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Abstract
The prediction of knockout tournaments represents an area of large public interest and active academic as well as industrial
research. Here, we show how one can leverage the computational analogies between calculating the phylogenetic likelihood
score used in the area ofmolecular evolution to efficiently calculate, instead of approximate via simulations, the exact per-team
tournament win probabilities, given a pairwise win probability matrix between all teams. We implement and make available
our method as open-source code and show that it is two orders of magnitude faster than simulations and two or more orders
of magnitude faster than calculating the exact per-team win probabilities naïvely, without taking into account the substantial
computational savings induced by the tournament tree structure. Furthermore, we showcase novel prediction approaches that
now become feasible due to this order ofmagnitude improvement in calculating tournament win probabilities.We demonstrate
how to quantify prediction uncertainty by calculating 100,000 distinct tournament win probabilities for a tournament with
16 teams under slight variations of a reasonable pairwise win probability matrix within one minute on a standard laptop. We
also conduct an analogous analysis for a tournament with 64 teams.

Keywords Sports forecasting · MCMC search · Uncertainty analysis · Phylogenetic analysis

1 Introduction

Predicting the per-team win probabilities of a knockout
tournament (alternatively bracket-based or elimination tour-
nament) given a pairwise win probability matrix P , can

Amongst all unimportant subjects, football is by far the most
important.

Pope John Paul II .
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becomecomputationally expensive if a high degree of numer-
ical accuracy shall be attained. In some cases the prediction
will need to be computed thousands or evenmillions of times,
for instance, to quantify the impact of slight perturbations of
the pairwisewin probabilitymatrix P on the per-team tourna-
ment win probability. Given a tournament with n teams, one
needs to evaluate a polynomial with ≈ 2n terms to fully and
exactly calculate the tournamentwinprobability for a specific
teamvia a naïve implementation (see theSect. 2.1 for details).
To calculate this tournament win probability for every team,
an additional n such polynomials must be evaluated. Alter-
natively, one typically deploys stochastic simulations (again
given a pairwise win probability matrix P), over the tour-
nament tree to approximate the per-team win probabilities.
Typically, this is computationally more efficient than com-
puting the aforementioned polynomial, but comes at the cost
of reduced numerical precision of the results (Ekstrøm et al.
2021; Demsyn-Jones 2019).

Prior work for predicting knock-out tournaments has gen-
erally focused on producing accurate outcomes, and not
on the efficiency of the simulations per se. Consequently,
these works generally deploy a statistical model of pairwise
match win probabilities to predict match winners, such as
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the Bradley-Terry model, or an Independent Poisson Model
which is also used in this work. Using such models, parame-
ters are inferred from historic matches, and these parameters
are subsequently used to predict the outcome of individual
tournament matches (Ley et al. 2019; Groll et al. 2019).
Alternatively, researchers have attempted to devise models
for directly predicting the final ranking of teams in a tour-
nament without taking into account the tournament (tree)
structure (Tsokos et al. 2019). These models generally only
infer a few sets of parameters, that is, only the most likely
outcome is used to generate a prediction.

In the following, we propose a novel algorithm to effi-
ciently (O(n2) which translates to a runtime improvement
by 2–4 orders of magnitude) and exactly compute win prob-
abilities for single elimination tournaments, given a square
pairwise win probability matrix P . Our method was inspired
by an observation by Yang (2006) that the Felsenstein Prun-
ing Algorithm (Felsenstein 1981) can more generally be
interpreted as an efficient way to compute polynomials of
a high degree. We implement and make available our new
method in anopen source software tool namedPhylourny (the
name is a pun, on the words phylogeny and tournament). We
experimentally demonstrate the order(s) of magnitude run-
time improvement of Phylourny over stochastic tournament
simulations and naïve evaluations of the polynomials. We
also experimentally determine the differences in numerical
accuracy between Phylourny and the stochastic simulation
approach.

Finally, we showcase the new predictive possibilities that
emerge through this increase in computational efficiency. By
example of two recent tournaments, one with a large amount
of data and one with a small amount of data (a basketball
and football tournament respectively), we show how slight
yet reasonable perturbations of P affect prediction uncer-
tainty by calculatingmillions of tournamentwin probabilities
within hours on a standard laptop. The main contribution of
this paper is the substantially more computationally efficient
approach to computing tournament win probabilities given a
pairwise win probability matrix P . To this end, in our case
studies we deploy a simplified version of a standard model
from Ley et al. (2019) to compute P but do not propose
improved approaches for computing P . Instead, we show to
which extent slight alterations of P affect tournament win
probabilities as such studies are now feasible in acceptable
times with Phylourny.

