN as well as the loss function used for parameter
estimation. A graphical illustration of this framework is presented in Figure 4.2.

The rise of artificial intelligence and NNs is closely connected to the increase in data
availability and computing power, as these methods unfold their strengths when modeling
complex nonlinear relations trained on large datasets. A main challenge in the case of
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postprocessing is to find a way to optimally utilize the entirety of available input data while
preserving the inherent spatial and temporal information. We focus on building one network
jointly for all stations at a given lead time, which we will refer to as locally adaptive joint
network. For this purpose, Rasp and Lerch (2018) propose a station embedding, where a
station identifier is mapped to a vector of latent features, which are then used as auxiliary
input variables of the NN. The estimation of the embedding mapping is integrated into the
overall training procedure and aims to model local characteristics implicitly, contrary to Lerch
and Baran (2017) and Hamill et al. (2008), who apply a preliminary procedure to pool stations
respectively grid points that exhibit similar characteristics.

Our basic NN architecture consists of 2 hidden layers and a customized output. The training
procedure is based on the adaptive moment estimation algorithm (Adam; Kingma and Ba,
2014), and the weights of the network are estimated on the training period by optimizing a
suitable loss function tailored to the desired output. We apply an early-stopping strategy that
stops the training process when the validation loss remains constant for a given number of
epochs to prevent the model from overfitting.

Chapter 3 is motivated by the fact that NN-based forecasting models are often run several
times from randomly initialized weights and batches to produce deep ensembles in order
to account for the randomness of the training process based on stochastic gradient descent
methods. We follow this principle and produce an ensemble of 10 models for each of the three
variants of NN-based postprocessing models introduced above, which leads to the question
how the resulting deep ensembles should be aggregated into a single probabilistic forecast for
every model. Following the conclusions in Chapter 3, we combine the predictive distributions
using VI, that is, quantile aggregation.4 We refer to Section 3.2 for a detailed description of
the aggregation of the forecast distributions associated with the three network variants.

4.3.2 Distributional regression network

Rasp and Lerch (2018) propose a postprocessing method based on NNs that extends the
EMOS framework in equation (4.1), which we coined DRN in Section 3.2.1. A key component
of the improvement is that instead of relying on prespecified link functions such as equations
(4.2) and (4.3) or (4.10) and (4.11) to connect input predictors to distribution parameters, an
NN is used to model a flexible and nonlinear relation in a data-driven way. Given a specific
network architecture that defines a total of d weights (and biases) ϑ ∈ Rd, the NN can be
interpreted as a link function g(·; ϑ). Then, the estimation of the NN corresponds to an
optimization problem that can be written analogously to equation (4.5), where S is a strictly

4The question of finding the best aggregation method for the deep ensembles presented in the case study
in Section 5.3 was the starting point for Chapter 3. While developing the models for the case study in
Section 5.3, we found that VI was preferable over LP for all three variants. However, at that point, we did
not investigate the optimal size of the deep ensemble. Instead, we followed Rasp and Lerch (2018) and
Bremnes (2020) who use deep ensembles of size 10. Only later, we conducted the case study in Section 3.4,
which focuses on the aspect of aggregation, and found that 10 was also the optimal ensemble size.
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proper scoring rule such as the CRPS or LogS. However, the problem is solved differently
than in the EMOS approach using stochastic gradient descent methods as is standard practice
for NNs. The output of the NN is thus given by the forecast distribution parameters θ = g (xxx)
for a predictor vector xxx.

4.3.3 Bernstein quantile network

Bremnes (2020) extends the DRN framework of Rasp and Lerch (2018) towards a semipara-
metric approach based on the Bernstein quantile function introduced in Section 2.3.2 such
that

Y | xxx ∼ Qα, α = g (xxx) ∈ Rd+1, (4.24)

where the link function g is given by the NN and Qα denotes the Bernstein quantile function in
equation (2.33) dependent on the coefficient vector α = (α0, . . . , αd). The Bernstein quantile
network (BQN; Section 3.2.2) was proposed for wind speed forecasting, but can be readily
applied to other target variables of interest due to its flexibility. The key implementation
choice is the degree d, with larger values leading to a more flexible forecast but also a larger
estimation variance. For a given degree d, the BQN forecast is fully defined by the d + 1
basis coefficients. In contrast to Bremnes (2020), we enforce monotonicity by targeting the
increments α̃0 ∈ R and α̃l ≥ 0, l = 1, . . . , d, based on which the coefficients can be derived via
the recursive formula

α0 = α̃0, αl = αl−1 + α̃l, l = 1, . . . , d. (4.25)

We obtain the increments as output of the NN and apply a softplus activation function in
the output layer (besides the first component), which ensures positivity of the increments
and, according to Section 2.3.2, thereby strictly increasing coefficients and quantile functions.
As noted in Section 2.3.2, the lower bound of the support is given by α0, hence the softplus-
activation function should only be applied to the first component of the output when we
assume that the target variable is positive. Due to the lack of a readily available closed form
expression of the CRPS or LogS for BQN forecasts and following Bremnes (2020), the network
parameters are estimated based on the QS. According to equation (2.20), we can approximate
the CRPS with the average QS over a sufficiently large set of equidistant quantile levels.
Hence, we use the following loss function for our network:

S (Qα, y; nq) := 1
nq

nq∑
i=1

ρτi (Qα (τi) , y) with τi = i

nq + 1 for i = 1, . . . , nq, (4.26)

where Qα denotes the BQN forecast, y ∈ R the observation and nq the number of equidistant
quantiles considered.
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4.3.4 Histogram estimation network

The third network-based postprocessing method may be considered as a universally applicable
approach to probabilistic forecasting and is based on the idea to transform the probabilistic
forecasting problem into a classification task, one of the main applications of NNs. This is
done by partitioning the observation range in distinct classes and assigning a probability to
each of them. In mathematical terms, this is equivalent to assuming that the probabilistic
forecast is given by the piecewise uniform distribution introduced in Section 2.3.3, that is,

Y | xxx ∼ U(b, p), (b, p) = g (xxx) ∈ R2N+1, (4.27)

where U(b, p) denotes a piecewise uniform distribution with N bins based on the edges
b = (b0, . . . , bN ) and bin probabilities p = (p1, . . . , pN ). Because the PDF of such a distribution
is given by a piecewise constant function, which resembles a histogram, we refer to this approach
as histogram estimation network (HEN; Section 3.2.3). Variants of this approach have been
used in a variety of disciplines and applications (e.g., Felder et al., 2018; Gasthaus et al., 2019;
Li et al., 2021). For recent examples in the context of postprocessing, see Scheuerer et al.
(2020) and Veldkamp et al. (2021).

Given a fixed number of bins specified as a hyperparameter, the bin edges and corresponding
bin probabilities need to be determined. There exist several options for the output of the
NN architecture to achieve this. The most flexible approach, for example implemented in
Gasthaus et al. (2019), would be to obtain both the bin edges and the probabilities as output
of the NN. We here instead follow a more parsimonious alternative and fix the bin edges,
so that only the bin probabilities are determined by the NN, which can be interpreted as
a probabilistic classification task. Note that alternatively, it is also possible to fix the bin
probabilities and determine the bin edges by the NN. This would be equivalent to estimating
the quantiles of the forecast distribution at the levels defined by the prespecified probabilities,
that is, a quantile regression.

Both the CRPS and the LogS, which we have calculated in Section 2.3.3, can be used to
estimate the NN. As stated in Section 2.3.3, minimizing the LogS reduces to the categorical
cross-entropy in equation (2.57) for our approach with fixed bins. Thus, one can estimate the
HEN forecast via a standard classification network preserving the optimum scoring principle.



CHAPTER 5

Statistical Postprocessing: Case Studies

Facing the decision to select a method for statistical postprocessing, the most sophisticated
model may not always be the best choice. The more complex a method is or the more degrees
of freedom it includes, the more data is required, in a sense that not only the sample size but
also the inherent information increases, a well-known principle in statistics (e.g., Hastie et al.,
2009, Chapter 7). Hence, practical aspects ought to be taken into account and a model should
be tailored to the situation at hand in order to result in the best predictive performance.

The methods presented in Chapter 4 can be divided in three groups of increasing complexity.
Starting with established, comparatively simple techniques rooted in statistics, EMOS, MBM
and IDR form the first group of basic statistical postprocessing techniques, where the term
basic refers to the fact that these methods solely use the ensemble forecasts of the variable of
interest as predictors. The second group of postprocessing methods consists of the benchmark
ML methods QRF and EMOS-GB that are able to incorporate additional predictor variables
besides ensemble forecasts of the variable of interest in an automated, data-driven way. The
third group of postprocessing methods comprises the NN variants DRN, BQN and HEN.

Following the introduction of the methods in Chapter 4, we are applying them in three case
studies of increasing complexity here in Chapter 5. The first introductory section exemplifies
the effects of statistical postprocessing using the basic EMOS approach. Building up on
that, the second section includes more sophisticated EMOS models for solar irradiance,
which is a nonstandard forecasting target and has in recent times received more attention
due to its importance for renewable energy sources. The third and last case study is the
most comprehensive, a systematic comparison of the three groups for wind gust forecasting.
In each case study, we will introduce the setting, present the data, describe the model
configurations tailored to the situation at hand and then assess the predictive performance
guided by the principle of maximizing sharpness subject to calibration. At last, we wrap up
the chapter discussing advantages and shortcomings of the postprocessing methods based on
the conclusions drawn from the case studies.
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5.1 Near real-time postprocessing on KIT-Weather

The Department Troposphere Research of the Institute of Meteorology and Climate Research
(IMK-TRO) at the Karlsruhe Institute of Technology (KIT) runs the KIT-Weather portal,
where several forecasting products have been implemented by members of IMK-TRO.1 One of
the products are the so-called ensemble boxplot meteograms, which illustrate the temporal
evolution of operational ICON ensemble forecasts in near real-time via boxplots. The user can
choose between meteograms of several meteorological variables for various European cities
including lead times up to six and a half days.

To test statistical postprocessing methods in a pseudo-operational setting, we have im-
plemented a near real-time postprocessing approach on the portal. We decided to use the
robust EMOS approach presented in Section 4.2.1, since it can be easily adapted towards
several of the available meteorological variables and handles small amounts of data well due
to its parsimony. As the postprocessed forecasts, which are accessible on the portal, can
be compared directly to the corresponding ensemble forecasts, they illustrate the effects of
postprocessing on different types of ensemble forecasts. Hence, they also serve one of the main
purposes of the portal, that is, dissemination and outreach. The portal operates in a near
real-time setting meaning that the ensemble forecasts from the latest model initialization are
automatically downloaded, displayed and postprocessed on the server.

Figure 5.1 displays a screenshot of the portal including meteograms of the raw model
output and the corresponding postprocessed forecasts. Note that the boxplots also illustrate
the quantiles at the 10% and 90% level, and that the whiskers extend to the minimum and
maximum of the ensemble.2 While the boxplots are based on a 40-member ensemble, EMOS
generates a full predictive distribution. For the illustration of the postprocessed forecasts, we
replace the ensemble with 40 equidistant predictive quantile forecasts at levels 1/41, . . . , 40/41.
Comparing the meteogram before and after postprocessing, the most obvious finding is that
the length of the boxes increases resulting in less sharp forecasts, a behavior that will be
explained in Section 5.1.3, where we evaluate the postprocessed forecasts.

5.1.1 Data

At the beginning of the project, the portal included eight meteorological variables, namely,
temperature, pressure, wind speed, precipitation rate and sum, cloud cover as well as direct
and diffuse solar irradiance.3 As mentioned at the beginning of the chapter, solar irradiance

1http://www.kit-weather.de/
2For all other boxplots in this thesis, the whiskers reach out at most 1.5 times the interquartile range, as is

standard.
3Additional variables such as wind gusts, snow rate or integrated water vapour were integrated at a later

point in time. Of these variables, postprocessing was later implemented only for wind gusts as the other
variables do not fit the postprocessing framework presented in this section and more data is required. Wind
gusts are however not considered in this section, since the underlying dataset is substantially smaller than

http://www.kit-weather.de/
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Figure 5.1: Screenshot of the ensemble boxplot meteograms on the KIT-Weather portal for
temperature in Karlsruhe (taken on 6 February 2023). The ensemble (top) and
postprocessed forecasts (bottom) are based on the ICON model run initialized at
00 UTC (01 CET) on 6 February 2023. On the left, the model run, the location,
the variable and postprocessing can be selected. On the right, information on the
grid point of the corresponding location is available.

variables are nonstandard for statistical postprocessing, we thus cover those two variables in
more detail in Section 5.2. The variables we consider are described in Table 5.1.

The ensemble forecasts on the portal stem from the operational ICON model that was
introduced in Section 4.1. The 40-member ICON-EPS forecasts shown in the meteograms
include up to 68 lead times reaching up to 180 hours. The lead times are not equidistant,
instead the temporal resolution is finer for shorter lead times and becomes coarser as the lead
time increases. Within the first 48 hours, the temporal resolution is 1-hourly, it is 3-hourly
up to 72 hours, 6-hourly up to 120 hours and 12-hourly between 120 and 180 hours. The
forecasts up to 120 hours are from the ICON-EU-EPS, which is initialized four times a day at
00, 06, 12 and 18 UTC, while the remaining forecasts are taken from the ICON-Global model,
which is initialized only twice a day at 00 and 12 UTC. Note that the ICON-EPS is generated
with the help of random perturbations and the ensemble members can thus be considered
exchangeable. For each city, the forecasts are taken from a representative grid point of the
surrounding grid cell, which is illustrated on the portal (Figure 5.1). The ICON ensemble
data is downloaded from the Open Data Server of DWD and archived several times a day by
IMK-TRO.4 Archiving is required because only the most recent model runs are available.

for the other variables and the variable will be covered in Section 5.3 and Chapter 6 in detail.
4https://opendata.dwd.de/

https://opendata.dwd.de/
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Table 5.1: Overview of the meteorological variables on the KIT-Weather portal considered in
this section, including the availability of observations at surface stations and the
initial date of the forecast archive, each for the ICON-EU and ICON-Global model.

Variable Description Unit KA BE HH MZ MU Start EU Start Global
T_2M Temperature at 2 m °C ✓ ✓ ✓ ✓ ✓ 12/12/2018 08/01/2019
MSLP Air pressure (mean sea level) hPa ✓ ✓ ✓ - ✓ 18/12/2018 -
WIND_10M Momentary wind speed at 10 m km/h ✓ ✓ ✓ - ✓ 17/12/2018 08/01/2019
PREC_RATE Total precipitation rate mm/h ✓ ✓ ✓ ✓ ✓ 17/01/2019 12/02/2019
PREC_SUM Total precipitation sum (acc.) mm ✓ ✓ ✓ ✓ ✓ 17/01/2019 12/02/2019
CLCT Total cloud cover % ✓ - ✓ - ✓ 18/12/2018 08/01/2019

Two of the variables listed in Table 5.1 require additional explanation, namely, the pre-
cipitation rate and sum. The precipitation sum refers to precipitation in the form of rain,
snow, hail and graupel accumulated from the initialization time of the model to the end of
the lead time. Hence, the corresponding time period is extending and the forecast values
are monotonically increasing in the temporal component. In contrast, the precipitation rate
refers to the hourly average between two lead times, in particular, the lead time of interest
and its predecessor, which result in time periods with a length of 1, 3, 6 or 12 hours. The
variable is no direct output of the model, but instead calculated from the precipitation sum.
Further, the mean sea level pressure is calculated based on the temperature at 2 m and the
soil pressure. Besides that, all variables are direct model output. We refer to Zängl et al.
(2015) for detailed descriptions of the ensemble predictions.

Since the portal was launched, the ensemble forecasts on display have been archived at IMK-
TRO. However, observations corresponding to the ensemble forecasts were not included and
needed to be acquired separately in order to develop the statistical postprocessing models. For
the German cities, we obtained the desired observational data for weather stations located near
Karlsruhe (KA), Berlin (BE), Hamburg (HH), Mainz (MZ) and Munich (MU) from the Open
Data Server of DWD.5 The following DWD stations have been selected: Berlin-Tempelhof for
BE (station ID: 433), Hamburg-Fuhlsbüttel for HH (station ID: 1975), Rheinstetten for KA
(station ID: 4177), Mainz-Lerchenberg (ZDF) for MZ (station ID: 3137) and München-Stadt
for MU (station ID: 3379). When multiple stations were available for one location, we decided
to use the station that includes most of the meteorological variables required. Still, it was not
possible to find observations for all forecasts, as not all stations report all of the meteorological
variables (Table 5.1). For detailed descriptions on the observations, we refer to Becker and
Behrens (2012).

When the idea to implement postprocessing on the portal arose in late 2019, the archive

5Although Offenbach is another German city displayed on the portal, it is not included in the postprocessing,
as it was added at a later stage of the project. Further, we decided to exclude the other European cities, as
observations could not be accessed via DWD.
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of the ensemble forecasts included data of almost a year. Table 5.1 shows the first available
initialization times in the dataset ending in February 2019 with the integration of the ICON-
Global forecasts of precipitation. In early 2020, we began with the implementation of the
postprocessing methods and started to regularly retrieve observational data from DWD.6

On the other end, the last initialization time that was acquired with the last update of the
dataset is 7 November 2022.7

Training and test data selection

The parameters of the postprocessing models are estimated with the help of ensemble forecasts
and corresponding observations from a training dataset, where several options in terms of
both spatial and temporal composition can be considered. From the spatial point of view,
there are two traditional approaches: local and global selection (Thorarinsdottir and Gneiting,
2010). In the local approach, the parameters of the predictive distribution for a given location
are estimated using only data from that particular location, resulting in different parameter
estimates for the different locations. In order to ensure numerical stability of the estimation
process, local modeling requires long time periods for training, which is the major disadvantage
of this approach. As it addresses the location-specific forecast error characteristics, it often
results in better forecast skill than global estimation, where training data of the whole ensemble
domain is used and all locations share the same set of parameters. Comparing, e.g., the
verification rank histograms of the ensemble forecasts for KA and MU displayed in Figures 5.2
and 5.3, we find that the error characteristics differ for each location drastically, such as in
case of the mean sea level pressure. Hence, we train separate models for each location.

In the dataset, ensemble predictions of multiple lead times are available and the forecasts are
initialized by the NWP model at four different times of the day. These are treated separately
when estimating model parameters, i.e., a separate postprocessing model is estimated for each
lead time and each initialization hour, based on training datasets comprised of data from
those lead times and initialization hours only. Thereby, we aim to account for changes in
the forecast error characteristics of the raw ensemble predictions over multiple lead times
(Figure 5.4), and for potential diurnal effects by ensuring that the training data covers the
same time of day of the observation.

Regarding the temporal composition, the standard approach in EMOS modeling is the
use of rolling training periods, where training data consists of forecasts and observations for
the n calendar days preceding the target date of interest. Rolling training periods can be
flexibly applied to smaller datasets and enable models to adapt to changes in meteorological
conditions or the underlying NWP system. An alternative approach is to utilize all available
data by considering expanding training periods, motivated by studies suggesting that using

6The observations are obtained via the rdwd package (Boessenkool, 2021). We are updating the data via the
’recent’-subdirectories, which contain observations from the last 500 days up to the current day.

7Due to an outage of the KIT data storage, which IMK-TRO is using to archive the ensemble forecast data,
no further updates had been possible.
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Figure 5.2: Verification rank histograms of the ensemble forecasts (top) and PIT histograms
of the postprocessed forecasts (bottom) for the meteorological variables at the
station in KA for lead times within two days.
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Figure 5.3: Verification rank histograms of the ensemble forecasts (top) and PIT histograms
of the postprocessed forecasts (bottom) for the meteorological variables at the
station in MU for lead times within two days.
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Figure 5.4: Verification rank histograms of the ensemble forecasts (top) and PIT histograms
of the postprocessed forecasts (bottom) for temperature at the station in KA for
different lead time periods.

long archives of training data irrespective of potential NWP model changes during that period
often show superior performance (Lang et al., 2020). Regularly extending training sets may
for example be relevant in operational implementations where data archives might be built up
and expanded over time.

Here, we faced this decision developing the postprocessing models with less than two years
of data. In this case, fixed training periods result in test periods that are too short and, with
less than two years, the periods do not cover the same part of the yearly cycle, while CV
does not mimic the operational setting for the implementation on the website. On the other
side, rolling training periods require frequent updates of the training period in real-time when
used operationally on the portal, which increases the complexity of the implementation and is
more error prone when data or updates are missing. Further, some variables like precipitation
rate or cloud cover require large training sets and are not optimally suited for the use of
rolling training periods. Instead, we decided to use the alternative approach presented above,
namely a monthly extending training period, that is, for each test sample, we use all data
available until the end of the month preceding the day of interest for training of the underlying
model. In an operational context, this means that we update the training set and train the
postprocessing models only once a month.

For the evaluation of the postprocessed forecasts, we define the test period as the year
preceding the last initialization time and use the rest of the data as initial training period.
Then, the training set is updated monthly, that is, each time a test sample starts a new month.
Precisely, we are using the period from 8 November 2021 to 7 November 2022 for testing and
the period from the start of the archive in late 2018 or early 2019 (dependent on the variable;
Table 5.1) to 7 November 2021 as initial training period.
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5.1.2 Model configurations

As mentioned above, we apply the EMOS approach presented in Section 4.2.1 for postprocess-
ing, except for cloud cover.

EMOS models

The first important choice for EMOS is the forecast distribution. Based on the discussion in
Section 4.2.1, we have decided on the parametric distributions given in Table 5.2. Note that
the zero-truncated and zero-censored logistic distribution are described in Section 2.3.1. For
the parameterizations, which are also given in Table 5.2, we use the notation introduced in
Section 4.2, in particular, x = (x1, . . . , x40) here denotes the ensemble forecast of the variable
of interest. The parameterization of the precipitation variables includes a summary statistic
that has not been introduced yet, namely, the fraction of zero-ensemble members p0(x), which
is in general defined for an ensemble x of size m via

p0(x) := 1
m

m∑
i=1

1{xi = 0}. (5.1)

The fraction of zero-ensemble members was included due to a large number of zero-ensemble-
observation pairs, especially for the precipitation rate. Zero-ensemble forecasts also result in
standard deviations of zero, which cause numerical problems as argument of the logarithm.
Therefore, we shift standard deviations of zero on a small threshold, namely 10−4. Because
the precipitation rate includes the largest amount of zeros, we changed the maximum number
of iterations in the optimization from the default value of 100 steps to 10, following the idea
of Scheuerer (2014). The parameterization of the scale parameter for the precipitation and
wind speed follows Jordan et al. (2019), while that of the location parameter for precipitation
was found experimenting with examples from Vannitsem et al. (2018, p. 59), Baran and
Lerch (2016) and Jordan et al. (2019). Further, we restrict the wind speed models to positive
location parameters µ > 0. As described in Section 2.3.1, the mode of the truncated logistic
distribution is given by max(µ, 0) and the reduction in flexibility can thus be seen as a
restriction to positive modes. Given that negative location parameters tend to be estimated
only for wind speeds of low-intensity, which are in general of little interest, and that we
noticed no effect on the predictive performance, the restriction of the parameter space can be
considered to be negligible.

The EMOS parameters are determined using optimum score estimation based on the CRPS,
where we use the L-BFGS-B method (Byrd et al., 1995) in the gradient-based optimization
described in Section 4.2.1.8

8L-BFGS-B refers to an algorithm that uses a Limited memory BFGS (Broyden–Fletcher–Goldfarb–Shanno)
matrix for Bound constrained optimization.
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Table 5.2: Overview of the EMOS models used on the KIT-Weather portal. Note that c, d > 0
for temperature and mean sea level pressure, otherwise all EMOS parameters are
real-valued.

Met. var. Distribution Location Scale
T_2M Gaussian a + bx

√
c + ds2 (x)

MSLP Gaussian a + bx
√

c + ds2 (x)
WIND_10M Zero-truncated logistic exp (a + b log (x)) exp (c + d log (s (x)))
PREC_RATE Zero-censored logistic a + b0p0(x) + b1x exp (c + d log (s (x)))
PREC_SUM Zero-censored logistic a + b0p0(x) + b1x exp (c + d log (s (x)))

Cloud cover

Unlike the other variables, the ensemble forecasts of cloud cover are not postprocessed using
EMOS. Although the ICON-EPS generates continuous forecasts, which take values from 0 to
1 representing the degree of cloudiness in percentage, total cloud cover is observed in classes
from 0 to 8 corresponding to the values {0, 0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 0.9, 1} (Hemri et al.,
2016, Table A1). In order to account for the discrete observations, we use a postprocessing
method tailored to cloud cover that forecasts class probabilities, namely the proportional odds
logistic regression (POLR) model presented in Hemri et al. (2016). The POLR approach is
especially suited for ordinal targets and performs a multinomial logistic regression assuming
proportional odds, that is, predictor coefficients that are constant for all classes. This results
in a more parsimonious model, as only one coefficient for each predictor needs to be estimated,
in addition to one intercept per class.

For a mathematical formulation, we define the classes ck = k together with the accumulated
probabilities πk = Q(Y ≤ ck) for k = 0, . . . , 8. Then, Hemri et al. (2016, equation (4)) define
the POLR model via

logit (πk) = log πk

1 − πk
= θk − βββTxxx, k = 0, . . . , 8, (5.2)

where xxx ∈ Rp denotes the predictor vector, βββ ∈ Rp the (joint) regression coefficient vector
and θk ∈ R the (classwise) intercepts with θ0 < · · · < θ8. The class probabilities pk are the
increments of the accumulated probabilities, i.e., p0 = π0 and pk = πk − πk−1 for k = 1, . . . , 8.

Next to the ensemble mean and variance, we are using the fraction of 100%-forecasts as an
additional predictor following the suggestions of Hemri et al. (2016). It improves the overall
performance and is calculated analogous to the fraction of zero-ensemble members in equation
(5.1), which did not show improvements in forecast performance. As for EMOS, we estimate
a separate model based on a monthly extending train period for each location, lead time and
initialization hour.
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For the meteograms displayed on the website, we generate a 40-member ensemble by
randomly drawing from a piecewise uniform distribution, where each bin corresponds to one of
the nine classes of cloud coverage defined in Hemri et al. (2016, Table A1). While we generate
continuous forecasts for the portal, we evaluate the forecasts based on the discrete observations
and rely on the formula used in Hemri et al. (2016, equation (A3)) for the calculation of the
CRPS.

5.1.3 Results

In this section, we will evaluate the performance of the postprocessing methods. To illustrate
the effects of statistical postprocessing, we first need to investigate the behavior of the ensemble
forecasts.

Predictive performance of the ICON-EPS forecasts

The verification rank histograms in Figure 5.2, which summarize the forecasts for KA for
lead times of up to two days, show different types of miscalibration. The forecasts for wind
speed, temperature, cloud cover, precipitation sum and rate are underdispersed with the
degree of miscalibration decreasing in that order. In contrast to the typical underdispersion,
the ensemble forecasts of mean sea level pressure are overdispersed. Next to dispersion, we
observe a strong negative bias for the temperature and wind speed forecasts, meaning that
the ensemble frequently underforecasts the actually observed value, and a positive bias for
precipitation sum and cloud cover. The rank histograms of precipitation rate and mean sea
level pressure also exhibit a small bias.

In general, we observe underdispersion and biases for all stations. The magnitude of the
systematic errors varies however, e.g., the ensemble forecasts exhibit a strong bias for the
station in MU (Figure 5.3). Hence, the grid point and station selected for MU are not as
representative of each other as for the other stations. The systematic errors do not only
change for the different stations, but also for the lead times. The rank histograms of the
temperature forecasts for KA in Figure 5.4 exemplify that the longer the lead time, the smaller
the degree of underdispersion. This can be explained by the fact that the ensemble range
increases with the lead time, as illustrated by Figure 5.5. The growth of the ensemble range
is in line with the intuition that the forecast uncertainty increases with the lead time due to a
lower predictability.

Even though the degree of miscalibration decreases, the predictive performance measured in
terms of the CRPS becomes worse, as Tables 5.3 and 5.4 demonstrate. Over all stations, the
CRPS of the precipitation sum decreases by 898% from lead times within the first day to lead
times longer than five days, for mean sea level pressure by 272%, for temperature by 81%, for
cloud cover by 39% and for wind speed by 29%, while it does not change for the precipitation
rate. Regarding the extreme decrease in predictive performance for the precipitation sum, we
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Figure 5.5: Ensemble range (dashed) and length of 95.12% PIs of the postprocessed forecasts
(solid) for the meteorological variables dependent on the lead time in hours averaged
over all stations.

have to take into account that the period covered by the forecast is dependent on the lead
time. Therefore, more zero-ensemble-observation pairs, which reduce the mean CRPS, occur
for smaller lead times. Similar arguments hold for the precipitation rate, which has a small
CRPS of almost zero for all lead times. This can be explained by the fact that the fraction of
zero-ensemble-observation pairs is even larger.9

Evaluation of the postprocessed forecasts

Overall, postprocessing improves the predictive performance with respect to the raw ensemble
for all lead times. Comparing the verification rank histograms that we used to evaluate the
predictive performance of the ensemble forecasts with the PIT histograms of the associated
postprocessed forecasts in Figure 5.2, we find that postprocessing corrects the miscalibration
and results in forecasts that are much better calibrated exhibiting histograms that are almost
flat. However, we still find deviations from uniformity. For the mean sea level pressure, the
forecasts are still overdispersed, and for the precipitation sum, the last bin is the most frequent
meaning that we underforecast the accumulated precipitation sum, here almost twice as much
as expected if the forecasts were calibrated. In case of the precipitation rate, the last bin
is also the most frequent, but to a much smaller extent, which might again be due to the
large amount of zeros in the data. For temperature and wind speed, the histograms exhibit
peculiar shapes that stem from the predictive distribution being constrained to the shape of

9Within the evaluation period, the fraction of zero-ensemble-observation pairs is 46%, the fraction of zero-
observations is 88% and the average ensemble mean (median) is 0.07 (0.001) mm/h.
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Table 5.3: Mean CRPS of the postprocessed (ensemble) forecasts for the meteorological
variables for lead times within two days.

