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Abstract
We compute reconstructions of 4D and 5D fast-ion phase-space distribution functions in fusion
plasmas from synthetic projections of these functions. The fast-ion phase-space distribution
functions originating from neutral beam injection (NBI) at TCV and Wendelstein 7-X (W7-X)
at full, half, and one-third injection energies can be distinguished and particle densities of each
component inferred based on 20 synthetic spectra of projected velocities at TCV and 680 at
W7-X. Further, we demonstrate that an expansion into a basis of slowing-down distribution
functions is equivalent to regularization using slowing-down physics as prior information. Using
this technique in a Tikhonov formulation, we infer the particle density fractions for each NBI
energy for each NBI beam from synthetic measurements, resulting in six unknowns at TCV and
24 unknowns at W7-X. Additionally, we show that installing 40 LOS in each of 17 ports at
W7-X, providing full beam coverage and almost full angle coverage, produces the highest
quality reconstructions.
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1. Introduction

Acomplete understanding of fast-ion distributions and fast-ion
dynamics is imperative for future operation of fusion reactors,
thus necessitating the development of ways to diagnose fast
ions in both tokamaks and stellarators. Tomography is used in
magnetic fusion plasma science to obtain information about
fast-ion distributions, typically visualized as cross-sectional
images. Assuming tokamaks to be toroidally symmetric, 3D
position space (R,θ,Z) can be reduced to two dimensions
(R,Z). Similarly, the fast gyration of the ions leads to azi-
muthal symmetry in 3D velocity space, since the gyroangle
γ becomes ignorable, so the velocity space reduces to (v∥,v⊥)
[1]. Here, v∥ is the magnitude of the velocity component par-
allel to the magnetic field and v⊥ the magnitude of the velo-
city component perpendicular to themagnetic field. Hence, the
6D phase space consisting of 3D position space and 3D velo-
city space is usually reduced to a 4D phase space, as can be
done in the TRANSP or ASCOT codes [2–5]. Since stellar-
ators do not possess toroidal symmetry in position space, the
phase space in stellarator plasmas can only be reduced to 5D,
as in the BEAMS3D code [6, 7]. Here, we consider 4D and 5D
phase-space distributions at TCV and Wendelstein 7-X (W7-
X) as examples for tokamaks and stellarators.

Position-space tomography provides spatial information
about fast-ion distributions. For example, the spatial loca-
tion of neutron emission has been reconstructed using the
19 available neutron cameras at JET [8–11]. During the last
decade, fast-ion velocity-space tomography was developed,
which provides insight into the fast-ion velocity-space dis-
tribution functions from experimental data. This technique
has been applied to several diagnostics, including fast-ion
D-alpha (FIDA) spectroscopy [12–20], collective Thomson
scattering (CTS) [21], neutron emission spectrometry [22,
23], γ-ray spectrometry [22, 23], and scintillator-based fast-
ion loss detectors (FILDs) [24, 25] at the tokamaks ASDEX
Upgrade, JET, EAST, MAST, and DIII-D. Velocity-space
tomography has also been used to estimate 1D velocity dis-
tribution functions [26, 27]. While the 1D and 2D techniques
infer velocity distribution functions in a small volume in the
plasma, orbit tomography infers a 3D phase-space distribution
of all fast ions in the plasma [28]. This technique uses fast-ion
orbits as prior information and exploits that velocity distribu-
tion functions can, assuming toroidally symmetric plasmas, be
parameterized in terms of fast-ion drift orbits by three para-
meters: the energy, the magnetic moment, and the canonical
toroidal angular momentum. In this paper, we develop tech-
niques to infer 4D and 5D phase-space distribution functions
based on slowing-down physics regularization. The idea is to
use the known physics of the slowing-down process of fast ions
in plasmas as a prior in the ill-posed inference problem. This
allows for reconstruction of the velocity space distribution
function for all spatial locations and not just a single diagnostic
locations as has been the case for previous tomographic and
reconstruction techniques. This approach was demonstrated
for 2D velocity-space tomography [17], which we here extend
up to 5D.

Reconstructing 4D and 5D phase-space distribution func-
tions in magnetically confined plasmas has never been
attempted. A standard 4D or 5D inference appears out of
reach due to the large number of unknowns, for example, dis-
cretizing each dimension by 30 points yields on the order
of 106 grid points in 4D and 107 in 5D. Standard regular-
ization techniques, such as Tikhonov regularization without
additional prior information, can work in 1D, 2D, or 3D, but
additional prior information is needed at present to enable
the inference of the larger number of parameters in the 4D
or 5D phase-space distributions. Here, we develop slowing-
down physics regularization in 4D and 5D based on projected
velocity spectra to show that this technique can obtain the 4D
and 5D fast-ion phase-space distribution functions for plas-
mas heated by neutral beam injection (NBI) at TCV and W7-
X. Slowing-down physics regularization also works for other
plasma heating schemes such as electromagnetic wave heating
in the ion cyclotron range of frequencies (ICRF). The slowing
down of energetic ions by collisions always occurs in plas-
mas, irrespective of any other processes occurring in addition
to the slowing down. Thus, this project investigates neoclas-
sical slowing-down with the possibility of extending to non-
neoclassical regimes.

