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Abstract—Network infrastructures are becoming increasingly
flexible and dynamic not only due to softwarization and vir-
tualization, but also due to increasing mobility in 5G and 6G
networks, which consider drones and satellites to be part of
the core infrastructure. Since the network topology may change
frequently, it becomes challenging to get an up-to-date view of its
current state. This paper introduces KeLLy, an efficient, scalable
link layer topology discovery algorithm focussing on large-scale
networks (evaluated up to 100,000 nodes). KeLLy discovers
various large topologies in seconds, guarantees discovery of all
nodes (and a high percentage of links), while inducing low,
predictable overhead by querying only a subset (4%) of nodes.

Index Terms—topology discovery, network management, auto-
nomic networks

I. INTRODUCTION

The higher flexibility in emerging network infrastructures
leads to more dynamically changing networks. Software-based
nodes may be deployed or removed on demand leading, e.g.,
to frequent changes in the network topology. Moreover, in 5G
and future 6G networks the number of services and connected
devices is ever increasing as well as the number and types of
mobile devices. For instance, mobile nodes, such as drones and
satellites, are considered to be part of the core network, which
will lead to increasing dynamics. Moreover, nomadic network
partitions may arise that split from the rest of the network and
rejoin later at a different location. Consequently, topologies
may change more frequently than ever and networks may
behave more in an ad-hoc manner.

One may even view networks as a pool of resources
that dynamically (re-)configures as needed. Resources are
switches, routers, end systems, compute and storage nodes
as well as devices in the Internet of Things context (e.g.,
drones, mobile robots) and service entities comprising end-
user services and network services. Such high flexibility and
dynamics, however, make network management increasingly
challenging. Therefore, autonomic management solutions are
gaining importance, like the work done in IETF’s ANIMA
group on autonomic control planes [1], [2]. An important
component of such a fully autonomic management solution is
a fast, efficient and scalable discovery of the network´s current
topology. Moreover, many control plane concepts also require
an overview of the current network topology: software-defined
networking (SDN) controllers use it to make informed rout-
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ing decisions and orchestration mechanisms perform service
placement based on topological information.

A basic overview of the topology can be provided by discov-
ering the network’s link-layer topology. For highly dynamic
infrastructures such a discovery needs to be fast and efficient,
because it may need to run repeatedly in case of network
partitions, severe network outages, or simply due to high
dynamics in general. For example, a newly instantiated SDN
controller in a nomadic network may need to rediscover the
link-layer topology of the network partition.

This paper introduces KeLLy (KIRA-enabled Link-Layer
Discovery) a highly scalable, topology discovery algorithm,
providing a topological map of the network in a fast manner
with low overhead. It guarantees to discover all nodes and a
large portion of a topology’s links, while having a predictable
constant relative overhead w.r.t. the number of nodes in the
topology. KeLLy is based on reusing distributed routing state
information of the zero-touch routing architecture KIRA [3].

II. KELLY: BASIC CONCEPT

We use G := (V,E) as a graph representation of a link-
layer topology, where V denotes the set of nodes and E is the
set of links. In general, link-layer topology discovery tries to
find a graph G′ := (V ′, E′) with the nodes V ′ ⊆ V and edges
E′ ⊆ E resembling G as closely as possible.

On a high level, KeLLy is a topology discovery algorithm
that uses distributed information stored in the routing tables
of network devices, which represents a partial view of the
real topology. Based on this, a sub-graph R(v) of G can be
derived for each node v. By querying the routing tables of
a set of nodes Q ⊆ V and merging their partial views a
graph approximating the topology of the real network can be
obtained: G′ :=

⋃
v∈Q R(v). In order to do so, KeLLy is based

on the recently introduced routing architecture KIRA.
KIRA is a zero-touch routing architecture providing control

plane connectivity in large-scale networks. For instance, it
enables robust reachability between SDN controllers and their
controlled switches in a zero-touch manner (i.e., without
any configuration). KIRA uses concepts of structured overlay
networks (Kademlia [4]), but does not require an underlay
providing universal connectivity. Instead, a KIRA node stores
underlay source routes to a small selection of nodes – its
contacts – in its routing table. KIRA’s link-layer source routes
and its routing table structure allows KeLLy to discover all
nodes and the majority of their links without having to contact
every node individually, thereby reducing overhead.
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Fig. 1: Topology discovered by two nodes X and Y . Common
components R(X) ∩R(Y ) are marked by red circles.