Lead times 1–24 hours 25–48 hours
Init. hour 00 UTC 06 UTC 12 UTC 18 UTC 00 UTC 06 UTC 12 UTC 18 UTC

T_2M KA 0.80 (0.92) 0.80 (0.93) 0.80 (0.96) 0.81 (0.94) 0.88 (0.99) 0.89 (1.00) 0.88 (0.99) 0.89 (1.00)
BE 0.59 (0.74) 0.60 (0.78) 0.58 (0.76) 0.59 (0.74) 0.71 (0.83) 0.72 (0.85) 0.70 (0.83) 0.70 (0.83)
HH 0.63 (0.71) 0.64 (0.73) 0.63 (0.71) 0.65 (0.74) 0.74 (0.81) 0.75 (0.82) 0.75 (0.81) 0.75 (0.81)
MZ 0.63 (0.80) 0.63 (0.83) 0.62 (0.85) 0.64 (0.83) 0.72 (0.88) 0.72 (0.90) 0.72 (0.90) 0.73 (0.91)
MU 0.69 (1.09) 0.69 (1.15) 0.68 (1.15) 0.70 (1.07) 0.80 (1.17) 0.80 (1.20) 0.79 (1.19) 0.81 (1.16)

MSLP KA 0.31 (0.32) 0.32 (0.33) 0.30 (0.32) 0.30 (0.31) 0.49 (0.50) 0.49 (0.50) 0.48 (0.49) 0.49 (0.50)
BE 0.28 (0.29) 0.28 (0.29) 0.27 (0.29) 0.28 (0.29) 0.52 (0.53) 0.51 (0.52) 0.50 (0.52) 0.52 (0.53)
HH 0.27 (0.29) 0.27 (0.29) 0.27 (0.29) 0.27 (0.29) 0.50 (0.52) 0.50 (0.53) 0.49 (0.51) 0.50 (0.52)
MU 0.37 (0.72) 0.37 (0.67) 0.35 (0.69) 0.36 (0.79) 0.55 (0.83) 0.55 (0.81) 0.55 (0.85) 0.54 (0.84)

WIND_10M KA 1.93 (3.06) 1.95 (3.06) 1.94 (3.10) 1.94 (3.07) 2.11 (3.11) 2.13 (3.08) 2.10 (3.06) 2.10 (3.05)
BE 1.71 (2.85) 1.73 (2.87) 1.74 (2.86) 1.72 (2.81) 1.90 (2.85) 1.91 (2.87) 1.91 (2.87) 1.89 (2.82)
HH 1.86 (3.62) 1.86 (3.64) 1.84 (3.58) 1.84 (3.50) 2.11 (3.66) 2.09 (3.65) 2.08 (3.61) 2.09 (3.55)
MU 1.37 (1.87) 1.37 (1.88) 1.35 (1.87) 1.36 (1.85) 1.49 (1.95) 1.49 (1.95) 1.50 (1.97) 1.50 (1.96)

PREC_RATE KA 0.06 (0.06) 0.07 (0.07) 0.06 (0.07) 0.06 (0.06) 0.07 (0.07) 0.07 (0.07) 0.07 (0.07) 0.07 (0.07)
BE 0.04 (0.04) 0.04 (0.04) 0.04 (0.04) 0.04 (0.04) 0.04 (0.04) 0.04 (0.04) 0.04 (0.04) 0.04 (0.04)
HH 0.06 (0.06) 0.06 (0.06) 0.06 (0.06) 0.06 (0.06) 0.06 (0.06) 0.06 (0.06) 0.06 (0.06) 0.06 (0.06)
MZ 0.04 (0.04) 0.04 (0.05) 0.05 (0.05) 0.04 (0.04) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05)
MU 0.07 (0.08) 0.07 (0.09) 0.07 (0.08) 0.07 (0.08) 0.07 (0.08) 0.08 (0.09) 0.08 (0.09) 0.08 (0.09)

PREC_SUM KA 0.41 (0.44) 0.52 (0.56) 0.52 (0.57) 0.47 (0.50) 1.30 (1.38) 1.43 (1.52) 1.41 (1.52) 1.37 (1.45)
BE 0.26 (0.29) 0.32 (0.36) 0.32 (0.35) 0.24 (0.27) 0.72 (0.80) 0.77 (0.86) 0.75 (0.82) 0.70 (0.79)
HH 0.45 (0.47) 0.52 (0.54) 0.57 (0.60) 0.40 (0.41) 1.19 (1.24) 1.26 (1.32) 1.31 (1.37) 1.14 (1.17)
MZ 0.35 (0.35) 0.34 (0.36) 0.35 (0.36) 0.34 (0.35) 0.96 (0.97) 0.93 (0.94) 0.96 (0.97) 0.97 (0.98)
MU 0.46 (0.58) 0.57 (0.68) 0.54 (0.63) 0.52 (0.61) 1.26 (1.54) 1.40 (1.68) 1.31 (1.56) 1.31 (1.55)

CLCT KA 13.73 (15.62) 13.76 (15.72) 13.67 (15.75) 13.66 (15.65) 14.42 (16.05) 14.61 (16.19) 14.69 (16.42) 14.62 (16.27)
HH 11.20 (11.38) 11.24 (11.49) 11.15 (11.44) 11.21 (11.45) 12.00 (12.15) 11.82 (11.93) 11.72 (11.87) 11.82 (11.99)
MU 11.49 (13.15) 11.51 (13.16) 11.46 (13.16) 11.46 (13.05) 12.25 (13.67) 12.49 (13.96) 12.63 (14.20) 12.44 (13.84)

the chosen parametric family, e.g., a lower tail that is too heavy in case of the wind speed.
The postprocessed forecasts for MU still offer large improvements over the ensemble, but

result in less well-calibrated forecasts than for KA, as the postprocessed temperature forecast
is now biased in the opposite direction as the ensemble (Figure 5.3). The mean sea level
pressure forecasts are however less dispersed than those for KA and therefore better calibrated.
The comparison of the degree of calibration over the lead times is striking, since the calibration
of the postprocessed temperature forecasts for KA does not seem to be dependent on the lead
time, as the histograms have a similar shape for all lead times (Figure 5.4).

The improvement becomes apparent when comparing the CRPS values of the ensemble
and postprocessed forecasts for lead times within two days (Table 5.3). In all of the 208
combinations of location, lead time and initialization hour, the table does not show one
decrease in the CRPS when rounded to the second digit.10 Instead, the CRPS improves
throughout all variables besides the precipitation rate. The CRPS values for lead times from
two to six and a half days exhibit the same pattern (Table 5.4). Further, we note that the
CRPS values have a different magnitude for each variable, which impedes comparability over
variables.

By showing the CRPSS, Figure 5.6 provides more insight in the improvement obtained
10The CRPS actually decreases in the fifth digit for two cases of precipitation rate in HH.
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Table 5.4: Mean CRPS of the postprocessed (ensemble) forecasts for the meteorological
variables for lead times over two days.

Lead times 51–72 hours 78–120 hours 132–180 hours
Init. hour 00 UTC 06 UTC 12 UTC 18 UTC 00 UTC 06 UTC 12 UTC 18 UTC 00 UTC 12 UTC

T_2M KA 0.94 (1.02) 0.96 (1.04) 0.96 (1.06) 0.96 (1.03) 1.11 (1.17) 1.12 (1.18) 1.14 (1.22) 1.14 (1.20) 1.48 (1.55) 1.53 (1.61)
BE 0.79 (0.89) 0.81 (0.90) 0.80 (0.90) 0.79 (0.89) 0.97 (1.05) 0.98 (1.04) 0.96 (1.04) 0.97 (1.05) 1.40 (1.47) 1.45 (1.50)
HH 0.83 (0.88) 0.86 (0.90) 0.86 (0.90) 0.86 (0.90) 1.01 (1.04) 1.01 (1.04) 1.02 (1.06) 1.03 (1.06) 1.40 (1.44) 1.44 (1.47)
MZ 0.78 (0.91) 0.80 (0.94) 0.77 (0.94) 0.78 (0.93) 0.95 (1.05) 0.96 (1.07) 0.95 (1.08) 0.96 (1.08) 1.37 (1.57) 1.41 (1.62)
MU 0.89 (1.19) 0.89 (1.24) 0.87 (1.23) 0.88 (1.17) 1.01 (1.24) 1.02 (1.27) 0.98 (1.27) 1.01 (1.23) 1.46 (1.59) 1.50 (1.65)

MSLP KA 0.74 (0.74) 0.75 (0.76) 0.74 (0.74) 0.76 (0.77) 1.25 (1.27) 1.30 (1.31) 1.29 (1.32) 1.29 (1.31) - -
BE 0.80 (0.82) 0.82 (0.84) 0.81 (0.82) 0.82 (0.84) 1.45 (1.47) 1.49 (1.52) 1.48 (1.51) 1.50 (1.52) - -
HH 0.83 (0.85) 0.84 (0.87) 0.84 (0.86) 0.86 (0.88) 1.57 (1.58) 1.58 (1.61) 1.60 (1.62) 1.62 (1.63) - -
MU 0.78 (0.97) 0.78 (0.97) 0.79 (0.99) 0.80 (0.98) 1.27 (1.35) 1.33 (1.39) 1.33 (1.40) 1.32 (1.38) - -

WIND_10M KA 2.36 (3.18) 2.35 (3.14) 2.34 (3.15) 2.33 (3.02) 2.85 (3.57) 2.83 (3.56) 2.82 (3.53) 2.87 (3.49) 3.55 (4.39) 3.54 (4.36)
BE 2.11 (2.94) 2.13 (3.01) 2.14 (2.95) 2.11 (2.88) 2.53 (3.14) 2.56 (3.18) 2.57 (3.17) 2.55 (3.11) 3.18 (3.55) 3.23 (3.62)
HH 2.41 (3.82) 2.43 (3.84) 2.38 (3.63) 2.32 (3.48) 2.95 (4.06) 2.98 (4.11) 2.94 (3.94) 2.93 (3.83) 3.67 (3.96) 3.70 (4.01)
MU 1.65 (2.06) 1.65 (2.09) 1.64 (2.08) 1.62 (2.00) 1.92 (2.30) 1.92 (2.32) 1.90 (2.29) 1.92 (2.26) 2.43 (2.63) 2.39 (2.58)

PREC_RATE KA 0.06 (0.07) 0.07 (0.07) 0.07 (0.07) 0.07 (0.07) 0.07 (0.07) 0.07 (0.07) 0.07 (0.07) 0.07 (0.07) 0.07 (0.08) 0.07 (0.08)
BE 0.04 (0.04) 0.04 (0.04) 0.04 (0.04) 0.03 (0.04) 0.04 (0.04) 0.04 (0.04) 0.04 (0.04) 0.04 (0.04) 0.04 (0.04) 0.04 (0.04)
HH 0.06 (0.06) 0.06 (0.06) 0.06 (0.06) 0.06 (0.06) 0.06 (0.06) 0.06 (0.06) 0.06 (0.06) 0.06 (0.06) 0.06 (0.06) 0.06 (0.06)
MZ 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 0.05 (0.05)
MU 0.07 (0.08) 0.08 (0.09) 0.07 (0.08) 0.07 (0.08) 0.07 (0.07) 0.08 (0.08) 0.07 (0.08) 0.07 (0.08) 0.07 (0.07) 0.07 (0.07)

PREC_SUM KA 2.17 (2.30) 2.30 (2.44) 2.27 (2.43) 2.28 (2.40) 3.50 (3.70) 3.68 (3.89) 3.65 (3.85) 3.71 (3.88) 6.02 (6.13) 6.05 (6.25)
BE 1.16 (1.30) 1.22 (1.36) 1.20 (1.33) 1.17 (1.33) 1.86 (2.07) 1.97 (2.17) 1.96 (2.21) 1.90 (2.12) 2.84 (2.99) 2.86 (3.06)
HH 1.90 (1.98) 1.99 (2.08) 2.02 (2.10) 1.83 (1.89) 2.97 (3.10) 3.00 (3.13) 3.08 (3.19) 2.92 (3.01) 4.55 (4.85) 4.54 (4.80)
MZ 1.57 (1.58) 1.58 (1.59) 1.59 (1.60) 1.59 (1.59) 2.41 (2.37) 2.41 (2.41) 2.45 (2.46) 2.45 (2.45) 3.79 (3.79) 3.81 (3.82)
MU 2.01 (2.40) 2.20 (2.65) 2.10 (2.49) 2.07 (2.42) 3.10 (3.65) 3.33 (3.91) 3.25 (3.77) 3.20 (3.67) 4.76 (5.25) 4.77 (5.31)

CLCT KA 15.33 (16.59) 15.55 (16.77) 15.27 (16.49) 15.53 (16.74) 17.25 (18.23) 17.09 (18.09) 17.24 (18.31) 17.38 (18.41) 19.32 (20.12) 19.58 (20.62)
HH 12.79 (12.85) 13.04 (13.11) 13.22 (13.24) 12.92 (13.01) 14.76 (14.79) 14.62 (14.65) 15.02 (15.14) 14.74 (14.81) 17.02 (17.19) 16.96 (17.15)
MU 13.30 (14.67) 13.58 (14.91) 13.50 (14.68) 13.33 (14.41) 14.94 (15.83) 14.88 (15.76) 14.70 (15.66) 14.49 (15.37) 17.27 (17.80) 17.43 (18.03)

by postprocessing, as it allows for comparisons over the meteorological variables. First, we
observe that postprocessing improves the predictive performance with respect to the ensemble
forecasts for all cases besides precipitation rate and sum in MZ for lead times larger than
78 hours and some lead times of precipitation rate in HH. As each station exhibits different
error characteristics with systematic errors of varying magnitude, the skill is also varying
for the different stations. One example are the mean sea level pressure forecasts that are
strongly biased for MU and result in a skill that is orders of magnitude larger than for the
other locations. Further, the skill decreases as the lead time increases. This might be a result
of the fact that the degree of underdispersion of the ensemble forecasts decreases with the lead
time, thus the degree of systematic errors that require correction (Figure 5.4). The change
of the underlying ICON model also has an effect on the skill curves, as can be seen in the
breaks, e.g., for temperature in MZ or wind speed in HH. The reason is that together with the
model the resolution changes and therefore different error characteristics result in different
skill scores. Again, the precipitation rate is a special case. Here, the skill curve is fluctuating
due to small values of the CRPS. Note that we show a smoothed version of the CRPSS that
is based on the mean CRPS of the period from 5 hours before and after the lead time of
interest. This was done to eliminate the diurnal cycle, which is present although four different
initialization hours are taken into account (Figure 5.7).

In addition, one forecast bust occurs for the precipitation rate in BE for a lead time of
23 hours. The term forecast bust is ambiguous and generally refers to (a set of) degenerate
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Figure 5.6: Smoothed CRPSS of the postprocessed forecasts with respect to the ensemble
forecasts for the meteorological variables at the different stations dependent on
the lead time in hours. The mean CRPS underlying the skill score is calculated as
a rolling mean of the corresponding lead time ±5 hours.

forecasts, which includes forecasts that are physically inconsistent, unrealistic and/or perform
exceptionally poor. Due to overfitting on the training data, one ensemble forecast with a large
standard deviation resulted in an extreme scale parameter.11 The forecast bust is still visible
in Figure 5.6, as the skill curve drops down for BE and lead times from 18 to 28 hours. In
Figures 5.7 and 5.8, the bust becomes apparent in the negative peak of the skill curve and the
peak of the PI length.

The sharpness of the postprocessed forecasts is evaluated based on the length of 95.12% PIs,
which correspond to the nominal coverage of a calibrated 40-member ensemble. Figure 5.5
shows the PI length averaged over all stations and initialization hours in comparison with the
ensemble range. For the underdispersed variables temperature, wind speed, precipitation rate
and precipitation sum, postprocessing increases the PI length with respect to the ensemble
range. Contrarily, the PI length decreases for the overdispersed ensemble forecasts of mean
sea level pressure. Again, precipitation rate is the most unstable variable, for which we
interestingly observe drops in the ensemble range for lead times with a change in temporal
resolution. The precipitation rate describes the hourly amount of precipitation over a given

11The large amount of (almost) zero-ensemble forecasts in the data results in ensemble standard deviations
close to zero. The EMOS parameters are then fitted based on these standard deviations and yield overly
large scale parameters when the ensemble variance actually becomes large. In case of the forecast bust, no
precipitation was observed while a large standard deviation resulted in an extreme scale parameter, where
the postprocessed forecast had a CRPS of 18.7 mm/h and the ensemble forecast a CRPS of only 0.6 mm/h.
Comparing the values with the entries of Table 5.3, we can explain the strong effect of one sample on the
forecast skill. Note that such cases can be avoided by checking and constraining the parameter values.



5.1 Near real-time postprocessing on KIT-Weather 77

Precipitation rate Precipitation sum Cloud cover

Temperature Pressure Wind speed

0 50 100 150 0 50 100 150 0 50 100 150

0

10

20

30

40

50

0

5

10

15

0

20

40

60

0

5

10

15

20

25

0

10

20

30

40

−20

0

20

Lead Time in h

C
R

P
S

S
 in

 %

KA BE HH MZ MU

Figure 5.7: CRPSS of the postprocessed forecasts with respect to the ensemble forecasts for
the meteorological variables at the different stations dependent on the lead time
in hours.
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forecasts (solid) for the meteorological variables at the different stations dependent
on the lead time in hours.
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reference period, which is dependent on the temporal resolution and therefore increases with
the lead time. The longer the period becomes, the smaller the effect of a single precipitation
event within that period and hence the smaller the forecast uncertainty. When comparing
the PI lengths at different locations, we find smaller differences than for the skill with curves
that exhibit the same shape. Note that while the skill is dependent both on the forecast and
observation, the PI length is a property of the forecast alone.12

Conclusions

The basic statistical postprocessing approach used in this section corrects the systematic errors
of the ensemble forecasts for the various meteorological variables and lead times. Typical
types of miscalibration, such as under- and overdispersion, are corrected by adjusting the
uncertainty of the predictive distribution. Up to three days, we obtain clear improvements in
the CRPS for almost all cases. Not surprisingly, precipitation has proven to be a difficult task
for postprocessing, as noted in other studies (e.g., Scheuerer, 2014).

In the context of dissemination, one major shortcoming is that univariate postprocessing
may lead to physical inconsistencies. This becomes apparent for forecasts of the precipitation
sum, which is accumulated over the period from the initialization to the end of the lead time
and must therefore be nondecreasing as a function of the lead time. However, Figure 5.9
shows an ensemble boxplot meteogram of postprocessed forecasts for the precipitation sum
that are physically inconsistent due to a decrease in the accumulated precipitation. Hence,
we do not use the model presented in this section to generate postprocessed forecasts of the
precipitation sum on the portal, but instead accumulate the postprocessed forecasts of the
precipitation rate.13 This does not only eliminate the inconsistencies within the meteogram of
the precipitation sum forecasts but also between the postprocessed versions of the precipitation
sum and rate. Further, the generation of the postprocessed forecasts of the precipitation sum
mirrors the derivation of the ensemble forecasts of the precipitation rate.

A second physical inconsistency was observed for temperature forecasts for KA during a
heat wave in June 2022.14 Figure 5.9 shows meteograms of the ensemble and postprocessed
forecasts of temperature, where both 108 hour forecasts predict the highest temperatures
with a median of around 34◦C on 19 June. However, while the ensemble results in a skewed
boxplot with a lower whisker down below 20◦C, the normal distribution underlying the EMOS
model enforces a symmetric boxplot with a lower whisker down to 23◦C and an upper whisker
up to an unrealistically high temperature of almost 45◦C. The same pattern can be observed
12Although the PI length is not dependent on observations, the EMOS coefficients used to calculate the scale

parameter are estimated based on the observations in the training set. Hence, large uncertainties in the
observations are reflected in the PI length of the postprocessed forecasts.

13At the time the screenshot was taken, the ensemble boxplot meteograms for the precipitation sum were
generated based on (directly) postprocessed forecasts using the approach evaluated in this section.

14While the inconsistency regarding the precipitation sum was observed shortly after the implementation on
the portal, the particular example for temperature was found in an outreach activity when a journalist
consulted Prof. Dr. Andreas Fink at IMK-TRO due to the upcoming heat wave.
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Figure 5.9: Ensemble boxplot meteograms on KIT-Weather of (directly) postprocessed fore-
casts for precipitation sum in KA (from 14 December 2021; top), and of both
postprocessed (middle) and ensemble forecasts (bottom) for temperature in KA
(from 15 June 2022). The underlying model runs were initialized at 12 UTC (13
CET) on 12 December 2021, and 00 UTC (02 CEST) on 14 June 2022, respectively.
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on a smaller scale for the 102 hour forecast. Two aspects are important for the explanation of
this behavior. Due to the implicit assumption of symmetry, which follows from the choice of
the normal distribution, the EMOS forecast is not able to generate forecasts that are skewed.
Secondly, we use only the ensemble mean and standard deviations as predictor variables,
hence the model has no information on the skewness of the ensemble forecasts. However, as
pointed out by Gebetsberger et al. (2019), the choice of the response distribution is a much
more important factor than the inclusion of additional predictor variables. A similar problem
was observed by Gneiting et al. (2023, Figure 1) for forecasts of hourly solar irradiance,
where a DRN model based on a (censored) normal distribution was not able to reflect the
more realistic shapes of nonparametric IDR and BQN variants. Hence, more flexible forecast
distributions such as the BQN forecast might be able to resolve the forecast uncertainty in a
physically more realistic way, but require more data and are prone to overfitting in contrast
to the EMOS model at hand.

5.2 Solar irradiance forecasting

The KIT-Weather portal also includes forecasts of two solar irradiance variables, which we
excluded from the previous section to investigate the topic in more detail. At the begin of
the implementation of the postprocessing models, research on statistical postprocessing of
ensemble forecasts of solar irradiance variables was scarce. Therefore, we decided to enhance
the EMOS models we developed for the KIT-Weather portal towards a case study of larger
extent. Here, we highlight the socio-economic relevance of solar irradiance forecasts, introduce
a second dataset from Hungary and propose advanced EMOS models that we evaluate on the
two datasets.

To reduce emissions of greenhouse gases, a transition towards renewable energy sources
such as wind and solar power is imperative (van der Meer et al., 2018). Accurate and reliable
forecasts of power generation from those sources are thus becoming increasingly important
for integrating volatile power systems into the electrical grid in order to balance demand
and supply (Gottwalt et al., 2017; González Ordiano et al., 2020). The literature on energy
forecasting has primarily focused on deterministic prediction for the past decades. However,
it has now been widely argued that probabilistic forecasting is essential for optimal decision
making in planning and operation (Hong and Fan, 2016; van der Meer et al., 2018; Haupt et al.,
2019; Hong et al., 2020). For example, Hong et al. (2020) identify probabilistic forecasting
with the aim of providing a predictive probability distribution for a future quantity or event in
order to quantify forecast uncertainty as one of the most important emerging research topics
in their recent review on energy forecasting.

We here focus on solar energy which is one of the most important sources of renewable
energy. For example, photovoltaic (PV) power contributes significantly to the power supply
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in Germany and generated 8.2% of the gross electricity consumption in 2019, and temporarily
up to 50% of the current electricity consumption on sunny days (Fraunhofer Institute for
Solar Energy Systems, 2020). Solar energy forecasting approaches can be distinguished into
those that aim to predict solar irradiance, and those that aim to predict PV power. Naturally,
solar irradiance and PV system output are strongly correlated, and the employed statistical
methods are similar (van der Meer et al., 2018). We will focus on probabilistic solar irradiance
forecasting in the following.

For recent comprehensive overviews and reviews of existing approaches, see van der Meer
et al. (2018) and Yang (2019). Except for short-term prediction (e.g., Zelikman et al., 2020),
most methods for probabilistic solar irradiance forecasting combine physical information from
NWP models with statistical methods.

5.2.1 Data

The postprocessing models are applied to two datasets that focus on distinct solar irradiance
variables, NWP models, temporal resolutions and geographic regions (Hungary and Germany),
for lead times of up to 48 and 120 hours, respectively.

AROME-EPS

The 11-member Applications of Research to Operations at Mesoscale EPS (AROME-EPS) of
the Hungarian Meteorological Service (HMS) covers the Transcarpatian Basin with a horizontal
resolution of 2.5 km (Jávorné Radnóczi et al., 2020). It consists of 10 ensemble members
obtained from perturbed initial conditions and a control member from an unperturbed analysis.
The dataset at hand contains ensemble forecasts of instantaneous values of global horizontal
irradiance (GHI) (W/m2) together with the corresponding validation observations of the HMS
for seven representative locations in Hungary (Aszód, Budapest, Debrecen, Kecskemét, Pécs,
Szeged, Tápiószele) for the period between 7 May 2020 and 14 October 2020. Forecasts are
initialized at 00 UTC with a forecast horizon of 48 hours and a temporal resolution of 30
minutes resulting in a total of 96 forecasts per submission. For the AROME-EPS, we will
refer to the term lead time as the time between the initialization and the time stamp of the
corresponding instantaneous forecast.

ICON-EPS

A general introduction of the ICON data that is used for postprocessing on the KIT-Weather
portal is provided in Section 5.1.1. For the solar irradiance variables, we use forecasts that
are initialized four times a day at 00, 06, 12 and 18 UTC each with a forecast horizon of 120
hours.15 The ICON ensemble predictions are given as averages between two time stamps, e.g.,
the 12-step ahead forecast is the average predicted irradiance between 11 to 12 hours after
15As for the mean sea level pressure, no ICON-Global forecasts are available for the solar irradiance variables.
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initialization time and the 59-step ahead forecast is the average from 84 to 90 hours. For
simplicity, we will refer to an individual forecast by the lead time and not the step ahead,
where lead time refers to the time between submission and the final time stamp, i.e., the
former forecast has a lead time of 12 hours, the latter a lead time of 90 hours.

Our dataset contains ensemble forecasts of the two components of GHI: beam normal
irradiance (BNI) adjusted for the solar zenith angle θ (i.e., BNI ·cos(θ)), and diffuse horizontal
irradiance (DHI) (W/m2). To simplify the distinction between the different types of irradiance
and improve the readability of this section, we will refer to BNI · cos(θ) as beam horizontal
irradiance (BHI) or direct irradiance, to DHI as diffuse irradiance, and to GHI = BHI + DHI
as global irradiance, in the following.

As described in Section 5.2.1, we further obtained corresponding observational data for
weather stations located near the major cities of BE, HH and KA. The observations are
computed based on 10-minute sums of the corresponding variables. For detailed descriptions
of the observations, we refer again to Becker and Behrens (2012). In contrast to Section 5.1,
the entire dataset used here covers the period from 27 December 2018 to 31 December 2020,
which refers to the data available, when the study presented in this section was conducted.

5.2.2 Model configurations

In this section, we first highlight the choice of forecast distribution before specifying the
EMOS models used and how we utilize the underlying datasets. At last, we describe the
configurations used for each of the two datasets.

Choice of forecast distribution

As indicated in Section 4.2.1, the discrete-continuous nature of solar irradiance calls for nonneg-
ative predictive distributions assigning positive mass to the event of zero irradiance. Similar
to parametric approaches to postprocessing ensemble forecasts of precipitation accumulation,
one can either left-censor an appropriate continuous distribution at zero (e.g., Scheuerer, 2014;
Baran and Nemoda, 2016), or choose the more complex method of mixing a point mass at
zero and a suitable continuous distribution with nonnegative support (Sloughter et al., 2007;
Bentzien and Friederichs, 2012). Here, focus on the former and use a zero-censored logistic
distribution (CL0) in line with the precipitation models of Section 5.1.

Note that initial tests with a censored normal predictive distribution were performed
for the ICON-EPS dataset; however, the results suggested that the proposed CL0-EMOS
approach results in slightly improved predictive performance. The choice of parametric families
for the forecast distribution has been an important aspect in postprocessing research. For
considerations in the context of solar irradiance forecasting, see e.g., Yang (2020b), Yagli et al.
(2020), and Le Gal La Salle et al. (2020). In those previous works, forecast distributions are
truncated at zero.
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Our choice of a left-censored distribution was motivated by the aim to obtain a single
distributional model that can be applied to all times of day and is able to account for cases
where the observation and all or most of the ensemble member predictions are zero, which
makes it unnecessary to remove nighttime irradiance data during training and inference.
Therefore, there is no need to select location- and season-specific times of day that define
periods of time where the postprocessing model can be applied, which is the case for models
based on truncated distributions. In addition, we have observed occasional cases where
zero irradiance is observed, but some of the ensemble members predict nonzero values. A
model based on a censored distribution is able to correct those deficiencies and might have
advantages for applications such as the KIT-Weather portal or automated procedures where
postprocessing constitutes one of the components and postprocessed forecasts serve as inputs
for additional modeling steps.

EMOS models for solar irradiance forecasting

On the KIT-Weather portal, we are using the same EMOS model as for the precipitation
variables to postprocess the solar irradiance variables (Table 5.2). Based on the KIT-Weather
approach, we derive the models used in this case study starting with a simple EMOS model,
where the location parameter µ and the scale parameter σ of the CL0-distribution are connected
to the ensemble members via link functions

µ = a + b0p0(x) + b1x1 + · · · + bmxm and σ = exp
(
c + d log s2(x)

)
, (5.3)

where the EMOS coefficients a, b0, b1, . . . , bm and c, d are estimated according to the optimum
score principle. Note that we use the fraction of zero-ensemble members as additional predictor
variable to the ensemble members analogous to the parameterization of the precipitation
models in Table 5.2.

In order to capture the seasonal variation in solar irradiance, following the ideas of Hemri
et al. (2014), we further fit separate periodic models to both observations and ensemble
forecasts of the training data. Two regression models dealing with oscillations of a single and
two different frequencies are investigated, namely

yt = α0 + α1 sin
(2πt

365

)
+ α2 cos

(2πt

365

)
+ εt and (5.4)

yt = β0 + β1 sin
(2πt

365

)
+ β2 cos

(2πt

365

)
+ β3 sin

(4πt

365

)
+ β4 cos

(4πt

365

)
+ εt, (5.5)

where the dependent variables yt, t = 1, 2, . . . , n, are either irradiance observations for a given
location or members of the corresponding ensemble forecast with a given lead time h from a
training period of length n. With the help of either equation (5.4) or (5.5) one can calculate
the h ahead predictions ŷ and x̂i of the observation and ensemble members, respectively, and
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consider the following modified link function for the location:

µ = ŷ + a + b0p0(x) + b1 (x1 − x̂1) + · · · + bm (xm − x̂m) . (5.6)

The model formulations in equations (5.3) and (5.6) are valid under the assumption that each
ensemble member can be identified and tracked. However, most operationally used EPSs
today generate ensemble forecasts that lack individually distinguishable physical features such
as distinct variations in the model physics, for example by generating ensemble member based
on random perturbations of initial conditions. Those statistically indistinguishable members
(or groups of members) generated in this way are usually referred to as exchangeable (Fraley
et al., 2010) in reference to the concept of exchangeable random variables in statistics. This
is also the case for the ICON-EPS and the AROME-EPS described in Section 5.2.1. The
existence of groups of exchangeable ensemble members should be taken into account during
model formulation. This is usually achieved by requiring that ensemble members within a
given group share the same coefficients (e.g., Wilks, 2018). If there exist m ensemble members
divided into K exchangeable groups and xk denotes the mean of the kth group containing
mk ensemble members (∑K

k=1 mk = m), the exchangeable versions of the link functions in
equations (5.3) and (5.6) are

µ = a + b0p0(x) + b1x1 + · · · + bKxK (5.7)

and
µ = ŷ + a + b0p0(x) + b1 (x1 − x̃1) + · · · + bK (xK − x̃K) , (5.8)

respectively, where x̃k is the prediction of xk for lead time h based either on equation (5.4) or
(5.5) for k = 1, . . . , K.

Training data selection

In the following case study, examples of all training data selection methods listed in Section 5.1.1
are shown: global estimation with a rolling training period for the AROME-EPS and local
estimation with rolling and extending training periods for the ICON-EPS. Note that this
includes the selection used on the KIT-Weather portal for the ICON data, that is, local
estimation with an extending training period. Further, we follow the training data selection
described in Section 5.1.1 by treating each lead time and each initialization hour separately.
Since we do not remove nighttime data during training and inference, this further helps to
account for positive probabilities of observing zero irradiance as point masses in the forecast
distributions. Note that seasonal variations for a given time of day, for example effects of
differing solar zenith angles, are implicitly modeled when using equation (5.4) or (5.5).
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Configuration for AROME-EPS

As discussed in Section 5.2.1, the AROME-EPS consists of a control member and 10 ex-
changeable ensemble members obtained using perturbed initial conditions. The dataset at
hand covers a short time period only, in particular compared to the ICON-EPS dataset,
with forecast-observation pairs available for only 159 calendar days. Therefore, the available
training periods cannot be long enough for accurate modeling of seasonal oscillations and we
only consider a CL0-EMOS model where the location is linked to the ensemble members via
equation (5.7) with K = 2 and m1 = 1, m2 = 10, which means that six parameters need to
be estimated. We consider global estimation with a rolling training period of length 31 days,
leaving 127 calendar days (9 June 2020 to 13 October 2020) for forecast verification, and refer
to this model as the simple RT model. The choice of the training period length corresponds
to typical values in the postprocessing literature and was made to have a similar forecast case
per parameter ratio as for the best performing model for the ICON-EPS data. In light of the
limited size of the dataset, it is not surprising that the use of monthly expanding training
periods or local parameter estimation procedures results in worse predictive performance, and
we omit the corresponding results in the interest of brevity.