2 Methods

We initially describe our algorithm for exactly and efficiently
calculating the tournament win probabilities in Sect. 2.1
and provide software implementation details in Sect. 2.2.
Thereafter, we describe our simple models for calculating

Fig. 1 Aworked example of a single elimination tournament with n :=
4 teams. (i) A set of example team strength parameters. (ii) The P matrix
created from the team strength parameters ra and rb using a simplified
likelihoodmodel, where the probability of “team a beats team b” equals
ra/(ra +rb). (iii) A tournament with computedWin Probability Vectors
(WPVs)

reasonable P matrices in Sect. 2.3 and outline howwe deploy
Markov Chain Monte Carlo (MCMC) sampling in Sect. 2.4
to quantify the prediction uncertainty induced by slight alter-
ations of P .

2.1 The Phylourny algorithm

We initially provide some definitions and introduce some
notation.

The win probability vector (WPV) for a given node in
the tournament tree is a vector containing the probabili-
ties of observing a specific team at that node, denoted by
R ∈ [0, 1]n , where n is the number of teams. Evidently, all
tournament tree nodes below the tournament final, that is, the
root of the tree, will comprise some entries that are equal to
zero with the leaves being represented by the canonical unit
vectors. For an illustration, see panel (iii) in Fig. 1.

Let Pa�b ∈ [0, 1] denote the pairwise probability of team
a winning over team b in a single match, that is, the proba-
bility that “team a beats team b". By convention, we define
Pa�a = 0 for any team a. In the simplest tournament with
only two teams, a and b, there is only a single match. The
pairwise win probability matrix is given by

P =
(
Pa�a Pa�b
Pb�a Pb�b

)
,

123



Statistics and Computing            (2023) 33:80 Page 3 of 10    80 

and the WPV for the single node in this tournament is

R = (Ra, Rb) = (Pa�b, Pb�a). (1)

Because this constitutes a trivial case, the calculation is
straight-forward. To recursively extend this to larger trees,
we rewrite the above expression by also using the respec-
tive child nodes. First, we introduce the child WPVs as
V = (1, 0) and W = (0, 1) leading to the expression

Ra = (Pa�a × Wa + Pa�b × Wb) × Va (2)

for the win probability Ra of team a, assuming the team
can only enter the match via the first child of the node as
indicated by Va = 1 and Wa = 0. As such, Pa�a × Wa

vanishes regardless of the value of Pa�a , and Eq 2 reduces
as given in Eq 1.

In general, for any number of teams n, the WPV R at any
given node can be calculated from the respective child node
WPVs V and W and the pairwise win probability matrix P
as

R = V �
(
WP�)

+ W �
(
V P�)

, (3)

where � denotes the element-wise product. Please note that
Eq.3 is a generalized restatement of Eq.2 using matrix and
vector notation, and accounts for any team entering thematch
via either child. For single elimination tournaments at most
one of Va and Wa can be positive. The WPV at the root
can be efficiently computed via a post-order traversal of the
tournament tree, that is, by computing WPVs at the nodes
bottom-up from the tips/leaves toward the final/root. Figure1
depicts a simple example with the pairwise win probabilities
represented as normalized relative team strengths.

In some tournaments, Pa�b will correspond to a “best of
k" series of play-off matches instead of a single match, as
for example in the National Basketball Association (NBA)
playoffs. Further, this k can vary over the duration of the
tournament since early matches are often “best of 1" with
k := 1, whereas later matches might be “best of 5" with
k := 5. We can seamlessly account for this by introducing
P(k), a node-dependent pairwise win probability matrix for
a “best of k” series.

2.2 The Phylourny software

The open-source SPSVERBc1 implementation of our algo-
rithm is available via GitHub at https://github.com/computa
tions/phylourny under GNU GPL version 3.0. The software
only requires SPSVERBc2 to build and git to download.
Phylourny also implements stochastic (that is, simulation
based) as well as naïve polynomial tournament win prob-
ability calculations for the sake of conducting run time and

numerical precision comparisons. Finally, it offers the simple
models for devising reasonable P matrices and conducting
Markov Chain Monte Carlo (MCMC) sampling presented
in the following Sects. 2.3 and 2.4. Finally, Phylourny has a
software quality score of 7.7 as rated by the software quality
analysis tool SoftWipe (Zapletal et al. 2021), which places
Phylourny in the top 10%of scientific software tools included
in the SoftWipe benchmark. Version v1.2.1 was used to
perform the uncertainty analyses presented here.

