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Abstract
The rapid development of emerging domains, such as the Internet of Things and wearable
technologies, necessitates the development of flexible, stretchable, and non-toxic devices that can
be manufactured at an ultra-low cost. Printed electronics has emerged as a viable solution by
offering not only the aforementioned features but also a high degree of customization, which
enables the personalization of products and facilitates the low-cost product development process
even in small batches. In the context of printed electronics, printed neuromorphic circuits offer
highly customized and bespoke realization of artificial neural networks to achieve desired
functionality with very small number of hardware components. However, since analog
components are utilized, the performance of printed neuromorphic circuits can be influenced by
various factors. In this work, we focus on three main factors that perturb the circuit output from
the designed values, namely, variations due to printing errors, aging effects of printed resistors, and
input variations originating from sensing uncertainty. In the described approach, these variations
are taken into account during the design (training) to ensure the dependability of the printed
neuromorphic circuits. With this approach, the expected accuracy and the robustness of printed
neural networks can be increased by 27% and 74%, respectively. Moreover, the ablation study
suggests that, aging effect and printing variation may have similar effects on the functionality of
printed neural networks. In contrast, the impact of sensing uncertainty on printed neural networks
is almost orthogonal to aging and printing variations.

1. Introduction

The rapidly advancing domains, such as Internet of
Things (IoT) [1], wearable devices [2], and smart
packaging [3], have resulted in a heightened require-
ment for flexible, bio-compatible, and low-cost elec-
tronics. In this context, printed electronics (PE)
becomes a promising solution, as PE allows the
manufacturing of flexible and stretchable circuitry,
with possibly non-toxic materials through a spec-
trum of material [4, 5] and substrate [6, 7] options.
Additionally, due to the additive manufacturing pro-
cess, printed devices can be fabricated in a low cost.

The exceptional properties of PE have led to a
growing interest in exploring the potential of prin-
ted sensing devices, ranging from environmental

sensing [8] to on-body sensing [9]. Printed sensing
devices are highly regarded for their simple additive
fabrication process, cost-effectiveness, and versatility.
Therefore, they are poised to play a key role in the
advancement of numerous fields and industries.

Apart from printed sensors, printed neur-
omorphic circuits [10], as a printed computing
scheme, represent a cutting-edge intersection of
PE and machine learning. They are capable of
emulating operations of artificial neural networks
(including weighted-sum operations and nonlin-
ear activations) through the interconnection of
multiple simple primitive subcircuits, such as res-
istor crossbars and nonlinear transformation cir-
cuits. The inherent commonality between the oper-
ations performed in printed neuromorphic circuits
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and those in artificial neural networks allows prin-
ted neuromorphic circuits to express sophisticated
(nonlinear) transformations. Moreover, this com-
monality enables a highly efficient training-based
design process of printed neuromorphic circuits.
Consequently, printed neuromorphic circuits serve
as a promising printed computing paradigm.

However, since analog components are utilized
in printed neuromorphic circuits, their correct func-
tionality is subject to the influence ofmultiple factors.
Firstly, input variations caused by uncertainty in the
sensing process [11] may cause faulty processing.
Secondly, variations in the printing process due to
non-uniformly printedmaterial (device geometry) as
well as variations in ink compositions and substrates
can perturb the fabricated component values from
the design ones [12]. Finally, the printed components
can deteriorate due to environmental influences (par-
ticularly thermal stress) over time [13]. This aging
effect can also severely impact the performance of
printed neuromorphic circuits.

To ensure the reliability and accuracy of the out-
puts of printed neuromorphic circuits, the aforemen-
tioned factors should be considered in the design of
printed neuromorphic circuits. In this work, we pro-
pose an approach to enhance the robustness of prin-
ted neuromorphic circuits against influences such as
stochastic sensing uncertainty (SU), stochastic print-
ing variation (PV), and stochastic aging behaviors
(AG) of printed resistors. To integrate these factors
into the design of the printed neuromorphic cir-
cuit, we first model these factors with stochastic vari-
ables. Afterwards, a modified training objective that
accounts for these factors is employed to improve
expected circuit performance. In addition, an abla-
tion study is conducted to analyze the significance of
the aforementioned three influences.