Configuration for ICON-EPS

In contrast to the AROME-EPS, the ICON-EPS dataset covers a substantially longer time
period and therefore allows for considering and comparing more complex model formulations
and estimation procedures. As members of the ICON-EPS are obtained with the help of
random perturbations, they can be regarded as exchangeable. Hence, for postprocessing we
use the CL0-EMOS model with locations linked to the ensemble members either via equation
(5.7) or (5.8) with K = 1. Thus, for the model of equation (5.3) with the location parameter
of equation (5.7) (which was the only model variant considered for the AROME-EPS and
is referred to as simple model) one has to estimate five unknown parameters, whereas more
complex approaches, which account for seasonal variations in the link function in equation
(5.8) of the location parameter via equation (5.4) (referred to as periodic model) or (5.5)
(referred to as periodic 2 model), require the estimation of a total of 11 and 15 parameters,
respectively.

The period from 27 December 2018 to 31 December 2019 is used for training purposes
only, the calendar year 2020 (366 calendar days) for model verification, which leaves enough
flexibility for choosing a sufficiently long training period even for local modeling. Two different
training configurations are investigated: a rolling training (RT) period of length 365 days, and
a monthly expanding training (MET) scheme, where all data until the end of the last month
before the forecast date under consideration is used for training. In the latter case, the first
training period includes all data prior to calendar year 2020. According to initial studies (not
shown), MET provides reasonable verification scores only for the simple model. Therefore, we
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report results for the simple model with rolling (simple RT ) and monthly expanding training
(simple MET ) as well as for the periodic models with rolling training (periodic RT and periodic
2 RT).

5.2.3 Results

In the following case studies, the forecast skill of various variants of the CL0-EMOS model
is evaluated. First, we consider a simple CL0-EMOS variant for the HMS AROME-EPS
ensemble forecasts of GHI, then we will investigate the performance of the more complex
models for the DWD ICON-EPS ensemble forecasts of direct and diffuse irradiance.

AROME-EPS

Here, we will asses the predictive performance of the simple RT model described above. Recall
that the ensemble predictions of GHI are provided at a temporal resolution of 30 minutes. As
all AROME-EPS forecasts are initialized at 00 UTC, the forecast lead time either coincides
with the time of observation or has a shift of 24 hours. Hence, all scores are reported as
functions of the lead time. We further average over results from all seven observation locations
over Hungary.

Note that in contrast to considering predictions of GHI directly, the standard approach in
solar forecasting is the use of a clear-sky index (CSI) as target variable to stationarize the time
series of irradiances (van der Meer et al., 2018; Yang, 2020a; Yang et al., 2020). The clear-sky
irradiance used for the normalization is obtained from clear-sky models which estimate the
amount of solar radiation arriving at the surface under clear-sky (cloud-free) conditions, see
Yang (2020a) for an in-depth discussion and comparison of available models. To investigate
the differences between postprocessing forecasts of GHI and forecasts of CSI, we follow the
procedure outlined in Yang (2020b, Section II.A) to convert the GHI ensemble predictions
{x1, x2, . . . , xm} and the GHI observation y to CSI values. To do so, we obtained clear-sky
irradiance values from the McClear model using the camsRad package (Lundstrom, 2016)
for the locations and relevant time instances, and converted GHI to CSI by division by the
corresponding clear-sky irradiance. We then used an identical model formulation and training
procedure as for GHI, and derived 100 equidistant quantiles from the postprocessed forecast
distributions for CSI. Those quantiles were transformed back to GHI values by multiplying
with the corresponding clear-sky irradiance and used for approximating the verification scores.
We refer to this approach as simple RT CSI.

Figure 5.10 shows the mean CRPS of calibrated and raw ensemble forecasts and the CRPSS
with respect to the raw ensemble. Postprocessing using the simple RT approach improves
the forecast performance when positive irradiance is likely to be observed (03–19 UTC), and
performs no corrections otherwise, resulting in a skill score of zero. Note that compared
with direct calibration of the GHI, postprocessing of the CSI predictions does not result in a
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Figure 5.10: Mean CRPS of postprocessed and raw ensemble forecasts of GHI (a) and CRPSS
with respect to the raw ensemble (b) as functions of lead time for the AROME-
EPS dataset.

substantial difference or clear improvement in forecast skill. These observations are in line
with the results reported in Yang (2020b) in a related context. Hence, in the remainder only
the results for the former approach will be reported. To assess the statistical significance of
the improvements in predictive performance compared to the raw ensemble predictions, we
performed a block bootstrap resampling to compute 95% confidence intervals (Figure 5.11).
The corresponding standard deviations are obtained from 2,000 block bootstrap samples
calculated using the stationary bootstrap scheme, where the mean block length is computed
according to Politis and Romano (1994). We found that the observed improvements are
statistically significant, with skill scores of postprocessed forecasts being significantly positive
for all time periods where positive irradiance is likely to be observed. The large jumps in
the CRPSS at 4, 19, 27 and 42 hours are mainly caused by numerical issues as at these lead
times the mean CRPS of both raw and postprocessed forecasts is very close to 0, and also
leads to an increased width of the confidence intervals in Figure 5.11. For qualitatively similar
observations in a related context, see Bakker et al. (2019, Figure 7).

To this point, the relative improvements of the postprocessed forecasts in terms of the CRPSS
were investigated by computing the corresponding skill score values of the CRPSS using the
ensemble forecast as reference (Figures 5.10). To further investigate the relative improvements
in comparison to a more naive reference, Figure 5.11 shows corresponding values of the
CRPSS using a climatological forecast as reference model, where observations of the rolling
training period are considered as a forecast ensemble. This can be viewed as a persistence
ensemble in the terminology of Yang (2019). Here, the individual climatological forecasts
are based on observations of the preceding 31 days. Both ensemble and the postprocessed
forecasts show clear improvements for times of day during which it is unlikely to observe zero
irradiance. Corresponding skill scores for MAE and RMSE indicate a very similar behavior of
the deterministic forecasts and are not shown here in the interest of brevity.

A similar behavior can be observed for the Brier skill score (BSS) values of threshold
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Figure 5.11: CRPSS of EMOS postprocessed forecasts with respect to the raw ensemble
together with 95% confidence intervals (left), and CRPSS of postprocessed and
raw ensemble forecasts with respect to climatology as functions of the observation
hour (right), for the AROME-EPS dataset.

exceedance shown in Figure 5.12, where the threshold values correspond to the 40th, 60th,
90th and 95th percentiles of observed nonzero GHI (25, 127, 498, 604 W/m2). The results are
consistent in that the higher the threshold, the shorter the period with a positive mean BS,
as the higher thresholds are mostly observed around midday, when the irradiance is strongest.
For the corresponding lead times, the postprocessed forecasts outperform the raw ensemble.
Again, negative skill scores appear only at the boundaries where the mean score values to be
compared are very small.

Figure 5.13a showing the coverage of 83.33% PIs further confirms the improved calibration
of the postprocessed forecast. Between 03 and 19 UTC, when positive GHI is likely to be
observed, the EMOS model results in a coverage close to the nominal value, whereas the
coverage of the raw ensemble is consistently below 60%.

Further, Figure 5.13b showing the MAE of the median forecasts indicates that postprocessing
substantially improves the accuracy of point forecasts as well. At the hours of peak irradiance
the difference in MAE exceeds 20 W/m2. As we will see below, this is in a strong contrast
with the results of the second case study (Figure 5.23) and indicates the presence of a bias
in the AROME-EPS that is alleviated by postprocessing. Similar conclusions can be drawn
from the RMSE of the mean forecasts (not shown).

The presence of a bias in the raw ensemble forecasts can also be observed in the verification
rank histograms shown in Figure 5.14. In addition, the clearly U-shaped verification rank
histograms indicate a strong underdispersion, which is in line with the low coverage of the
raw ensemble forecasts observed in Figure 5.13a and persists across all considered ranges
of lead times. However, the ensemble members are more likely to underestimate the true
irradiance, which further indicates a negative bias. Both deficiencies are successfully corrected
by statistical postprocessing. The PIT histograms of EMOS predictive distributions given
in the upper row of Figure 5.14 are almost flat indicating just a minor bias for observations
between 12:30 and 24 UTC.
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Figure 5.12: BSS of postprocessed forecasts with respect to the raw ensemble as function of
lead time for the AROME-EPS dataset, with thresholds corresponding to the
40th, 60th, 90th and 95th percentiles of observed nonzero GHI.
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Figure 5.13: Coverage of 83.33% PIs of postprocessed and raw forecasts (a), and MAE of the
median forecasts (b) for the AROME-EPS dataset.
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Figure 5.14: PIT histograms of postprocessed and verification rank histograms of raw ensemble
forecasts of GHI for the lead times 0–12, 12–24, 24–36 and 36–48 hours.

ICON-EPS

Recall that the ICON-EPS dataset covers a substantially longer time period than the AROME-
EPS and therefore we consider and compare more complex model formulations and estimation
procedures, namely, the simple MET, the simple RT, the periodic RT and the periodic 2 RT
model. Further, we here consider forecasts of direct irradiance (BHI) and diffuse irradiance
(DHI) at temporal resolutions of 1 hour (for lead times up to 48 hours), 3 hours (for lead
times 51–72 hours) and 6 hours (for lead times 78–120 hours), resulting in a forecast horizon
of 120 hours. Given the negligible differences we observed when comparing postprocessing
of GHI and CSI for the AROME-EPS data, we only consider predictions of BHI and DHI
without normalization by the corresponding clear-sky irradiances here.

Raw ensemble forecasts of direct and diffuse irradiance are used as references models.
Unless indicated otherwise, results discussed below are averaged over all three observation
locations and all four initialization times of the NWP model. Note that this might make
the interpretation of the results more involved than in the first case study due to the
interacting effects of forecast initialization time, lead time, and corresponding time of day of
the observation.

First, we investigate diurnal effects by examining the dependence of the mean CRPS of the
various forecast models on the time of the observation shown in Figure 5.15a,b. In order to
provide a fair comparison, we take only the first 48 hours of the forecast horizon into account,
where hourly forecasts are available. Both for BHI and DHI, all postprocessing methods
outperform the raw ensemble forecasts at all time points when positive irradiance is likely
to be observed. According to the skill scores with respect to the raw ensemble shown in
Figure 5.15c, in the case of direct irradiance, the predictive performance mainly depends on
the complexity of model formulations and parameter estimation, with more complex models
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exhibiting better forecast performance. However, the differences between the various EMOS
approaches are relatively minor. The same applies for diffuse irradiance in early and late
hours (Figure 5.15d), whereas between 06–18 UTC there is no visible difference in the skill of
the different EMOS models.

Analogous to the AROME-EPS, we also compare against a climatological reference model
(Figure 5.16). Whereas the climatology is based on observations of the preceding 31 days in
case of the AROME-EPS, the ensemble has 365 members for the ICON-EPS. Again, both
ensemble and postprocessed forecasts clearly improve the reference when zero irradiance is
unlikely to observe, and we skip corresponding skill scores for MAE and RMSE that indicate
a similar behavior in the interest of brevity.

Note that the apparent periodic oscillations in the CRPSS values might be partly caused
by the pooling of different observation hours due to the four considered initialization times.
In contrast to the AROME-EPS, postprocessing also improves the predictive performance at
night achieving a CRPS of almost zero. ICON-EPS fails to achieve mean CRPS values of zero
due to occasional predictions of nonzero irradiance values during night times.

Figure 5.17a, which shows the CRPSS with respect to the raw BHI ensemble forecasts as
function of the lead time, confirms the observations from Figure 5.15c. Here, the differences
are more pronounced due to the different scaling of the vertical axis, and again, the periodic
2 model with rolling training period exhibits the best forecast skill, whereas the simple
model with monthly expanding training shows the smallest CRPSS. In general, all skill scores
decrease for longer lead times, which also holds for the corresponding CRPSS values for DHI
(Figure 5.17b). Overall, slightly larger improvements relative to the raw ensemble are observed
for direct than for diffuse irradiance, and none of the models result in negative skill scores.
Up to a lead time of 48 hours, there are no visible differences between the various EMOS
approaches. For longer lead times, similar to BHI, the most complex periodic 2 model shows
the best predictive performance, whereas the simple model with parameters estimated using a
rolling training period is now the least skillful. Recall that for longer lead times the forecasts
refer to a longer time period and thus seasonal effects regarding the diurnal cycle might be
captured by the more complex models.

Analogously to Figure 5.11, we assess the statistical significance of the improvements of
the best performing periodic 2 RT EMOS model compared to the raw ICON-EPS forecasts
using the corresponding 95% confidence intervals. In the case of BHI, postprocessing results
in a significant improvement in mean CRPS up to 60 hours ahead, whereas postprocessed
forecasts of DHI significantly outperform the raw ensemble over the entire forecast horizon of
120 hours. Further, comparing Figures 5.17 and 5.18 it can be observed (especially in the case
of diffuse irradiance) that there is no significant difference between the various postprocessing
methods in terms of mean CRPS.

A third aspect is the dependence of the forecast skill on the observation location. Table 5.5
shows the overall CRPSS of the different EMOS models with respect to the raw forecasts and
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Figure 5.15: Mean CRPS of postprocessed and raw ensemble forecasts of direct (a) and
diffuse (b) irradiance, and corresponding skill scores (c,d) with respect to the
raw ensemble as functions of the observation hour for the ICON-EPS dataset.
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Figure 5.16: CRPSS of postprocessed and raw ensemble forecasts of direct (a) and (b) diffuse
irradiance with respect to climatology as functions of the observation hour for
the ICON-EPS dataset.
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Figure 5.17: CRPSS of postprocessed forecasts of direct (a) and diffuse (b) irradiance with
respect to the raw ensemble as functions of the lead time for the ICON-EPS
dataset.
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Figure 5.18: CRPSS of the best performing postprocessed forecasts of direct (a) and (b)
diffuse irradiance with respect to the raw ensemble together with 95% confidence
intervals for the ICON-EPS dataset.

the corresponding CRPSS values of the three different cities for four different intervals of the
forecast horizon. The main message of these results is that the magnitude of improvements in
predictive performance resulting from postprocessing strongly depends on the location. For
both variables, KA benefits the most, while for BE after 24 hours, and for HH after 78 hours
the simple MET model performs worse than the raw BHI ensemble forecast and results in
negative skill scores. Among the competing models for BHI the most complex periodic 2 RT
model shows the best forecast skill for BE and HH, and shows the best overall performance
as well. In the case of DHI, the differences in performance between the various EMOS models
are much smaller, which is in line with the results observed in Figure 5.17b. In particular,
none of the more complex models consistently outperforms the simple MET model.

To investigate seasonal effects in the improvements achieved via postprocessing, Figure 5.19
shows the CRPSS of the postprocessed forecasts based on monthly mean values. For direct
irradiance, the improvements are generally larger in winter than in summer. From November
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Lead Time Direct Irradiance Diffuse Irradiance
in hours Model Overall KA BE HH Overall KA BE HH

Simple MET 0.076 0.114 0.029 0.082 0.089 0.099 0.075 0.093
1–24 Simple RT 0.095 0.130 0.070 0.083 0.091 0.100 0.080 0.092

Periodic RT 0.101 0.133 0.077 0.090 0.089 0.099 0.080 0.086
Periodic 2 RT 0.104 0.132 0.082 0.097 0.091 0.097 0.083 0.092

Simple MET 0.050 0.091 -0.000 0.054 0.066 0.076 0.050 0.070
25–48 Simple RT 0.064 0.102 0.032 0.054 0.066 0.075 0.053 0.069

Periodic RT 0.072 0.102 0.045 0.066 0.064 0.071 0.055 0.063
Periodic 2 RT 0.074 0.099 0.047 0.073 0.066 0.069 0.060 0.069

Simple MET 0.021 0.062 -0.018 0.018 0.048 0.055 0.041 0.046
51–72 Simple RT 0.033 0.071 0.008 0.020 0.046 0.053 0.041 0.043

Periodic RT 0.043 0.075 0.021 0.030 0.047 0.053 0.045 0.041
Periodic 2 RT 0.046 0.069 0.024 0.043 0.051 0.049 0.055 0.049

Simple MET 0.004 0.028 -0.016 -0.002 0.032 0.032 0.039 0.025
78–120 Simple RT 0.013 0.036 -0.001 0.001 0.031 0.031 0.040 0.021

Periodic RT 0.019 0.032 0.017 0.008 0.038 0.037 0.048 0.026
Periodic 2 RT 0.022 0.024 0.021 0.022 0.043 0.036 0.062 0.030

Table 5.5: Overall CRPSS and CRPSS for individual locations of postprocessed forecasts of
direct and diffuse irradiance with respect to the raw ensemble.

to April, the differences among the postprocessing approaches are most pronounced, and more
complex model formulations that incorporate seasonal effects particularly show improved
performance. For diffuse irradiance, the overall level of improvements in terms of the mean
CRPS is smaller (note the different scale of the vertical axes). Only minor seasonal effects in
the form of smaller improvements between October and December can be detected.

To simplify the presentation of the results, in the remaining part of this section we consider
pooled data of all locations, months and observation hours and display the dependence on the
lead time only. The improved calibration of postprocessed forecasts can also be observed in
the coverage plots of Figure 5.20. All postprocessing approaches result in a coverage close to
the nominal 95.12% for all lead times, whereas the maximal coverage of the raw ensemble
is below 85% for both variables. The difference between postprocessed forecasts of BHI is
more pronounced with periodic models being the closest to the nominal value. These results
are in line with the shapes of the PIT and verification rank histograms of Figures 5.21 and
5.22. Raw ensemble forecasts of BHI are strongly underdispersed and slightly biased for all
lead times. Even though this is slightly alleviated for longer lead times, the PIT histograms
of all EMOS models are much closer to the desired uniform distribution. However, some
bias still remains in the postprocessed forecasts. In contrast, neither the PIT histograms of
postprocessed, nor the verification rank histograms of raw forecasts of DHI indicate any bias
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Figure 5.19: CRPSS of postprocessed forecasts of direct (a) and diffuse (b) irradiance with
respect to the raw ensemble, computed based on monthly mean values for the
ICON-EPS dataset.
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Figure 5.20: Coverage of 95.12% PIs of postprocessed and raw forecasts of direct (a) and
diffuse (b) irradiance for the ICON-EPS dataset.

(Figure 5.22), and all EMOS approaches successfully correct the underdispersion of the raw
ensemble resulting in almost perfectly uniform PIT histograms.

Finally, Figure 5.23 showing the MAE of the median forecasts indicates that while post-
processing substantially improves the calibration of probabilistic forecasts, it has a minor
effect on the accuracy of point forecasts. The difference in MAE is less than 2 W/m2 for
direct irradiance and 0.6 W/m2 for diffuse irradiance for all considered lead times. The sharp
changes in MAE values at 51 and 78 hours are results of the change in temporal resolution of
the forecasts. Corresponding results for the RMSE of the mean forecasts are very similar and
thus not shown here.

Conclusions

We propose a postprocessing method for ensemble forecasts of solar irradiance based on the
EMOS approach. Several model variants that differ in terms of the temporal composition
of training datasets and adjustments to seasonal variations in the model formulation are
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Figure 5.21: PIT histograms of postprocessed and verification rank histograms of raw ensemble
forecasts of DNI for the lead times 0–24, 25–48, 51–72 and 78–120 hours for the
ICON-EPS dataset.
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Figure 5.22: PIT histograms of postprocessed and verification rank histograms of raw ensemble
forecasts of DHI for the lead times 0–24, 25–48, 51–72 and 78–120 hours for the
ICON-EPS dataset.
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Figure 5.23: MAE of the median forecasts of direct (a) and diffuse (b) irradiance.

evaluated for two datasets. Even though the datasets cover distinct geographical regions,
NWP systems, types of solar irradiance and temporal resolutions, the results presented in
this section indicate that the proposed postprocessing models are able to consistently and
significantly improve the forecast performance of the raw ensemble predictions up to lead times
of at least 48 hours. The improvements from postprocessing are larger for the AROME-EPS
dataset, possibly due to a lower skill of the raw ensemble predictions resulting from a bias
in addition to the observed underdispersion. For the ICON-EPS dataset, we observed that
more complex postprocessing models tend to show better predictive performances, but the
differences between model variations rarely show a high level of statistical significance. For
the GHI predictions of the AROME-EPS dataset, we only found negligible differences when
comparing postprocessing models for GHI and CSI. This is in line with the results reported in
Yang (2020b) and suggests that the standard practice of normalizing the irradiance forecasts
by clear-sky irradiance does not lead to improvements in forecast performance here.

The overall level of improvements achieved via statistical postprocessing of the solar
irradiance forecasts of the raw ensemble are comparable to meteorological variables such
as precipitation accumulation (Scheuerer, 2014; Baran and Nemoda, 2016) or total cloud
cover (Baran et al., 2021a) in case of the ICON-EPS dataset, and slightly larger for the
AROME-EPS data. Postprocessing ensemble predictions of those variables is often seen as a
more difficult task compared to variables such as temperature (Gneiting et al., 2005) or wind
speed (Thorarinsdottir and Gneiting, 2010) for which substantially larger improvements can
be achieved, such as in case of the postprocessing on the KIT-Weather portal (e.g., Figure 5.6).
Nonetheless, the observed improvements are statistically significant for lead times of up to
two days, and will likely be of relevance for solar energy forecasting in terms of potential
economic benefits and improved balancing of demand and supply for integrating volatile PV
power systems into the electrical grid.
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5.3 Wind gust forecasting over Germany

Following the application of the basic EMOS approach in the two preceding case studies, we
will apply the full range of statistical postprocessing methods presented in Chapter 4 to a
comprehensive dataset for wind gust prediction. The third and last case study provides a
systematic comparison of the three groups of postprocessing methods with a focus on the
most sophisticated NN-based approaches and builds the foundation for the investigation of
feature-dependent postprocessing in Chapter 6. Again, we start with a short introduction to
probabilistic wind gust forecasting before going through the three parts of the case study.

Wind gusts are among the most significant natural hazards in central Europe. Accurate
and reliable forecasts are therefore critically important to issue effective warnings and protect
human life and property. However, as indicated in Section 4.1, wind gusts are a challenging
meteorological target variable as they are driven by small-scale processes and local occurrence,
so that their predictability is limited even for NWP models run at convection-permitting
resolutions. Despite their importance for severe weather warnings, much recent work on
ensemble postprocessing has instead focused on temperature and precipitation. Therefore,
our overarching aim is to provide a comprehensive review and systematic comparison of the
methods for ensemble postprocessing specifically tailored to wind gusts.

Many of the postprocessing methods described in Chapter 4 have been applied for wind
speed prediction, but previous work on wind gusts is scarce. Our case study is based on the
work of Pantillon et al. (2018), one of the few exceptions, who use a simple EMOS model for
postprocessing to investigate the predictability of wind gusts with a focus on European winter
storms. They find that although postprocessing improves the overall predictive performance,
it fails in cases that can be attributed to specific mesoscale structures and corresponding wind
gust generation mechanisms. As a first step towards the development of more sophisticated
methods, we adapt existing as well as novel techniques for statistical postprocessing of wind
gusts and conduct a systematic comparison of their predictive performance.

5.3.1 Data

Our case study is based on the same dataset as Pantillon et al. (2018) and we refer to their
Section 2.1 for a detailed description. The forecasts are generated by the COSMO-DE-EPS
mentioned in Section 4.1. The 20-member ensemble is based on initial and boundary conditions
from four different global models paired with five sets of physical perturbations (Pantillon
et al., 2018). In the following, we will refer to the four groups corresponding to the global
models, which consist of five members each, as subensembles. We consider forecasts that are
initialized at 00 UTC with a range from 0 to 21 hours. The data ranges from 9 December
2010 when the EPS started in preoperational mode, to the end of 2016, that is, a period of
around six years.
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Table 5.6: Overview of the available predictors for the COSMO-DE-EPS data. For the
meteorological variables, ensemble forecasts are available, with the term ’500–
1,000 hPa’ referring to the specific model levels at 500, 700, 850, 950 and 1,000 hPa.
Spatial predictors contain station-specific information.

Feature Unit or type Description
Meteorological variables

VMAX m/s Maximum wind, i.e., wind gusts (10 m)
U m/s U component of wind (10 m, 500–1,000 hPa)
V m/s V component of wind (10 m, 500–1,000 hPa)
WIND m/s Wind speed, derived from U and V via (U2 + V 2)1/2 (10 m, 500–1,000 hPa)
OMEGA Pa/s Vertical velocity (pressure) (500–1,000 hPa)
T K Temperature (ground level, 2 m, and 500–1,000 hPa)
TD K Dew point temperature (2 m)
RELHUM % Relative humidity (500–1,000 hPa)
TOT_PREC kg/m2 Total precipitation (accumulation)
RAIN_GSP kg/m2 Large scale rain (accumulation)
SNOW_GSP kg/m2 Large scale snowfall – water equivalent (accumulation)
W_SNOW kg/m2 Snow depth water equivalent
W_SO kg/m2 Column integrated soil moisture (multilayers; 1, 2, 6, 18, 54)
CLCT % Total cloud cover
CLCL % Cloud cover (800 hPa – soil)
CLCM % Cloud cover (400–800 hPa)
CLCH % Cloud cover (000–400 hPa)
HBAS_SC m Cloud base above mean sea level, shallow connection
HTOP_SC m Cloud top above mean sea level, shallow connection
ASOB_S W/m2 Net short wave radiation flux (at the surface)
ATHB_S W/m2 Net long wave radiation flux (m) (at the surface)
ALB_RAD % Albedo (in shortwave)
PMSL Pa Pressure reduced to mean sea level
FI m2/s2 Geopotential (500–1,000 hPa)

Other predictors
yday Temporal Cosine transformed day of the year: cos [2π(t − 1)/365], where t is the day of the year.
lat Spatial Latitude of the station.
lon Spatial Longitude of the station.
alt Spatial Altitude of the station.
orog Spatial Difference of station altitude and model surface height of nearest grid point.
loc_bias Spatial Mean bias of wind gust ensemble forecasts from 2010–2015 at the station.
loc_cover Spatial Mean coverage of the wind gust ensemble forecasts from 2010–2015 at the station.

In addition to wind gusts, ensemble forecasts of several other meteorological variables
generated by the COSMO-DE-EPS are available. Table 5.6 gives an overview of the 61
meteorological variables as well as additional temporal and spatial predictors derived from
station information. The forecasts are evaluated at 175 SYNOP stations in Germany operated
by DWD, for which hourly observations are available. For the comparison with station data,
forecasts from the nearest grid point are taken.

The postprocessing methods presented in Chapter 4 are trained on a set of past forecast-
observation pairs in order to correct the systematic errors of the ensemble predictions. Even
though many studies are based on rolling training windows consisting of the most recent days
only, we will use a static training period. This is common practice in the operational use of
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Table 5.7: Overview of the main characteristics of the different postprocessing methods. The
number of parameters refers to one trained model instance. The number of models
refers to the number of trained model instances per lead time. In case of the
NN-based methods, the 10 trained model instances are aggregated to a final
forecast.

Method Estimation # Parameters # Models Local Seasonal Forecast distribution
EMOS CRPS 4 2,100 ✓ ✓ Truncated logistic
MBM CRPS 10 2,100 ✓ ✓ Ensemble
IDR CRPS - 175 ✓ - Empirical
EMOS-GB MLE 248 175 ✓ - Truncated logistic
QRF Custom - 175 ✓ - Set of quantiles
DRN CRPS 9,090 10 - - Truncated logistic
BQN QS 8,013 10 - - Bernstein quantile fct.
HEN MLE 9,684 10 - - Piecewise uniform

postprocessing models (Hess, 2020) and can be motivated by studies suggesting that using
long archives of training data often lead to superior performance, irrespective of potential
changes in the underlying NWP model or the meteorological conditions (Lang et al., 2020).
Therefore, we will use the period of 2010–2015 as training set and 2016 as independent test set.
The implementation of most of the methods requires the choice of a model architecture and
the tuning of specific hyperparameters. To avoid overfitting in the model selection process, we
further split the training set into the period of 2010–2014 which is used for training, and use
the year 2015 for validation purposes. After finalizing the choice of the most suitable model
variant based on the validation period, the entire training period from 2010–2015 is used to
fit that model for the final evaluation on the test set.

5.3.2 Model configurations

This section introduces the configuration of the postprocessing methods that are systematically
compared for ensemble forecasts of wind gusts. First, note that for each of the postprocessing
methods, we fit a separate model for each lead time based on training data consisting only of
cases corresponding to that lead time. Table 5.7 gives an overview of the main characteristics
of the different postprocessing methods, Table 5.8 of the predictors used and Table 5.9 lists
the chosen hyperparameters.

If the evaluation or parts of it are based on a set of quantiles, we generate 125 equidistant
quantiles for each test sample. This number is chosen such that the median as well as the
quantiles at the levels of a PI with a nominal coverage corresponding to a 20-member ensemble
(90.48%) are included and such that the forecast distribution is given by a sufficiently large
number of quantiles. The quantiles are then evaluated analogously to an ensemble forecast.
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Table 5.8: Overview of the predictors used in the different postprocessing methods. The
column “Statistics” comprises the use of any summary statistic derived from the
wind gust ensemble (mean, standard deviation, or mean difference).

Ensembles of other
Wind gust ensemble meteorological variables Other predictors

Method Statistics Members Mean Std. dev. Temporal Spatial
EMOS ✓ - - - - -
MBM ✓ ✓ - - - -
IDR - ✓ - - - -
EMOS-GB ✓ - ✓ ✓ ✓ -
QRF ✓ - ✓ - ✓ -
DRN ✓ - ✓ - ✓ ✓
BQN - ✓ ✓ - ✓ ✓
HEN ✓ - ✓ - ✓ ✓

EMOS

As described in Section 4.2.1, our EMOS model for wind gusts uses a truncated logistic
distribution based on the parameterization described in equations (4.2) and (4.3). Note that
we do not specifically account for the existence of subensembles in the parameterization of
the distribution parameters, since initial experiments suggested a degradation of predictive
performance. We here estimate the parameters by minimizing the CRPS, for which we
observed similar results to MLE. In the gradient-based optimization, we proceed analogous to
the EMOS models for the KIT-Weather portal and use the L-BFGS-B method to determine
the EMOS parameter vector (a, b, c, d).

The EMOS coefficients are estimated locally with a seasonal training scheme where a
training set consists of all forecast cases of the previous, current and next month with respect
to the date of interest. This results in 12 different training sets for each station, one for each
month, that enable an adaption to seasonal changes. In accordance with the results in Lang
et al. (2020), this seasonal approach outperforms both a rolling training window as well as
training on the entire set.

EMOS-GB

To ensure comparability with the basic EMOS approach, we employ a truncated logistic
distribution for the probabilistic forecasts. The parameters are determined using MLE, which
resulted in superior predictive performance based on initial tests on the validation data
relative to minimum CRPS estimation. We use the ensemble mean and standard deviation
of all meteorological variables in Table 5.6 as inputs to the EMOS-GB model. Note that in
contrast to the other advanced postprocessing methods introduced below, we here include the
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Table 5.9: Final hyperparameter configurations of the models described in Section 5.3.2. The
NN-specific hyperparameters are displayed separately in Table 5.10.