Computing the P matrix based on the Poisson likelihood
model (which is discussed in the next section) is compar-
atively computationally expensive. Therefore, to expedite
these computations, we parallelized the computation of the
likelihood over the historic matches using OpenMP (Open
2020). Despite this parallelization, the computation of the
likelihood score still accounts for approximately 90% of the
overall run time of the Poissonmodel basedMCMCanalysis.

To perform analysis with Phylourny, a list of teams who
will participate in the elimination tournament needs to be pro-
vided as a file. Phylourny then can compute a win probability
when given probability matrix, which should be provided as
a CSV file. Alternatively, Phylourny can conduct an MCMC
search of the parameter space of the Independent Poisson
Likelihood Model (discussed in Sect. 2.3). In this case, a
list of historical matches needs to be provided in a CSV
file. The results from the MCMC search will be summa-
rized in 3 output files with three different summaries: the
maximum likelihood prediction (MLP) which is the predic-
tion using the parameters with the highest likelihood; the
maximum marginal posterior prediction (MMPP) which is
the prediction averaged over all posterior samples; and the
list of samples taken from the posterior during the MCMC
search. The MLP and MMPP are discussed in more detail in
Sect. 2.4.

2.3 The independent Poisson likelihoodmodel

The success of a tournament prediction heavily relies on the
P matrix, that is, the methods used to calculate and also the
data used to evaluate its likelihood. Thus, improved methods
for obtaining this matrix constitute an active area of research
but improving upon them is beyond the scope of this paper
(Kaplan et al. 2014; Hill 2021; Hvattum and Arntzen 2010;
Lock andNettleton 2014). As a simple yet effective reference
model, we adapt the “Independent PoissonModel” from Ley
et al. (2019) to model the pairwise win probabilities based
on historical match data. In a nutshell, two competing teams
are assumed to independently score points under respective
Poisson distributions, with parameters driven mainly by the
difference of the teams’ strengths. The win probability of a
team is the probability to scoremore points than the opponent
as given by the Skellam distribution that describes the differ-
ence between two independent Poisson random variables.
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Our version of the Independent Poisson Model is a
straightforward implementation of the model described in
Ley et al. (2019), slightly modified by removing the con-
straint that the team strength parameters need to sum to zero.
During our MCMC search, we constrain the strength param-
eters to be between 0.0 and 1.0, which has a similar effect.
Additionally, we remove the distinction between home and
away games to further simplify the model. A home advan-
tage parameter could be integrated into the model in a future
version of Phylourny. Let M denote a series of historical
matches (a, b, ga, gb), where a and b are the teams and ga
and gb are the goals scored by each team, respectively. Then,
the likelihood of the Independent Poisson Model is given by

L(R, ρ) =
∏

(a,b,ga ,gb)∈M

(
λ
ga
a�b
ga ! e−λa�b × λ

gb
b�a
gb! e−λb�a

)
, (4)

where R = (ra, rb, . . . ) ∈ [0, 1]n is the parameter vector of
team strengths that reflect the skill levels of each team, and
ρ ∈ R represents an “average” skill level among all teams in
the Poisson parameter

λa�b = era−rb+ρ.

The expression in Eq.4 is useful to describe the model. How-
ever, it is unsuitable for computation in general as many
sports have score counts which are substantially larger than
that of football. For example, basketball scores are gener-
ally 10–80 times higher. The issue is that when scores are
large, some terms in the computation simultaneously become
very large (for example ga !) and very small (for example
e−λa�b ). This introduces substantial numerical deviations,
which can potentially be amplified by theMCMCsearch, as it
might sample numerical error under unfavorable conditions.
If numerical deviations yield likelihood scores that are better
than the exact analytical likelihood scores, theMCMCsearch
will preferably sample points in parameter space that max-
imize the numerical error. While a strong prior can prevent
this inmany cases, it is preferable to devisemore numerically
stable computations, to prevent this type of potential error
a priori. To alleviate this, we deploy the standard solution
to reduce numerical error by computing the log-likelihood
instead. As we show, this provides sufficient numerical sta-
bility to also apply this model to basketball.