In section 2, we describe the beam configurations at TCV
and W7-X. In sections 3 and 4, we describe the forward prob-
lem and the Tikhonov regularization approach typically used
for velocity-space tomography. In section 5, we develop the
slowing-down physics regularization technique. In section 6,
we describe the synthetic dataset used for our investigations.
In section 7, we show and interpret the results from applying
slowing-down physics regularization to synthetic data from
TCV and W7-X. In section 8, we present a conclusion and
outlook.

2. NBI configurations at TCV and W7-X

NBIs inject energetic particles, typically hydrogen isotopes,
which have been accelerated to energies in the 10–100 keV
range. In the acceleration stage, in addition to the neutral deu-
terium atoms, deuterium dimers and trimers are formed. As all
three species are accelerated in the same potential, the energy
of the injected dimers and trimers is the same as for the deu-
terium monomers. Hence, the velocity is reduced by a factor
of 1/

√
2 for the dimers and 1/

√
3 for the trimers. The dimers

and trimers are ionized as they exit the NBI beam and enter
the plasma. Thus, when the dimers and trimers split into single
deuterium ions inside the plasma due to collisions, the result-
ing deuterium monomers continue moving at lower velocities.

TCV has two NBIs positioned as shown in figure 1(a)
for a top view of TCV. The NBIs are oriented tangentially
to the magnetic axis in the midplane (Z= 0). The diagnostic
FIDA lines of sight considered in this study are those used for
shot 68 407 consisting of 10 horizontal and 10 vertical FIDA
views. A crucial parameter for the velocity-space sensitivity
of diagnostics is the viewing angle ϕ between the line of sight
and the magnetic field. The viewing angle intervals for the
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Figure 1. Neutral beam (NB) locations at (a) TCV and (b) W7-X. For TCV, the black and red lines indicate NB1 and NB2. The magenta
lines indicate the lines of sight of the FIDA views. For W7-X, Q7 and Q8 correspond to the 7th and 8th NBs out of eight in total. The three
fans ‘A21’, ‘M21’, and ‘T21’ indicate FIDA lines of sight located in the first half-module of the second module.

Figure 2. Poloidal cross sections and simulated fast-ion density
distributions in (a) TCV and (b) W7-X at θ ≈ 90◦. The black dots
indicate the measurement volumes. The green dots indicate the
locations for the distributions in figures 4 and 5.

horizontal and vertical fans are ϕhor ∈ [45◦,90◦] and ϕvert ∈
[75◦,90◦]. The intersections of the NBIs and the FIDA lines
of sight are illustrated in figure 1(a) as the points where the
magenta linesmeet the black and red lines and in figure 2 as the

black dots. The nominal power fractions of the injected deu-
terium species at full, half, and one-third injection energy for
NB1 and NB2 at TCV are 0.73:0.22:0.05 and 0.59:0.33:0.08
at the nominal energies 25 keV and 47 keV.

W7-X is designed with two NBI boxes with four beams in
each [29, 30]. The two NBI boxes are positioned to achieve
different injection angles for the eight beams with the local
toroidal magnetic field. Beams 2, 3, 6, and 7 are pointed more
radially and beams 1, 4, 5, and 8 more tangentially. The dia-
gnostic FIDA lines of sight intersect beams 7 and 8 (Q7 and
Q8); see figure 1(b) for an illustration of the experimental
setup. Each FIDA view is part of one of three fans, origin-
ating from ports AEA21, AEM21, and AET21. We will refer
to them as fans A21, M21, and T21 with corresponding view-
ing angle intervals ϕA21 ∈ [2◦,10◦],ϕM21 ∈ [125◦,135◦], and
ϕT21 ∈ [35◦,45◦]. In addition to these three fans, we investig-
ate how much information can be gained by installing addi-
tional FIDA views. Seventeen ports located in the first- and
second half-modules of the second module are available for
installing diagnostic FIDA views on Q7 and Q8. Figure 2
shows the spatial fast-ion distribution at TCV andW7-X along
with the measurement volumes. The possible viewing angles
for each port along NBI Q7 and Q8 are illustrated in figure 3.
For a given port, the median viewing angle is displayed as a
circle and maximum and minimum viewing angles are indic-
ated by the top and bottom bars. Observe that with the 17 ports
combined, coverage of all viewing angles is attained except
for the viewing angles between approximately 10◦ and 20◦.

3
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Figure 3. 17 diagnostic ports could be used for FIDA views at W7-X. The upper figure shows the viewing angles ϕ of the lines of sight and
the magnetic field for NBI Q7, and the lower for NBI Q8. The circles represent the median viewing angle, and the vertical bar represents the
angle range.