Method Hyperparameter Value
IDR Number of subsamples 100

Subsample ratio 0.5
Maximum number of iterations (max_iter) 1,000
Absolute threshold (eps_abs) 0.001
Relative threshold (eps_rel) 0.001

EMOS-GB Number of maximum iterations 1,000
Step size 0.05
Stopping criterion AIC

QRF Number of trees 1,000
Ratio of predictors considered at each split 0.5
Minimal node size 5
Maximal tree depth 20

BQN Degree of Bernstein polynomials (d in equation (2.33)) 12
Number of equidistant quantiles in QS (nq in equation (4.26)) 99

HEN Number of (nonequidistant) bins (N in equation (2.40)) 20

standard deviation of all variables as potential predictors since we found this to improve the
predictive performance. Further, we include the cosine-transformed day of the year in order
to adapt to seasonal changes, since a seasonal training approach as applied for EMOS leads
to numerically unstable estimation procedures and degraded forecast performance. Although
spatial predictors can in principle be included in a similar fashion, we estimate EMOS-GB
models locally since we found this approach to outperform a joint model for all stations by
a large margin. Our implementation of EMOS-GB is based on the crch package (Messner
et al., 2016).

MBM

The MBM approach assumes the exchangeability of the ensemble members, but this is in
practice not always the case. As described in Section 5.3.1, the COSMO-DE-EPS is based on
different NWP submodels resulting in four subensembles. When we apply the general MBM
approach based on equations (4.12) and (4.14) to the wind gust data, the existence of the
subensembles results in systematic deviations from calibration, especially for a lead time of 0
hours, as the verification rank histograms in Figure 5.24 show.

Due to these systematic deviations from calibration, we extend the MBM approach towards
ensembles that exhibit a subensemble structure. In general, let K be the number of the
subensembles. Then, we can identify each ensemble member with its associated subensemble
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via the function k : {1, . . . , m} → {1, . . . , K}, count the size of each subensemble via

mk :=
m∑

i=1
1{k(i) = k}, k = 1, . . . , K, (5.9)

and define the subensemble mean xk and subensemble mean difference δk(x) via

xk := 1
mk

m∑
i=1

xi · 1{k(i) = k}, k = 1, . . . , K, (5.10)

δk(x) := 1
m2

k

m∑
i,l=1

|xi − xl| · 1{(k(i) = k) ∧ (k(l) = k)}, k = 1, . . . , K. (5.11)

Using this, we can incorporate the submodel structure by modifying the MBM equations
(4.12) and (4.14) to

x̃i :=
(
a + bk(i)xk(i)

)
+
(

c +
dk(i)

δk(i)(x)

)(
xi − xk(i)

)
, i = 1, . . . , m, (5.12)

where a, b1, . . . , bK , c, d1, . . . , dK ∈ R are the MBM parameters. While the subensembles share
the intercept parameters a and c, the members of each subensemble are adjusted separately
based on the corresponding subensemble mean and subensemble mean difference using the
parameters b1, . . . , bK , d1, . . . , dK . Parameter estimation can be carried out analogously to
the general MBM approach via MLE or CRPS estimation.

For the COSMO-DE-EPS, we have K = 4 with the identification function k(i) = ⌈i/5⌉ for
i = 1, . . . , 20 and the MBM parameter vector (a, b1, . . . , b4, c, d1, . . . , d4). This increases the
number of parameters by six, but substantially improves performance and mostly eliminates
the relicts of the subensemble structure, as the PIT histograms in Figure 5.25 exemplify. One
downside of this modification is that it increases the computational time drastically, here
by a factor of around 17. As alternative modifications to equation (5.12), we also applied
MBM separately to each subensemble with a separate parameter c for each submodel, which
performs equally well but is more complex. Further, we tested leaving out the parameter d,
both with a single c and c1, . . . , c4 for the subensembles, but this resulted in a worse predictive
performance still exhibiting systematic deviations in the histograms.

The scoring rule of choice is the CRPS, as MLE resulted in less well-calibrated forecasts
with slightly worse overall performance. The training is performed analogously to EMOS,
utilizing a local and seasonal training scheme. In particular, accounting for potential seasonal
changes via seasonal training substantially improved performance compared to using the entire
available training set.
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Figure 5.24: Verification rank histograms of MBM forecasts based on equation (4.12) with
CRPS estimation on the entire training set for a lead time of 0 hours (left) and
greater than 0 hours (right). Coverage refers to the empirical coverage of a PI
with a nominal coverage corresponding to a 20-member ensemble (90.48%).
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Figure 5.25: PIT histograms of the MBM forecasts for lead times from 0 to 3 hours (left to
right) over all stations. Coverage refers to the empirical coverage of a PI with a
nominal coverage corresponding to a 20-member ensemble (90.48%).

IDR

The only implementation choice required for IDR is the selection of a partial order on the
covariate space. Among the choices presented in Section 4.2.4, the empirical stochastic order
and the empirical increasing convex order are the two appropriate choices for the situation at
hand, as we use all ensemble members as predictors. We selected the empirical stochastic
order which resulted in slightly better results on the validation data. We further considered
an alternative model formulation where only the ensemble mean was used as predictor, which
reduces to the special case of a less complex distributional (single) index model (Henzi et al.,
2021a), but did not improve predictive performance.

We implement IDR as a local model, treating each station separately since it is not
obvious how to incorporate station-specific information into the model formulation. Given the
limited amount of training data available, we further consider only the wind gust ensemble as
predictor variable. Following suggestions of Henzi et al. (2021b), we use subsample aggregation
(subbagging) and apply IDR on 100 random subsamples half the size of the available training
set. IDR is implemented using the isodistrreg package (Henzi et al., 2019).
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QRF

In contrast to EMOS-GB, only the ensemble mean values of the additional meteorological
variables are integrated as predictor variables, since we found that including the standard
deviations as well led to more overdispersed forecasts and degraded forecast performance. A
potential reason is given by the random selection of predictors at each node, which limits the
automated selection of relevant predictors in that a decision based on a subset of irrelevant
predictors only may lead to overfitting (Hastie et al., 2009, Section 15.3.4).

Although spatial predictors can be incorporated into a global, joint QRF model for all
stations generating calibrated forecasts, we found that the extant practice of implementing
local QRF models separately at each station (Taillardat et al., 2016; Rasp and Lerch, 2018)
results in superior predictive performance and avoids the increased computational demand
both in terms of required calculations and memory of a global QRF variant (Taillardat and
Mestre, 2020). Our implementation is based on the ranger package (Wright and Ziegler,
2017).

Neural networks

To determine hyperparameters of the NN models such as the learning rate, the embedding
dimension or the number of nodes in a hidden layer, we perform a two-step, semiautomated
hyperparameter tuning based on the validation set. In an automated procedure, we first find
a small number of hyperparameter sets that perform best for an individual network, then we
manually select that set that yields the best aggregated forecasts. Overall, the results are
relatively robust to a wide range of tuning parameter choices, and we found that increasing
the number of layers or the number of nodes in a layer did not improve predictive performance.
Relative to the models used in Rasp and Lerch (2018), we increased the embedding dimension
and used a softplus activation function. The exact configuration slightly varies across the
three model variants introduced in the following. In addition to the station embedding, the
spatial features in Table 5.6, and the temporal predictor, we found that including only the
mean values of the meteorological predictors, but not the corresponding standard deviations,
improved the predictive performance. These results are in line with those of QRF and those of
Rasp and Lerch (2018) who find that the standard deviations are only of minor importance for
explaining and improving the NNs predictions. Before fitting the NN models, each predictor
variable was normalized by subtracting the mean value and dividing by the standard deviation
based on the training set excluding the validation period. All NN models were implemented
via the R (R Core Team, 2021) interface to keras (2.4.3; Allaire and Chollet, 2020) built
on tensorflow (2.3.0; Allaire and Tang, 2020). The network architectures and the neural
network-specific hyperparameter are displayed in Table 5.10.
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Table 5.10: Overview of the configuration of the individual networks in the NN-based methods.

Hyperparameter DRN BQN HEN
Learning rate 5 · 10−4 5 · 10−4 5 · 10−4

Epochs 150 150 150
Patience 10 10 10
Batch size 64 64 64
Embedding dimension 10 10 10
Hidden layers 2 2 2
Nodes per layer (64, 32) (48, 24) (64, 32)
Activation Softplus Softplus Softplus
Output nodes 2 13 20
Output activation Softplus Softplus Softmax
Size of network ensemble 10 10 10

DRN

We adapt DRN to wind gust forecasting by using a truncated logistic distribution. In contrast
to the Gaussian predictive distribution used by Rasp and Lerch (2018), this leads to additional
technical challenges due to the truncation, i.e., the division by 1 − F (0; µ, σ), which induces
numerical instabilities. To stabilize training, we enforce µ ≥ 0 by applying a softplus activation
function in the output nodes, resulting in 1 − F (0; µ, σ) ≥ 0.5. As noted for the EMOS model
of wind speed for the KIT-Weather portal in Section 5.1.2, the restrictions of the parameter
space can be considered to be negligible. The optimum score estimation based on the LogS
and CRPS yields similar results with the CRPS performing slight better, hence we use CRPS
estimation.

BQN

The BQN loss function in equation (4.26) is based on nq = 99 equidistant quantiles cor-
responding to steps of 1%. Regarding the degree of the Bernstein polynomials, Bremnes
(2020) considers a degree of d = 8. We found that increasing the degree to 12 resulted in
better calibrated forecasts and improved predictive performance on the validation data. Again
following Bremnes (2020) and in contrast to our implementation of DRN and HEN, we use
all 20 ensemble member forecasts of wind gust sorted with respect to the predicted speed as
input instead of the ensemble mean and standard deviation.

HEN

For the application to wind gusts, we found that the binning scheme is an essential factor, e.g.,
a fine equidistant binning of length 0.5 m/s leads to physically inconsistent forecasts. Based
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on initial experiments on the validation data, we devise a data-driven binning scheme starting
from one bin per unique observed value and merging bins to end up with a total number of
N = 20. We start with one bin for each observation (which only take a certain amount of
values for reporting reasons) and merge the bin that contains the least amount of observations
with the smaller one of the neighbouring bins. We additionally put constraints on the bins.
The first bin should have a length of at most 2 m/s, the last at most 7 m/s and the others at
most 5 m/s. In the aggregation procedure, the binning in terms of the probabilities is reduced
to a minimal bin width of 0.01% for numerical reasons. In the output nodes, we apply a
softmax function to ensure that the obtained probabilities sum to 1. Following the suggestion
in Section 4.3.4, we estimate the network parameters using the categorical cross-entropy,
which corresponds to MLE.

5.3.3 Results

In this section, we evaluate the predictive performance of the postprocessing methods based
on the test period that consists of all data from 2016. Since we considered forecasts from
one initialization time only, systematic changes over the lead time are closely related to the
diurnal cycle.

Predictive performance of the COSMO-DE-EPS and a climatological
baseline

The predictive performance of the EPS coincides with findings in Sections 5.1 and 5.2 in
that the ensemble predictions are biased and strongly underdispersed, see Figure 5.26 for
the corresponding verification rank histograms. We here highlight two peculiarities of the
EPS. The first is the so-called spin-up effect (e.g., Kleczek et al., 2014), which refers to the
time the numerical model requires to adapt to the initial and boundary conditions and to
produce structures consistent with the model physics. This effect can not only be seen in
the verification rank histograms in Figure 5.26, where we observe a clear lack of ensemble
spread in the 0 hour forecasts within each of the four subensembles and only a small spread
between them, but also for the ensemble range and the bias of the ensemble median prediction
displayed in Figure 5.27, where a sudden jump at the 1 hour forecasts occurs.

The temporal development of the bias and ensemble range shown in Figure 5.27 indicates
another meteorological effect, the evening transition of the planetary boundary layer. When
the sun sets, the surface and low-level air that have been heated over the course of the day
cool down and thermally driven turbulence ceases. This sometimes quite abrupt transition to
calmer, more stable conditions strongly affects the near-surface wind fields subject to the local
conditions (e.g., Mahrt, 2017). For lead times up to 18 hours (corresponding to 19 local time
in winter and 20 in summer), the ensemble range increases together with an improvement
in calibration. However, at the transition in the evening, the overall bias increases and the
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Figure 5.26: Verification rank histograms of 0 and 1–21 hour forecasts of the COSMO-DE-EPS
and PIT histogram of the EPC forecasts over all lead times for all stations (left
to right). Coverage refers to a PI with a nominal coverage corresponding to a
20-member ensemble (90.48%).

calibration becomes worse for most stations indicating increasing systematic errors. This
could be related, for example, to the misrepresentation of the inertia of large eddies in the
model or errors in radiative transfer at low sun angles.

In addition to the raw ensemble predictions, we further consider a climatological reference
forecast as a benchmark method. The extended probabilistic climatology (EPC; Vogel et al.,
2018; Walz et al., 2021) is an ensemble based on past observations considering only forecasts at
the same time of the year. We create a separate climatology for each station and hour of the
day that consists of past observations from the previous, current and following month around
the date of interest. The observational dataset ranges back to 2001, thus EPC is built on a
dataset of 15 years. Not surprisingly, EPC is well-calibrated (Figure 5.26). However, it shows
a minor positive bias, which is likely due to the generally lower level of wind gusts observed
in 2016 compared to the years on which EPC is based, which is illustrated in Figure 5.28.16

Comparison of the postprocessing methods

Figure 5.29 shows PIT histograms for all postprocessing methods. All approaches substantially
improve the calibration compared to the raw ensemble predictions and yield well-calibrated
forecasts, except for IDR which results in underdispersed predictions. The PIT histograms
of the parametric methods based on a truncated logistic distribution (EMOS, EMOS-GB
and DRN) all exhibit similar minor deviations from uniformity caused by a lower tail that
is too heavy.17 The semi- and nonparametric methods MBM, QRF, BQN and HEN are all
slightly skewed to the left, in line with the histogram of EPC. Further, we observe a minor
overdispersion for the QRF forecasts.

Table 5.11 summarizes the values of proper scoring rules and other evaluation metrics to
compare the overall predictive performance of all methods. While the ensemble predictions
outperform the climatological benchmark method, all postprocessing approaches lead to
16See Wohland et al. (2018) for a discussion of the 2016 wind variability in the context of wind power generation.
17Analogous to the EMOS forecasts for wind speed in Section 5.1, which are also based on a zero-truncated

logistic distribution.
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Figure 5.27: Boxplots of the stationwise mean bias of the ensemble median (left) and the
mean ensemble range (right) of the COSMO-DE-EPS forecasts as functions of
the lead time. The black line indicates the average over all samples.
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on the hour of the day in the years 2001–2015 (green) and 2016 (orange)
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Figure 5.29: PIT histograms of all postprocessing methods, aggregated over all lead times
and stations. Coverage refers to the empirical coverage of a PI with a nominal
coverage corresponding to a 20-member ensemble (90.48%).

substantial improvements. Among the different postprocessing methods, the three groups of
approaches introduced in Chapter 4 show systematic differences in their overall performance. In
terms of the CRPS, the basic methods already improve the ensemble by 26–29%. Incorporating
additional predictors via the ML methods further increases the skill, where the NN-based
approaches, in particular DRN and BQN, perform best. The MAE and RMSE lead to analogous
rankings, and all methods clearly reduce the bias of the EPS. Among the well-calibrated
postprocessing methods, the NN-based methods yield the sharpest forecast distributions,
followed by QRF, EMOS-GB and the basic methods. Thus, we conclude that the gain in
predictive performance is mainly based on an increase in sharpness. Overall, BQN results not
only in the best coverage, but also in the sharpest PIs.

We further consider the total computation time required for training the postprocessing
models. However, note that a direct comparison of computation times is difficult due to the
differences in terms of software packages and parallelization capabilities. Not surprisingly, the
simple EMOS method was the fastest with only 19 minutes. The network-based methods were
not much slower than QRF and faster than EMOS-GB, which is based on almost twice as much
predictors as the other advanced methods what approximately doubled the computational
costs. MBM here is an extreme outlier and requires a computation time of over 35 days in total,
in particular due to our adaptations to the subensemble structure discussed in Section 5.3.2.
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Table 5.11: Evaluation metrics for EPC, COSMO-DE-EPS, and all postprocessing methods
averaged over all lead times and stations. The PI length and coverage refer to a
PI with a nominal coverage corresponding to a 20-member ensemble (90.48%).
The best methods are indicated in bold.

Method CRPS MAE RMSE Bias PI length Coverage Runtime
EPC 1.72 2.44 3.26 -0.13 10.73 91.64% -
EPS 1.33 1.63 2.16 0.47 2.85 47.91% -
EMOS 0.95 1.32 1.80 0.05 5.94 92.51% 19 min
MBM 0.97 1.34 1.80 0.04 6.10 90.81% 51,242 min
IDR 0.98 1.36 1.84 0.01 4.72 84.04% 8,100 min
EMOS-GB 0.88 1.23 1.69 -0.06 5.24 91.04% 510 min
QRF 0.87 1.22 1.66 -0.03 5.41 91.38% 282 min
DRN 0.84 1.18 1.61 0.03 5.05 91.49% 399 min
BQN 0.84 1.18 1.61 0.00 4.94 90.42% 387 min
HEN 0.86 1.21 1.64 -0.04 5.07 90.23% 321 min

Lead time-specific results

To investigate the effects of the different lead times and hours of the day on the predictive
performance, Figure 5.30 shows various evaluation metrics as function of the lead time. While
the CRPS values and the improvements over the raw ensemble predictions (Figures 5.30a,b)
show some variations over the lead times, the overall rankings among the different methods and
groups of approaches are consistent. In particular, the rankings of the individual postprocessing
models remain relatively stable over the day.

The spin-up effect is clearly visible in that the mean bias drastically increases from the 0
to the 1 hour forecasts of the EPS and leads to a worse CRPS despite the increase of the
ensemble range (Figure 5.27). The postprocessed forecasts, however, are able to successfully
correct the biases induced in the spin-up period while benefiting from the increase in ensemble
range. Hence, the CRPS becomes smaller and the skill is the largest through all lead times.
Although we improve the MBM forecast by incorporating the submodel structure, the adjusted
ensemble forecasts are still subject to systematic deviations from calibration for lead times of
0 and 1 hour, as illustrated in Figure 5.25.

Following the first hours, a somewhat counterintuitive trend can be observed in that the
predictive performance of the EPS improves up to a lead time of 10 hours. This is in particular
due to improvements in terms of the spread of the ensemble over time. By contrast, the
predictive performance of the climatological baseline model is affected more by the diurnal
cycle since observed wind gusts and their variability tend to be higher during daytime. The
performance of the postprocessing models is neither affected by the increased spread of the
EPS, nor by larger gust observations, and slightly decreases over time until the evening
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Figure 5.30: Mean CRPS (a), CRPSS with respect to the raw ensemble predictions (b), mean
bias (c) and mean PI length (d) of the postprocessing methods as functions of
the lead time, averaged over all stations. Panel (e) shows the BSS with respect
to the climatological EPC forecast as function of the threshold, averaged over all
lead times and stations, where the dashed vertical lines indicate the quantiles of
the observed wind gusts at levels given at the top axis.
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transition. This is in line with wider PIs that represent increasing uncertainty for longer lead
times, while the mean bias and coverage are mostly unaffected.

This general trend changes with the evening transition at a lead time of around 18 hours.
The CRPS of the climatological reference model decreases due to a better predictability of
the wind gust forecasts. By contrast, the CRPS of the ensemble increases, again driven by an
increase in bias and a decrease in spread that comes with a smaller coverage. The numerical
model thus appears to not be fully capable of capturing the relevant physical effects, and
introduces systematic errors. The bias and coverage of the postprocessing methods do not
change drastically, while the PIs of the postprocessing methods become smaller, which is in
line with the more stable conditions at nighttime. Therefore, the CRPS of the postprocessing
methods becomes better again.

To assess the forecast performance for extreme wind gust events, Figure 5.30e shows the
BSS with respect to the climatological EPC forecast as a function of the threshold value,
averaged over all stations and lead times. For larger threshold values, the EPS rapidly looses
skill and does not provide better predictions than the climatology for thresholds above 25 m/s.
By contrast, all postprocessing methods retain positive skill across all considered threshold
values. The predictive performance decreases for very high threshold values above 30 m/s,
in particular for EMOS-GB and QRF. Note that the EPS and all postprocessing methods
besides the analog-based QRF and IDR have negative skill scores for very small thresholds,
but this is unlikely to be of relevance for any practical application.

Station-specific results and statistical significance

We further investigate the station-specific performance of the different postprocessing models
and in particular investigate whether the locally adaptive networks that are estimated jointly
for all stations also outperform the locally estimated methods at the individual stations.
Figure 5.31 shows a map of all observation stations indicating the station-specific best model
in terms of the CRPS, and demonstrates that at 162 of the 175 stations a network-based
method performs best. While none of the basic methods provides the best forecasts at
any station, QRF or EMOS-GB perform best at the remaining 13 stations. Most of these
station are located in mountainous terrain or coastal regions that are likely subject to specific
systematic errors, which might favor a location-specific modeling approach.

Next, we shortly compare the methods in terms of the ES, which is a multivariate evaluation
measure and takes therefore spatio-temporal consistency into account. Here, we calculate the
ES of the time series forecasts consisting of forecasts for all lead times at a given initialization
time, i.e., a set of 22 forecasts corresponding to the lead times 0–21 hours. The computation of
the ES is based on the ensemble in case of the EPS and MBM or a sample of 20 randomly drawn
realizations from the forecast distribution otherwise. The results are shown in Figure 5.32.
We can see that the ranking is closely related to that obtained in Table 5.11, and that the NN
methods performed best at 164 of the 175 stations. The main difference is that MBM, which
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Figure 5.31: Best method at each station in terms of the CRPS, averaged over all lead times.
The point sizes indicate the level of statistical significance of the observed CRPS
differences compared to the methods only from the other groups of methods for
all lead times. Three different point sizes are possible, with the smallest size
indicating statistically significant differences for at most 80% of the performed
tests, the middle size for up to 95% and the largest 95% or more.

preserves spatio-temporal correlations of the ensemble forecasts, outperforms IDR as well as
EMOS, which performs better for univariate measures. Despite that, the ML methods are
still superior to MBM and perform best at all but one station, at which MBM performs best.

Last, we evaluate the statistical significance of the differences in the predictive performance
in terms of the CRPS between the competing postprocessing methods. To that end, we
perform DM tests of equal predictive performance for each combination of station and lead
time, and apply a Benjamini-Hochberg procedure to account for potential temporal and
spatial dependencies of forecast errors in this multiple testing setting.18 We find that the
observed score differences are statistically significant for a high ratio of stations and lead
times (Table 5.12). In particular, DRN and BQN significantly outperform the basic models at

18For Table 5.12, we applied the Benjamini-Hochberg correction for each pair of methods separately considering
tests for each combination of location and lead time. For Figure 5.31, we applied the correction for each
location separately considering the tests comparing the best method with the methods from the other
groups for all lead times.
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Figure 5.32: Best methods at each station in terms of the ES. The given score denotes the
overall ES.

more than 94%, and even significantly outperform QRF and EMOS-GB at more than 50%
of all combinations of stations and lead times. Among the locally estimated methods, QRF
performs best but only provides significant improvements over the NN-based methods for
around 1% of the cases.

To assess station-specific effects of the statistical significance of the score differences, the sizes
of the points indicating the best models in Figure 5.31 are scaled by the degree of statistical
significance of the results when compared to all models from the two other groups of methods.
For example, if DRN performs best at a station, the corresponding point size is determined
by the proportion of rejections of the null hypothesis of equal predictive performance at that
station when comparing DRN to EMOS, MBM, IDR, EMOS-GB and QRF (but not the
other NN-based models) for all lead times in a total of 5 · 22 DM tests. Generally, if a locally
estimated ML approach performed best at one station, the significance tends to be lower than
when a network-based method performs best. The most significant differences between the
groups of methods can be observed in central Germany, where most stations likely exhibit
similar characteristics compared to coastal areas in northern Germany or mountainous regions
in southern Germany.
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Table 5.12: Ratio of lead time-station combinations (in %) where pairwise DM tests indicate
statistically significant CRPS differences after applying a Benjamini-Hochberg
procedure to account for multiple testing for a nominal level of α = 0.05 of the
corresponding one-sided tests. The (i, j)-entry in the ith row and jth column indi-
cates the ratio of cases where the null hypothesis of equal predictive performance
of the corresponding one-sided DM test is rejected in favor of the model in the ith
row when compared to the model in the jth column. The remainder of the sum
of (i, j)- and (j, i)-entry to 100% is the ratio of cases where the score differences
are not significant.

EPC EPS EMOS MBM IDR EMOS-GB QRF DRN BQN HEN
EPC 5.4 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
EPS 78.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EMOS 99.3 99.9 84.8 51.1 0.0 0.0 0.0 0.0 0.0
MBM 99.3 99.8 0.0 5.7 0.0 0.0 0.0 0.0 0.0
IDR 98.7 99.2 0.0 1.7 0.0 0.0 0.0 0.0 0.0
EMOS-GB 100.0 99.9 69.5 87.5 87.3 0.5 0.2 0.2 1.2
QRF 100.0 99.9 70.3 88.0 91.9 6.1 1.0 1.1 2.7
DRN 99.9 100.0 94.2 97.7 97.3 58.0 52.8 1.8 44.7
BQN 99.9 100.0 94.2 97.3 97.4 56.6 53.1 1.0 43.4
HEN 99.6 99.9 87.0 94.2 93.6 29.6 26.1 0.1 0.0

Feature importance

The results presented in the previous section demonstrate that the use of additional features
improves the predictive performance by a large margin. Here, we assess the effects of the
different inputs on the model performance to gain insight into the importance of meteorological
variables and better understand what the models have learned. Many techniques have been
introduced in order to better interpret ML methods, in particular NNs (McGovern et al.,
2019), and we will focus on distinct approaches tailored to the individual ML methods at
hand and separately assess the feature importance for the individual methods.

Feature importance for EMOS-GB and QRF

Since the second group of methods relies on locally estimated, separate models for each station,
the importance of specific predictors will often vary across different locations and thus make
an overall interpretation of the model predictions more involved.

In the case of EMOS-GB, we treat the location and scale parameters separately and consider
a feature to be more important the larger the absolute value of the estimated coefficient
value is. In the interest of brevity, we here discuss some general properties only. Overall, the
interpretation is challenging due to a large variation across stations, in particular, during the
spin-up period. In general, the mean value of the wind gust predictions is selected as the most
important predictor for the location parameter, followed by other wind-related predictors and
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the temporal information about the day of the year (Figure 5.33). For the scale parameter, the
standard deviation of the ensemble predictions of wind gust is selected as the most important
predictor, followed by the ensemble mean (Figure 5.34). Other meteorological predictors tend
to only contribute relevant information for specific combinations of lead times and stations,
parts of which might be physically inconsistent coefficient estimates due to random effects in
the corresponding datasets. Selected examples are presented in Figure 5.35.

For QRF, we utilize an out-of-bag estimate of the feature importance based on the training
set (Breiman, 2001). The procedure is similar to what we apply for the NN-based models
below, but uses a different evaluation metric directly related to the algorithm for constructing
individual decision trees, see Wright and Ziegler (2017) for details. Figure 5.36 shows the
feature importance for some selected predictor variables as a function of the lead time.
Interestingly, the 10 most important predictors (two of which are included in Figure 5.36) are
variables that directly relate to different characteristics of wind speed predictions from the
ensemble. This can be explained by the specific structure of RF models. Since these predictor
variables are highly correlated, they are likely to serve as replacements if other ones are not
available in the random selection of potential candidate variables for individual splitting
decisions. The standard deviation of the wind gust ensemble is only of minor importance
during the spin-up period. Besides the wind-related predictors from the EPS, the day of the
year, the net shortwave radiation flux prediction as well as the relative humidity prediction at
1,000 hPa are selected as important predictors, particularly for longer lead times corresponding
to later times of the day and potentially again indicating an effect of the evening transition.
In particular, the shortwave radiation flux indicates the sensitivity of the wind around sunset
to the maintenance of turbulence by surface heating, an effect not seen in the morning when
the boundary layer grows more gradually.

Feature importance for NN-based methods

To investigate the feature importance for NNs, we follow Rasp and Lerch (2018) and use a
permutation-based measure that is given by the decrease in terms of the CRPS in the test set
when randomly permuting a single input feature, using the mean CRPS of the model based on
unpermuted input features as reference. In order to eliminate the effect of the dependence of
the forecast performance on the lead times, we calculate the relative permutation importance.

To introduce the notion of permutation importance (Rasp and Lerch, 2018; McGovern et al.,
2019), we use ξ to denote the ith predictor (i = 1, . . . , p), F (xxx·j) to denote the probabilistic
forecast generated by an NN-based postprocessing method based on the jth sample of a test
set of size n (j = 1, . . . , n), and π to denote a random permutation of the set {1, . . . , n}.19

The permutation importance of ξ with respect to the test set {(xxx·1, y1), . . . , (xxx·n, yn)} and

19In general, the permutation importance can be calculated for any postprocessing method and any scoring
rule. Here, we focus on the NN-based approaches and the CRPS.
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Figure 5.33: Median of stationwise absolute values of the location parameter coefficients for
selected predictors (Table 5.6) of the EMOS-GB model as functions of the lead
time. The error bars indicate a bootstrapped 95% confidence interval of the
median. Note the different scale of the vertical axes.
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Figure 5.34: Median of stationwise absolute values of the scale parameter coefficients for
selected predictors (Table 5.6) of the EMOS-GB model as functions of the lead
time. The error bars indicate a bootstrapped 95% confidence interval of the
median. Note the different scale of the vertical axes.
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Figure 5.35: Boxplots of stationwise parameter coefficients for selected predictors (Table 5.6)
of the EMOS-GB model as functions of the lead time, illustrating severe outliers
for some combinations of stations and lead times. The solid line indicates the
mean coefficient values averaged over all stations. Note the different scale of the
vertical axes.
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Figure 5.36: Median of stationwise feature importance for selected predictors (Table 5.6) of the
QRF model as functions of the lead time. The error bars indicate a bootstrapped
95% confidence interval of the median. Note the different scale of the vertical
axes.

permutation π is defined by

∆ (ξ; π) := 1
n

n∑
j=1

(
CRPS(F (x̃xxπ

·j), yj) − CRPS(F (xxx·j), yj)
)

, (5.13)

where x̃xxπ
·j is the jth sample permuted in ξ with respect to π, which is given by

x̃xxπ
l,j := x̃xxπ

l,j(ξ) :=

xxxl,j l ̸= i,

xxxl,π(j) l = i,
for l = 1, . . . , p, j = 1, . . . , n. (5.14)

In a nutshell, we shuffle the test samples of the predictor variable ξ, generate the forecasts
based on the permuted set, calculate the associated CRPS and calculate the difference to the
CRPS of the original data. The larger the difference, the more detrimental is the effect of
shuffling the feature to the forecast performance, and thus the more important it is.