Additionally, the particular model we use for the sake of
the example, might likely not be correct for many sports,
including basketball. This is because a Poisson distribu-
tion always has a mean equal to its variance. However, this
assumption does likely not hold for sports such as basketball,
where the score variance is generally much smaller than the
score mean. For example, in the dataset for the basketball
tournament we analyze later in this work, the mean score is

Fig. 2 Diagram showing an MCMC step for Phylourny. The function
L(·|H) denotes the likelihood function and θi denotes the parameters
of the model for the matrix P . For the Independent Poisson model, θ

comprises R and ρ and L(θ |H) = L(R, ρ) from Eq 4. The decision
whether to accept θi+1 depends on the prior and the proposal distribu-
tion in addition to the likelihood. Solid borders represent inputs to the
algorithm, while dashed borders steps of the algorithm

≈ 70 and the standard deviation is ≈ 12. Nonetheless, we
choose to use the Independent Poisson Model as it strikes a
good balance between realism and simplicity to substantiate
our claims that novel types of statistical analyses are feasible
because of the computational savings of Phylourny.

While we do present and implement as open-source code
the Independent Poisson Model here and use this model for
MCMC analyses (see below), Phylourny does by no means
rely on this particular model. In fact, any model which can
compute a pairwise win probability matrix P can be used.
Furthermore, any parametric model can be used to perform
the MCMC analyses we describe next.

2.4 Sampling the Pmatrix via MCMC

Togenerate a sample of reasonable P matrices that accurately
reflect a given match history and to quantify the uncertainty
of the tournament win probabilities at the WPV of the final,
we deploy MCMC sampling via the Metropolis-Hastings
algorithm (Metropolis et al. 1953). A diagram showing an
example sampling step is given in Fig. 2.

At eachMCMCstep, a new set ofmodel parameters for the
Independent Poisson model is proposed yielding a new pair-
wise win probability matrix P ′, and the likelihood of these
parameters is computed, i.e. L(R, ρ). If the proposed model
parameters are accepted, then the WPV of the tournament is
computed under P ′ and recorded as a sample together with
the likelihood of the corresponding model. Optionally, the
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sample set can be thinned for saving disk space by taking a
sample only every n generations.

At the start of theMCMC chain, all parameters are initial-
ized to 0.5. In each MCMC step, a parameter is selected
at random with equal probability. If a team strength r is
selected, then a new strength r ′ is proposed according to
a Beta distribution with α := β := 1.5. The corresponding
density function is denoted byb1.5. If the average strengthρ is
selected, then a new average strength ρ is proposed by adding
a value drawn from a Normal distribution with μ := 0.0 and
σ := 0.1, or simply ρ′ ∼ N (ρ, 0.12). Both proposal func-
tions have no particular meaning, and could be replaced with
other proposals so long as they satisfied a few requirements.
First, the average skill level ρ must be allowed to vary to any
value in R. Second, the strength parameters can be shifted,
as a group, by some constant and still have the same like-
lihood. Therefore, to improve convergence of the chain, we
found it best to constrain the strength parameters by using
a proposal with a single mode, which has the effect of pre-
ferring an average relative strength of 0.5. We could have
implemented this as a prior with the same requirements on
the strength parameters, however we found it simpler to sat-
isfy these requirements with the proposal than to implement
these requirements as a prior distribution.

The proposal process is symmetric in the average strength,
but non-symmetric in any team strength, so we calculate the
Hasting’s ratio as 1 and b1.5(r)/b1.5(r ′), respectively. The
acceptance ratio is then computed as the product of the like-
lihood ratio, the prior ratio, and the Hasting’s ratio. A value
for the acceptance ratio larger than 1 is reduced to 1. We
accept a proposed new team strength with a probability that
is equal to the acceptance ratio. We implemented and tested
several priors including a Normal distribution, a Beta distri-
bution, and an Uniform Distribution. None of the priors had
a strong effect on the results, so we chose to use a Uniform
prior, for the sake of simplicity. Finally, we sample the chain
every 100 generations in order to thin the samples. Thinning
is performed so that some result files, particularly the file
containing the samples, do not become excessively large.