A. Applying KeLLy to KIRA

The source routes stored in KIRA’s routing tables enable a
straightforward derivation of the sub-graph R(v) of a node v:
R(v) consists of node v, contacts of v, as well as all links and
nodes along the link-layer source routing paths. Figure 1 shows
two exemplary sub-graphs R(X) and R(Y ) from nodes X and
Y . When querying multiple nodes, their resulting sub-graphs
often overlap, either because the nodes have shared contacts
or the source routing paths have intersections, i.e., common
nodes and links. Querying routing tables of other nodes is a
key concept of KIRA as it is used to discover new contacts.
KIRA’s FindNodeRequest message allows searching for nodes
close to some destination ID by recursively routing closer in
the ID space with each overlay hop, until it reaches the node
closest to the queried ID. The same mechanism can be used
for the routing table queries required for KeLLy. This allows
to send a query targeting a particular section of the ID space
rather than to an existing individual node that would need to
be known beforehand.

Using this routing table querying concept of KIRA the
main remaining challenge is that a node using KeLLy must
determine when it has discovered all nodes in the network. The
trivial solution of querying every node in the network would
negate the advantage of the additional information gathered
from the source routes in the routing tables. Therefore, an
exit condition identifying when all nodes have been discovered
while maintaining low overhead is essential.

B. KIRA Routing Tables

The structure of KIRA’s routing tables is essential for
KeLLy’s design. KIRA inherits the basic structure of its routing
table from Kademlia [4]. This structure implies the important
invariant that each node knows how to reach its ID-wise closest
neighbors. These neighbors are determined using the XOR
metric d(X,Y ) = X ⊕ Y as distance between two NodeIDs
X and Y . Like in Kademlia, a KIRA node stores routing
table entries for known nodes (also called contacts) in a list
of k-buckets each storing up to k contacts at most. Each
bucket covers a specific range from the ID space. This bucket
range is defined as follows: the bucket with index i contains
contacts with NodeIDs having a longest common prefix of
length i with the node’s own ID. The bucket range of the first
bucket therefore includes all NodeIDs with a different leading
bit than the node’s own ID. The respective range in the ID
space includes half of all possible IDs. With each consecutive
bucket (i.e., increasing i) the size of the corresponding range
in the ID space halves, as they are defined by a longer longest

common prefix, fixing more leading bits to be equal to the
node’s own ID. Consequently, each routing table comprises
O(log n) contacts at most.

Figure 2 shows an example detailing the structure of the
routing table of a node A with four buckets. At the top it
shows the ID space as a line with nodes (including A) placed
at the location of their NodeID on that line. The bucket range,
shown next to each bucket, indicates the range of IDs of all
potential contacts in that range. The range of the first bucket
(index 0) spans half of the ID space. Because of the limited
bucket space (here k = 5) only a selection of the nodes in this
range can be stored as contacts. In the example, this is the case
for the first two buckets. The last bucket in the routing table is
special: its covered ID space range is defined by the length of
the longest common prefix being equal or larger (instead of a
specific length) than the bucket’s index. On the right-hand side
of the figure a table shows the properties of each bucket. The
list of buckets grows dynamically depending on the number
of nodes in the network: if the last bucket (storing the ID-
wise closest contacts) is full and a new contact falls into the
respective range, the list is extended by a new k-bucket. This
means that the prior last bucket range is effectively split into
two ranges (halving its original range) and some of its contacts
will move over to the new last k-bucket. This ensures that the
contacts in the direct ID-based neighborhood never need to be
replaced, upholding the invariant that each node knows how
to reach its ID-wise neighbors.

C. Bucket Completeness

If a bucket contains all nodes with IDs in its bucket range
that are actually present in the network we call it complete. In a
converged network state, this is the case when there exist fewer
than k nodes with their NodeIDs in the respective ranges.
Due to each node generating a uniformly distributed random
NodeID at startup, all NodeIDs are spread evenly across the
whole ID space. Therefore, buckets with a large bucket range
(i.e., the first buckets) also have a large share of the nodes
to select k contacts from and are therefore rarely complete.
Because of the dynamically growing bucket list, the last bucket
is always complete: if a new contact should be entered into an
already full last bucket, the bucket list is extended by another
bucket having a smaller bucket range and therefore a lower
number of nodes as potential contacts. Besides the last bucket,
in a converged network state, other non-full buckets (fewer
than k contacts), are also complete [5]. In such a bucket no
contact was replaced, as there was enough space for all of
them. On average the second to last bucket will be non-full,
because its bucket range has the same size as the last bucket,
on average containing the same number of contacts.