This procedure can also be applied on a set of k ≤ p features Ξ corresponding to the indices
I = {i1, . . . , ik}, which we refer to as multipass permutation importance (McGovern et al.,
2019). In this case, we do not permute only one feature according to π but instead the entire
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set Ξ, i.e.,

x̃xxπ
l,j := x̃xxπ

l,j(Ξ) :=

xxxl,j l /∈ I,

xxxl,π(j) l ∈ I,
for l = 1, . . . , p, j = 1, . . . , n. (5.15)

The permutation importance ∆(Ξ; π) is then calculated according to equation (5.13). Last,
we calculate the relative permutation importance via

∆0 (ξ; π) := ∆ (ξ; π)
1
n

∑n
j=1 CRPS(F (xxx·j), yj)

. (5.16)

Figure 5.37 shows the relative permutation importance for selected input features and the
three NN-based postprocessing methods. There are only minor variations across the three
NN approaches, with the wind gust ensemble forecasts providing the most important source
of information. To ensure comparability of the three model variants, we here jointly permute
the corresponding features of the ensemble predictions of wind gust (mean and standard
deviation for DRN and HEN, and the sorted ensemble forecast for BQN). Further results for
BQN available in Figure 5.38 indicate that among the ensemble members sorted with respect
to the predicted speed, the minimum and maximum value are the most important member
predictions, followed by the ones indicating transitions between the groups of subensembles.
Again, we find that the standard deviation of the wind gust ensemble forecasts is of no
importance for DRN and HEN (not shown).

In addition to the wind gust ensemble predictions, the spatial features form the second
most important group of predictors (Figures 5.37 and 5.39). The station ID (via embedding),
altitude and stationwise bias are the most relevant spatial features and have a diurnal trend
that resembles the mean bias of the EPS forecasts (Figure 5.27), indicating that the spatial
information becomes more relevant when the bias in the EPS is larger. Further, the day of
the year and the net shortwave radiation flux at the surface provide relevant information that
can be connected to the previously discussed evening transition as well as the diurnal cycle.
Several temperature variables, in particular, temperature at the ground level and lower levels
of the atmosphere, constitute important predictors for different times of day; for example, the
ground-level temperature is important for the first few lead times during early morning.

Conclusions

We have conducted a comprehensive and systematic review and comparison of statistical and
ML methods for postprocessing ensemble forecasts of wind gusts. The postprocessing methods
can be divided into three groups of approaches of increasing complexity ranging from basic
methods using only ensemble forecasts of wind gusts as predictors to benchmark ML methods
and NN-based approaches. While all yield calibrated forecasts and are able to correct the
systematic errors of the raw ensemble predictions, incorporating information from additional
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Figure 5.37: Relative permutation importance of selected predictors (Table 5.6) for the three
NN-based models dependent on the lead time. Note the different scale of the
vertical axes. The abbreviation VMAX_all refers to the multipass permutation
of the features derived from the wind gust ensemble. Different symbols indicate
the three model variants (◦: DRN, △: BQN, □: HEN).
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Figure 5.39: Relative permutation importance of selected predictors (Table 5.6) for the three
NN-based model variants dependent on the lead time. Note the different scale of
the vertical axes. Different symbols indicate the three model variants (◦: DRN,
△: BQN, □: HEN).
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meteorological predictor variables leads to significant improvements in forecast skill. In
particular, postprocessing methods based on NNs jointly estimating a single, locally adaptive
model at all stations provide the best forecasts and significantly outperform benchmark
methods from ML. The analysis of feature importance for the advanced methods illustrates
that the ML techniques, in particular the NN approaches, learn physically consistent relations.
Overall, our results underpin the conjecture of Rasp and Lerch (2018) who argue that NN-
based methods will provide valuable tools for many areas of statistical postprocessing and
forecasting.

5.4 Discussion

At the end of the chapter, we synthesize the conclusions from the individual case studies.
The first case study exemplifies how a basic statistical postprocessing approach corrects
the systematic errors of ensemble forecasts and generates reliable probabilistic forecasts.
We implemented an EMOS approach that results in well-calibrated forecasts for various
meteorological variables and is used for operational, near real-time postprocessing. In the
second case study, we focus on forecasting solar irradiance. Based on two datasets that differ
in the target variable, size, spatial domain, temporal resolution, and the underlying NWP
model, we adapted the EMOS method for seasonal variations based on different training
schemes. Again, the postprocessed forecasts improve the predictive performance with respect
to the ensemble forecasts. While the basic approaches in the first two case studies are based
only on the ensemble forecasts of the variable of interest, modern ML methods, which allow
to incorporate arbitrary predictor variables and to model possibly nonlinear relations to the
forecast distribution parameters, are used in the third case study. Comparing the three groups
of methods, all methods yield well-calibrated forecasts, but the ML methods improve the
performance significantly by using predictor variables beyond the variable of interest. Further,
the NN-based postprocessing methods, which outperform the ML approaches established in
statistical postprocessing, offer a modular framework that can be tailored to the situation at
hand. Here, we implemented a locally adaptive network variant using station embedding and
made use of three of different types of forecast distributions.

The postprocessing models for the KIT-Weather portal yield well-calibrated forecasts, but
could be developed further by incorporating the forecasts of all of the meteorological variables
using EMOS-GB or QRF. Note that this has become feasible only recently as data to a
larger extent has been archived. Even further, an NN-based approach making use of the full
dataset over location, initialization hours and lead times could be implemented. However, the
extension to more complex models includes a trade-off in that a sufficient amount of data is
required and that the complexity of the implementation increases. In this operational setting,
the incorporation on the portal and the availability in near real-time is a critical requirement.

The datasets used in the solar irradiance case study are somewhat limited in terms of
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their temporal extent, in particular the AROME-EPS data. An interesting aspect for future
work will be to for example compare different ways of accounting for seasonal variability once
longer, ideally multiyear periods of data have become available. As for the near real-time
postprocessing, the EMOS models considered could for example be extended using the ML
approaches presented in this work. One example of the successful application of NN-based
postprocessing that demonstrates the potential value of additional predictor variables is given
by Gneiting et al. (2023), who postprocess deterministic NWP forecasts of solar irradiance
with the DRN and BQN approach based on the benchmark data from Yang et al. (2022). For
similar considerations in the solar irradiance forecasting literature where additional predictors
from NWP model output are used, albeit for different types for probabilistic forecasting
methods, see, for example, Sperati et al. (2016) and Bakker et al. (2019).

While we did not apply ML-based postprocessing methods in the first two case studies,
we found in the third that such advanced method are able to improve the performance
significantly, given a comprehensive dataset. But, although we conclude Section 5.3.3 with
the statement that NN-based postprocessing methods will provide valuable tools for many
areas of statistical postprocessing and forecasting, there does not exist a single best method
for most practical applications as all approaches have advantages but also shortcomings.
Based on our experiences in the third case study, Figure 5.40 presents a subjective overview
of key characteristics of the different methods, ranging from flexibility and forecast quality
to complexity and interpretability. We suggest to exploit the full flexibility of NN-based
approaches if various additional features and a large training set for model training and
validation is available, as it was the case for the wind gust data. If the dataset is more limited,
e.g., only given for a small set of stations, the results suggest that QRF and EMOS-GB may
still be able to extract valuable information from the additional predictors. However, if only
ensemble predictions of the target variable or a small set of training samples are available,
more simple and parsimonious methods will likely perform not substantially worse than the
advanced ML techniques (see, e.g., the results in Baran and Baran, 2021).

From an operational point of view, one major shortcoming of the postprocessing methods
other than MBM is that they do not preserve spatial, temporal or intervariable dependencies
in the ensemble forecast. However, in particular in the context of energy forecasting, many
practical applications require an accurate modeling of those dependencies (Pinson and Messner,
2018). In terms of the ES, which takes in our case temporal dependencies into account, MBM
outperforms EMOS and IDR. However, MBM is still inferior to the ML approaches which do not
specifically account for multivariate dependencies, even when focusing on multivariate forecast
evaluation. Several studies have investigated approaches that are able to reconstruct the
correlation structure (e.g., Schefzik et al., 2013; Lerch et al., 2020) for univariate postprocessing
methods. While these techniques require additional steps and therefore increase the complexity
of the postprocessing framework, all methods considered here can form basic building blocks for
such multivariate approaches. In addition, an interesting avenue for future work is to combine
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Figure 5.40: Illustration of subjectively ranked key characteristics of the postprocessing meth-
ods presented in Chapter 4 in the form of a radar chart. In each displayed
dimension, entries closer to the center indicate lower degrees (e.g., of forecast
quality). The color scheme distinguishes the three groups of methods, and the
different line and point styles indicate different characteristics of the forecast
distributions, e.g., solid lines indicate the use of a parametric forecast distribution.
Flexibility here refers to the flexibility of the obtained forecast distribution, or
the flexibility in terms of inputs that can be incorporated into the model. The
component of model complexity is divided into the computational requirements
in terms of data and computing resources, and the complexity of the model
implementation in terms of available software and the required choices regarding
model architecture and tuning parameters.
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the MBM approach with NNs, which might allow to efficiently incorporate information from
additional predictor variables while preserving the physical characteristics.

A related limitation of the postprocessing methods considered here is that they are not
seamless in space and time as they rely on separate models for each lead time, and even each
station in case of the basic approaches, as well as EMOS-GB and QRF. In practice, this may
lead to physically inconsistent jumps in the forecast trajectories, as described in Section 5.1.3
for the postprocessed precipitation sum forecasts on the KIT-Weather portal. To address
this challenge, Keller et al. (2021) propose a global EMOS variant that is able to incorporate
predictions from multiple NWP models in addition to spatial and temporal information. For
the NN-based framework for postprocessing considered here, an alternative approach to obtain
a joint model across all lead times would be to embed the temporal information in a similar
manner as the spatial information.

A possible extension of the postprocessing methods presented in this work would be to
apply them on the residuals of a linear model instead of the original target variable. This way,
the postprocessing methods focus on learning error- rather than scale-dependent relations,
thus potentially compensating for the small amount of high wind speeds within the dataset.
In particular, QRF would then be able to extrapolate and a more evenly distributed binning
scheme for HEN would be obtained. Further, modeling the residuals allows for a better
handling of variables differing in their magnitude, such as the solar irradiance variables
that are strongly dependent on the diurnal and yearly cycle. For example, Gneiting et al.
(2023) use DRN and BQN to postprocess deterministic forecasts for solar irradiance based on
the residuals finding that this improves the predictive performance with respect to directly
modeling the target variable.

The postprocessing methods based on NNs provide a starting point for flexible extensions
in future research. In particular, the rapid developments in the ML literature offer new ways
to incorporate additional sources of information into postprocessing models, including spatial
information via convolutional NNs (Scheuerer et al., 2020; Veldkamp et al., 2021), or temporal
information via recurrent NNs (Gasthaus et al., 2019).

Finally, the development of postprocessing models for solar irradiance was motivated by the
aim of improving probabilistic solar energy forecasting. To that end, it would be interesting
to investigate the effect of postprocessing NWP ensemble forecasts of solar irradiance for PV
power prediction, and for example compare to direct probabilistic models of PV power output
(e.g., Alessandrini et al., 2015). In a related study in the context of wind energy, Phipps et al.
(2022) find that a two-step strategy of postprocessing both wind and power ensemble forecasts
performs best and that the calibration of the power predictions constitutes a crucial step.
Ideally, statistical postprocessing of solar irradiance and wind speed forecasts could contribute
an important component to modern, fully integrated renewable energy forecasting systems
(e.g., Haupt et al., 2020).



CHAPTER 6

Feature-Based Ensemble Postprocessing

A particular challenge for weather prediction is given by the need to better incorporate
physical information and constraints into the forecasting models. Physical information about
large-scale weather conditions, or weather regimes, forms a particularly relevant example in
the context of postprocessing (Rodwell et al., 2018), with recent studies demonstrating benefits
of regime-dependent approaches (Allen et al., 2020, 2021). For wind gusts in European winter
storms (using the same dataset as in Section 5.3), Pantillon et al. (2018) found that a simple
EMOS approach may substantially deteriorate forecast performance of the raw ensemble
predictions during specific meteorological conditions, which we will refer to as high-wind
features.1 Open research questions include whether similar effects occur also for the more
complex NN-based approaches, and how dynamical feature-based postprocessing methods
that are better suited to incorporate relevant domain knowledge can be obtained by tailoring
the model structure and estimation process.

The final chapter starts in Section 6.1 with an answer to the first question, as we replicate
the study of Pantillon et al. (2018) using our NN-based postprocessing methods. The results
support the call of Pantillon et al. (2018) for hybrid postprocessing, which we vaguely define
as approaches that combine a standard model with domain knowledge. To demonstrate the
potential of such hybrid models, we will make an excursion to tropical cyclone (TC) forecasting
in the North Atlantic, where we will present a model that combines NWP predictions with
statistical approaches based on climatological data (Section 6.2). Returning to wind gust
prediction, we aim to develop a hybrid postprocessing approach that incorporates information
on the relevant weather patterns, here, the high-wind features. As a first step towards such
a feature-dependent postprocessing approach, we need to be able to identify the high-wind
features. However, this is not straightforward as an expert typically has to identify the
features subjectively by hand, e.g., in the case of Pantillon et al. (2018). Hence, an automatic

1In this chapter, we will use the term feature to denote only the different high-wind areas, and not as a
synonym for the term predictor variable.
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procedure that objectively identifies the features is required to develop a feature-dependent
postprocessing approach. In Section 6.3, we will present an identification method that combines
expertise from ML and meteorology. Based on the identification, a feature-dependent error
analysis should assess whether a hybrid approach is actually justified. Here, however, we will
skip this part in the interest of brevity and directly focus on experiments towards hybrid
models. Therefore, we end the chapter with Section 6.4, where we develop first concepts for
feature-dependent postprocessing based on the NN framework introduced in Section 4.3, and
assess the predictive performance with a focus on European winter storms.

6.1 Neural network postprocessing within winter storms

Although the postprocessing methods generate accurate and reliable forecasts that outperform
the ensemble predictions in Chapter 5, forecast busts have the potential to undermine the
acceptance of postprocessing in (operational) practice. Forecast busts, which we vaguely
defined in Section 5.1, take different forms, such as for the near real-time postprocessing
where one postprocessed forecast of precipitation rate resulted in an extremely large and
unrealistic scale parameter. Two other examples in Section 5.1 that can be considered forecast
busts are the physically inconsistent precipitation sum or the unrealistically high temperature
predictions. In this section, we will focus on cases where postprocessing performs worse than
the ensemble and therefore actually degrades predictive performance.

As mentioned in the introduction to this chapter, Pantillon et al. (2018) found that a simple
EMOS model deteriorated forecast performance with respect to the ensemble forecasts for
some winter storms. In the context of extreme events, which may be subject to an inherent
limited predictability, (public) attention focuses on the quality of the associated forecasts.
Hence, in these type of situation, forecast busts are especially critical and should be avoided
at any cost from the forecasters point of view. We refer to Lerch et al. (2017) for details on
the associated challenges they refer to as the forecaster’s dilemma.

Here, we will extend the case study on probabilistic wind gust prediction towards the winter
storms considered in Pantillon et al. (2018). In the following, we will focus on two of the
methods included in the overall comparison of postprocessing methods for wind gusts. Namely,
we will apply our EMOS approach to allow comparisons with the original study and to serve
as benchmark model for NN-based postprocessing, which outperformed other approaches in
Section 5.3. Note that our EMOS approach is not identical to that of Pantillon et al. (2018),
and that we will cover the differences over the course of this section. As the performance
of the superior NN models DRN and BQN is (almost) indistinguishable within the winter
storms, we will consider only DRN in the following, as it is uses the same forecast distribution
as EMOS.
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Table 6.1: Winter storms selected in Pantillon et al. (2018) together with the selected model
initialization and SSI over Germany (names as given by Free University of Berlin;
besides Gonzalo, given by the National Hurricane Center). Adapted from Table 1
in Pantillon et al. (2018).

Case Model initialization SSI
Joachim 16 December 2011 03 UTC 1.7
Andrea 04 January 2012 18 UTC 2.1
Christian 28 October 2013 00 UTC 5.1
Xaver 05 December 2013 06 UTC 2.9
Gonzalo 21 October 2014 06 UTC 2.5
Elon 09 January 2015 00 UTC 1.9
Felix 10 January 2015 00 UTC 2.6
Niklas 31 March 2015 00 UTC 12.0
Ruzica 08 February 2016 06 UTC 1.0
Susanna 09 February 2016 09 UTC 1.3

6.1.1 Data and model configurations

Our study will be based on the data used in Pantillon et al. (2018), which coincides with
that underlying the case study in Section 5.3. Here, we describe how the winter storms were
selected and what training and test data is used. For both questions, we follow Pantillon
et al. (2018). First, we note that the COSMO model is not only initialized at 00 UTC, the
only initialization hour considered in Section 5.3, but instead every 3 hours at 03, 06,. . . ,
21 UTC. The 10 most severe storms in the period from 2011 to 2016 have been selected as
case studies, where severity is measured in terms of the Storm Severity Index (SSI; Klawa
and Ulbrich, 2003), which estimates the impact of a windstorm based on observed surface
gusts, here, in meteorological terms.2 For each of these storm, Pantillon et al. (2018) pick one
initialization time and consider forecasts for all available lead times from 0 to 21 hours, where
the initialization time was chosen such that the highest intensity is reached after lead times
from 12 to 15 hours. Table 6.1 provides an overview of the selected winter storms.

In the overall comparison, we used the period from 2010 to 2015 for training, including
the validation year 2015, and 2016 for testing. As the selection of winter storms covers the
entire period, we cannot use the models from the case study for prediction and need to find
another approach to split the data. To do so, we use a yearly CV approach where we hold
out the year of occurrence for each storm and use the remaining years for training. Further,
the year 2016 is used as validation period, besides for storms in that year, where we use 2015
for validation. Hence, for storms in 2016, the underlying data partition is identical to that in
Section 5.3. As in previous applications, a separate model is estimated for each lead time. In
contrast to Section 5.3, the initialization times chosen for the selected storms are based on

2Originally, the SSI was developed to estimate the damage to buildings and infrastructure, also taking into
account the population density as indicator for insured values.
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different hours of the days (Table 6.1). Following the discussion in Sections 5.1 and 5.2, we
treat each initialization hour separately and train a separate model. Hence, storms in different
years and/or based on different initialization hours are not predicted using the same model
instances. However, when two storms coincide in both categories, the same model is used, as
in case of Elon, Felix and Niklas.

In order to ensure comparability to Section 5.3, we do not modify the two postprocessing
methods and apply them directly as before. This includes the fact that we do not tune the
hyperparameters separately but instead use the configurations described previously. However,
as the data partition scheme is consistent with Section 5.3, we do not expect a negative effect
on the predictive performance. As mentioned before, the EMOS approach used in Pantillon
et al. (2018), which we refer to as EMOS-0, differs from our approach used in Section 5.3.
The main difference is that Pantillon et al. (2018) use a rolling 30-day window for training of
EMOS-0, while our approach is based on a seasonal training period over five years.

6.1.2 Results

When comparing the evaluation metrics in Figure 6.1 with Pantillon et al. (2018, Figure 5),
we find that the results of the two EMOS variants are consistent. The CRPS, CRPSS, forecast
bias and PI length/forecast uncertainty are of the same order and behave largely identical.3

Both EMOS approaches are subject to the forecast bust for Christian, which comes with a
large negative bias, and Andrea is the only storm that results in a positive bias for both.
Further, the two approaches result in a negative skill for Felix. However, there are also
differences. Only for EMOS-0, we observe a forecast bust in case of Xavier, and, only for our
EMOS approach, we observe a forecast bust in case of Niklas, which is even larger than for
Christian. Despite the minor differences, we conclude that the results are coherent and that
changes are a result of the different training schemes.

Next, we compare the performance of EMOS and DRN in the winter storms with that
over the entire year. Note that, in contrast to the winter storms, the general comparison
in Section 5.3 is based only on initialization times at 00 UTC, which reduces comparability
over lead times due to different effects of the diurnal cycle, and that the sample size is much
smaller here. Figure 6.2 shows four of the evaluation metrics we also considered in Figure 5.30,
averaged over all winter storms. As expected, when looking at extreme events, the forecast
uncertainty increases and larger scores are observed. Both the CRPS and CRPSS are not
at the level of the general comparison, and an increase in PI length reduces the sharpness.
Further, we observe the spin-up effect in a sudden jump in the bias and PI length of the
ensemble forecasts for the 1 hour forecast.

Regarding the differences between EMOS and DRN, we find a similar gap of around 10% in
3Pantillon et al. (2018) do not evaluate the forecast uncertainty based on the PI length but instead the

standard deviation (referred to as spread). Hence, Figure 3d in Pantillon et al. (2018) and the PI length of
the EMOS approach in Figure 6.1 are on different scales. Still, they behave similarly.
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Figure 6.2: Mean CRPS, CRPSS with respect to the raw ensemble predictions, mean PI
coverage, mean PI length and mean bias of EMOS and DRN as functions of the
lead time, averaged over all winter storms and stations.

the CRPSS, which is largest when the storms are most intense. As in the general comparison,
both methods predict smaller median wind speeds than the ensemble forecasts. While this
reduction resulted in (nearly) unbiased forecasts in the general comparison, the methods
strongly underforecast the wind gusts in the winter storms. Comparing EMOS and DRN, we
find that the bias of the EMOS forecasts is larger, especially when the intensity peaks. When
the storms are most intense, the DRN forecasts are still reasonably well-calibrated, as the PI
coverage stays close to the nominal value in contrast to EMOS. In addition to a smaller bias,
wider PIs are a reason for the higher PI coverage of the DRN forecasts. In the general case,
DRN provides on average sharper forecasts than EMOS. Here, however, EMOS generates
smaller PIs than DRN. But comparing the behavior of the forecast uncertainty with that of
the ensemble predictions, we find that while DRN resembles the uncertainty of the ensemble
predictions, EMOS adapts only slightly. Hence, we conclude that DRN describe the forecast
uncertainty much more adequately.

While the postprocessing methods perform well averaged over all cases, a separate inves-
tigation of the individual winter storms is crucial due to the diversity of the selected cases.
Figure 6.1 shows the evaluation metrics for each storm separately, both in case of EMOS and
DRN. In addition, Figures 6.3 and 6.4 simultaneously compare the two methods with the
ensemble forecasts for each storm separately. Note that at most 175 forecasts are available for
each lead time, depending on the number of stations with missing values.
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Figure 6.3: Mean CRPS, CRPSS with respect to the raw ensemble predictions, mean PI
coverage, mean PI length and mean bias of EMOS, DRN and the raw ensem-
ble predictions as functions of the lead time, averaged over all stations plotted
separately for each winter storm within the period from 2011 to 2014.
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As mentioned in the comparison of EMOS and EMOS-0, there are three forecast busts for
EMOS (Christian, Niklas, Felix). In contrast, two are observed for DRN (Joachim, Susanna).
Interestingly, the underlying storm cases differ. Still, the magnitude of the forecast busts is
smaller in case of DRN. When comparing the CRPS of DRN with that of the ensemble for the
individual storms (Figures 6.3 and 6.4), we find that, for all cases but Susanna and Joachim, a
constant gap in the CRPS is present. On the other side, the CRPSS of EMOS becomes worse
as the storm intensifies. When comparing the PI lengths for the individual storms, we find the
same pattern as for the averages. The DRN forecasts resemble the forecast uncertainty of the
ensemble, while the EMOS forecasts adapt only slowly. The behavior of EMOS coincides with
a decrease in the CRPS, hence the method fails to adapt to the arising forecast uncertainty
and does not increase the PI length sufficiently. In case of the forecast bias, we find that the
reduction of the median forecast performed by EMOS is consistent over all lead times with a
constant gap for almost all cases. In contrast to EMOS, the correction of the median forecast
changes in case of DRN for each storm and over lead time. Overall, the predicted wind speed
is still corrected downwards (as seen in Figure 6.2). Note that the varying bias corrections of
DRN do not originate from the underlying model instances, as we observe this behavior also
in case of Elon, Felix and Niklas, which are based on the same network models.

In the following, the individual storms are investigated in more detail, where we focus on
DRN:

– Joachim, Susanna: In these two cases, the skill of DRN vanishes and becomes negative.
For both, DRN strongly underforecasts the observed wind gusts as a result of a downward
correction of the ensemble median forecast, which already has a negative or no bias for
the late lead times. Interestingly, these cases are the only two where DRN applies a
larger bias correction than EMOS. Although EMOS is not subject to a forecast bust for
these two storms, almost no skill is achieved for the later lead times.

– Andrea: Andrea is the only storm, where a positive bias is observed for EMOS and
DRN. Still, both postprocessing methods reduce the bias with respect to the ensemble
median, which overforecasts the observed wind speeds strongly. As long as DRN is not
more biased than EMOS, it performs better due to a more adequate forecast uncertainty.

– Xaver, Elon, Ruzica: For these three storms, DRN outperforms EMOS consistently
over all lead times and applies only a small bias correction with respect to the ensemble
forecasts. EMOS consistently underforecasts the observed wind speeds.

– Christian, Gonzalo, Niklas: Here, we can observe an interesting pattern of DRN,
that is, the bias correction changes when the intensity of the storm increases. In all
cases, this reduction improves the predictions as it reduces the absolute bias compared
to the (hypothetical) application of an unchanged bias correction with respect to the
lead time. In case of Gonzalo, the predicted median speed is corrected downwards. As
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the ensemble overforecasts the observed wind speed, this reduces the bias and improves
the predictive performance. For Christian and Niklas, the two forecast busts of EMOS,
DRN corrects the predicted wind speeds in the opposite direction, that is, upwards, and
thus prevents a forecast bust.

– Felix, Niklas: In both cases, we observe that the PI length of DRN increases at late
lead times, although the ensemble range does not increase (at the same rate). Thus,
DRN identifies that the forecast uncertainty should be increased more than suggested
by the ensemble predictions.

Concerning the individual winter storms, we conclude that the corrections performed by
EMOS are consistent over lead time and storm cases. This is not surprising, as the EMOS
model is based only on the wind gust ensemble predictions via a linear link function and does
not model nonlinear, flexible relations in contrast to the NN-based postprocessing methods.
DRN seems to be able to identify cases, in which different bias and also dispersion corrections
are required for the ensemble predictions. However, this does not always work, as we still
observe two forecast busts in case of Joachim and Susanna.

To better understand the corrections applied by DRN, we investigated the importance and
effect of the predictor variables using methods for interpretable ML (Molnar, 2018).4 However,
these experiments remained inconclusive, as we found no systematic effects of the predictor
variables explaining the behavior of the DRN models. One aspect that hindered inference
was that we estimate separate models for (almost) each winter storm and lead time, that are
themselves based on deep ensembles of 10 individual networks.

Overall, we conclude that NN-based postprocessing outperforms the basic EMOS approach
also within the winter storms. In contrast to EMOS, DRN is well-calibrated when the storm
intensifies, as the PI coverage remains close to the nominal level. Further, DRN quantifies the
forecast uncertainty adequately, again, in contrast to EMOS. Still, not only EMOS but also
DRN is subject to forecast busts, where postprocessing performs worse than the ensemble
predictions. In their study, Pantillon et al. (2018) investigated the selected winter storms with
respect to the meteorological conditions and associated wind gust-generating mechanisms
involved, and conjectured that these high-wind features are associated with the forecast busts
of their EMOS approach. Therefore, they called for feature-dependent postprocessing that
accounts for the high-wind features. But before we follow this pathway by developing an
identification method in Section 6.3, we will demonstrate the potential of building hybrid
forecasting models.

4In particular, we applied the permutation importance technique used in Section 5.3 as well as partial
dependency plots, a technique that will be introduced at a later point of this chapter in Section 6.3.
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6.2 Excursion: Hybrid forecasting of tropical cyclones

At this point, we want to highlight a study on probabilistic prediction of TC occurrence
in the North Atlantic, which demonstrates the potential of combining different sources of
information in a hybrid model. Despite the use of methods from statistical learning to improve
upon NWP model forecasts, we refer to this section as an excursion, since we do not stay
in the postprocessing setting of Chapter 4, as we consider a binary instead of a continuous
target variable. By systematically comparing forecasting methods that differ in the inherent
type of information, we want to motivate the usage of hybrid models to improve predictive
performance. In the following, we shortly describe the setting, data and types of models used,
including benchmark and statistical models. Then, results of the systematic model comparison
are presented, followed by a summary and conclusive remarks. As this section is intended to
provide only a glimpse of the entire underlying study, we will keep the descriptions short and
refer to Maier-Gerber et al. (2021) for details.5

For decades, there has been a parallel development of predictions for individual TCs made
by operational forecast centers for lead times of a few days on the one hand, and seasonal
predictions of integrated TC activity on the other.6 This coexistence is due to the subseasonal
predictability gap (Vitart et al., 2012; Robertson et al., 2020), which has raised broad attention
and efforts to bridge only in recent years, where we refer to subseasonal predictions as forecasts
with lead times from two to five weeks ahead. Because of the lack of skillful models, potential
sources for subseasonal predictability of TC activity have become a research focus. Nowadays,
NWP models are often integrated to subseasonal or seasonal forecast horizons, and have been
systematically evaluated in terms of predictive skill for different TC occurrence measures in
several studies (Lee et al., 2018, 2020; Gregory et al., 2019). Lee et al. (2018) found that the
subseasonal-to-seasonal (S2S; Vitart et al., 2017) models generally have little to zero skill
in predicting TC occurrence from week two on relative to climatological forecasts. For the
North Atlantic, which is the domain considered in this section, they stated that actual and
potential model skills are very close, suggesting that hardly any improvement can be achieved
with current NWP models.7

Inspired by the example of numerous statistical forecast models for seasonal forecasting,
Leroy and Wheeler (2008) followed a different approach and developed logistic regression
models based on past data to produce probabilistic forecasts of weekly TC genesis and
occurrence up to seven weeks in advance. Comparing against ECMWF model predictions,

5Note that the publication underlying this section is a collaboration with meteorologist (see Section 1.1 for
my contributions).

6The term integrated TC activity refers to both the number and intensity of TCs, integrated over the
prediction horizon.

7Lee et al. (2018) measure potential model skill based on the approach of Buizza (1997), who investigates a
model-dependent limit of forecast skill. Note that this does not correspond to the potential predictability
of the underlying target variable, here, TC activity.
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Figure 6.5: (a) 1968–1997 (orange dots) and 1998–2017 (blue dots) IBTrACS tropical cyclone
positions at 00 UTC during the North Atlantic hurricane season (June–November)
for intensities of at least tropical storm strength. (b) Relative frequency of TC
occurrence (%) based on the definition in the data paragraph. Note that interval
boundaries are not equidistant. The red contour highlights the area where TCs
occur at a rate of more than 1%. Orange boxes enclose the subregions used for
model validation.

Vitart et al. (2010) identified the statistical approach from Leroy and Wheeler (2008) to
perform better from week two on.

Even though Lee et al. (2018) concluded that the (dynamical) S2S models lack skill
to forecast North Atlantic subseasonal TC genesis, these models may be able to predict
subseasonal environmental conditions favorable for TC genesis to a sufficient degree, so that
predictors can be generated and fed into statistical models. Such a statistical-dynamical (or
hybrid) forecast model is thought to combine the strengths of each individual model, and thus
to increase model skill. Here, we present a hybrid model, using a variety of predictors known
to precondition and modulate environments that are prone to TC occurrence.

Data: TC occurrence

The basis for deriving the TC occurrence is the International Best Track Archive for Climate
Stewardship (IBTrACS; Knapp et al., 2010, 2018) dataset version 4. To account for TC
occurrence, cyclones are required to be tropical in nature and to exceed at least tropical storm
strength (≥ 34 kt; 1 kt ≈ 0.51 m/s). Although the IBTrACS dataset comes with a 3-hourly
temporal resolution, only 00 UTC instances of cyclone track positions are taken into account
to allow for a systematic comparison with the lowest temporally resolved benchmark model,
the S2S TC tracks (see benchmark models). Figure 6.5a shows the North Atlantic cyclone
positions, that fulfill the stated criteria for the periods used for model validation, training of
the statistical models, and for generating the climatological models, respectively.