TheMCMCsampling procedure should be continued until
the chain has reached “apparent convergence" as true con-
vergence can only be attained if the MCMC sampling is
executed infinitely. Further, only the lack of convergence
can be assessed via appropriate diagnosis tools. Hence, as
assessing the convergence of MCMC is impossible, in our
experiments, we only draw a fixed number of samples. How-
ever, computing theWPVof a single sample using Phylourny
is computationally inexpensive. Therefore, we are able to
compute an extremely large number of samples within an
acceptable amount of time. For a football tournament with
n := 16 teams (the UEFA 2020 knock-out stage), we can
evaluate 10 million proposals under the Independent Poisson
model which result in exactly 100 thousand WPV samples

after thinning, within approximately 51 seconds using a stan-
dard laptop. This corresponds to approximately 1961 exact
calculations of the tournament final WPV and 196, 078 like-
lihood evaluations per second. We believe that using 100
thousand samples is justified, as the state space for this
specific tournament is not excessively large, and should be
sufficiently sampled with this number of samples, particu-
larly since we explore the parameter space for ≈ 10 million
generations.

We discard the first 10 thousand samples (10% of sam-
ples) as burn in to compute summary statistics. Once we
haveobtained all sampledWPVs from theMCMCprocedure,
we can compute two predictions: the maximum likelihood
prediction (MLP), or the maximum marginal posterior pre-
diction (MMPP). The MLP is simply the prediction given
by the P matrix that yielded the highest likelihood score,
whereas the MMPP is the average prediction over all sam-
ples. Because anMCMC procedure will sample the posterior
with a probability distribution hopefully approximating the
true posterior, the average over all samples is approximately
the average of the posterior. The difference between these two
predictions is one of philosophy rather than mathematics, as
they encapsulate distinct interpretations about what “really"
matters. The school of thought advocating the MLP, claims
that the only thing that matters is the most likely outcome,
regardless of the underlying distribution, whereas the school
of thought supporting the MMPP claims that the totality of
evidence is what matters.

3 Case studies, experimental setup, and
hardware

We showcase and assess the runtime and the numerical
performance of our method on two historical tournaments.
We apply Phylourny to the 2020 UEFA European Football
Championship (UEFA 2020) and the 2022 NCAADivision I
Men’s Basketball Tournament (NCAA 2022) to perform an
uncertainty analysis on the tournament results. As input to
Phylourny we use historical match data from games played
prior to the elimination phase to conduct MCMC searches,
as described in Sect. 2.4.

We chose the UEFA 2020 and NCAA 2022 tournaments
for several reasons which we think best allows us to show-
case our method. First, UEFA 2020 and NCAA 2022 cover
different sports, which allows us to show that Phylourny is
not dependent on a specific sport. Second, UEFA 2020 and
and NCAA 2022 have very different sizes, as UEFA tour-
naments have a small number of competitors (typically 16
teams) while NCAA tournaments have a large number (64
teams). Finally, the amount of historic match data available
for NCAA tournaments is generally much more extensive
than that of UEFA tournaments. Therefore, UEFA 2020 is
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the “small" case and NCAA 2020 is the “large" case. These
two cases represent the extremes of tournament configura-
tion in terms of size and matches before the tournament, and
therefore they allow us to explore the entire range of Phy-
lourny’s performance.

All input data and relevant output files of Phylourny for
the experiments that we describe in more detail below are
available at https://github.com/computations/phylourny.

3.1 UEFA 2020 and NCAA 2022 historical match
input data

We used the group stage matches for UEFA 2020 to perform
our analysis. These matches are played in order to determine
the “seeding" for the knockout round. In order to support
UEFA 2020 representing the “small" case, we elected to
not include qualifying round data, which are the matches
played in order to determine who will enter the group stages.
Therewere a total of 37 games, including tie breakermatches,
which we included as historical match data in our analysis.

Because there is a more extensive pre-season to what is
colloquially referred to as “MarchMadness" in theU.S.when
compared to qualifying rounds for football tournaments,
there is a more extensive dataset we can use for likelihood
calculations. Therefore, a total of 1795 matches were eligi-
ble, that is involving at least one team which participated
in the NCAA 2022 tournament, for use in our uncertainty
analysis.

3.2 MCMC analyses

As described in Sect. 2.4, the search was conducted via
the Metropolis-Hastings algorithm (Metropolis et al. 1953).
For the UEFA 2020 and NCAA 2022 uncertainty analyses,
100,000 samples were collected with thinning enabled. We
present summary statistics for the most likely of these sam-
ples (the 99.9%-ile) for the UEFA 2020 and NCAA 2022
analyses in Figs. 3 and 4, respectively.