The organization of the rest of the paper is struc-
tured as follows: section 2 provides a comprehens-
ive overview of PE, printed neuromorphic circuits,
and relevant literature. In section 3, we mathematic-
ally model the uncertain inputs, printing variations,
and stochastic aging behaviors from a probabilistic
perspective, and introduce the modified objective to
improve the robustness of printed neural networks.
The effectiveness of the proposed method is eval-
uated through extensive experiments in section 4
and an ablation study is performed to analyze
the influence of different factors separately. Finally,
section 5 concludes this work and discusses the future
work.

2. Preliminary

As a preliminary, we briefly review the necessary
background knowledge regarding printed electronics,
printed neuromorphic circuits, printed neural net-
works, and some related work.

2.1. Printed electronics
Printed electronics (PE) is an emerging techno-
logy that allows fabricating electronic components
and devices with various printing technology, such
as gravure printing and jet printing. By adopting
advanced materials and substrates, flexible, light-
weight, and even bio-compatible electronic devices
can be fabricated at an ultra-low cost. Although PE
faces challenges in terms of performance and sta-
bility when compared to silicon-based technologies,
it offers several advantages including flexibility, cus-
tomizability, and cost-effectiveness. These advantages
enhance PE as a promising candidate for many emer-
ging applications, such as wearable devices and per-
sonalized products. Actually, PE and silicon-based
technologies do not compete with each other, but
rather work in conjunction to alleviate the limitations
of each technology.

According to the flow of materials, printing
technologies are broadly categorized into two main
classes: purely additive manufacturing and mixed
manufacturing involving both additive and subtract-
ive processes [14]. As shown in figure 1, purely addit-
ive manufacturing only relies on the deposition of
materials in successive layers to produce components,
such as transistors. This approach allows significantly
lower fabrication costs compared to the mixed pro-
cess, but, in contrast, it is prone to lower manufac-
turing efficiency, larger feature sizes, and increased
printing variations (errors). Conversely, mixed man-
ufacturing incorporates both deposition (additive)
and etching (subtractive) steps, which is similar to
conventional silicon-based processing. Since the sub-
tractive process generally requires specialized infra-
structures, the cost is usually higher than the purely
additive printing. In this regard, the inkjet-printed
electrolyte-gated transistor technology is considered
an effective enabler for IoT infrastructures, wearable
devices, and low-energy devices, as it allows not only
low operating voltage (sub-1V) but also low manu-
facturing cost due to its purely additive process.

Flexible PE devices are generally printed utiliz-
ing contactless printing techniques, such as inkjet-
printing, on flexible substrates such as Kapton [6] or
polyethylene terephthalate [7]. With highly optim-
ized functional inks, electronic components like
organic [15] or oxide-based [16] transistors can
be fabricated. While the preparation of organic
materials entails a relatively easy processing pro-
cedure, they exhibit less stability when subjected to
environmental alterations. Conversely, oxide-based
inks exhibit remarkable conductivity and environ-
mental stability, however, their printing process may
be hindered by the presence of surfactants and
impurities [17].

Despite the favorable features of PE, there are
several limitations that pose challenges for its wide-
spread adoption, which are the large feature sizes
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Figure 1. Comparison of the lithograph-based subtractive process and an additive process for manufacturing electronic circuits.

and high parasitic capacitances. Consequently, the
printed devices generally suffer from low functional
density and elevated device latency. To mitigate
these challenges, the trend in printed circuits is
toward low complexity and containing limited num-
ber of transistors, and thereby, reducing area util-
ization and increasing manufacturability. Following
this trend, several fundamental components of prin-
ted computing systems have been successfully real-
ized, including but not limited to Boolean logic [18],
digital/analog storage elements [19, 20], and amplifi-
ers [21]. Additionally, the production process of prin-
ted circuits frequently displays high variation [14]
and printed components exhibit aging due to envir-
onmental impacts such as humidity and thermal
stress [13]. To address these problems, the vari-
ation and aging are considered during the design
phase [22, 23].