To take account of the reduced predictability on subseasonal timescales, TC occurrence
(hereafter alternatively referred to as ’target variable’) is created by means of a coarser
spatio-temporal evaluation, which is over periods of one week and within a certain spatial
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area. For a given forecast week, a grid point is considered to feature TC occurrence, if at least
one TC occurs within a radial distance of 7.5◦. Based on the dichotomous target variable,
Figure 6.5b presents a map of the resulting relative frequencies of TC occurrence, which can
also be interpreted as an density plot of the occurrence.

Data: Predictor variables for the statistical models

The difference between the statistical-dynamical approach and the purely statistical approach
developed is merely in the underlying data, from which predictors are generated. The purely
statistical models are trained on ERA5 (Hersbach et al., 2020) data, whereas predictors for
the statistical-dynamical models are generated from S2S ECMWF ensemble reforecasts.8

The S2S reforecasts are produced twice per week (Mondays and Thursdays) with one control
plus 10 perturbed forecasts, ranging out to 46 days. Originally calculated with a horizontal
grid spacing of 16 km for the first 15 days and 31 km afterwards, S2S model output is archived
with daily values at 00 UTC on a regular 1.5◦ × 1.5◦ grid, which is considerably coarser
compared to ERA5. For the sake of consistency, both datasets are therefore used with this
coarser grid spacing and temporal resolution. To ensure that the S2S-based predictors are not
subject to biases, a mean bias correction was applied to all variables, from which predictors
were directly generated.

Benchmark models

As demonstrated in Chapter 5, an integral part of model development is to compare a newly
generated model with those that are well-established and/or different in their approach. To
justify the application of a new model, it should perform better than the benchmark. With
climatological and NWP models, two distinct types of benchmark models are employed in the
following to put into relation the performance of the statistical models developed.

Climatological models are used as the first type of benchmark to allow for a comparison with
predictions based on long-term statistics of TC occurrence, i.e., on its climatology. Because
those statistics are calculated over a set of past realizations drawn from the underlying
distribution of the target variable, climatological forecasts are inherently independent of
the current state of the atmosphere. Moreover, they are unbiased if trends and/or regime
changes are negligible. If so, there are no restrictions regarding lead time, and forecasts
are thus independent of forecast week. The climatological models used here are derived
from the IBTrACS dataset for the period 1968–2017. The simplest approach to generate
a climatological statistic is to average TC occurrence over the 50 North Atlantic hurricane
seasons considered. This approach yields a mean seasonal climatology (MSC), where constant
forecasts are predicted throughout the season. A more adaptive strategy to take into account

8ERA5 is short for ECMWF Reanalysis version 5. While reanalysis data describes the past state of the
atmosphere as close as possible using all information available at the present day, reforecasts replicate the
forecasts the current model would have generated in the past.
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seasonal variations is to average over years for every day of year separately, resulting in a
climatological seasonal cycle (CSC). Seasonal fluctuations indicate that the 50-year period is
not sufficient to generate a robust climatology, since one would expect the observed relative
frequency to not vary much for neighboring days in the year. To mitigate the adverse effect
of too small sample sizes, a smoother and more representative CSC (hereafter referred to as
CSCopt) was constructed by applying a moving average.

To compare with predictions directly obtained from a state-of-the-art NWP model, a second
type of benchmark is created by calculating probabilities for TC occurrence from all 00 UTC
instances of the TC tracks identified in the S2S ECMWF 1998–2017 ensemble reforecasts
(hereafter referred to as S2STC ). Each ensemble member either predicts the occurrence of a
TC or not, therefore we can derive a probability forecast by averaging over the 11 ensemble
members. Note that the probability forecasts take the values 0/11, 1/11, . . . , 11/11.

Just like the short- and medium-range NWP predictions considered in Chapter 5, S2STC
forecasts are frequently not calibrated. Therefore, we have tested different statistical post-
processing techniques to correct for potential miscalibration. Note that TC occurrence is a
dichotomous target variable, and not (discrete-)continuous as those in Chapter 5. Hence, we
cannot apply the methods presented in Chapter 4, but instead we consider techniques tailored
to calibration of probability forecasts, which have briefly been addressed in Section 3.5, such as
the beta-transformed LP (Ranjan and Gneiting, 2010), beta calibration (Kull et al., 2017) or
logistic calibration (Platt, 1999), but also IDR using the probability forecast as sole predictor.
For this purpose, IDR turned out to perform best. In the application on probability forecasts,
IDR is equivalent to isotonic regression, a common approach for calibration of probabilities in
the ML literature (e.g., Guo et al., 2017). Based on the natural assumption that a higher
forecast probability is associated with a higher event frequency, IDR here learns a step-function
that is used to transform the S2STC forecasts to calibrated probability forecasts.9 To increase
robustness, forecasts from all grid points of a given validation subregion are pooled for training
of IDR, hence, a global training approach.

Statistical model development

If the target variable is dichotomous, logistic regression models are commonly trained to map
linear combinations of continuous predictor variables to a probability via the logit function
(Hastie et al., 2009).10 The logistic regression model can be formulated as

π (xxx; β0,βββ) = logit−1
(
β0 + xxxTβββ

)
=
(
1 + exp

(
−β0 − xxxTβββ

))−1
, (6.1)

9In this particular application, the probability forecasts only take 12 values. Hence, in essence, we only
need to find calibrated probabilities for each of the 12 predictions derived from the ensemble. In case of
IDR, these values simply correspond to the average occurrences observed in the training data, under the
constraint of monotonicity.

10In Section 5.1, we use a multivariate logistic regression variant for postprocessing of cloud cover (equation
(5.2)).
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where π denotes the estimated probability of the target variable being 1, xxx ∈ Rp the vector of
the predictor variables, β0 ∈ R the intercept, and βββ ∈ Rp the vector including the regression
coefficients of the predictors. Using the LIBLINEAR solver (Fan et al., 2008), we estimate
the coefficients by solving the optimization problem

min
β0,βββ

1
2βββTβββ +

n∑
i=1

LogS (π (xxxi; β0,βββ) , yi) , (6.2)

where {(xxx1, y1) , . . . , (xxxn, yn)} is the training data. The second term corresponds to MLE
(and optimum score estimation), while the first term corresponds to a l2-penalty, which keeps
the coefficients of the predictors small and thus prevents the model from overfitting. The
minimization is stopped, if either the difference between the losses of two consecutive iterations
drops below a tolerance of 10−4, or a maximum number of 100 iterations is reached. To
support faster convergence of solutions for model coefficients, predictors are standardized on
the respective training set.

Training a logistic regression model on the full variety of predictors available does not
necessarily lead to the best predictive performance. Optimal predictor subsets for the
statistical-dynamical and purely statistical approach, respectively, are therefore determined
using a sequential forward predictor selection (e.g., Hastie et al., 2009). This selection process
is conducted separately for the two subregions considered (Figure 6.5), namely, the Gulf of
Mexico and the central main development region (MDR), and grid points are pooled for
each subregion to make selections more robust. To guarantee that the logistic regression
models do not perform worse than the climatological benchmark models, a CSCopt predictor
is kept fixed, a priori. This initial minimal subset is then extended by the one predictor that
minimizes the average Akaike information criterion (AIC; Akaike, 1974; Hastie et al., 2009)
of a 5-fold CV on the training period. For a logistic regression model with p predictors, the
AIC is defined as

AIC = 2 1
n

n∑
i=1

LogS (π (xxxi; β0,βββ) , yi) + 2 p

n
, (6.3)

where {(xxx1, y1) , . . . , (xxxn, yn)} is a set of n forecasts and observations. We chose AIC as our
scoring metric since it reduces overfitting by penalizing larger numbers of predictors, in
addition to the term for the model’s performance. The extension of the subset is repeated
until all candidate predictors are integrated. Then, the optimal subset of predictors is finally
identified by the lowest AIC achieved. This forward selection is preferred over a backward
selection (i.e., successively removing predictors) to keep the number of optimal predictors as
small as possible but as large as necessary. Hence, 20 predictor subsets are obtained that are
found to be highly consistent, being in complete agreement for the central MDR, and differing
in only one predictor at week two for the Gulf of Mexico.
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Validation strategy and training of the statistical models

A systematic comparison of the different model approaches requires a common strategy for
validation. While forecasts from the climatological benchmark models can be issued every day,
the NWP-based benchmark model and the predictors for the logistic regression models rely
on the twice-weekly run and disseminated S2S ECMWF forecasts, thus, posing the stronger
limitation to a validation dataset. Starting from each of these S2S reforecast initialization
dates, for every model, forecasts are generated for the first five consecutive weeks, i.e., days
0–6, 7–13, ..., 28–34. However, forecasts are only considered for validation if the middle of
the respective forecast week falls into the North Atlantic hurricane season, which runs from 1
June to 30 November. This yields a total of 1,040 (52 reforecasts per season × 20 seasons)
validation instances, for which S2S ECMWF reforecasts are available. In contrast to the
NWP-based benchmark models, the climatological and logistic regression models require a
training dataset that is independent of the validation dataset. To fully exploit the relatively
small number of S2S reforecasts for both purposes, a 20-fold CV is applied, so that every
season can be successively validated, while the statistical models are being trained on the
remaining 19 seasons. To avoid training statistical models with too great imbalances between
TC occurrence and nonoccurrence in the target variable, a fraction of at least 1% is required to
feature TC occurrence, which is the case for the Gulf of Mexico and central MDR subregions.
Because the climatological models (and thus the base predictor) share the underlying dataset
with the target variable, the CV strategy necessitates the climatologies to be calculated
separately for every fold, leaving out the data of the season to be forecast and validated.
Although a separate statistical model is trained for every grid point and target forecast week,
the generated forecasts are pooled for each of the two subregions, to allow for more solid
conclusions during the validation discussed in the latter.

Model comparison

Before all models are validated in terms of skill, calibration and sharpness of the probability
forecasts are analyzed qualitatively via CORP reliability diagrams (Section 2.1). Figure 6.6
shows CORP reliability diagrams for the Gulf of Mexico and central MDR week-four forecasts
to represent the subseasonal time scale. Biases, however, are qualitatively similar for the other
forecast weeks. For both subregions and all models, forecast probabilities tend to be generally
very low, consistent with the extreme nature of TCs, leading to low relative frequencies of
TC occurrence in the target variable. Thus, the model predictions can be made only with
low confidence as the forecast probabilities are distributed mainly around the mean relative
frequency of the target variable. However, it can be stated that the logistic regression models
can predict with slightly higher confidence compared to the benchmark models.

Recall that a model is well-calibrated (or reliable) when the forecast probabilities match the
observed relative frequencies. Miscalibration can thus be visually assessed through deviations
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Figure 6.6: CORP reliability diagram for Gulf of Mexico (a) and central MDR (b) week-four
forecasts, respectively. While probability forecast distributions are visualized
by means of histograms for the S2STC and S2STCcal models, a kernel density
estimation is applied to generate continuous curves for the other models. The
dashed vertical line indicates the mean relative frequency of the target variable.

of the calibration curves from the diagonal. The first thing to notice is that all models are
more reliable for low forecast probabilities than for higher ones, which is consistent with the
refinement distributions discussed before. The underforecasting situation (TC nonoccurrence
bias) of the CSCopt model is likely to result from a reduced TC occurrence in the 1968–
1997 period, which was used to extend the 1998–2017 validation period for calculating more
robust climatologies. However, since the CSCopt is also a base predictor for the logistic
regression models, it has no competitive disadvantage when evaluating model skill. The
S2STC model similarly underforecasts the low forecast probabilities, but overforecasts the
few high forecast probabilities, which results in a general overconfidence. To correct for this
conditional bias, this particular NWP-based model is calibrated using IDR, as described above.
The S2STCcal follows the diagonal quite well for low forecast probabilities, and thus generates
much more reliable forecasts. Since logistic regression is known to yield well-calibrated
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Figure 6.7: Brier skill score (BSS; %) as a function of forecast week for the CSC (gray), CSCopt
(black), S2STC (lightblue), S2STCcal (darkblue), purely statistical (orange), and
statistical-dynamical (red) models, respectively, relative to the MSC and validated
in the Gulf of Mexico (left) and central MDR (right) subregions.

forecasts, the calibration curves for the two approaches of logistic regression models are
well-aligned with the diagonal for low forecast probabilities. The increasing deviations with
higher forecast probabilities are likely due to the few samples, which are obviously insufficient
for generalization. Overall, subseasonal forecasts of the logistic regression models, with a
slightly better calibrated statistical-dynamical approach for higher forecast probabilities, are
more reliable than the benchmark forecasts.

Figure 6.7 shows a comparison of the BSS as a function of forecast week for the different
model types validated in the Gulf of Mexico and central MDR subregions. Since climatological
forecasts are independent of the forecast week, the BSS also does not change with lead time.
Considering that the MSC is used as reference, the positive BSS for the CSC and CSCopt
models indicate that the ability to simulate seasonal variations is rewarded. The improvement
in skill, however, exhibits remarkable subregional differences, as can be seen by a BSS of CSC
three times stronger (about 15% vs. less than 5%) for the central MDR compared to the Gulf
of Mexico. The BSS of the CSC is further enhanced when correcting for the undersampling
problem of the CSC through a locally optimized smoothing. The relative enhancement is
found to be much stronger for the Gulf of Mexico than the central MDR subregion, which
can be explained by the more variable CSC.

In terms of the NWP-based benchmark models, IDR calibration helps increase the BSS of
S2STC by adding 3–6% and 1–2% for the Gulf of Mexico and the central MDR, respectively,
over the forecast weeks considered. For forecast week one, the S2STCcal model by far exceeds
the CSCopt, but rapidly looses most of its skill over the first two forecast weeks, i.e., on
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the medium range, eventually leveling off thereafter on subseasonal timescales. While the
CSCopt outperforms the S2STCcal from week three on in the central MDR, the CSCopt
takes the lead only beyond forecast week three in the Gulf of Mexico. Apart from these minor
subregional differences, this considerable drop in model skill around week two to three is in
accordance with previous findings for forecasts of basin-wide TC occurrence (Lee et al., 2018),
highlighting the potential of climatological forecasts for subseasonal timescales.

Expanding the climatological model by including predictors generated from past data, the
purely statistical approach improves the CSCopt skill for all five forecast weeks. While 3%
are added in the Gulf of Mexico at week one, improvements reduce to less than 0.7% beyond
medium range (Fig. 6.7a). In comparison, a maximum of 2% is added to the CSCopt BSS in
the central MDR, but this level of improved skill drops to about 0.7% only after week three
(Fig. 6.7b).

Replacing the past data with the S2S ensemble mean and standard deviations for each
predictor, the statistical-dynamical approach further raises the BSS at all forecast weeks. The
gain in skill is greatest for week one, and continuously decreases with longer lead times, except
for minor subseasonal variations in the central MDR. For the Gulf of Mexico, improvement in
skill from the purely statistical to the statistical-dynamical approach is 4.5–6.5 (0.4–3.2) times
greater on the medium (subseasonal) range than the improvement from the CSCopt to the
purely statistical approach. In analogy, for the central MDR, relative improvements appear
to be 1.8–5.2 (0.2–3.8) times larger on the medium (subseasonal) range. Even though both
logistic regression models are beaten by the S2STCcal model at week one, they outperform
all benchmark models from week three (two) on in the Gulf of Mexico (central MDR). Note
that a simple approach to obtain at least equivalent skill for week one and two would be to
include the S2STCcal forecasts as a predictor to the logistic regression models.

Summary and conclusions

Keeping in mind the aim of this section, that is, to give a motivation for the use of hybrid
forecast models, we summarize the findings in the following:

– While the S2S ECMWF model predicted best at week one, it quickly dropped in skill
thereafter due to the chaotic nature of the atmosphere blurring the valuable information
contained in the initial conditions. Analogous to the results in Chapter 5, postprocessing
of the underforecasting S2STC model via IDR helped to raise skill at all lead times, but
did not exceed the other approaches on subseasonal timescales.

– The purely statistical approach from Leroy and Wheeler (2008) and Slade and Maloney
(2013), with logistic regression models trained on past data predictors, improved skill
over the CSCopt model in both subregions out to week five.

– With the statistical-dynamical approach, an even greater increase in model skill was
found at all lead times considered, but especially on the medium range. Though this
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approach was still worse than the S2STCcal for week one, despite a significant increase
in skill over the purely statistical approach, it outperformed all other models in the
Gulf of Mexico (central MDR) from week three (two) on. In the Gulf of Mexico,
the subseasonal improvement from the purely statistical to the statistical-dynamical
approach is 0.4–3.2 times larger as the one from the CSCopt to the purely statistical
approach. The analogous for the central MDR yields a factor for relative improvement
of 0.2–3.8. In view of the generally lower CSC skill in the Gulf of Mexico, such an
improvement becomes even more remarkable, highlighting the value of this approach for
subregions that are less subject to a seasonal cycle.

The systematic comparison of original and hybrid model types presented in this section has
demonstrated the great potential of statistical-dynamical modeling for a specific application
of extreme events on the subseasonal forecast horizon. Exploiting S2S forecasts to develop
such hybrid models proved to be the best strategy, at present, for probabilistic forecasting
of subregional North Atlantic TC occurrence beyond week two, and might be a promising
strategy for other forecasting applications as well.

The conclusions we draw from this section are that hybrid models can be used to leverage
predictive performance. Here, domain knowledge is used to combine dynamical NWP forecasts
with statistical models based on climatological data. In the following, we want to combine our
NN-based postprocessing with an identification of the high-wind areas, resulting in a hybrid
model that is hopefully also able to leverage predictive performance by incorporating domain
knowledge in a standard forecasting model.

6.3 Identification of high-wind features within winter
storms

In the mid-latitudes, extratropical cyclones can produce some of the most severe natural
hazards, especially during wintertime. These winter storms can cause high wind speeds,
heavy precipitation, storm surges and, thus, considerable damage. High winds are typically
associated with four mesoscale features within the synoptic-scale cyclone, namely the warm
(conveyor belt) jet (WJ), the cold (conveyor belt) jet (CJ), cold-frontal convective gusts (CFC),
strong cold sector winds (CS) and, at least in some storms, the sting jet (SJ). All features can
cause damage due to strong gusts, such that it is important to accurately forecast them and
their associated wind fields. In Section 6.1, we saw that even sophisticated postprocessing
methods are subject to forecast busts in these winter storms, hence, fail to achieve this
objective. By developing an objective identification algorithm for the wind features, this
section lies the foundation for further exploring the idea of a feature-dependent postprocessing
method, which was proposed in Section 6.1.

As previously proposed approaches for the identification of the wind features are purely
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subjective and relatively time consuming (Parton et al., 2010; Hewson and Neu, 2015; Earl
et al., 2017), and thus hard to automate, we aim to develop an objective analysis of the
different mesoscale wind features that can flexibly be applied to station and gridded data and,
therefore, serve as a basis for climatological studies, forecast evaluation and postprocessing
development. The strategy we follow is to start with a subjective identification (as in previous
studies) but to use the results to then train a probabilistic RF to develop an objective
procedure that can be applied to cases outside of the training dataset. The identification
is designed to be independent of horizontal gradients, hence resolution, and can principally
be applied to observations from a single weather station. In addition, the identification is
based on tendencies over 1 hour only, making it applicable to time series with gaps. Our
new developed method is referred to as RAMEFI (RAndom forest-based MEsoscale wind
Feature Identification). Given that the provision of a feature-dependent postprocessing tool
can enhance the forecasts of strong winds and wind gusts by eliminating the forecast busts
observed in Section 6.1, it can potentially contribute towards better weather warnings and
impact forecasting of such events (e.g., Merz et al., 2020). In this section, we will show
examples using surface stations and COSMO reanalysis data. The output of the RF are
feature probabilities rather than a binary identification, which allows an evaluation of how
well individual data points fit the typical feature characteristics and the identification of joint
features or transition zones.

The section is structured as follows. First, the used datasets and methods are discussed
in Section 6.3.1. Section 6.3.2 then details our new method RAMEFI, starting from the
subjective labeling of wind features through the training of the RF to the display of areal
feature information. The performance of the RF probabilities is then assessed in Section 6.3.3,
followed by the conclusions.11

6.3.1 Data and method

Here, we introduce the observational and model data as well as 12 winter storm case studies
used for the training and evaluation of RAMEFI. Furthermore, it describes how we assess
probability predictions obtained by the RF.

Surface observations

The main basis of our analysis is a dataset of hourly surface observations from 2001 to mid
2020. This includes mean sea level pressure (p), air temperature at 2 m (T ), wind speed
at 10 m (v), wind direction at 10 m (d) and precipitation amount (RR). Using T and p, we
further compute the surface pressure using the barometric height formula to then calculate
the potential temperature (θ). Our focus is on Europe, more specifically, stations within
11Note that the publication underlying this section is a collaboration with meteorologist (see Section 1.1 for

my contributions).
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Table 6.2: Overview of the variables considered for the objective identification using the
probabilistic RF. The fourth column indicates whether the variable is used as
predictor variable for the final version of the RF. The associated percentiles and
medians are computed with respect to the location, time of day and day of the
year ±10 days.

Variable Description Unit RF Derivation
v Wind speed at 10 m m/s - Station observation
ṽ Normalized wind speed Unitless ✓ ṽ = v/v98, where v98 is the associated 98th percentile
d Wind direction ◦ ✓ Station observation
∆d Tendency of wind direction ◦/h ✓ ∆d = d − d−1, where d−1 is the observation of the previous hour
p Mean sea level pressure hPa ✓ Station observation
∆p Tendency of mean sea level pressure hPa/h ✓ ∆p = p − p−1, where p−1 is the observation of the previous hour
T Air temperature at 2 m K - Station observation
θ Potential temperature K - Derived from T and p

θ̃ Normalized potential temperature Unitless ✓ θ̃ = θ/θ50, where θ50 is the associated median
∆θ̃ Tendency of normalized potential temperature 1/h ✓ ∆θ̃ = θ̃ − θ̃−1, where θ̃−1 is the derived value of the previous hour
RR Precipitation mm/h ✓ Station observation

the area of −10 to 20◦ E, 40 to 60◦ N. Around 1,700 stations are included; however, less
than 400 of these stations observe on average all five parameters. For the training of the RF
(Section 6.3.2), we focus on stations that measure at least three of the five parameters. The
most frequent missing parameter in the hourly data is RR, as many stations only measure 3-
or 6-hourly precipitation. However, many stations, especially over Germany, measure RR only
and, hence, are not usable for the training of the RFs but still helpful to inform our subjective
labeling. In addition, we exclude mountain stations, i.e., those with a station height above
800 m, as we suspect these to be dominated by orographic influences that may blur the feature
characteristics we want to identify. This leaves around 750 stations per time step.

To take into account the diurnal and seasonal cycles as well as location-specific characteristics
(e.g., exposed stations in coastal regions) in θ and also v, we decided to normalize these
parameters by their climatology. For θ, this means θ̃ = θ/θ50, where θ50 is the median for the
specific location, time of day and day of the year ±10 days. This is done analogously for v

using the 98th percentile v98 and ṽ = v/v98, as we are mostly interested in high winds in this
section. The 98th percentile is used in analogy to standard high-wind quantities such as the
SSI, which is computed from stations where measured gusts exceed the local 98th percentile
and provides an integral indication for the strength of the cyclone and the associated potential
damage. Both θ50 and v98 are computed for the time period 2001 to 2019. Moreover, we are
interested in temporal tendencies of p, θ̃ and d, here represented simply by the difference
between the current and the prior time step (∆p, ∆θ̃ and ∆d, respectively). All parameters
and their descriptions are listed in Table 6.2.

COSMO-REA6

As an example for a gridded dataset, we use COSMO-REA6 data from the Hans-Ertel-Centre
for Weather Research, which is a reanalysis based on the COSMO model from DWD covering
the European CORDEX domain with a grid spacing of 0.055◦, i.e., roughly 6 km (Bollmeyer
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Table 6.3: Selected winter storm cases from 2015 to 2020 over central Europe (names as given
by Free University of Berlin), date, maximum observed gust speed (location), SSI
over Germany and associated high-wind features.

Case Date Maximum observed gust speed SSI Features
above 800 m below 800 m

Niklas 31 March 2015 192 km/h (Zugspitze, D, 2964 m) 148 km/h (Weinbiet, D, 553 m) 20.8 WJ, CFC, CJ

Susanna 09 February 2016 158 km/h (Patscherkofel, AT, 2247 m; 158 km/h (Île de Groix, FR, 46 m) 3.6 WJ, CFC, CJPilatus, CH, 2106 m)
Egon 12–13 January 2017 150 km/h (Fichtelberg, D, 1231 m) 148 km/h (Weinbiet, D, 553 m) 5.9 WJ, SJ, CJ
Thomas 23–24 February 2017 158 km/h (Brocken, D, 1134 m) 152 km/h (Capel Curig, UK, 216 m) 3.0 WJ, CJ
Xavier 05 October 2017 202 km/h (Sněžka, CZ, 1602 m) 141 km/h (Saint-Hubert, BE , 563 m) 6.3 WJ, CJ
Herwart 29 October 2017 176 km/h (Fichtelberg, D, 1231 m) 144 km/h (List/Sylt, D, 26 m) 15.2 WJ, CFC
Burglind 03 January 2018 217 km/h (Feldberg, D, 1490 m) 150 km/h (Wädenswil, CH, 463 m) 15.2 WJ, CFC, CJ
Friederike 18 January 2018 204 km/h (Brocken, D, 1134 m) 144 km/h (Hoek Van Holland, NL, 7 m) 18.3 WJ, SJ, CJ
Fabienne 23 September 2018 141 km/h (Feldberg, D, 1490 m) 158 km/h (Weinbiet, D, 553 m) 4.6 WJ, CFC
Bennet 04 March 2019 181 km/h (Cairngorn, UK, 1245 m) 151 km/h (Cape Corse, FR, 106 m) 5.1 WJ, CFC
Eberhard 10 March 2019 194 km/h (Sněžka, CZ, 1602 m) 141 km/h (Weinbiet, D, 553 m) 10.1 WJ, CJ
Sabine 09–10 February 2020 195 km/h (Sněžka, CZ, 1602 m) 219 km/h (Cape Corse, FR, 106 m) 20.0 WJ, CFC

et al., 2015).12 The reanalysis is available from 1995 to 2019. This means that one of our case
studies, namely storm Sabine, is not included (Table 6.3). The same surface parameters as for
the observational data are used. The dataset contains p, T , RR and the zonal and meridional
wind components, from which we can compute v and d. Again, we further calculate θ̃ and the
temporal tendencies ∆p, ∆θ̃ and ∆d. Due to computational cost, we compute θ50 and v98 for
the 10-year time period from 2005 to 2015 only, but this should have a negligible effect on the
final outcome.

Case studies

In this section, we focus on 12 winter storm case studies between the years 2015 and 2020
listed in Table 6.3. Analogous to the winter storms selected for postprocessing in Section 6.1,
the selection was based on the SSI over Germany, caused damage and impacted area.13

This includes the eight winter storms with the highest SSI during this time period plus four
subjectively chosen more moderate storms to capture a healthy diversity of cyclones and
features. The selected cases occurred during the extended winter half-year between the end
of September and end of March. They vary in terms of their cyclone tracks and occurring
high-wind features. Two case studies developed SJs, namely Egon (Eisenstein et al., 2020)
and Friederike. We also include two storms, named Herwart and Sabine, with an exceptional
large pressure gradient leading to a stronger background wind field, such that it is more

12CORDEX refers to the COordinated Regional climate Downscaling EXperiment EUR-11 domain (Giorgi
et al., 2009).

13Note that the SSI values of Niklas and Susanna differ from those listed in Table 6.1. The SSI values deviate
because the underlying datasets (and thus surface stations) also deviate. Due to this property, the SSI is in
general compared only when calculated consistently, e.g., within a study.
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difficult to distinguish the features and the contribution of them to the storm’s wind footprint.
Further, Sabine stands out to be an extremely deep cyclone with a minimum core pressure of
944 hPa during its lifetime.14 This is atypical for winter storms, and should be considered in
the statistical evaluation.

Assessing probability predictions for multiple wind features

Probability predictions of three or more classes, such as the wind features, are typically
evaluated by downscaling to two-class problems, of which the one-against-all and all-pairs
approaches are two well-known examples (Zadrozny and Elkan, 2002). While the one-against-
all approach compares the occurrence of one wind feature against all others grouped together,
the all-pairs approach considers the conditional probabilities for each pair of classes, for
example, the conditional probabilities of the WJ and the CJ when one of the two features
materializes. The one-against-all approach is used to evaluate how well one specific wind
feature is forecast, the all-pairs approach to evaluate the ability to discriminate between two
wind features.

The probabilities are evaluated based on the paradigm that a prediction should aim to
maximize sharpness subject to calibration. As defined in equation (2.2), a probability forecast
f is called calibrated if the conditional event probability (CEP) matches f . Further, a
probability prediction is said to be sharper, the more confident the prediction is, that is,
the closer to 0 or 1. We will assess the calibration of the probability forecasts qualitatively
via CORP reliability diagrams. In addition to the calibration curve, the frequency of the
probabilities is illustrated by a histogram. The more U-shaped the histogram is, the closer
the predictions are to 0 and 1 and thus the sharper. Quantitatively, calibration and sharpness
are assessed using the BS and the BSS with respect to the class frequencies observed in the
training data of the RF.

Consider a multiclass probability prediction p = (p1, . . . , pK), where p1, . . . , pK ∈ [0, 1] and∑K
i=1 pi = 1, for a nominal target variable Y ∈ {1, . . . , K}, with K ≥ 3 classes that are not

ordered. Analogous to the calibration criterion for binary probability predictions in equation
(2.2), p is called (auto-)calibrated if Q (Y = i | p) = pi almost surely for all i = 1, . . . , K

(Gneiting and Ranjan, 2013). The multivariate version of the BS for a probability vector p
and realizing class i ∈ {1, . . . , K} is given by S(p, i) = ∑K

j=1(pj − 1{i = j})2 (Brier, 1950).
The one-against-all approach reduces the multiclass prediction problem to a set of K

dichotomous problems. For each class i ∈ {1, . . . , K}, the probability pi is a prediction for
Ỹ = 1{Y = i}. Note that evaluating the predictions pi for Ỹ for each class is not equivalent
to checking the multiclass calibration criterion, as the joint distribution of pi and not that of
p is considered in the one-against-all approach. The all-pairs approach reduces the multiclass
prediction problem to a set of K(K − 1)/2 dichotomous problems. For each pair of classes

14The term deep refers to the associated mean sea level pressure.
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(i, j), where i, j ∈ {1, . . . , K} and i > j, we consider only samples with Y ∈ {i, j}. Then, the
conditional probability p̃i,j is a prediction for Ỹ , where

p̃i,j = pi

pi + pj
and Ỹ =

1 for Y = i,

0 for Y = j.
(6.4)

6.3.2 RAMEFI method

Our new method, RAMEFI, focuses on strong but not exceptionally high wind speeds. These
wind speeds are usually indicated by the 98th percentile. To obtain a sufficiently large storm
area and to base that on a widely used reference, we decided to include stations reaching 80%
of their 98th percentile, i.e., ṽ ≥ 0.8. To capture usually narrow and fast-moving features such
as CFC, RAMEFI requires hourly data. All used parameters are independent of the location
of the station/grid point and horizontal gradients, such that, in principle, the approach can
be applied to a single station and datasets with differing horizontal resolution. The approach
evaluates each 1 hour interval independently.