3.3 Hardware used and build parameters

We used a Intel i7 CPU with 4 cores clocked at 2.8 GHz
with 16 GiB of memory for all computational experiments.
We used GCC version 12.1.1(GCC 2022) and CMake ver-
sion 3.23.3 to build Phylourny. Phylourny was built using
CMake’s “Release” mode, which removes most debug infor-
mation. Phylourny itself was built as version v1.2.1 and
was built and executed for the purposes of analysis on Linux
5.18.16.

Fig. 3 Probabilities for each team winning the UEFA 2020 tourna-
ment. The samples summarized are the top 0.1% percent of samples by
likelihood from our 100,000 MCMC samples

Fig. 4 Probabilities for teams winning the NCAA 2022 tournament.
The samples summarized are the top 0.1% percent of samples by like-
lihood from our 100,000 MCMC samples

3.4 Numerical error assessment

We also investigate the numerical error when using simula-
tions to compute a WPV. To this end, we produced a sample
of 1000 P matrices from an MCMC search for each of the
two tournaments. The P matrices were sampled uniformly
from the respective MCMC chains, after discarding the first
10% of samples as burn-in. For each sampled P matrix, we
compute both the exact WPV using Phylourny, as well as an
estimate using one hundred, one thousand, ten thousand, one
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Table 1 Simulation error for computing a WPV with an increasing
number of samples for NCAA 2022 and UEFA 2020

Dataset Simulation samples Median relative error Norm error

100 0.727 0.691

1000 0.232 0.216

NCAA 2022 10, 000 0.073 0.069

100, 000 0.023 0.022

1, 000, 000 0.007 0.007

100 0.211 0.273

1000 0.066 0.086

UEFA 2020 10, 000 0.020 0.027

100, 000 0.007 0.009

1, 000, 000 0.002 0.003

We used a sample of 1000 P matrices from an MCMC search for
each tournament. Matrices were randomly sampled at uniform from
an MCMC chain after discarding the first 10% as burn-in. In this table
we report the mean of the 1000 samples

Fig. 5 Plot of simulation errors with respect to number of simulations
conducted for NCAA2022 andUEFA 2020.We sampled 1000 P matri-
ces from an MCMC search for each tournament. Error bars represent 1
standard deviation

hundred thousand, and one million simulations. For these
estimates, we report both the relative error, which is

Mean

(∥∥∥∥WPVsim,i − WPVphy,i

WPVphy,i

∥∥∥∥
)

where WPVsim is the WPV computed using simulations and
WPVphy is the WPV computed using Phylourny. We also
report the norm error, which is

‖WPVsim − WPVphy‖
‖WPVphy‖ .

The results from these analyses are summarized in Table 1
and in Fig. 5.

Additionally, we also conduct the same uncertainty anal-
ysis as described in Sect. 2.4 for both the UEFA 2020 and
NCAA 2022 tournaments, but using simulations to estimate
the WPVs instead of Phylourny. Results from these analyses
are presented in two plots in the supplementary material.

Table 2 Summary statistics for the samples from the uncertainty anal-
ysis

Mean STD Min Median Max

UEFA −98.92 0.27 −99.22 −98.99 −97.91

NCAA −13800 1.99 −13802 −13801 −13794

Values shown are Log-Likelihoods of samples taken during theMCMC
search for the UEFA 2020 and NCAA 2022 uncertainty analysis which
have been restricted to the 99.9%-ile

3.5 Run time comparison

Finally, we also compare the runtimes of Phylourny with
other methods (simulations and naïve computation) for com-
puting the tournament WPV. Using the sample of 1000 P
matrices produced in Sect. 3.4we also recorded the execution
time for each method: Phylourny, Naïve, and Simulations.
For comparison we only use 1000 simulations, which corre-
sponds to a norm error of > 0.1 on the UEFA 2020 dataset
(see Table 1). While 1000 simulations are fewer simulations
than onewould utilize in a rigorous analysis, it is an appropri-
ate choice as even this inaccurate level of simulation is less
time efficient than Phylourny. The results from these runtime
experiments are summarized in Fig. 6.