The power fractions of the injected deuterium species at
full, half, and one-third injection energy at W7-X are
0.45:0.45:0.10 with full injection energy of 55 keV.

3. Forward model

The goal in this study is to obtain the 4D and 5D fast-ion
phase-space distribution function from projections of the velo-
city distribution function. Such projections serve as a proxy for
CTS and FIDA spectra, since the projected velocity is propor-
tional to the Doppler shift, which is the key effect leading to
the spectrum formation. However, other details such as Stark
splitting are neglected.

The projections s are obtained as the integral over phase-
space of the product wf, where w= w(λ1,λ2,ϕ,x,v) is the
weight function and f = f(x,v) is the phase-space distribution
function [31–34]. Hence,

s(λ1,λ2,ϕ) =

ˆ
v

ˆ
x
w(λ1,λ2,ϕ,x,v) f(x,v) dxdv (1)

for a detected signal s(λ1,λ2,ϕ) in the wavelength bin λ1 <
λ < λ2 with projection angle ϕ originating from a small meas-
urement volume. Aweight function, the kernel in equation (1),
indicates the sensitivity of the given diagnostic at a spe-
cific location in phase-space for a projection angle ϕ and
a wavelength bin with lower wavelength λ1 and upper

wavelength λ2. Such weight functions have also been cal-
culated for neutron emission spectroscopy [35–38], gamma-
ray spectroscopy [39, 40], FILDs [41], ion cyclotron emission
[27], and MeV-proton diagnostics [42].

Discretizing position and velocity space transforms the
equation into the matrix-vector equation

Wf= s, (2)

where f is the vector corresponding to the fast-ion phase-space
distribution function and s themeasurement data vector corres-
ponding to the projections. The problem formulation assumes
the underlying problem to be linear. Equation (2) for 4D and
5D phase space distributions is the same as the 2D velocity-
space tomography [43, 44] and 3D orbit tomography [28] for-
mulations. The fast-ion distribution vector f has dimension n,
the measurement data vector s has dimension m and contains
all spectral data from all lines of sight, and W has dimension
m× n. The fast-ion distribution function is obtained by solv-
ing the inverse problem given by equation (2), i.e. computing
f given s andW.

4. Tikhonov regularization

The accuracy of the solution to the matrix equation Wf= s
is bounded by its condition number κ(W) = σ1/σn defined as
the ratio of the largest singular value σ1 to the lowest singular
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value σn. The condition number expresses the maximum ratio
of the relative error in f to the relative error in s. Therefore,
a large condition number implies that a small change in s can
cause a large change in f . For both TCV and W7-X, κ(W)≫
1015, so even little noise in s can cause large changes in f . Such
large condition numbers result from the underlying continuous
problems, described, e.g. by equation (1), being notoriously
ill-posed inverse problems. Condition numbers on the order of
1015 are typical for such ill-posed problems. Well-conditioned
problems typically have κ(W)≲ 104.

Meaningful solutions to such problems can be found by
regularization, which penalizes undesired features in f so
that small changes in s lead to small changes in f . This can
be achieved by regularizing on f with a matrix L such that
∥Ls∥2 is a prior for the sought solution, e.g. smoothness by
choosing L to be a gradient operator. With this approach, the
inverse problem can be written as the following minimization
problem:

f∗ = argmin
f

∥Wf− s∥22 +λ2 ∥Lf∥22 . (3)

The value of the regularization parameter λ controls how
well the solution fits the noisy data and the degree to which
the regularization influences the solution. To illustrate how
equation (2) is solved in practice, equation (3) can be written
as

f∗ = argmin
f

∥∥∥∥( W
λL

)
f−

(
s
0

)∥∥∥∥2
2

. (4)

This is the most stable formulation of the inverse problem and
the best suited for numerical computations [14].

Typically, it is helpful to use additional prior information to
find a better solution. Previous work in velocity-space tomo-
graphy in fusion plasmas has implemented non-negativity of
the fast-ion distribution function, penalty matrices with differ-
ent properties, null-measurement regions, specification of NBI
locations, and numerical simulations as prior information. See,
e.g. [14, 16–18, 45] for applications of different prior inform-
ation. Here, we implement prior information by constraining
the solution to lie in the vector space spanned by the expec-
ted 4D or 5D slowing-down distribution functions of fast ions
assuming neoclassical transport.

5. Slowing-down physics regularization

We reconstruct simulated fast-ion phase-space distribution
functions from NBI at TCV and W7-X. The ions are born by
ionization of neutrals from the neutral beams at full, half, and
one-third injection energies. The fast-ion distribution in velo-
city space is anisotropic due to the narrow pitch range of injec-
ted particles determined by the geometry of the NBI relative
to the magnetic field. The fast ions are assumed to follow neo-
classical slowing down due to collisions with electrons and
ions in a thermal background plasma. In 2D velocity space
assuming a spatially homogeneous plasma, velocity distribu-
tions arising in these situations can be modeled as anisotropic

slowing-down velocity distributions [1]. Here, we use ASCOT
[5] and BEAMS3D [6, 7] to calculate 4D and 5D phase-space
distribution functions assuming only the neoclassical slowing-
down physics. In the remainder of this paper, we will simply
call them ‘slowing-down distributions’.