III. KELLY DESIGN

One of the main concepts in KeLLy’s design are discovery
ranges in the ID space, that are defined by the complete
buckets in each node’s routing table. Because the range of
a complete bucket contains only the nodes stored as contacts
in that bucket this ID-range is regarded as discovered by that
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Fig. 3: A section of the ID space with nodes placed according to their NodeID. For selected nodes (A-H) their respective discovery ranges
are shown. Queries qi in the ID space and the respective responding nodes with their discovery ranges are colored red.

bucket. The discovery range DR(v) of a node v is defined by
the bucket ranges of all complete buckets in its routing table
combined. Because the discovery range is generally defined
by the last two buckets of a node’s routing table, with bucket
ranges containing the ID-based neighborhood of the node, it
encloses a range around the node’s own ID. Furthermore, the
size of the discovery range |DR(v)| depends on the depth of
the routing table: the larger the index of the last bucket the
smaller the bucket range. The number of buckets in the nodes’
routing tables, and therefore also the size of their discovery
range, is about the same for all nodes in a network, due to the
uniform distribution of NodeIDs. Figure 3 shows a section
of the ID space with nodes and their respective discovery
ranges. The discovery ranges of nodes ID-wise close to each
other are identical (e.g., A & B), because they all share the
same common prefix and therefore the same complete buckets
in their routing tables. Discovery ranges can theoretically
completely overlap other smaller discovery ranges (C − F ),
but according to our experiments that occurs very rarely,
because it requires strongly unevenly distributed NodeIDs in
that range. Nodes ID-wise a bit further away (e.g., A & C) have
consecutive discovery ranges. This has two advantages, a first,
it does not matter which node in each discovery range is used
and second no ID-range needs to be discovered redundantly.

A. Exit Condition

KeLLy uses discovery ranges to define an exit condition
when finding a spanning sub-graph of the network topology.
If all possible IDs (within the respective ID space) are covered
by the discovery range of one of the queried nodes then all
nodes are guaranteed to be discovered in one of them. To
achieve that, each distinct discovery range needs to be queried
at least once. So in order to determine whether all nodes have
been found, one simply keeps track of the discovery ranges in
the overlay ID space and keeps querying undiscovered ranges
of the ID space until the whole ID space has been covered.

B. ID Space Walk

Now a sequential algorithm can be built using a structured
approach of walking across the ID space: starting from an
ID a, which is queried first, the approach waits for the query

response to return the routing table information of the node
closest to the queried ID and calculates its discovery range.
Next, it queries the next ID following the end of the discovery
range. Starting by querying ID 0 and repeating until the end
of the ID space (ID 2b− 1) the whole ID space is discovered.
This algorithm minimizes the number of required queries. The
downside of proceeding this way is that each iteration needs
to wait for the query to return before starting the next query.
This mechanism is also depicted in fig. 3 for a section of
the ID space. The first query qi is routed to node A, the next
node according to the XOR metric, which returns its complete
routing table (with O(log n) entries). The next query (qi+1) is
placed consecutively after the corresponding discovery range
and is routed to node C. qi+2 queries the next consecutive
ID, which is routed to node G. Node G is closer, by the XOR
metric than node F , as it has a longer common prefix with the
query ID and therefore a smaller distance based on the XOR
metric. This is also easy to parallelize by slicing the ID space
into sections and starting an ID space walk for each of them.

IV. EVALUATION

KeLLy’s evaluation is based on a KIRA implementation
using the OMNeT++ simulation framework. In the evaluation
multiple parallelized ID space walks were used. Due to space
limitations we focus on KeLLy’s scalability characteristics. The
following metrics are used to evaluate KeLLy:

• Query Ratio: The main objective of KeLLy is to achieve
low overhead w.r.t. number of messages sent during the
discovery. Therefore, the fraction of nodes |Q|/n queried
during topology discovery is a key metric.

• Link Coverage: KeLLy in its current form does not guarantee
to find all links. The percentage of links discovered |E′|/|E|
is an important metric, as it identifies the accuracy of the
discovered graph G′ compared to the real topology.