2.2. Printed neuromorphic circuits
Neuromorphic computing is a computational
paradigm that mimic the signal processing mech-
anism of human brains by adopting a sequence
of weighted-sum operations followed by nonlinear
activation functions. Despite the simplicity of the
primitive operations, neuromorphic computing has
shown strong (nonlinear) expressiveness [24] and has
achieved notable successes in multiple domains [25].
Moreover, the simple and differentiable computing
operations enable a highly efficient optimization pro-
cess of the parameters through backpropagation and
facilitates the implementation of neuromorphic com-
puting at the hardware level. Printed neuromorphic
circuit refers to printed circuit that is capable of
executing equivalent operations in neuromorphic
computing. Specifically, the weighted-sum oper-
ations are implemented by resistor crossbars and
nonlinear activations are realized by circuits with
nonlinear characteristics. In addition, to address the
limitations imposed by the hardware, other subcir-
cuits, such as negative weight circuits, may also be
incorporated into the design. Figures 2(a)–(c) show
some exemplary schematics of thementioned primit-
ive subcircuits in a printed neuromorphic circuit and
figure 2(d) represents an interconnection of those
subcircuits to a three-layer network with 3, 2, and 4
printed neurons in each layer.

2.2.1. Resistor crossbar
Resistor crossbar has been identified as the preval-
ent choice for implementingweighted-sumoperation
and has been widespread utilized in various applic-
ations, including in-memory computing [26] and
ReRAM-based neural network acceleration [27], etc.
Figure 2(a) demonstrates a typical resistor crossbar
in a printed neuromorphic circuit with three input
voltages V1, V2, V3 and one output voltage V z. In the
crossbar, there are also two internal constant voltages,
namely VC

b = 1V and GND that refers to 0V. Each
external input voltage and internal constant voltage is
connected to the corresponding resistor, namely RC

1 ,
RC
2 , R

C
3 , R

C
b , and RC

d . Here, the superscript (·)C indic-
ates the variables in the crossbar subcircuit. Following
Kirchhoff ’s law, we obtain

3∑
i=1

Vi −Vz

RC
i

+
VC
b −Vz

RC
b

− Vz

RC
d

= 0.

By further replacing the resistance R with the corres-
ponding conductance g= 1/R, the equation can be
formulated

Vz =
3∑

i=1

gCi
gCsum

Vi +
gCb
gCsum

, (1)

where gCsum refers to the sum of all conductances in
the crossbar. Thus, the output of the crossbar can be
described by the weighted-sum of the input voltages
with weights and bias expressed by conductance val-
ues. In this way, the desired weighted-sum operation
can be implemented by printing specific conductance
values in the crossbar. Section 2.3 gives more details
about the design of resistors in crossbar.

2.2.2. Tanh-like transformation circuit
In neuromorphic computing, a nonlinear activation
function is generally adopted after the weighted-
sum to introduce nonlinearity to the computing
system. In printed neuromorphic circuits, various
nonlinear circuits with characteristic curves resem-
bling classic activation functions have been pro-
posed, such as ReLU function [28] and sigmoid func-
tion [29]. Figure 2(b) exemplifies an inverter-based
printed tanh-like (ptanh) transformation circuit. The
advantage of this circuit is the presence of a super-
linear interval between input and output voltages.
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Figure 2. Exemplary schematic for neuromorphic circuits. (a) Resistor crossbar for weighted-sum operation. (b) Tanh-like
nonlinear transformation circuit. (c) Negative weight circuit. (d) Assembled neuromorphic circuit with 3-2-4 neurons in each
layer, the green triangles and red circles denote crossbar and tanh-like circuits respectively, while the blue rectangles refers to the
negative weight circuits.

This feature effectively mitigates signal loss at the
layer output and can provide possibilities for cross-
layer amplification [10]. Its characteristic curve can
be described by an accordingly parameterized tanh
function, i.e.