RAMEFI includes three steps described in the following subsections. First, we identify
the features subjectively in surface observations in 12 selected case studies, such that each
station is assigned to a specific feature. These labels are then used to train RFs for feature
prediction on the basis of a CV approach. In a final step, we obtain forecasts on a grid by
interpolating the predicted probabilities using a Kriging approach. For the COSMO-REA6
data, the features are identified analogously. Instead of training separate RFs, we apply
the RFs trained on the surface observations. As the COSMO-REA6 forecasts are already
grid-based, the Kriging step is obsolete.

(1) Subjective labeling

Given the sometimes unclear distinction between the high-wind features of interest in realistic
cases, we decided to base our algorithmic development on how experienced meteorologists
would identify the features on the basis of a wide range of parameters and their evolution
in time and space. The guiding principles for the labeling were extracted from the scientific
literature and are mainly based on the location relative to the cold front and cyclone core. In
our surface parameters, a cold front is then mostly identified through the characteristic change
of the sign of ∆p. It is labeled CFC, if a larger area of precipitation along it is observed,
while high winds ahead of the front within the warm sector are labeled WJ. The CJ is mostly
detected through its hook-shaped wind footprint at the tip of a wrapped-around occlusion or
bent-back front as well as through its proximity to the cyclone center. An SJ is labeled when
model-based trajectories analogous to Eisenstein et al. (2020) confirm a descending airstream.
The area behind the cold front that is not associated with the CJ or SJ is labeled as the CS.

The subjective labeling was done for the introduced 12 case studies (Section 6.3.1). In total,
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282 time steps have been analyzed. As mentioned above, we excluded mountain stations and
stations where less than three of the given parameters were measured. This leaves around
750 stations per time step for the subjective labeling. Overall, for the 12 case studies, we
have 77,517 data points where ṽ ≥ 0.8, of which 1,200 (24.77%) are not associated with a
feature (NF), 21,809 (28.13%) were labeled as CS, 19,501 (25.16%) as WJ, 11,705 (15.1%) as
CJ, 3,800 (4.9%) as CFC and 1,502 (1.94%) as SJ. However, the SJ is a small, short-lived and
rare feature, and the characteristics of SJs and CJs in surface parameters are very similar due
to the proximity in both time and space. A first training with SJ and CJ as separate features
showed that a clear distinction is not possible with the information at hand and that the SJ
is mostly detected as CJ. Therefore, we decided to include it in the more frequent CJ feature,
increasing the values for CJ to 13,207 data points (17.04%).

The features were further labeled in all case studies (except for Sabine, which occurred
outside of the reanalyis time period) for COSMO-REA6 data. These labels are used to evaluate
the predictions generated by the station-based RFs for a grid-based dataset (Section 6.3.3).
For computational reasons, i.e., as labels are set for every grid point rather than an area,
we downsampled the COSMO grid to every third grid point in the zonal and meridional
directions, resulting in a grid spacing of 0.1875◦ (around 21 km). Moreover, we excluded ocean
grid points, as the characteristics of the high-wind features might be different from land due
to different surface friction and surface heat fluxes, among other factors. Regions with a high
wind speed not directly associated with a winter storm, especially over Italy and the Balkans,
were not labeled.

(2) Probabilistic Random Forest

RF (Breiman, 2001) is a popular, robust ML method for classification and regression problems
that does not rely on parametric assumptions but instead is based on the idea of decision
trees (Breiman, 1984). In Section 4.2.5, where we introduced the QRF technique for statistical
postprocessing, we have already lined out the RF approach. While QRF generates (a set of)
quantile predictions for the target variable, we here obtain probability forecasts by using the
frequencies of the observed wind features among the samples in the corresponding leaf. In
a meteorological context, probabilistic RFs have already been applied to predict damaging
convective winds (Lagerquist et al., 2017) and severe weather (Hill et al., 2020).

ML methods such as the RF are often referred to as black boxes due to a lack of inter-
pretability, although there exist several techniques to understand what the models have
learned and how the predictions are related to the predictor variables, as demonstrated in
Section 5.3.3, where we found that the statistical postprocessing methods based on ML learn
physically consistent relations. We will apply two predictor importance techniques, one to
find the most relevant predictors and one that illustrates the effect of the predictor values on
the RF probabilities. The first is the permutation importance of a predictor, which has been
described in Section 5.3.3 of the case study on wind gust prediction. Recall that, proceeding
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separately for each predictor, the values of that predictor are shuffled randomly within the test
data in space and time such that the physical relation to the observed wind feature is broken.
Then, based on these permuted predictor values, new predictions are generated and compared
to those obtained with the original data. The worse the predictions become (with respect
to an evaluation measure), the more important the predictor. Here, we measure predictive
performance with the BS, the importance measure is referred to as BS permutation importance.
The second technique is the partial dependence plot (PDP; Greenwell, 2017), which illustrates
the effect of a predictor on the prediction. Given a fixed predictor, a PDP shows the expected
RF probability dependent on the value of the predictor variable while averaging out the effects
of the other predictors. Hence, a PDP illustrates how the RF probabilities depend on the
value of a specific predictor variable, on average. For more details, we refer to McGovern et al.
(2019).

For RAMEFI, we apply RFs to generate probabilities of the high-wind features. The
predictor variables used are listed in Table 6.2. For the station-based observations, we use a
CV scheme on the different winter storm cases, that is, for each winter storm, the predictions
are generated by an RF that is trained on the data of the remaining 11 winter storms. Training
RFs in a similar CV scheme for the COSMO-REA6 data becomes computationally infeasible,
as the underlying datasets become too large. Since the underlying processes should coincide
for both the station- and model-based data, we instead apply the station-based RFs in the
same scheme to generate probabilities using the COSMO-REA6 data. For the PDPs, one
partial dependence curve has to be calculated for each RF generated in a fold of the CV, that
is, for each winter storm. The final curves are then obtained by a weighted average depending
on the sample size of the folds.

Details on the implementation, including the choice of the hyperparameters, are described
in the following. Analogous to QRF in Section 5.3, RF is implemented via the ranger package
(Wright and Ziegler, 2017). Table 6.2 summarizes the predictors used, Table 6.4 the chosen
hyperparameters. One question in the implementation is the handling of missing values,
which an RF cannot process. The station-based samples frequently miss values of one or
more predictor variables, especially precipitation is affected. We tried different strategies
to handle missing values such as leaving out instances with missing values or replacing the
missing values with a mean value, and found similar results. Therefore, we decided to replace
the missing values in order to use the largest sample size possible, which is desirable for the
evaluation and the Kriging step. In each fold of the employed CV scheme, the missing values
(both in the training and test set) are replaced by the mean value of the associated predictor
variable in the training set.

Due to normalizing θ and v, the trained RF is fairly independent of location-specific
information, such that it can hopefully be applied successfully to other midlatitude regions
around the world affected by extratropical cyclones. However, before doing that, we recommend
a thorough sanity check, particularly when using it over the ocean and mountainous regions.
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Table 6.4: Overview of the hyperparameters of the probabilistic RF.
Hyperparameter Value
Number of trees 1,000
Number of predictors considered at each split 2
Minimal node size 10
Maximal depth Unlimited
Splitting criterion Gini

(3) Kriging

As it is difficult to envision a coherent area of a certain wind feature from probabilities at single
stations that are distributed irregularly over the study area, we interpolate the station-based
probabilities to a regularly spaced grid in order to visualize the results. In geostatistics, this
is generally achieved by Kriging (Matheron, 1963). In principle, the Kriging predictions (here
on the grid) are the weighted averages of the input data (here the station data), where the
specification of the weights is driven by the covariance of the underlying random process.
Under the assumption of Gaussianity (Rasmussen and Williams, 2005), Kriging provides the
optimal full predictive distribution. The key requirement for the implementation of Kriging in
the context of Gaussian processes is the specification of the mean and the covariance function.

Here, we perform univariate Kriging to obtain probability maps for each wind feature,
where we specify the mean and covariance function by a constant mean function and the
stationary Matérn covariance function (Matérn, 1986; Guttorp and Gneiting, 2006). For the
estimation, we resort to MLE for Gaussian processes. However, as the input data is, in our
case, probabilities and thus deviates from the Gaussianity assumption, we perform a data
transformation for approximate Gaussianity. For the production of probability maps, we
independently perform Kriging on each of the class probabilities (hence univariate Kriging)
and normalize the resulting probabilities for each grid point such that, across the multiple
wind feature, the probabilities sum to one. Note that the Kriging predictions are only obtained
for areas over land, where our winter storms occurred and where a sufficient amount of data
was available for a reliable interpolation.

Next, we provide a brief mathematical formulation of the Kriging approach. Let {X(s), s ∈
R2} be the spatial Gaussian process modeling the transformed probability of a certain wind
feature, indexed by the spatial coordinates s that correspond to the latitude and longitude
associated with the (transformed) probability. Further, we denote the mean function by
E{X(s)} = µ(s) and the covariance function by Cov{X(s), X(s′)} = C(s, s′). Then, for
a given set of station-based data xxx = {X(s1), . . . , X(sn)}T , the spatial prediction at a
grid cell s0 is given as X̂(s0) = µ(s0) + Σ12Σ−1

22 (xxx − µµµ), where µµµ = {µ(s1), . . . , µ(sn)}T ,
Σ12 = {C(s0, s1), . . . , C(s0, sn)} and Σ22 = {C(si, sj)}n

i,j=1. Additionally, one can obtain
the prediction variance as Var{X̂(s0)} = C(s0, s0) − Σ12Σ−1

22 ΣT
12, and the full predictive
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distribution as X(s0) | xxx ∼ N
(
X̂(s0),

√
Var{X̂(s0)}

)
. The choice and estimation of the mean

function µ and the covariance function C are key elements of the Kriging implementation.
While one can choose any parametric or nonparametric functional representation for µ, the
valid choice for C is limited to the class of positive semidefinite functions. In practice, the
covariance function is often assumed to be stationary, which implies that the covariance
function depends on the spatial locations only through spatial lags, i.e., C(si, sj) = K(si − sj)
for some positive semidefinite function K. In our implementation, we have specified the mean
function µ(·) = c, c ∈ R, to be a constant valued function, and the covariance function K to
be the Matérn class of stationary covariance function (Matérn, 1986).

In our practical implementation of Kriging, we transform the probabilities by using the
bestNormalize package (Peterson, 2021) to achieve approximate Gaussianity, which automat-
ically chooses a suitable transformation from a set of commonly used transformations. The
probabilities on the grid generated via the univariate Kriging need to be normalized such that
they sum up to 1. However, at some grid cells distant from the cyclone track, the predicted
probabilities are small for all of the wind feature and normalization results in unrealistic
predictions. Thus, we only perform the normalization at grid cells where the accumulated
probability is larger or equal to 20%. For the visualization, we further drop the grid cells
where the largest normalized probability is smaller than 20% (which includes the grid cells for
which no normalization was performed).

6.3.3 Results

In Section 6.3.1, we described how we evaluate probability predictions for the wind features.
Here, we first apply this concept to the RF probabilities for the station data and the
COSMO reanalysis. Then, we investigate the relationship between the predictors and the RF
probabilities. The section ends with a discussion of the advantages and shortcomings of not
using spatial dependencies in the feature identification.

Evaluation of the RF probabilities

The evaluation of the station-based RF probabilities is split into three parts. First, we
quantitatively compare the RF forecasts with the class frequencies in the training data,
then we assess how well the RFs predict the individual wind features in the one-against-all
approach and lastly we check how well the predictions distinguish two features with the
all-pairs approach. For each storm that we predict, the class frequencies of the other 11
storms are used as a benchmark prediction. As expected, we find that the RF probabilities
outperform the benchmark in terms of the (multivariate) BS for the prediction of each winter
storm. The overall improvement is 24.7%, while for the different storms it ranges from 11.8%
to 34.7% with 11.8% being the skill for Xavier, which is discussed in some detail at the end of
the section.
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Figure 6.8: CORP reliability diagrams of the RF probabilities for the individual wind features
in the one-against-all approach including all 12 storms.

Figure 6.8 shows the reliability diagrams of the RF probabilities in the one-against-all
approach for the occurrence of NF and the four specific wind features (WJ, CFC, CJ and
CS). We observe that the probabilities are in general well-calibrated for all five cases, as the
calibration curves closely follow the diagonal. The predictions are generally reliable, especially
for small probabilities, which are most frequent in this setting, as the peaks of the histograms
illustrate. Therefore, the RFs identify the nonoccurrence of a specific wind feature with
high confidence (Figure 6.8a). For larger probabilities, the predictions of NF, the WJ and
the CFC are well-calibrated, as the calibration curves stay reasonably close to the diagonal
(Figure 6.8a–c), while for the CJ and CS (Figure 6.8d,e) larger deviations are evident. In both
cases, the RF overforecasts the events, that is, the predicted probability is generally too large.

The reliability diagrams of the all-pairs approach are displayed in Figure 6.9, which show
that the RFs yield well-calibrated probabilities for the distinction of all feature pairs but one.
When the RF predicts that the CJ is more likely to occur than the CS (in case one of those
two materializes), the RFs overforecast the CJ, meaning that the CS occurs more often than
predicted (Figure 6.9j). This is consistent with the results from the one-against-all approach,
where we found that the CJ and CS predictions were not well-calibrated for high probabilities,
indicating that the RF fails to distinguish them for large conditional probabilities of the CJ.
Further, the histogram of this pairwise comparison shows that the RF cannot discriminate
between the two features with high confidence. This issue can be seen best for the storms
Herwart and Sabine, which both did not develop a CJ, although a CJ was identified by the
RFs. The main meteorological reason for this problem is the general similarity of the two
features and that the hook-shaped structure, which is used for the subjective identification
of a CJ, cannot be considered in the RF, such that the distinction is mainly based on p,
as will be discussed in the predictor importance part of this section. Other than that, the
calibration curves of the other pairs follow closely the diagonal. Moreover, we note that the
WJ is distinguished well from the CJ and CS, as the U-shaped histograms of the probability
distributions show (Figure 6.9f,g).

For the predictions derived from the COSMO-REA6 data, the RF probabilities are also
able to distinguish the features well, although the RFs used were trained on station-based
data. The predictions exhibit similar characteristics and perform (as expected) only slightly
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(d) 0 = NF, 1 = CS
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(e) 0 = WJ, 1 = CFC
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(f) 0 = WJ, 1 = CJ
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Figure 6.9: CORP reliability diagrams of the conditional RF probabilities comparing two
wind features in the all-pairs approach including all 12 storms.

worse than for the station data. As before, the skill of the BS is calculated with respect
to a benchmark prediction based on the class frequencies and is 19.6% for all storms. For
eight of the selected storms, we observe improvements ranging from 11.0% to 37.5%; however,
for Herwart and Susanna, the skill scores are −0.8% and −11.6%, respectively, indicating a
decrease in predictive performance. For Susanna, this is due to a larger high-wind region ahead
of but not directly connected to the cyclone for multiple time steps. While the predictions
for Herwart look consistent in both datasets at first sight, fewer stations are available over
Poland, where the CJ was overforecast, such that the overforecast in the gridded data carries
more weight compared to the station data.

The reliability diagrams of the one-against-all approach for the COSMO-REA6 data
(Figure 6.10) show that the calibration curves deviate more from the diagonal than for the
station-based data (Figure 6.8) but are still reasonably close to calibrated. For the WJ and the
CJ, we observe slight overforecasting (Figure 6.10b,d), whereas we observe underforecasting
for the CFC (Figure 6.10c). For the CS, we observe a similar calibration curve to the station-
based data (Figure 6.10e). The distinction of the individual features, which we assess via
the all-pairs approach in Figure 6.11, results in mostly well-calibrated probabilities. The
largest deviations from calibration are observed again for the distinction of the CJ and the
CS, as discussed above, and for the distinction of the WJ and the CFC (Figure 6.11e), where
the WJ is identified more frequently than observed. Overall, the predictions based on the
COSMO-REA6 data are satisfactory considering that the RF models were trained on data
from the station observations.
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Figure 6.10: As in Figure 6.8 but based on COSMO-REA6 data.
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Figure 6.11: As in Figure 6.9 but based on COSMO-REA6 data.

Predictor importance

To identify the predictors most relevant for the prediction of the wind features and the
discrimination between two features, we calculate the BS permutation importance for the
one-against-all and all-pairs approach. The BS permutation importance in the one-against-all
approach is displayed in Figure 6.12. In general, ∆p is the most important predictor variable,
especially for the WJ. Only for CFC, it is not an important predictor, as it can occur slightly
ahead of the cold frontal pressure trough, hence in a region of positive ∆p. On the other
hand, the absolute p values seem to be of less importance for WJ and NF, which occur further
away from the cyclone center than CJ and CS, for which p indicates the proximity to the
cyclone center. For CFC, we find instead that RR is the most relevant predictor variable
as expected, while being less important for WJ, CJ and CS. For most features, d seems to
be relevant, as it is a characteristic for the location relative to the cyclone center. This also
leads to a high importance for NF occurring more frequently north or west from the cyclone
center. However, d is not important for CFC, probably as convection leads to a more variable
wind direction and due to the characteristic jump in d at cold fronts. To the contrary, ∆d

is of minor relevance for all features as well as ∆θ̃. A more important temperature-based
predictor seems to be θ̃, although again being less relevant for CFC. Lastly, ṽ shows its highest
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Figure 6.12: Boxplots of the BS permutation importance of the RF probabilities for the
individual wind features and predictor variables in the one-against-all approach.
The boxplots are calculated over the individual winter storms.

importance for NF, as higher wind speeds are less likely to be found at the boundary of a
cyclone.

In the all-pairs approach (Figure 6.13), we can attribute the importance of the predictor
variables more accurately. The key to distinguish the WJ from all other features is ∆p,
especially from the CJ and CS. This is consistent with the one-against-all discussion above.
The large outlier in ∆p in WJ vs. CJ is related to storm Herwart.15 Of secondary importance
is d, particularly when compared to CJ, CS and NF. Temperature also plays some smaller
role in the distinction of the WJ. For CFC, the by far most important predictor is RR, but
when compared against the CJ, p, ∆p, θ̃, ∆θ̃ and d also contribute. The positive outlier in
RR is related to storm Fabienne (not shown). The distinction of the CJ to other features is
more complex. As already discussed, p is relevant in all CJ-pairs. The distinction of CJ from
NF additionally hinges upon ∆p, θ̃ and d.

The shortcomings of the RFs to distinguish CS and CJ are also reflected in Figure 6.13 by
partly negative values for p, ∆p and θ̃. A negative value indicates that the RF probabilities
perform better, when we break the link to the target variable by randomly permuting the
predictor values. This is mostly due to storm Sabine, which reached an unusually low minimum
core pressure of less than 950 hPa over the Norwegian Sea. Because of this, p values in the CS
over continental Europe were similar to values typical of a CJ.

We do not only want to identify the most relevant predictors, but also investigate their
effect on the predictions, which is illustrated for the eight predictor variables by the PDPs

15Discussed in Section 7 of Eisenstein et al. (2022).
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Figure 6.13: Boxplots of the BS permutation importance of the RF probabilities comparing
two wind features for the predictor variables in the all-pairs approach. The
boxplots are calculated over the individual winter storms.

in Figure 6.14. Again, the largest impact is found for ∆p. The probability of observing
a WJ is largest for small values of ∆p and declines rapidly as the tendency increases and
switches signs, while the probabilities of the CS and CJ increase. Probabilities for NF decrease
slightly, while changes for CFC are small. For little RR, the probability of a CFC is close to
zero, but consistently increases with increasing precipitation. In turn, probabilities for other
features slightly decrease with increasing precipitation. In general, CJ and CS show high
probabilities for low p values consistent with their occurrence during the most intense stage
of a cyclone. However, surprisingly, CS shows higher probabilities than CJ between 970 to
980 hPa, although the CJ is usually closer to the cyclone center. This is again associated with
the unusual behavior of storm Sabine, with its deep pressure minimum but no subjectively
identified CJ. As such intense cyclones are rare, we are confident that the RF performs well in
most more ordinary cases. As discussed previously, d is dependent on the location relative to
the cyclone center. As the introduced features are all located south to west of the cyclone, we
focus on values from 90◦ to 360◦ only. Within the WJ, d values mostly show south-westerly
winds and do not change drastically. Probabilities for CFC increase with a positive wind shift,
leading to more westerly and north-westerly winds for CFC but also following features, i.e.,
CJ and CS. Consistent to its low BS permutation importance, ∆d shows almost no change
in probabilities for all features. For θ̃, an increasing trend for the WJ is shown, while the
probabilities decrease for the other features, most strongly for the CJ, as one would expect. For
∆θ̃, we see indications of the air mass change at the cold front and thus higher probabilities in
CFC for negative values. The CJ shows a slightly positive trend, while all the others are flat.



6.3 Identification of high-wind features within winter storms 163

RR (mm h−1) v~ (1) d (°) ∆d (° h−1)

p (hPa) ∆p (hPa h−1) θ~ (1) ∆θ~ (1 h−1)

0 2 4 6 1.0 1.5 2.0 2.5 100 200 300 −50 0 50 100

970 980 990 1000 1010 1020 −2 0 2 0.96 0.98 1.00 1.02 1.04 −0.010 −0.005 0.000 0.005 0.010
0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Value of Predictor Variable

P
ro

ba
bi

lit
y

NF WJ CFC CJ CS

Figure 6.14: Partial dependence plots for the predictor variables and wind features.

Overall, investigating the importance of the predictor variables on the predictions, we find
that the RFs largely learn physically consistent relations, as described in Section 6.3.2.

Discussion of spatial independence

The decision not to use spatial (nor temporal beyond 1 hour) dependencies in the identification
algorithm makes our method highly flexible in its application, but the local approach can also
cause issues where features deviate from their stereotypical characteristics. One example for
the problem is the CJ of Sabine. Another example is storm Xavier, where for several hours
many points within the vicinity of the cyclone show the highest probability for NF, rather than
for any of the mesoscale wind features. The main reason for this appears to be that Xavier
was characterized by unusually cool θ̃ and high p (not shown), generally two of the most
important parameters to distinguish features (Figure 6.12). While one predictor behaving in
an unusual way could be compensated, e.g., in the case of Fabienne, two anomalous behaviors
unsurprisingly result in considerably greater uncertainty.

A possible solution to the issues described here on the basis of Sabine, Xavier and Fabienne
is to not only regard anomalies from diurnal and seasonal cycles but also to include some kind
of spatial background, e.g., by normalizing p by the core pressure to detect the region close to
the cyclone center, or comparing θ̃ to the mean state over Europe during the period of the
storm to detect the warm sector. However, such a step would bring its own set of problems.
Any spatial mean would require an arbitrary decision about the considered area, which
may vary greatly from cyclone to cyclone. Moreover, spatial means computed from surface
observations are not representative due to the irregular spacing of the stations. Essentially, as
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the features identified by the RF still occur in the expected areas, we conclude that a flexible
local approach offers more advantages than shortcomings overall.

Conclusions

High wind and gust speeds can be caused by distinct mesoscale features within extratropical
cyclones, which occur during different stages of the cyclone life cycle, in varying regions
relative to the cyclone center and have distinctive meteorological characteristics (e.g., Hewson
and Neu, 2015). These differences likely imply differences in hazardousness, forecast errors
and, hence, risk to life and property.

To better understand, monitor and predict these mesoscale features, we developed RAMEFI,
a first-ever objective identification method that is able to reliably distinguish the four most
important features, that is, the WJ, the CJ, CFC and CS. The rare and often short-lived SJ
is included in the CJ category, as their surface characteristics are often rather similar and
3D-trajectories are required for a clean distinction (Gray et al., 2021).

The first step was to subjectively label surface stations over Europe for 12 selected winter
storm cases between 2015 and 2020. Based on the outcome, we trained a probabilistic RF
based on the eight predictors ṽ, p, ∆p, θ̃, ∆θ̃, RR, d and ∆d. We note that we set a ṽ

threshold of 0.8 to focus on high-wind areas. However, we do not expect the RF to be sensitive
to small changes in the threshold and, in principle, the RF can be applied to wind speeds
below this. Being independent of spatial behavior or gradients, the approach is very flexible
and can be applied to single stations or grid points and various datasets with differing grid
spacing, e.g., in the postprocessing settings of Chapter 5. However, due to the fast movement
of meteorological features in stormy situations, hourly resolution is required, making the
algorithm inapplicable to some climate datasets. To obtain areal information from irregular
station data, Kriging was applied on the station-based probabilities generated by the RF.

The trained RFs are generally well-calibrated. Merely, the distinction between CJ and CS
is more challenging, since the two features show similar characteristics in most parameters
except for the fact that a lower value of p in the CJ is located nearer to the cyclone center.
Overall, the RFs learn physically consistent relations reflected in the importance of individual
predictors. For example, while ∆p appears to be most important for WJ, CJ and CS, RR is
substantial for the identification of CFC.

A detailed analysis of the RF feature probabilities for the selected cases shows a high
consistency with the subjectively set labels with only few disagreements, mostly in cases
of large deviations from standard cyclone models. While the identification of WJs has the
highest confidence, the identification of CFC is least certain due to relatively few surface
stations reporting hourly precipitation and thus less training data. Even the distinction
between the relatively similar CS and CJ works well in most cases and time steps. In some
cases, however, high probabilities of CJs are predicted by the RF in areas where no CJ was
identified subjectively due to a missing hook-shaped structure and occlusion front, or too large
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distance from the cyclone center (e.g., Herwart, Sabine). Despite the spatial independence of
the method, putting the predicted probabilities together on a horizontal map and following
the storm evolution in time shows a high degree of coherence for each feature (not shown),
demonstrating the success of our method.

The station-based RFs are also applied to COSMO reanalysis data without any adaptations
to the new dataset. Nevertheless, the obtained results are mostly consistent and only slightly
less calibrated. This demonstrates that the method could be readily applicable to other
analysis and forecast datasets, such as the COSMO forecast dataset used for wind gust
prediction in Sections 5.3 and 6.1. Although applying RAMEFI over regions other than that
used in the training has not been examined yet, its reliance on location-independent predictors
suggests that it should be possible with no or only little modification.

Now that the RAMEFI method is fully developed, it enables a number of follow-on
studies. One pathway is to use the objective identification approach to compute a long-term
climatology over Europe based on station observations and COSMO reanalysis data. Although,
previous literature discussed different causes of winds within extratropical cyclones, their
climatologies were based on more subjective categorisations for a limited sample size (e.g.,
Hewson and Neu, 2015; Earl et al., 2017). RAMEFI will for the first time allow a statistically
substantiated analysis of the characteristic of the mesoscale wind features in terms of size,
lifetime, position relative to the cyclone core, occurrence relative to the lifecyle of the cyclone
and wind characteristics. Furthermore, a systematic forecast error analysis can reveal to what
extent forecast errors differ between the identified features and whether there are significant,
systematic deficits in their representation in models. Here, however, we will not follow this
approach for the final section of this chapter, but instead directly jump to the development of
a feature-dependent postprocessing approach based on RAMEFI.

6.4 Experiments on feature-dependent postprocessing

Under the hypothesis that forecast errors are dependent on the high-wind features identified
in Section 6.3, we want to develop a feature-based postprocessing approach that improves the
predictive performance and ideally eliminates the forecast busts observed in Section 6.1. The
foundation for feature-dependent postprocessing will be the RAMEFI method introduced in
Section 6.3, as it is able to objectively identify the high-wind features independently of space
and time (beyond 1 hour), based on a small subset of variables that can also be derived from
forecast data.

The goal of the systematic comparison in Section 5.3 was to find the best postprocessing
method for ensemble forecasts of wind gusts, with the result that NN-based methods outper-
formed all other approaches. Due to the comparable performance of DRN and BQN, we will
focus on the conceptually simpler DRN in the following, as in Section 6.1. Note that we will
not conduct a comprehensive analysis of a mature, fully developed method here, but instead
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evaluate first ideas and experiments towards feature-dependent postprocessing that will make
use of the NN-based postprocessing framework.

The final section of this chapter is structured as follows. First, we describe how the
RAMEFI method is adapted towards the COSMO data underlying the case studies on wind
gust prediction, with the goal to generate probabilistic predictions of the high-wind features.
Then, we will present first approaches towards feature-dependent postprocessing incorporating
the RAMEFI identification. At last, we will evaluate the performance of these approaches,
both for high winds and winter storms in particular, and compare them with the standard
DRN approach applied in Sections 5.3 and 6.1 to investigate whether an improvement was
achieved by feature-dependent postprocessing.

6.4.1 High-wind feature forecasts via RAMEFI

To generate probability forecasts for the high-wind features, we apply RAMEFI to the
COSMO-DE-EPS forecasts that have been used in Sections 5.3 and 6.1. While the application
and statistical evaluation of RAMEFI in Section 6.3 had to rely on a CV setting, the RF
underlying the high-wind feature forecasts can be trained on all case studies for this application.
Analogous to the application of RAMEFI to the COSMO-REA6 data in the previous section,
the RF is readily applicable for forecast data. However, not all of the predictor variables
listed in Table 6.2 are output of the COSMO model, and need to be derived first.

Of the variables listed in Table 6.2, the wind speed, wind direction, mean sea level pressure,
air temperature and precipitation are included as ensemble forecasts in the dataset and will be
represented by the ensemble mean. Note that these variables coincide with those observed at
the surface stations for training of the model (Table 6.2). As for the surface observations the
RF was trained on, the potential temperature can be derived by first calculating the surface
pressure ps at altitude h via the barometric height formula, that is,

ps = p

(
T

T + 0.065h

)5.255
, (6.5)

and then using the formula for the potential temperature (Lackmann, 2011, p. 9):

θ = T

(
ps

105

)287.05/1005
. (6.6)

In contrast to the RAMEFI predictor variables listed above, the calculation of the normalized
wind speed and potential temperature requires climatological information in form of quantiles.
For both variables, we normalize the underlying parameter either with the 98th percentile of
the wind speed or the median of the potential temperature. Both quantiles are computed
with respect to the location, time of the day and day of the year, as described in Section 6.3.

The three remaining predictor variables are tendency variables that are calculated as hourly
increments. As the COSMO-DE-EPS dataset includes hourly lead times from 0 to 21 hours,
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we can calculate the tendencies using the forecasts from the prior step for all but the 0 hour
forecast. But, as discussed in Section 5.3, the 0 and 1 hour forecasts are subject to the spin-up
effect and exhibit systematic deviations from the other lead times in terms of the bias and
ensemble range. Due to these inconsistencies, we calculate the tendencies only for lead times
of 3 hours or larger, and therefore exclude lead times affected by the spin-up effect.

Normalization of wind speed and potential temperature

Here, we investigate how to normalize the forecasts for wind speed and potential temperature
in order to generate predictor variables for RAMEFI. To that end, we compare one approach
based on station observations and one on COSMO forecasts.

First, we note that the normalization used in Section 6.3 is based on a 19-year climatology
at the corresponding stations. Advantages of a station-based approach to normalize the
COSMO forecasts are that it was used to generate the data the RF was trained on, and that
the climatology is based on a large amount of observations. However, the major shortcoming
is that the station data exhibits other characteristics than the model data, meaning that the
quantiles are not subject to the model bias and do not accurately estimate the distribution
of the model forecasts. Alternatively, we can generate a climatology based on the COSMO
dataset, resulting in a consistent normalization. Based on the same arguments as for the
postprocessing models in Chapter 5 and Section 6.1, we treat each initialization and lead
time separately. Then, the size of the underlying dataset is smaller, since the COSMO data
comprises only six years.