4 Results

The analysis of the UEFA 2020 tournament with 16 teams
required 51s for 100,000 samples (generated via 10,000,000
MCMC steps), by executing the parallelized Poisson like-
lihood model using 4 cores on our test hardware system.
The likelihood model calculations accounted for 90% of
overall runtime. The analysis of the NCAA 2022 tourna-
ment required ≈ 1.5 h for 100,000 samples (generated via
10,000,000MCMC steps) and also using 4 cores. The differ-
ence in runtime is due to the substantially larger amount of
data (≈ 48 times more historical match data when compared
to the UEFA 2020 analysis) used to compute likelihoods for
NCAA 2022. Approximately 80% of the runtime increase
can be attributed to the larger historical match dataset used.
In addition, there are 64 instead of 16 teams in the NCAA
tournament, which increases the time required to compute
tournament WPVs and the P matrix. The NCAA 2022
MCMC search achieved an acceptance ratio of ≈ .17, while
the UEFA 2020 MCMC search achieved an acceptance ratio
of ≈ .67.

In Figs. 3 and 4 we summarize the results of the uncer-
tainty analyses using the thinned samples from the MCMC
search. We plot the results from their respective analyses,
restricted to the top 0.1% (i.e., top 100 WPVs by log- likeli-
hood) of samples by likelihood for UEFA 2020 and NCAA
2022. Additional summary statistics for these top 0.1% sam-
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Fig. 6 Tournament evaluation times for the different computationmeth-
ods for 1000 sampled P matrices. Matrices were sampled according to
the procedure described in Sect. 3.4. Times are reported as μs with a
log scale. UEFA 2022 Simulation mean: 2111 μs, Naïve mean: 1413
μs, Phylourny mean: 15 μs. NCAA 2022 Simulation mean: 15010 μs,

Phylourny mean: 599 μs. We did not obtain a time for the Naïve mode
using NCAA 2022 as the time required to compute even a single eval-
uation was prohibitive. 1000 simulations were conducted for these run
time measurements

ples are shown in Table 2. Summary statistics for the entire
thinned sample from the MCMC search set are presented in
the supplementary materials.

Notable results include the correct identification of the
winner forUEFA2020 (Italy) and the high ranking forNCAA
2022 winner (Kansas) tournaments, who both receive a high
median win probability in the uncertainty analysis. This is
shown in Fig. 3 for UEFA 2020 and in Fig. 4 for NCAA
2022 probabilities.

We present the run times of three methods of computing
WPVs in Fig. 6. Our method, Phylourny, performs the best
(mean runtime 15μs and 599μs for UEFA 2020 and NCAA
2022 respectively). For smaller tournaments like UEFA 2020
we also found that it was faster to evaluate win probabili-
ties naïvely (1413 μs) rather than conduct 1000 simulations
(2111μs).However, this does not hold for larger tournaments
like NCAA 2022, where we were unable to obtain a result
for the naïve computation, even after 2h (≈ 7.2× 109μs) of
run time, whereas conducting 1000 simulations was feasible
(15010 μs). To obtain these runtimes, we conducted 1000
simulations, which corresponds to a median relative error of
≈ 7% in the case of small tournaments like UEFA 2020.
Of all the methods tested here, Phylourny remains the least
computationally expensive by ≈ 2 orders of magnitude.

5 Discussion

We have shown that the problem of predicting tournament
winners is sufficiently similar to phylogenetic likelihood
calculations such that analogous computational techniques
can be applied. We have demonstrated this by developing
methods inspired by computational phylogenetics to predict
tournaments, and that applying thesemethods yields substan-
tial computational speedups. In addition, we can calculate the
final WPV of a tournament exactly, instead of using simu-

lations to approximate it. This also allows, for instance, for
a seamless deployment of MCMC methods as illustrated by
our uncertainty analysis examples for the UEFA 2020 and
NCAA 2022 tournaments.

Finding the appropriate method to infer an accurate pair-
wisewin probabilitymatrix P remains a challenge.Modeling
sports in a way that will accurately determine the prob-
ability of a specific outcome is difficult. Private industry
(bookmakers) as well as academic researchers have invested
considerable effort into methods to predict the outcome of
sportsmatches (Kaunitz et al. 2017; Lopez et al. 2018). These
investigations are beyond the scope of our work, and we
intentionally do not address more complicated pairwise win
models. Instead, we have showcased that comparatively sim-
ple models, such as the Independent Poisson Model which
was further simplified from its form in Ley et al. (2019),
perform well when the uncertainty of the estimated model
parameters is taken into account.

One may also argue that using the same P matrix through
all stages of the tournament constitutes a simplification. In
reality, the probability of a team beating another team most
likely does not remain constant in the course of a tournament.
Additionally, win probabilities might not remain constant for
all matches in a “best of k” series. For some sports, par-
ticularly in the rising field of e-sports, adapted strategies
will develop over the course of a series of repeated matches
between two teams.