Thus, we postulate that the solution to equation (4) must be
closely related to the anisotropic slowing-down distributions
from the NBI sources at full, half, and one-third injection ener-
gies. Madsen et al followed a similar approach for computing
2D fast-ion velocity distribution functions resulting from co-
and counter-current NBIs at EAST with good results [17].

We denote the Nsd phase-space slowing-down distribution
functions byψ1,ψ2, . . . ,ψNsd

defined for the 4D and 5D phase
spaces at TCV and W7-X, where Nsd is the desired number of
vectors in the slowing-down physics basis. In slowing-down
physics regularization, the phase-space distribution function
is assumed to lie in the space spanned by the set

{
ψj

}
, j =

1,2, . . . ,Nsd, so

f=
Nsd∑
j=1

cjψj, (5)

where cj ∈ R is the coefficient corresponding to the jth
slowing-down distribution. Thus, we enforce slowing-down
physics on the regularized solution. The energy components
of the neutral beams at TCV are illustrated in figure 4. The full
energy component of all eight beams at W7-X is illustrated in
figure 5. Observe the sign difference of the peaks in v∥ indic-
ating the difference in injection direction with respect to the
local magnetic field. The spatial locations for the velocity dis-
tributions are from the central locations marked by green dots
in figure 2.

To enable the detection of anomalous phenomena based on
experimental data, future work will use thousands of slowing-
down distribution functions. The greater flexibility of the
model should allow modeling anomalous transport. A single
neutral beam injects fast ions with three different energies.
Thus, for TCV, two neutral beams result in 2× 3= 6 dis-
tinct slowing-down basis functions ψj. For W7-X, eight neut-
ral beams result in 8× 3= 24 distinct slowing-down basis
functions.

Let Ψ be a matrix containing sampled values of the
slowing-down distribution functions as column vectors, and
let c be a column vector containing the coefficients cj corres-
ponding to each ψj. Then

f=Ψc, (6)

so

s=Wf=W(Ψc) = (WΨ)c. (7)

According to equation (7), we can calculate a synthetic meas-
urement, given the coefficients c, using the weight function
matrix as always used in velocity-space tomography and the
matrix containing the slowing-down distribution basis func-
tions as columns. Thus, to solve the original inverse problem

5
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Figure 4. 2D velocity distribution functions for the full, half, and one-third energy for NB1 (top row) and NB2 (bottom row) at TCV. The
distributions originate from the green dot in figure 2(a).

Figure 5. 2D velocity distribution functions for the full energy neutral beam injections at W7-X. The distributions originate from the green
dot in figure 2(b).

in equation (3), we need to determine the 6 and 24 slowing-
down distribution function coefficients for TCV and W7-X.
Thus, our problem is to infer the densities of the NBI sources
at full, half, and one-third energies from projections in velo-
city space at the position-space locations of the measurement
volumes. These coefficients are found by solving the inverse
problem in equation (7), which is to determine the coefficient
vector c given s and the matrix WΨ. This inverse problem
will be solved by regularizing the coefficient vector c for solu-
tions f ∈ span

{
ψj

}
using Tikhonov regularization. The under-

lying complexity of the modeled systems with dimensionality
of 4D or 5D for TCV and W7-X therefore does not affect the
solution.

5.1. Interpretation of the expansion in slowing-down functions
as slowing-down physics regularization

The traditional formulation of the problem with Tikhonov reg-
ularization, with a non-negativity constraint on the solution, is

f∗ = argmin
f

{
∥Wf− s∥22 +λ2 ∥Lf∥22

}
subject to f⩾ 0.

(8)

Here, the matrix L determines the type of regularization
that is applied; L can be the identity matrix or a discrete
approximation to a derivative operator. For details on this
approach, see [46], and for its use in velocity-space tomo-
graphy see, e.g. [14].

We can expand the solution in terms of this basis and write
f=Ψc. Here, Ψ ∈ Rn×Nsd is the matrix whose Nsd columns
are the discretized slowing-down functions, and c ∈ RNsd is a
vector of the coefficients in this basis. Thus, the problem in
equation (8) can be reformulated as

c∗ = argmin
c

{
∥WΨc− s∥22 +λ2 ∥LΨc∥22

}
subject to Ψc⩾ 0.

(9)

In this formulation, WΨ is the matrix connecting the
coefficient vector c to the measurements, and LΨ is the

6
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regularization matrix. The two formulations (8) and (9) are
equivalent when we set f=Ψc.