Further, we want to keep a clean split between training and test data, thus we exclude the
test data from the climatology. In case of the model data, this means that we need to omit
one year from the test data and ultimately each sample in the COSMO data comes with its
own climatology.16 However, for the station-based climatology, we neglect these concerns for
a first analysis, as the effect of a single observation is smaller and we want to keep consistency
with the RF. Altogether, the station-based climatology includes 399 samples (19 years times
21 days), while the model-based includes 105 (5 years times 21 days), if no values are missing
(Table 6.5).

As the focus of RAMEFI is on European winter storms, we generate RF probabilities only
for samples within the extended winter period from October to March, that is, the domain of
the winter storms used for training RAMEFI (Table 6.3). While the quantile values used in
Section 6.3 are readily applicable, those based on the model data need to be derived first. As
mentioned above, wind speed is included in the dataset and potential temperature can be
calculated via equations (6.5) and (6.6). Note that we use the model surface height (and not
the station altitude) as the underlying surface height in equation (6.5).

Comparing the station- and model-based approach for the COSMO forecast data, we first
16The data selection scheme is identical to the CV approach used for training of the postprocessing models in

Section 6.1.
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Table 6.5: Overview of the approaches for normalizing wind speed and potential temperature.
For a definition of the high-wind features, we refer to Section 6.3.

Approach for normalization Surface stations COSMO-DE-EPS
Normalization
Sample size for quantile estimation 399 105
v: Number of quantile values (per location) 8,760 335,540
θ: Number of quantile values (per location) 7,909 335,540

Forecast data (yearly average, per lead time and initialization hour)
Sample size 60,512 63,518
Sample size during winter (half) 28,640 31,646
High-wind samples during winter (% of winter) 1,741 (6.08) 2,692 (8.51)
Number of expected NF cases (% of high-wind) 873 (50.14) 1,378 (51.21)
Number of expected WJ cases (% of high-wind) 335 (19.22) 515 (19.15)
Number of expected CFC cases (% of high-wind) 162 (9.33) 257 (9.55)
Number of expected CJ cases (% of high-wind) 55 (3.13) 65 (2.43)
Number of expected CS cases (% of high-wind) 316 (18.17) 475 (17.66)

notice a major shortcoming of the observational approach, that is, the air pressure, which
is required to calculate the potential temperature, is not reported at 17 of the 175 stations.
Thus, the potential temperature forecasts cannot be normalized at these stations.17 For the
remaining stations, we compare the quantile values corresponding to each other. Note that we
obtain different numbers of quantile values. As listed in Table 6.5, the observational dataset
includes an average of 8,760 (7,909) values per location for wind speed (potential temperature).
In case of wind speed, that is one for each hour of the year. As mentioned above, the median
values of the potential temperature are not available for some stations. In contrast, the model
data provides on average 335,540 values per location and variable, because we consider a
CV approach for calculating the values and we treat each pair of lead and initialization time
separately. Together, the approach based on the model data results in around 40 times more
quantile values.

Figure 6.15 shows the differences of the quantile values dependent on the station, where
negative values correspond to a larger estimated value for the station data. For the 98th
percentile of the wind speed, we observe that for most of the stations the observational
data has larger quantile values. Taking a look at the seven outlier stations with the largest
deviations between the values, we find that these are stations located at a high altitude subject
to larger systematic differences between model and station. For the median of the potential
temperature, we find the same pattern with less outliers. Here, we observe that the difference
is larger, the farther south the station is located.18

17For one of these 17 stations, the median is available at 0.5% hours of the year. Still, the station is excluded.
18Roughly, the stations are numbered from north to south.
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Figure 6.15: Boxplots of the differences in quantile values based on model and station data.
Negative values indicate that the value is smaller for the model data.

The implications of the differences are described in the following. As RAMEFI is only
applied when the normalized wind speed exceeds the threshold of 0.8, and as the normalized
wind speed takes smaller values when a larger quantile is used, RAMEFI is applied to a
smaller fraction of the data for the observational data. As winter storms, or high-winds in
general, are extreme events, a larger amount of samples with threshold exceedance is preferred.
Next to the classification of high-wind, we discuss the effect on the RAMEFI probabilities
via the PDPs in Figure 6.14.19 For the normalized wind speed, we find that larger values
increase the probability of observing one of the high-wind features in general (instead of the
no feature class NF). In case of the potential temperature, the smaller quantile values of the
model data also result in larger values of the predictor variable. Based on the PDPs, this
results, on average, in a shift from the colder features CJ and CS towards the WJ that is
associated with warmer conditions.

For both of the approaches, we proceed by calculating the remaining predictor variables
and then applying RAMEFI. In case of the model-based approach, the CV setting results
in six different probabilities for each sample, specifically, one for each year that was left out.
In contrast, only one probability is calculated for each sample in case of the observational
data. Recall that we calculate the RAMEFI probabilities only for the period from October to
March, otherwise we set them to zero.

Comparing the RAMEFI probabilities generated based on the two datasets, the average
yearly number of samples with a threshold exceedance (for each pair of initialization hour and

19The PDPs in Figure 6.14 are based on the individual RFs of the CV approach, and not the RF used in this
section. However, the differences are negligible.
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lead time) is 1,741 based on the station data, that is, 6.08% of the winter period, while it
is 2,692 for the model data, that is, 8.51% (Table 6.5). Hence, the differences due to using
different quantile values are present in the RAMEFI identification.

Table 6.5 also lists the average number of expected high-wind features per year, which
is calculated by accumulating the probabilities. Note that the RAMEFI probabilities in
Section 6.3 were not only well-calibrated for surface observations but also for the COSMO-
REA6 data that has the same underlying model as the COSMO-DE-EPS data. Only around
half of the high-wind samples are classified as one of the four wind features, where the WJ
and CS are most commonly predicted with 19 and 18%, respectively. Interestingly, CFC is
predicted three times more often than the CJ. For the two approaches, the relative frequency
of the features is fairly similar. However, we observe that NF is predicted more often for the
station-based normalization, while CJ and CS are predicted less often. This coincides with
what we expected when comparing the quantile values.

Altogether, we decide to use only the probabilities generated based on the model data. The
main reasons are that, due to missing values and smaller high-wind thresholds, more samples
are available for the model-based approach (Table 6.5), and that the station-based approach
is not sufficiently consistent with the forecast data (Figure 6.15). Therefore, more RAMEFI
probabilities are generated and larger subsets relevant for feature-dependent postprocessing
are available.

6.4.2 Feature-dependent postprocessing models

In general, regime-dependent postprocessing approaches provide promising pathways for
future work (Rodwell et al., 2018), and they have demonstrated their potential in different
studies (e.g., Gneiting et al., 2006; Allen et al., 2021). Here, we want to highlight one aspect
connected to the choice of the underlying weather regimes. The finer the distinction between
the meteorological conditions, the closer we can adapt to the specific situation at hand.
However, the more regimes are chosen, the smaller the amount of data associated with the
regime. This is the same trade-off inherent in training data selection processes, e.g., when
choosing between local and global training as described in Section 5.1. Many approaches
to regime-dependent postprocessing operate by training separate models for the different
weather regimes, and then generating forecasts using the distinct model instances (Allen et al.,
2020, 2021). Based on probabilistic predictions of the regime occurrence, this can be done by
selecting the most likely or combining several models based on their likelihood, among other
variants.

In this section, the regimes are given by the high-wind features, hence we refer to feature-
instead of regime-dependent postprocessing. This definition involves two nested distinctions,
in particular, that of high-winds and that between the features, but only in case of high-winds.
Table 6.5 shows the average occurrence of high-wind events and the expected number of
features, using a model-based normalization. The ratio of high-wind events is only at about
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8.5% of the samples during the winter period, and the individual features are observed
much less often. Still, note that a particular advantage of a probabilistic approach for feature
identification is that we obtain occurrence probabilities for all high-wind samples. As discussed
in Section 6.3, given a binary identification, no information on the likelihood of the feature,
hence, joint occurrences, transition zones or ambiguous situations, is available.

We choose to focus on feature-dependent postprocessing models that explore the flexibility
of the underlying NN structure via the ideas of transfer learning (TL), in addition to reference
approaches for comparison. Recall that we presented a general NN-based postprocessing
framework in Section 4.3, hence the following approaches can also be directly applied for BQN
and HEN.

Reference approaches

Next to the standard DRN approach, which we will refer to as REF, two other reference
approaches for feature-dependent postprocessing are implemented. The RFP approach simply
uses the RAMEFI probabilities as additional predictor variables for DRN. The probabilities
are processed analogously to the other predictor variables, which includes a normalization, and
the hyperparameters are not adapted. As the ratio of high-wind events in the training data is
small, we expect the RAMEFI probabilities not to have an effect on the predictions, and not
to be considered important by the NNs. The intention is to show that it is not sufficient to
supply only the identification to the model, instead of adapting the model itself.

The second approach is not based on the wind features but instead on the classification
of high-winds; we simply apply DRN separately for normal and high winds. As we fit two
DRN models, this approach is referred to as 2-REF. Here, the DRN model for the high-wind
data has substantially less data available, which might deteriorate the predictive performance.
As for all of the reference approaches, we do not adapt or tune the hyperparameters of
the standard DRN approach. The 2-RFP model combines the RFP and 2-REF model, as
it estimates separate DRN models for normal and high winds, but includes the RAMEFI
probabilities as additional predictors (for the high-wind model). The intention behind 2-REF
and 2-RFP is to investigate whether a separate NN model for the high-wind data is sufficient,
or if more sophisticated approaches are required.

Transfer learning

We choose to focus on feature-dependent postprocessing approaches tailored to the NN-based
framework based on the ideas of TL (e.g., Pan and Yang, 2010; Goodfellow et al., 2016). As
the name suggests, the general concept of this approach is to transfer information from the
application on one domain to another. More specifically, this includes to adapt NNs trained
on large datasets that have proven to perform well in the application at hand (such as DRN
in Section 5.3) towards another familiar application by modifying the architecture, retraining
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the existing parameters and fine-tuning the network. TL approaches are typically used when
it is not feasible to build an own, task-specific NN from scratch, e.g., if a sufficient amount
of data is not available or well-performing NNs from related applications provide promising
base models. Further, methods from TL are suitable in situations where the underlying data
generating mechanism changes, e.g., a far-reaching update of the NWP model such as the
kilometer-scale ensemble data assimilation system (KENDA; Schraff et al., 2016) in case of
the COSMO-DE-EPS (Pantillon et al., 2018, Section 2.1), or where a focus lies on extreme
events, such as in this chapter. For reviews on TL, we refer to Weiss et al. (2016) and Zhuang
et al. (2021).

Here, we will apply TL for feature-dependent postprocessing proceeding in three steps.
First, a DRN model is fitted on the entire data, as is standard. This base model will be used
to predict non high-wind samples, while a second model will be estimated for high-wind data.
This second model extends the standard DRN architecture by incorporating the RAMEFI
identification. We will present two possible architecture choices to include the probabilities as
additional predictor variables, but also one reference model not based on RAMEFI, with the
intention to filter out the effect of using TL without additional information. For training of the
extended model, we want to make use of the existing model as much as possible. Therefore,
the second step of our TL approach involves the transfer of the NN parameters, i.e., the
weights and biases, from the base model to the extended one. As the extended model includes
new and omits old connections, not all existing parameters can be transferred to the new
model. The second step is then to train (only) the new connections of the extended model
on the high-wind data, i.e., we freeze the part of the model that was transferred from the
base model by setting the learning rate to 0 for this part. In this step, we slightly adapt the
(overall) learning rate, number of epochs and batch size. The third and last step is typically
referred to as fine-tuning. Including all parameters in the estimation process, i.e., unfreezing
those from the base model, we fit the model again on the high-wind data.

The aforementioned reference model does not extend the DRN architecture, but simply
includes retraining on the high-wind data not making use of the RAMEFI identification, and
will be referred to as TL-REF. Hence, the second step of the process can be omitted. The
two more interesting approaches involve an extended model that incorporates the RAMEFI
probabilities, which is illustrated in Figure 6.16 for both the TL-1 and TL-2 approach.

The extended architecture of the TL-1 approach connects the RAMEFI identification with
the first layer of the network, i.e., the feature probabilities are treated analogously to the other
predictor variables (including the normalization described in Section 5.3.2). For the initial
estimation of the high-wind network, only the connections from the input nodes towards the
first hidden layer are trainable. The parameters from the input layer to the first hidden layer
that have been estimated in the base model, i.e., all connections not involving the RAMEFI
probabilities, are used as initial values in the high-wind model.

The idea behind the TL-2 approach is to build an architecture that includes a channel for
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Figure 6.16: Graphical illustration of the extended model architectures applied in the TL-1
(left) and TL-2 (right) approach.

the feature information parallel to the base model. This is achieved by connecting the input
nodes of the RAMEFI probabilities only with a separate set of nodes in the second hidden
layer, which are also connected to the first hidden layer of the base model. This leaves the
base model untouched and combines the information extracted in the first hidden layer with
the feature information. The second hidden layer is then connected to the output nodes as
usual. In the initial estimate, the parameters of the new nodes in the second layer are, as well
as those of the output layer, trainable. Here, we use the existing parameters for the output
layer as initial values.

For both TL-1 and TL-2, we adapt the hyperparameters for training of the high-wind
model by reducing the learning rate to 10−5, decreasing the number of epochs to 50 and
decreasing the batch size to 32. These values have not been determined using a strategy for
hyperparameter tuning but rather on general suggestions for TL models and impressions from
supervising the training of the networks. The number of nodes connected to the RAMEFI
probabilities in the second layer of the TL-2 approach is 8. For a comparison with the standard
DRN, we refer to Table 5.10.

Before assessing the predictive performance of the feature-dependent postprocessing ap-
proaches, we want to note that these models are only first approaches towards a feature-
dependent postprocessing. A systematic comparison of different strategies for data preparation,
possible NN architectures or hyperparameter choices may lead to other configurations as those
presented in this section. Hence, there may be room for (substantial) improvement of these
models.

6.4.3 Results

Replicating the case studies on wind gust prediction, we will evaluate the predictive perfor-
mance of the feature-dependent postprocessing methods presented in the previous section.
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Analogous to the systematic comparison in Section 5.3, we compare the postprocessing meth-
ods for the entire year of 2016. However, as (basically) all models rely on the standard
DRN for the non high-wind data, that is, over 95% of the data, we will consider only the
high-wind samples for a more detailed investigation.20 A quick look at the CRPSS including all
samples confirms that all methods perform similar (Figure 6.17). Recall that the definition of
high-winds is based solely on the ensemble predictions, hence we do not face undesired effects
from conditioning on extreme events in the evaluation (Lerch et al., 2017). After covering
the high-winds in 2016, we will investigate whether the approaches are able to eliminate the
forecast busts in the application on winter storms (Section 6.1).

Comparison for high winds

To evaluate the effect of the feature-dependent postprocessing, we assess the predictive
performance only for the high-wind samples of the data in Section 5.3, which results in test
sets of average size 2,187. That is even less than the average size listed in Table 6.5. The
standard evaluation metrics we also considered in the previous case studies are shown in
Figure 6.17 for the feature-dependent postprocessing approaches.

The first observation is that the 2-REF and 2-RFP models perform constantly worse than
the other approaches with a gap in the CRPSS of around 2%. These two approaches also
predict higher wind speeds in general, as the bias of the median forecasts shows. This may be
a result of the fact that this model is developed exclusively using high-wind data, unlike the
other approaches. Further, the reason for the inferior predictive performance is the insufficient
amount of training data. Hence, it is not sufficient to build a separate NN model for high
winds. Due to the shortcomings of the purely threshold-dependent models 2-REF and 2-RFP,
we will omit them from the following analysis.

The skill of the other approaches is on a similar level. The two reference models REF and
RFP perform equally well, followed by the TL approaches in the order TL-REF, TL-2 and
TL-1. While consistent over lead time, the gap between the models is considerably small.
Comparing REF and RFP, we do not find any systematic differences between the two models.
As supposed in the previous section, the inclusion of the RAMEFI probabilities as additional
predictor variables without any adjustment to the structure of the model does not affect the
predictive performance at all. A systematic difference in the comparison of the two reference
models REF and RFP with the TL approaches is that TL results in sharper forecasts, here,
exemplified by the shorter PIs. Comparing the PI coverage of the two groups, we find that
the smaller PI lengths come at the cost of calibration. Overall, this results in less skill, as
noted before.
20Note that the DRN (base) models underlying the different approaches are not identical due to practical

reasons. Further, note that the RAMEFI probabilities are set to zero in case of non high-wind data and that
2-REF and 2-RFP do not use the entire training set to fit the standard model but only the non high-wind
data.
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coverage, mean PI length and mean bias of the feature-based postprocessing
approaches as functions of the lead time, averaged over all stations for the
entire year 2016 (topleft) and for samples that exceed the high-wind threshold
(otherwise).
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Within the TL approaches, we observe that the skill is largest for the TL-REF approach that
does not extend the model architecture. Still, retraining without the inclusion of RAMEFI
results in sharper PIs than the TL-1 approach that uses the feature probabilities as additional
predictors in the first layer. The TL-1 approach also performs worse than TL-2, as the CRPS
is consistently smaller. This might hint at the fact that the RAMEFI probabilities should be
included customized at a later stage in the network such that the prevalent information does
not get lost among the large number of other predictor variables.

Comparison in winter storms

Replicating Section 6.1, we apply the same CV setting for the feature-dependent postprocessing
methods. First, we take a look at Figure 6.18 that extends the original panel in Figure 6.1 by
the feature-dependent approaches. The main message is that the new methods were not able
to eliminate the forecast busts. Instead, we still observe them and, in case of Joachim, even to
a larger extent, especially for the TL approaches. Looking at the individual storms, we find
that all postprocessing methods behave similarly in terms of bias, PI length and coverage, e.g.,
in terms of the bias for Andrea or the PI coverage for Christian. Extending Figures 6.3 and 6.4
that compare the methods for the individual storms, we found no noteworthy differences from
the general behavior (not shown). Recall that for each time step and storm, the evaluation is
based on at most 175 stations and that the underlying DRN model instances are not identical.

In Figure 6.19, we compare the predictive performance averaged over all storms to draw
general conclusions in case of the winter storms (analogous to Figure 6.2). We note that
the general behavior is similar to that observed for high-winds in 2016. The TL approaches
perform slightly worse than the two reference approaches REF and RFP in terms of the CRPS.
Again, the PI length is shorter and the coverage smaller for the TL approaches. Further, the
TL approaches are slightly more biased towards smaller wind speeds. Within the groups, we
find no differences.

Conclusions

In this section, we presented first models towards feature-dependent postprocessing based
on the RAMEFI identification of Section 6.3, including both reference approaches and more
sophisticated TL models. A comparison of these methods with the standard DRN in the setting
of Sections 5.3 and 6.1 shows that none of the feature-dependent postprocessing methods
did improve the predictive performance, neither for high-winds in general nor for selected
winter storms, instead they performed slightly worse than the benchmark. Although the TL
approaches result in sharper PIs, the coverage deviates more from the nominal level, therefore
we have less reliable forecasts. Within the TL methods, the least complex variant closest to
the standard approach (TL-REF) is preferable. Hence, the feature-dependent postprocessing
methods introduced in this section are not able to improve predictive performance and
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Figure 6.19: Mean CRPS, CRPSS with respect to the raw ensemble predictions, mean PI
coverage, mean PI length and mean bias of the feature-based postprocessing
approaches as functions of the lead time, averaged over all stations and winter
storms.

eliminate the forecast busts observed for the winter storms. The inferiority of the newly
introduced approaches has several possible explanations:

– First, the feature-dependent models presented in this section are not fine-tuned, in con-
trast to the DRN benchmark. A thorough investigation of optimal choices for the model
architecture, hyperparameters, incorporation of the RAMEFI identification and data
selection for training and validation, may improve the predictive performance. However,
the small amount of high-wind data and features identified (Table 6.5) complicates the
matter, specific measures such as a CV approach may be required to avoid overfitting.
Further, the amount of data available may be insufficient to correct for (potential)
feature-dependent errors.

– In this section, we operate under the hypothesis that forecast errors are dependent on
the high-wind features. Thus, a feature-dependent error analysis is required to analyze
more deeply whether and if so how forecast errors depend on the features. Further, this
analysis can be used to adapt the methods towards the observed dependencies, e.g.,
errors might systematically deviate only for selected features.

– Recall that the predictor variables are based on the ensemble mean, which blurs the
information present in the individual members. One example of an effect of using the
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ensemble mean might be the higher number of CFCs identified by RAMEFI, since small
and sharp precipitation fields at different locations in the individual members result in a
large area for which precipitation is predicted after averaging. Note that precipitation is
the most important predictor variable for identifying CFC (Figures 6.12–6.14). Hence,
the application of RAMEFI on the individual ensemble members should be considered,
as RAMEFI takes physical consistencies into account. In addition, the sample size could
be increased drastically by using the full ensemble instead of the mean predictions.

– The reason for observing forecast busts for selected winter storms may lie at the storm-
scale, i.e., the entire cyclone is predicted too weak, strong or shifted in the COSMO-
DE-EPS forecasts. If the model predictions are subject to such systematic errors, the
RAMEFI identification will not be reliable, as it does not correct for these errors. Recall
that RAMEFI was trained and evaluated based on station observations and reanalysis
data, which are not subject to misplacement errors at the storm-scale. Analogous to that
in Section 6.3, a separate evaluation of the RAMEFI identification based on the COSMO
forecasts needs to be conducted to assess the predictive performance and see whether
the probabilities are (to a sufficient degree) accurate and reliable. Again, averaging over
individual storm tracks in the ensemble members might be counterproductive.

– At last, there is a large case-to-case variability for the winter storms. In practice,
the features seldom show textbook-like behavior and exhibit different characteristics,
e.g., due to the influence of the local orography like land, sea or mountains. With
this in mind and recalling that RAMEFI was trained on subjective labels of the wind
features, the information present in the RAMEFI identification based on the model
forecasts might simply not be sufficient to generate confident predictions that allow for
a feature-dependent postprocessing approach.

Altogether, we conclude that all of these points need to be addressed to investigate whether
a feature-dependent postprocessing approach is actually able to improve the predictive
performance significantly and eliminate the forecast busts within the winter storms.
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Conclusions

In this thesis, we have demonstrated how methods from modern machine learning can be
used to leverage the predictive performance of statistically postprocessed weather forecasts.
In a systematic comparison, we found that the best postprocessing methods for ensemble
forecasts of wind gusts are neural network-based approaches, due to their ability to incorporate
additional meteorological predictor variables and spatio-temporal information. Beforehand, we
formulated concrete methodological recommendations on the aggregation of deep ensembles,
such as for the application on postprocessing. With the goal of eliminating forecast busts within
winter storms by incorporating domain knowledge in neural network-based postprocessing,
we developed a calibrated random forest-based identification of high-wind features, and
demonstrated that it learned how an experienced meteorologists would complete that task.
This concluding chapter aims to summarize the findings in this work, and addresses possible
directions for future work.

In Chapter 3, we conducted a systematic analysis of aggregation methods for distributional
forecasts generated by randomly initialized deep ensembles, i.e., ensembles of neural networks.
Firstly, our findings coincide with the fact that forecast combination in general and, in
particular, ensembling of machine learning methods improves predictive performance. We
compared the two distinct approaches of averaging probabilities, referred to as linear pooling,
and Vincentization, that is, averaging quantiles, which proved to be more suitable in our
simulation and case studies. While the standard approaches to quantile and probability
averaging do (in general) not correct for systematic errors present in the network predictions,
we demonstrated that a general Vincentization framework is able to correct for biases and
dispersion errors, and can be integrated in the typical training scheme of a neural network.
Further, we found that the optimal ensemble size in case of the randomly initialized deep
ensembles is approximately given by 10. However, deep ensembles can not only be generated
based on stochastic gradient descent methods and random initialization but also using a wide
range of alternative approaches such as Monte Carlo dropout (Srivastava et al., 2014; Gal and
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Ghahramani, 2016), bagging (Breiman, 1996), Bayesian neural networks (Neal, 2012; Jospin
et al., 2022), generative models (Mohamed and Lakshminarayanan, 2016) or BatchEnsemble
(Wen et al., 2020). An interesting avenue for future work is to investigate whether the
conclusions drawn in this study hold for deep ensembles based on these approaches and how
they compare against each other. Even further, aggregation methods that simultaneously
recalibrate the deep ensemble (members), such as the general Vincentization framework or
probability-based calibration methods such as the beta-transformed linear pool (Ranjan and
Gneiting, 2010), could be integrated in the estimation process of the network (e.g., Kim et al.,
2021).

Chapter 4 presents a wide range of statistical postprocessing methods that can be divided
in three groups of increasing complexity. In Chapter 5, we apply these methods in three case
studies. The first group of methods consists of simple approaches rooted in statistics that
are based only on the variable of interest. As demonstrated in all case studies of Chapter 5,
these basic methods are able to significantly improve the ensemble predictions and yield well-
calibrated predictions. In a pseudo-operational setting, the ensemble model output statistics
approach could straightforwardly be adapted to a wide range of meteorological variables and
implemented for near real-time postprocessing on the KIT-Weather portal. Another advantage
of these approaches is that only small amounts of data are required for a successful application,
as demonstrated for solar irradiance forecasts over Hungary. Still, these approaches are
inherently limited by their parsimony and are inferior to more sophisticated postprocessing
methods, as demonstrated in the case study on probabilistic wind gust prediction. While
the second group of methods consists of established machine learning approaches based on
the ideas of gradient boosting and random forests, the third is based on a common neural
network framework. Both significantly outperform the postprocessing benchmarks of the
first group as they are able to incorporate additional predictor variables and model more
complex, nonlinear relations. While all postprocessing methods yield calibrated forecasts,
superior predictive performance is achieved by maximizing the sharpness, following the central
paradigm of probabilistic forecasting. Within the advanced methods, neural network-based
postprocessing outperforms the established machine learning methods, as station embeddings
allow to build a locally adaptive network model that can be trained on the entire training set.

The ability to adapt neural networks to the situation at hand, here exemplified by the
use of a simple station embedding technique, provides manifold avenues for future research,
as numerical weather prediction (NWP) models generate large datasets with intervariable
and spatio-temporal dependencies, which we did not explore in this thesis. Convolutional or
recurrent neural networks, among other variants, can be used to extend our postprocessing
framework to include spatial fields or time series data as input variables (e.g., Gasthaus et al.,
2019; Scheuerer et al., 2020; Veldkamp et al., 2021). On the other end, multivariate forecasts
can be generated using, e.g., generative models (Chen et al., 2022), generative adversarial
networks (Dai and Hemri, 2021), or alternatively by implementing neural network-based
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member-by-member postprocessing, which preserves the multivariate dependencies in the
NWP predictions leading to more realistic and physically consistent forecasts that are less
prone to forecast busts.

In Chapter 6, we explored the idea of developing hybrid models that incorporate domain
knowledge into the statistical postprocessing models. After identifying the best postprocessing
method for wind gusts in Chapter 5, we investigated the predictive performance within
European winter storms motivated by a study of Pantillon et al. (2018). Applying neural
network-based postprocessing, we find that even sophisticated models are subject to forecast
busts. Due to the occurrence of specific high-wind features, Pantillon et al. (2018) formulate the
hypothesis that the forecast busts are associated with certain meteorological conditions. Hence,
the incorporation of domain knowledge in the statistical postprocessing models, resulting in
a hybrid model, may be able to eliminate such forecast busts. Before that, we demonstrate
the potential of such hybrid models in a brief excursion towards tropical cyclone forecasting
in the North Atlantic, where a hybrid model outperforms benchmark models by combining
NWP forecasts and climatological information. Returning back to European winter storms,
we developed RAMEFI, an automatic, objective identification that generates probabilistic
predictions of high-wind features. Based on RAMEFI, we conducted first experiments towards
feature-dependent postprocessing using ideas of transfer learning.

As aforementioned approaches were not able to eliminate the forecast busts, more work
is required to reach this goal. Although we found that the networks in Section 5.3 and the
random forests in Section 6.3 learn physically consistent relations between predictor and
target variables, we were not able to identify why the networks adapted their predictions in
the European winter storms. Here, more sophisticated methods for interpretable machine
learning are required to explain the behavior of the neural networks (e.g., Molnar, 2018;
McGovern et al., 2019). Especially for high-impact events, trustworthiness is an essential
ingredient for forecasting. One step that we skipped in the previous chapter was to check
how forecast errors depend on the high-wind features. Based on a feature-dependent error
analysis, one can design a hybrid model that specifically addresses the shortcomings of NWP
predictions for the different wind features. The feature-dependent postprocessing approaches
presented in this thesis are spatially and temporally (beyond 1 hour) independent, however,
the high-wind areas are coherent in time and space. This can not only be taken into account
for model development but also forecast verification. Using common univariate verification
metrics, a displaced high-wind area is subject to a double penalty. Hence, the development of
mathematically principled spatial verification tools is another interesting avenue for future
work (e.g., Brown et al., 2011; Skok and Hladnik, 2018).

Although the postprocessing methods are in principle readily applicable for operational
use, there are many obstacles in the transfer from research to operations, e.g., preservation
of physical consistency, adaptability towards model changes or technical challenges in the
implementation (e.g., Taillardat and Mestre, 2020; Vannitsem et al., 2021). While postpro-
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cessing methods presented in academic studies are often tailored to a concise problem at hand,
weather services are in general interested in a common, robust postprocessing framework
applicable to a wide range of forecasting applications rather than a multitude of complex,
individual solutions. Regarding the methods presented in this work, one aspect for operational
use would be to take measures in order to avoid forecast busts such as those observed for the
near real-time postprocessing, as forecast busts are a serious concern for weather services.
Further, in order to make (optimal) use of the postprocessed forecasts supplied, operational
forecasters need to be aware of the advantages and shortcomings of the postprocessed products,
e.g., via training. Especially methods from explainable artificial intelligence (AI) are a key
tool for overcoming skepticism towards AI methods widely considered as black boxes. Apart
from the use at weather services, the postprocessing methods presented in this thesis provide
an excellent starting point for forecasting (sources of) renewable energy in the energy sector
(e.g., Phipps et al., 2022; Gneiting et al., 2023).

Parallel to applications for statistical postprocessing, AI methods have made rapid progress
for purely data-driven forecasting, challenging the prevalent practice of physics-based NWP
models with the ultimate goal of replacing them (e.g., Schultz et al., 2021; Bi et al., 2022;
Keisler, 2022; Lam et al., 2022; Pathak et al., 2022). While we suppose that NWP will not
become obsolete and remain an integral part of weather forecasting in the foreseeable future,
the success and potential of AI leads to the question whether the need for postprocessing will
persist as these methods are surpassing NWP. Even under the bold prediction that AI models
replace NWP, the forecasts will (most certainly) still be subject to systematic errors, or at least
improvable, when evaluated for a particular objective. Recall that postprocessing allows to
customize forecasts with respect to a specific target variable, such as the wind speed observed
at a given site or the occurrence of a tropical cyclone. Hence, statistical postprocessing will
still be needed to provide optimized predictions tailored to the problem at hand. To that end,
transfer learning might become a key tool for statistical postprocessing of AI-based weather
prediction models. Instead, the principles underlying the models developed in this thesis are
universally applicable in the context of probabilistic forecasting and therefore provide valuable
tools to leverage AI-based weather prediction.
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