Va = ptanh(Vz) = ηA1 + ηA2 · tanh
(
(Vz− ηA3 ) · ηA4

)
,

where ηA = [ηA1 , η
A
2 , η

A
3 , η

A
4 ] is the set of auxiliary

parameters that translate and scale the original tanh
function [10]. The superscript (·)A indicates that the
parameters belong to the activation function. The
auxiliary parameters ηA are determined by the cir-
cuit components qA = [RA

1 , R
A
2 , R

A
b ,W

A
1 , L

A
1 ,W

A
2 , L

A
2 ],

in which WA
i and LAi are the geometric features that

decide the characteristic of the printed transistor TA
i .

Thus, to be precise, we denote the function ptanh(·)
by ptanhqA(·).

2.2.3. Negative weight circuit
By observing equation (1), it is evident that the
weights in the crossbar are expressed by the conduct-
ances, which are restricted to positive values only. To
overcome this drawback and express negative rela-
tionships, the negative weight circuit is proposed
in [10]. Compared to existing techniques [30], the
proposed negative weights are only printed circuit
when required. Consequently, the resulting printed
circuits exhibit lower area, power consumption, and
a decreased transistor counts.

As shown in figure 2(d), negative weight circuits
are prepended to the input of the crossbar to con-
vert the input voltages to negative ones whenever neg-
ative weights are required. In other words, negative
weights are realized by inverting the respective inputs.
The characteristic curve of the negative weight circuit
is nonlinear and, similar to the ptanh circuit, can be
modeled through an accordingly parameterized tanh
function as

neg(Vin) =−
(
ηN1 + ηN2 · tanh

(
(Vin− ηN3 ) · ηN4

))
,

with ηN = [ηN1 , η
N
2 , η

N
3 , η

N
4 ] as the auxiliary para-

meters determined by its circuit component qN =
[RN

1 , R
N
2 , R

N
3 , R

N
4 , R

N
5 ,W

N, LN]. Here, the superscript

(·)N denotes the values corresponding to the negat-
ive weight circuit. Analogous to the ptanh circuit, we
denote the function by negqN(·).

By combining these primitive subcircuits, prin-
ted neurons can be constructed. Then, through the
interconnection of multiple printed neurons, more
sophisticated printed neuromorphic circuits formore
complicated computing tasks can be realized.

2.3. Printed neural network
In order to leverage the computing capabilities of
printed neuromorphic circuits, a design and optim-
ization process is necessary. Considering the target
application domains of PE and the high demand for
low-cost, these circuits do not adopt reconfigurable
components for implementing on-device training
during operation. Instead, their designs are conduc-
ted off-device at the software level. The fabrication
process is initiated after the circuit design. For this
purpose, printed neural network (pNN) is proposed
in [10]. pNNs are machine learning-based models
that simulate the behavior of printed neuromorphic
circuits. The learnable parameters in a pNN are the
design space (component values) of the correspond-
ing printed neuromorphic circuit. In this regard,
training of a pNN can be seen as designing the
respective printed neuromorphic circuit.

2.3.1. Inference
In pNNs, the learnable parameter for weighted-sum,
referred to as the surrogate conductance θi, encodes
both printing conductance through its absolute value,
i.e. gCi = |θi|, and the existence of a negative weight
circuit by its sign, i.e. sign(θi).With this encoding, the
weights in a printed neuron can be expressed by

wi =
gCi
gCsum

=
gCi

(gC)⊤ · 1
=
|θi|
|θ|⊤ · 1

,

where gC = [gC1 , g
C
2 , . . ., g

C
b , g

C
d ]

⊤, 1= [1, 1, . . ., 1]⊤,
| · | refers to element-wise absolute operation, and
diag(·) yields a diagonal matrix from the given vector.
Consequently, the weighted-sum can be expressed by
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∑
i

Vi ·
|θi|
|θ|⊤ · 1

·1{θi⩾0} + negqN(Vi)