In this work, we take a different approach that utilizes the
physics-informed basis vectors in Ψ as a prior. Specifically,
instead of enforcing regularization directly on f we regular-
ize the coefficient vector c via a regularization term ∥c∥22.
This is needed since the problemmin∥WΨc− s∥22 is ill-posed.
Enforcing this regularization ensures that all the expansion
coefficients are bounded and that the solution expressed in
the slowing-down basis is physically meaningful for the given
measurement scenario. The physics-informed Tikhonov regu-
larization problem then takes the form

c∗ = argmin
c

{
∥WΨc− s∥22 +λ2

c ∥c∥
2
2

}
subject to Ψc⩾ 0,

(10)

from which we determine the regularized 4D or 5D fast-ion
phase-space distribution function f∗ from

f∗ =Ψc∗. (11)

The number of rows of the matrix WΨ is determined by
the number of lines of sight and the spectral resolution. For
N= 250 lines of sight, each with a spectral resolution of 84
measurement bins in a spectrum,WΨ has 21 000 rows. Since
the matrixΨ with the slowing-down basis consists of six sim-
ulated fast-ion phase-space slowing-down distribution func-
tions for TCV, and 24 simulated fast-ion phase-space slowing-
down distribution functions for W7-X, the matrix WΨ has
six columns for TCV and 24 columns for W7-X. The inter-
pretation of the regularization procedure by imposing the
slowing-down basis prior depends on the dimension of the
slowing-down basis Nsd compared to the number of rows n
of Ψ, i.e. how many grid points the slowing-down function is
resolved in.

Consider the simplest caseNsd = n. This case appears when
every grid point in the discretization of phase-space is con-
sidered as a source for a slowing-down basis function. This
is the approach previously demonstrated in the 2D velocity-
space tomography problem [17]. If Nsd = n, the matrix Ψ is
square, and numerical testing shows it has full rank. Then
f=Ψc ⇔ c=Ψ−1f, and therefore equations (10) and (11)
are equivalent to the problem

f∗ = argmin
f

∥Wf− s∥22 +λ2
c

∥∥Ψ−1f
∥∥2
2

subject to f⩾ 0.

(12)

A comparison of equations (3) and (12) shows that the expan-
sion in slowing-down basis functions can be interpreted as a
regularizer L=Ψ−1 in the regularization term in equation (3).
We shall now demonstrate that the same interpretation holds
when Nsd ̸= n.

We first consider the case Nsd > n where we use more
slowing-down basis functions than the number of grid points
(an overcomplete system) we have chosen to discretize the
distribution function. In this case, numerical testing shows that

the matrixΨ has full row rank, i.e. the n×Nsd matrix has rank
n. We still assume that f=Ψc. Then it follows from the the-
ory in [46, section 8.4, case 2] that the matrix L in (9) must
satisfy L† =Ψ, where the superscript † denotes the pseudoin-
verse. This, in turn, implies that L=Ψ†. Thus, regularizing on
the coefficient vector c can be interpreted as using the regular-
izerΨ† for f in the regularization term in the original problem
formulation.

Next, consider the case Nsd < n where we use fewer
slowing-down basis functions, and hence fewer coefficients,
than the number of grid points. In this case, numerical testing
showsΨ has full column rank, i.e. the n×Nsd matrix has rank
Nsd. To analyze this case, we cannot use the theory in [46] and
instead we introduce the QR factorization

Ψ=
(
Q , Q0

)( R
0

)
= QR, (13)

whereR is an upper triangular matrix,Q andQ0 have orthonor-
mal columns, QTQ0 = 0, and range(Q0) = range(Ψ)

⊥
=

null
(
ΨT). Let P = Q0Q

T
0 be the orthogonal projector on

null
(
ΨT). For a general f and some vector w of appropriate

dimension, f=Ψc+Q0w, so

Ψc= QRc= f−Q0w ⇔ c= R−1QTf=Ψ†f. (14)

We want f ∈ range(Ψ), so Q0w= Pf= 0. Thus, the problem
formulation becomes

f∗ = argmin
f

∥Wf− s∥22 +λ2
∥∥∥Ψ†f

∥∥∥2
2

subject to Pf= 0.

(15)

Again, regularization on the coefficient vector c can be inter-
preted as a regularizer L=Ψ† for f in the regularization
term in the original problem formulation with the additional
requirement that Pf= 0. This requirement corresponds to
finding solutions in the vector space ψj described by slowing-
down physics. The requirement is automatically satisfiedwhen
we compute f=Ψc= QRc.