• Data Usage: This metric identifies the amount of data
transmitted during discovery. For each query the number of
transmitted NodeIDs (contacts and nodes on source-routing
paths) is multiplied by the 14 Byte NodeIDs used in KIRA.
Summing over all queries gives KeLLy’s total data usage.
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Fig. 4: Query ratio, link coverage and data usage in randomly
generated power law topologies. Mean and 2σ deviation (10 runs)

Overall, the presented evaluations show that KeLLy works
well even for very large topologies while inducing acceptable
overhead. Real networks such as the Internet follow a power
law node-degree distribution [6]. Therefore, to evaluate the
influence of the network size on the efficiency of KeLLy,
simulations in differently sized, randomly generated power
law topologies are compared. The topologies were generated
using the algorithm introduced by Holme and Kim [7] with
the parameters m = 3 and p = 0.5. The expectation is, that in
larger topologies the same query ratio is required to find all
nodes, because it only depends on the bucket size k. Firstly,
in all simulations KeLLy discovered all nodes of the topology,
confirming that the algorithm works as expected. Figure 4
shows evaluations with up to 100,000 nodes. As expected,
the query ratio stays the same at roughly 4% of all nodes
for a bucket size of k = 20. Furthermore, the query ratio
decreases proportionally to k−1 to 2% and 1% for k = 40
and k = 80, respectively. The figure also shows that the link
coverage increases with the size of the topology. This has
two reasons: first, the size of the routing tables increases with
growing topology size leading to more contact information
being gathered per query and secondly, the average path length
of the source routing path to each contact is longer in larger
topologies and thus contains more links that are discovered
per contact. Another characteristic impacting link coverage is
the number of queries sent during a discovery: Each query
discovers information from a different vantage point, because
all discovered source routing paths originate from the queried
node. Therefore, a lower query ratio, with larger k leads
to a lower link coverage. Furthermore, with larger k each
query discovers more nodes, but the source routing paths
overlap more often close to the queried node. Additionally,
the figure shows the transmitted data for each configuration.
As the routing tables grow bigger and the absolute number
of queries increases, it is expected that the amount of data
transmitted also increases. It is important to note that, because
information about each node needs to be transmitted at least
once, sub-linear overhead is impossible. Still, for 100,000

nodes the overhead is approximately 52 MByte of data when
using NodeIDs of size 112 bit. Interestingly, the overhead is
the same irrespective of k: the larger routing tables with higher
bucket size k balance out with the lower amount of queries
required. When comparing KeLLy to an approach used by SDN
controllers based on LLDP (link-layer discovery protocol),
like [8], there are a couple of key differences: With 100,000
nodes that algorithm would induce 700,000 messages, one
from the controller to each switch and two for each link
back, while KeLLy induces only 8,000 messages (4,000 queries
and responses). Even though the total data usage only comes
down to around three times that of KeLLy (267 Byte LLDP
packets [8]), each of these messages has to be sent and
processed in the SDN controller. In return, the LLDP-based
approach achieves 100% link coverage.

KIRA works well across a wide range of topologies due to
its topology-independent NodeIDs and overlay-based routing
concepts. In order to confirm that KeLLy inherits this charac-
teristic, it was run on various synthetic topologies of the same
size with different characteristics. Our evaluations have shown,
that the query ratio is the same (4% of nodes) for all topologies
while data usage depends on the topology’s diameter.

V. RELATED WORK

Other link-layer topology discovery approaches come with
different problems w.r.t. overhead, scalability and their suit-
ability for autonomic networks. LLDP-based solutions used
in SDN controllers [8]–[10] and solutions based on data-
plane routing protocols [11], [12] run into scalability issues in
large-scale networks, unless the network is split into multiple
domains by manual configuration [13]. Other more general
ICMP-based solutions [14]–[16] are also affected by this
indirectly, because they require a functional data plane routing.
KeLLy building on the zero-touch KIRA can circumvent
this issue. An autonomic management solution could derive
network domains for data plane routing or SDN using the
topological map discovered by KeLLy.

VI. CONCLUSION & FUTURE WORK

Emerging autonomic network management solutions deal-
ing with the increasing dynamics and complexity of network
infrastructures require topological information. Providing this
information should also be done in an autonomic manner.
We introduced KeLLy, an efficient, scalable link-layer topol-
ogy discovery algorithm focussing on large-scale networks.
It achieves low message overhead (querying only 4% of
nodes) by re-using distributed routing information. Further-
more, KeLLy guarantees to discover all nodes, and achieves
high link coverage (> 80%). In future work we will present a
concept that allows to invest some compute power to calculate
remaining missing links by transmitting small amounts of
additional information. First evaluations have shown promising
results. Furthermore, a concept for integrating incremental
changes to the discovered topology during network dynamics
will be investigated.
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