· |θi|
|θ|⊤ · 1

·1{θi<0}, (2)

where 1{·} is an indicator function that is 1 if the
respective condition is true, else 0. Note that, the
bias term and GND term can also be included in
equation (2) by augmenting the input voltage with a
1 (for VC

b ) and a 0 (for GND).
In case of batch training (with batch size B),

the input voltage is often denoted by Vin ∈ RB×M,
the output of the printed layer (with N neurons)
is denoted by Vout ∈ RB×N, and the conductance
matrix of this layer is denoted by Θ ∈ RM×N, with
each column indicating one printed neuron. Here,M
implies the number of input voltages, including two
augmented voltages for Vb and GND. In this context,
the weight matrix can be formulated as

W= |Θ| · diag(|Θ|⊤ · 1) ∈ RM×N,

where 1 ∈ RM is a vector of all ones, and thus, the
weighted-sum can be described by

Vz = Vin · (W⊙1{Θ⩾0})+ negqN(Vin)

· (W⊙1{Θ<0}) ∈ RB×N,

where ⊙ denotes the element-wise product and the
indicator function1{·} is applied element-wise onΘ.
Thus, the output of the printed layer becomes

Vout = ptanhqA
(
Vin · (W⊙1{Θ⩾0})+ negqN(Vin)

· (W⊙1{Θ<0})
)
.

In addition to the learnable parameters Θ for
weights, the parameters for nonlinear circuits, i.e. qA

and qN, can also be learned through the surrogate non-
linear circuit models, which are differentiable trans-
formation models that can map qA and qN to ηA

and ηN respectively. With surrogate nonlinear circuit
models, the parameters qA and qN are firstly trans-
formed to the corresponding auxiliary parameters ηA

andηN, and then, involved into the pNN as activation
functions and negative weight functions. Finally, they
can be optimized through gradient-based algorithms
alongside the learnable conductanceΘ [31].

2.3.2. Constraints
The training of machine learning models is generally
an unconstrained optimization process, which may
lead the learned parameters to exceed the constraints
imposed by the printing technology. To ensure the
printability of the designed printed neuromorphic
circuits, it is imperative to introduce additional pro-
cessing measures that guarantee the limitations of the
printing technology.

The primary constraint is the limited printable
conductance range, specifically, g ∈ {0}∪ [gmin, gmax]

Figure 3. Straight-through gradient estimator. The
black curve indicates the forward pass and the orange
dash-dot line denotes the backward pass for
gradient-based optimization.

(0 refers to not printing the respective resistor). This
range is contingent on the technology and materi-
als utilized for printing. In this case, each element
in the learnable conductance Θ should be limited
to [−gmin,−gmax]∪{0}∪ [gmin, gmax]. To this end,
the learnable conductance Θ are projected element-
wise to the printable range before performing the
weighted-sum operation, i.e.

Θi,j←


0, if |Θi,j|< gmin,
Θi,j, if |Θi,j| ∈ [gmin, gmax],
sign(Θi,j) · gmax, if |Θi,j|> gmax,

as shown in figure 3 by the black curve. To be able to
calculate useful gradients for backpropagation despite
the projection mapping, the straight-through gradi-
ent estimator [32] is employed, see figure 3. In other
words, the projection is ignored for the calculation of
derivatives.

The printable range also constrains the com-
ponent values in the nonlinear circuits, expressed
as [qAmin,q

A
max] and [qNmin,q

N
max]. Since these feasible

(printable) design space areas are continuous, simple
functions such as sigmoid or tanh can be used to map
the learnable parameters into printable ranges.

Apart from the constraints on printable ranges,
printing technologies also impose constraints in the
form of printing error (variation) caused by the
limited printing resolution. This constraint hinders
manufacturing the exact designed values of the
circuit components. To address this problem, a
stochastic variable can be introduced onto the learn-
able parameters to express the uncertainty in the
manufacturing process [10]. Additionally, the PE is
susceptible to not only printing variation, but also
environmental effects, which changes the printed
component values gradually over time (aging). To
consider also the aging problem in the design of
printed neuromorphic circuits, the printed compon-
ent values are modeled as a time-varying variables
according to the stochastic aging model [22], rather
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than fixed constants. Due to the employment of these
approaches, the output of the pNN and the corres-
ponding loss are no longer constant values but rather
a probabilistic distribution w.r.t. printing variations
and aging time. In order to still adopt the classical
gradient-based optimization strategies to train the
pNN, the expected loss w.r.t. printing variation and
time is calculated and used to guide the training of
the pNN. More details are described in section 3.