We have thus shown that we can interpret the regulariza-
tion on the coefficient vector c as regularization on f in terms
of slowing-down physics for any combination of n and Nsd.
In reconstruction problems without using basis functions, we
choose the number of grid points n based on the number of
available measurements. Specifically, n should be similar to
the number of measurements m. (It does not have to be the
exact same number of unknowns as equations since the reg-
ularization provides additional requirements on the solution.)
Following the same reasoning, we can choose the number of
slowing-down basis functions to be similar to the number of
measurements (where the data points of a measured spectrum
are counted individually). The preceding analysis shows that
we can choose the number of grid points in the basis func-
tions as we like. For any choice, finely resolved or coarsely
resolved basis functions, our interpretation of the expansion
of the distribution function into slowing-down basis functions
as slowing-down physics regularization holds.
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Figure 6. Essential aspects of the dataset for TCV (top row) and W7-X (bottom row). The first column shows the values of the densities of
each beam component with 10% variation in each coordinate. The ‘Index’ label refers to the energy beam components in each neutral beam
injector. The second column shows example data vectors s with all projected spectra ordered sequentially in a single vector. The ‘Index’
label here refers to each measurement bin in the projected spectra. The third column shows a single spectrum illustrating the shape of the
spectral peaks as a function of the projected velocity u cut off at ±0.5× 106 m s−1.

6. Generation of synthetic data based on the
ground truth

The study of slowing-down physics regularization using
Tikhonov regularization is performed on synthetic meas-
urement data based on ASCOT5 and BEAMS3D simula-
tions for TCV and W7-X. In both simulations, particles slow
down due to Coulomb collisions until they reach twice the
thermal energy. For TCV, phase space was discretized using
a grid of size (50,150,40,40) for (R,Z,v∥,v⊥) with cor-
responding ranges ([0.62,1.14]m, [−0.75,0.75]m, [−1.8×
106,1.8× 106]ms−1, [0,1.8× 106]ms−1). For W7-X, phase
space was discretized using a grid of size (41,34,51,32,16)
for (R,θ,Z,v∥,v⊥) with corresponding ranges ([4.5,6.5]m,
[0,2π], [−1,1]m, [−4× 106,4×106]ms−1, [0,4×106]ms−1).
The synthetic measurement data is generated by computing
Wf= s for known f which we refer to as the ground truth. The
fast-ion phase-space distribution functions f are generated by
specifying the values in the coefficient vector c and performing
the multiplication f=Ψc. Due to the generation mechanisms
of the deuterium ions in the neutral beams, the density frac-
tions for the distribution functions of deuterium monomers,
dimers, and trimers are 0.73:0.22:0.05 and 0.59:0.33:0.08
for NB1 and NB2 at TCV at the nominal energies 25 keV
and 47 keV and 0.45:0.45:0.10 for the NBIs at W7-X at the
nominal energy 55 keV. The values in c are generated with
a 10% variation of these values for each energy beam coeffi-
cient. This value for the variation was chosen since it is larger
than the expected experimental error of the injected density
fractions of the NBIs and typical for experimental error. The
projection data comprise spectra frommany lines of sight, and

these are stacked in a single vector s. The values of the sought
coefficients and example spectra are illustrated in figure 6.

If the same model is used to compute the synthetic spec-
tra and the inference of the distribution function, the inference
is unrealistically easy. This is sometimes called an ‘inverse
crime’ [46]. To avoid committing an inverse crime when solv-
ing the inverse problem WΨc= s, the dimensions of the
weight function matrix used to solve the inverse problem must
be different from the dimensions of the weight function matrix
used to generate the data. For TCV, the grid size used to gen-
erate the data was [40, 40] and the inversion grid size [37, 37].
For W7-X, the corresponding grid sizes were [32, 16] and [33,
17]. Furthermore, noise is added to each measurement to sim-
ulate actual measurements, such that the signal-to-noise ratio
is up to 10%.

ForW7-X, we investigate two scenarios: one with 250 lines
of sight and one with 680 lines of sight, with viewing angles
calculated for FIDA views located in available ports. Each
line of sight passes through NBIs Q7 and Q8, so a spectrum
measured by one spectrometer is the sum of the signals from
FIDA emission from its intersections with Q7 and Q8. Thus,
the signal si =W7f7 +W8f8 for the weight functions W7 and
W8 associated with NBIs Q7 and Q8 for the specific FIDA
view i.

7. Simulation results

The difficulty of determining the correct coefficient vector
c increases with the number of active beams. Therefore, we
show the reconstructions with all beams active: two at TCV

8
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Figure 7. Reconstructions from synthetic measurements from TCV. The black dots indicate the actual densities (ground truth) for each
beam energy component, and the red circles correspond to the density computed using 0th-order Tikhonov with and without priors.

and eight at W7-X—and noting that reconstructions for fewer
active beams are as accurate or better.

7.1. TCV with 20 lines of sight and W7-X with 250 lines of sight

The 4D and 5D phase-space distribution functions are determ-
ined by solving the equation

c∗ = argmin
c

{
∥WΨc− s∥22 +

∑
k

λ2
k ∥Lkc∥22

}
subject to Ψc⩾ 0

(16)

and subsequently computing f∗ =Ψc∗. With this notation,
k ∈ {0,1} corresponding to 0th-order and 1st-order Tikhonov
regularization. For all techniques, the optimal values of λ0 and
λ1 are determined by choosing the solution to equation (16)
with the lowest mean 2-norm deviation

∆2 :=
1
N

∥∥c∗ − cexact
∥∥ , (17)

where cexact is the ground truth and N the number of coeffi-
cients; N= 6 for TCV and N= 24 for W7-X.