Despite these two (over-)simplifications, the ability to
compute a WPV for a tournament both exactly and effi-
ciently is highly useful, as advanced methods of analysis
normally will require an exact result in order to be appli-
cable. For example, when sampling from a posterior using
an MCMC search using a complex model, it is desirable to
have an accurate result for each sample, as this reduces the
number of samples required to produce an accurate estimate
of the posterior. While a sufficient degree of accuracy can be
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obtained via an appropriately large number of simulations,
this approach is computationally expensive and will eventu-
ally become prohibitive. (Fig. 5)

Case in point, using the execution times measured in
Fig. 6, the uncertainty analysis for NCAA 2022 which
took approximately 1.5h with Phylourny would have taken
approximately 5h using 1000 simulations per sample. How-
ever, in this case, 1000 simulations would correspond to a
median relative error of ≈ 22%. To achieve a more accept-
able error level, 10,000 simulations could be used per sample,
but this would increase the expected runtime to ≈ 40 h. We
demonstrate that we can efficiently conduct such an analy-
sis by implementing our own comparatively simple MCMC
analysis of the UEFA EURO 2020 football tournament.

Additionally, Phylourny is model agnostic, which allows
for more complicated models to be implemented. An exam-
ple is to add a time element to the Independent Poisson
Model, which increases the likelihood contribution of more
recent matches when compared to older matches. In fact, this
time element might be an accidental reason why our predic-
tion of the UEFA 2020 is accurate, as we only include the
group stagematcheswhere Italy performed surprisinglywell,
as opposed to the extended match history including the qual-
ifying round matches. Of course, this was not intentional
but was an incidental result of limiting the historical data.
Nonetheless, it shows how a likelihood model which incor-
porates match time would be advantageous. The likelihood
model can also be augmented with the inclusion of match
locations, which models a home game advantage and incor-
porates this advantage into the likelihood. A match location
augmented likelihood model would also have implications
for WPV computation, as the inclusion of location informa-
tion for each match in the knockout round might improve
results.

The main contribution of our work consists in the intro-
duction of the computational method, which accelerates the
exact computation of final win probabilities, given an esti-
mate P of pairwise win probabilities, and the surprising
connection between two seemingly unrelated branches of
science.

We further demonstrate the efficiency and utility of Phy-
lourny by implementing our own uncertainty analysis for the
UEFA 2020 tournament as well as for the NCAA 2022 tour-
nament. As can be seen in Figs. 3 and 4, there is a remarkable
diversity of predicted outcomes. This is despite the likeli-
hoods for these samples being essentially equivalent, as can
be seen in Table 2. For example the difference between the
minimum log-likelihood and the maximum log-likelihood
for the 99.9%-ile samples for the UEFA 2020 analysis only
amounts to 1.30 log-likelihood units. We interpret this as
the sample containing predictions with essentially the same
amount of support from the data. Despite this, the range of
outcomes predicted is comparatively diverse, and generally

contradictory. Furthermore, in the UEFA 2020 uncertainty
analysis, the win probabilities for Italy range between less
than 0.05 to greater than 0.2. Likewise, the top 5 teams by
median win probability in NCAA 2022 have mostly overlap-
ping ranges for estimated win probabilities. In other words,
there is a high uncertainty as to which team is the most likely
to win. However, the forecast is clearly more certain for the
NCAA 2022 sample when compared to the UEFA 2020,
despite the smaller number of teams in UEFA 2020. This is
due to the NCAA 2022 analysis using substantially more his-
torical matches (on the order of ≈ 40 times more historical
matches). However, NCAA tournaments are an exception,
with a large number of teams in each group, and therefore a
large number of matches in the lead up to “MarchMadness”.
Furthermore, the amount of data in the UEFA 2020 analysis
was intentionally reduced for this work.

From this example, lessons can be learned for the practice
of phylogenetics. In particular, care should be taken when
analysing a single result from phylogenetic inference, as a
given dataset might provide support for a large range of con-
flicting explanations. For example COVID-19 phylogenies
are difficult to estimate for this precise reason (Morel et al.
2021), and placing stock in any single result runs the risk of
ignoring other plausible explanations. Therefore, this work is
yet another reminder to incorporate uncertainty, particularly
of parameter estimates, when performing either phylogenetic
or any model based analysis.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-023-10246-
y.
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