The case of k= 0 called ‘0th-order Tikhonov regulariza-
tion’ corresponds to solving

c∗ = argmin
c

{
∥WΨc− s∥22 +λ2

0 ∥L0c∥22
}

subject to Ψc⩾ 0

(18)

with λ0 a scalar, and L0 = I. The reconstructions for TCV and
W7-X using 0th-order Tikhonov regularization are illustrated
in figures 7 and 8. In a perfect reconstruction, the red circles
(reconstructions) enclose the black dots (ground truth). Note
that the reconstruction is systematically biased: penalizing the
2-norm of the coefficient vector c tends to decrease the largest
values, here the half-energy beam component values of 0.45,
and tends to increase the lowest values. This is a deficiency

that the 0th-order Tikhonov regularization always has. We can
observe this tendency in our inversions, though the regulariz-
ation parameter can be so low that the data dictates otherwise,
as is the case for the one-third energy components. However,
decreasing the regularization parameter λ0 to allow more vari-
ation in the coefficient values decreases the accuracy of the
reconstruction further. To avoid this tendency of the 0th-order
Tikhonov regularization, we use prior information or 1st-order
Tikhonov regularization.

We may use the prior information that the expected val-
ues of the nominal beam coefficients are particle density frac-
tions obtained by other means, e.g. by measurement of the
beam emission or physics of the acceleration phase of the
atoms in the neutral beam injectors. In our numerical test,
we can use the ground truth. Note that this is not the ground
truth of a given test case since 10% noise is added to each
coefficient before generating the signal. Thus, this prior has
the tendency to bias the solution towards this prior informa-
tion. We view this as an advantage over biasing larger values
downwards.

Denote by c0 the vector with the values of the nominal beam
coefficients for each beam component. Then, the 4D and 5D
phase-space distribution functions are determined by solving

c∗ = argmin
c

{
∥WΨc− s∥22 +λ2

0 ∥L0 (c− c0)∥22
}
subject toΨc ⩾ 0.

(19)

We call this technique ‘0th-order Tikhonov regularization with
prior’; see figures 7 and 8 for the reconstructions for TCV and
W7-X using this technique. The 0th-order Tikhonov regulariz-
ation with prior reconstructions is better than the one without
prior for both TCV and W7-X. The regularization strengths
used for 0th-order Tikhonov regularization with and without
prior information are different due to the numerical differences
of c and c− c0.

9
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An alternative to the 0th-order Tikhonov regularization is
1st-order Tikhonov regularization which, in general, penal-
izes differences between neighboring pixels. Here, our prior
information is that the NBI’s installed at W7-X are construc-
ted and operated in the same way and, therefore, have the
same species mix, i.e. the full-energy coefficients are likely
the same for all NBIs, as are the half-energy coefficients, and
the third energy coefficients. Since the two beams at TCV have
different particle density fractions for the full, half, and third
energy components, we should not penalize differences in the
corresponding particle fractions for the current beam setup
at TCV.

Thus, a relevant prior for the 24 coefficients at W7-X is

a3n+1 ≈ a1, (20)

a3n+2 ≈ a2, (21)

a3n+3 ≈ a3, (22)

for n= 1,2, . . . ,7. This prior belief can be written as the pen-
alty matrix

L1 =


1 0 0 −1 0 · · · 0
0 1 0 0 −1 · · · 0

. . .
. . .

0 0 · · · 1 0 0 −1

 . (23)

Since this matrix penalizes differences between similar energy
components among different beams, we call this ‘1st-order
Tikhonov regularization.’ Thus, for k= 1, the equation to be
solved is

c∗ =min
c

{
∥WΨc− s∥22 +λ2

1 ∥L1c∥22
}

subject to Ψc⩾ 0

(24)
with λ1 a scalar.

The 1st-order Tikhonov regularization solution is much
better than that found by 0th-order Tikhonov regularization.
The third energy components are determined almost perfectly,
and the full- and half-energy components from the solution
are around the correct values. However, the values of the
solutions for the full- and half-energy beam components are
biased in the direction of the majority of the beam compon-
ents. For example, if more than four of the true full-energy
beam component coefficients are larger than 0.45 due to noise,
the 1st-order Tikhonov regularized solution for the full-energy
beam components will be greater than 0.45 for all beams. The
situation is the same for the half-energy beam component.
However, this behavior could be an advantage since the eight
NBIs are assumed to be constructed identically and, therefore,
any systematic effects will be found by 1st-order Tikhonov
regularization. See a reconstruction example for W7-X in
figure 8.

Further, a 0th-order Tikhonov prior can be imposed on the
1st-order Tikhonov regularization. This corresponds to solving

c∗ =min
c

{
∥WΨc− s∥22 +λ2

0 ∥L0 (c− c0)∥22 +λ2
1 ∥L1c∥

}
subject to Ψc⩾ 0. (25)

The equation is implemented in the following form

c∗ = argmin
c

∥∥∥∥∥∥
 WΨ

λ0I
λ1L

c−

 s
λ0c0
0

∥∥∥∥∥∥
2

. (26)

See a reconstruction example for W7-X in figure 8. The prior
improves the 1st-order Tikhonov regularized solution by mit-
igating the bias in the solution: the amplitudes of the full- and
half-energy components are closer to the actual values, and the
third-energy components are determined perfectly.

The spatial and velocity distribution functions correspond-
ing to the reconstructed coefficient vectors are illustrated in
figure 9 for 0th-order Tikhonov regularization. Observe that
the reconstructed distributions are almost identical to the true
distributions, indicating the applicability of the technique to
determine coefficient vectors corresponding to the underlying
true distributions.

7.2. W7-X with 680 lines of sight

Physical constraints such as port access and space for spec-
trometers within ports restrict the available measurement
volumes and the corresponding viewing angles. At W7-X,
17 ports located in the first- and second half-modules of the
second module are here considered suitable for the installation
of additional FIDA views. Thus, we investigate the maximal
reconstruction quality using all 17 ports with full beam cover-
age, i.e. the FIDA views in each port can span the full length
of the Q7 and Q8 NBIs. Each port is chosen to have 40 lines of
sight. This corresponds to 17× 40= 680 spectra with a resol-
ution of 84 measurement bins for a total of 57 120 measure-
ment points, a 270% increase in the amount of data available
for reconstructions. We refer to figure 3 for the viewing angles
of the 17 ports.

Tikhonov-regularized reconstructions from the data
described above are illustrated in figure 10. Observe the sig-
nificant improvement in the 0th-order regularized solution
compared to that in figure 8. Of all the reconstructions shown
in this paper, the 0th- and 1st-order Tikhonov reconstructions
here produce the best results, as the values of the coefficients
in the reconstructions are the closest to the ground truth using
no prior information.
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Figure 8. Reconstructions from synthetic measurements from W7-X. The black dots indicate the actual particle density fractions (ground
truth) for each beam energy component, and the red circles correspond to the particle density fractions computed using 0th-order Tikhonov
with and without priors (top row) and 1st-order Tikhonov with and without priors (bottom row).

Figure 9. The first row contains spatial distributions for TCV (to the left of the dashed line) and W7-X (to the right of the dashed line), and
the second row contains velocity distributions. The first and third columns show the actual distribution functions, and the second and fourth
columns show the reconstructed solutions from Tikhonov regularization.
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Figure 10. Reconstructions for a diagnostic setup at W7-X with 680 lines of sight distributed across 40 lines of sight in all 17 available
ports in the first and second half-module of the second module.

8. Conclusion and Outlook

Reconstructing 4D and 5D fast-ion phase-space distribution
functions at TCV and W7-X requires an approach beyond
traditional Tikhonov regularization used for velocity-space
tomography. The slowing-down physics regularized solution
f∗ lies in the vector space spanned by slowing-down distri-
butions ψ1,ψ2, . . . ,ψsd such that f∗ =

∑
j cjψj. The slowing-

down distribution functions are calculated using ASCOT5 for
TCV and BEAMS3D for W7-X. The slowing-down distribu-
tion functions ψj were calculated for the full, half, and one-
third beam energy components for two neutral beams at TCV
and eight neutral beams at W7-X.

In slowing-down physics regularization, the sought quant-
ity is the column vector c containing the slowing-down dis-
tribution coefficients cj. This column vector was obtained
using Tikhonov regularization. We showed that for any num-
ber of grid points n and any number of slowing-down distribu-
tion functions Nsd, the expansion in slowing-down basis func-
tions is equivalent to regularizing after slowing-down physics,
i.e. using the regularizerΨ† on f in Tikhonov regularization.

Slowing-down physics regularization can be successfully
applied to synthetic measurements s to obtain the column

vector c very close to the known ground truth. As a con-
sequence, the reconstructed fast-ion phase-space distribution
functions f=Ψc are very similar to the ground truths. The
best reconstructions are obtained with a larger amount of data.
Therefore, we suggest installing as many views as possible in
the available ports.

The next step is to increase the number of simulated
slowing-down distribution functions along the neutral beam
paths. Adding more slowing-down distribution functions cor-
responds to adding additional basis vectors to Ψ, hence
increasing the available fast-ion phase-space distribution func-
tions that can be reconstructed. A very large numbers of lines
of sight are expected to be crucial for this approach adding fur-
ther support to the suggestion of installing as many views as
possible.
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