Previous studies have exclusively focused on the
separate effects of print variation and aging on prin-
ted neuromorphic circuits. Nonetheless, a compre-
hensive study of the joint impact of these factors on
printed neuromorphic circuits has yet to be conduc-
ted. This study seeks to address this research gap by
including both factors jointly. Moreover, the sensing
uncertainty (uncertainty over the inputs) is also con-
sidered in this work. Additionally, to analyze the com-
binatorial effect of these factors on the performance of
pNNs, extensive experiments followed by an ablation
study is conducted.

3. Methodology

Since high variations are more common in additive
PE compared to conventional subtractive manufac-
tured electronics, and moreover, since analog circuits
are more sensitive to component variations com-
pared to digital circuits, it is essential to account for
factors affecting circuit output during the design of
printed analog neuromorphic circuits. In this work,
three principal effects are considered: printing vari-
ations due to limited printing resolution; environ-
mental effects that cause aging of circuit compon-
ents; and measurement uncertainties, arising from
multiple noise sources. By considering and address-
ing these key factors from software level, the reliability
and robustness of printed neuromorphic circuits can
be substantially improved. Note that, this approach
combat the aforementioned factors purely at the
algorithmic level, which is orthogonal to the research
in improving printing technologies or materials.
Therefore, it can improve the circuit dependability
even if the influences could not be controlled or
reduced from the fabrication standpoint.

3.1. Printing variation
In the manufacturing of PE, the desired component
values, like conductances, can generally not be prin-
ted exactly. This variation primarily arises from the
constrained print resolution, which stems from the
physical properties of the functional inks and limit-
ations of the printing technology. The printing res-
olution is principally determined by, e.g. the volume
of the smallest printable volume of the droplets [33].
Consequently, by assuming that, the printing vari-
ation is determined by the geometric variation of the
printing shape which varies within one printing pixel,
the printing variation is oftenmodeled as a uniformly

distributed stochastic variable within the minimum
resolution, as shown on the left in figure 4, i.e.

ΘPV
i,j ∼ U

[
(1− ϵ)Θideal

i,j ,(1+ ϵ)Θideal
i,j

]
.

Here, the value for ϵ is selected based on the specific
printing technology to accommodate printing vari-
ations. To facilitate the training process for the learn-
able parameter Θideal, we utilized a random variable
ε to independently parameterize and extractΘideal by

ΘPV = ε⊙Θideal,

where ΘPV models the manufactured conductance
with printing variation and ε is a stochastic variable
denoting the printing variation with each element in
ε following a uniform distribution U [1− ϵ,1+ ϵ].

The impact of printing variation on weights
within the resistor crossbar is rather intuitive: as the
printed conductances deviate from ideal values, their
correspondingweightswill also deviate.However, this
impact on nonlinear circuits is rather intricate, there-
fore, we visualize the impact of the variation in non-
linear circuits, as shown in figure 5. The middle and
right figures exemplifies some varied characteristic
curves with 10% printing variation (incorporating
with aging effect).

3.2. Aging effect
Due to environmental influences and particularly
thermal stress in the field, the thin-film printed
devices exhibit run-time degradation through usage
(aging) [34–36]. As a result, the conductances of prin-
ted resistors will change over time [13]. These effects
lead to deviations from the intended design values
in the neuromorphic circuit over time and may ulti-
mately result in misclassifications.

In general, the aging process of printed resistors
consists of two phases: a fast degradation phase fol-
lowed by amore gradual decline [13, 22]. A stochastic
aging model that describes the multiplicative change
in initial conductance has been proposed in [22], i.e.

Θaged(t) =Θ0⊙Aω(t),

where Θaged(t) refers to the changing conductance
values w.r.t. time,Θ0 denotes the initial conductances
directly after the manufacturing (i.e. ΘPV), while
Aω(t) summarizes the stochastic aging degradation of
the conductances with each element in Aω(t) being

Aω(t) = ω1 · e−ω2·t−ω1 + 1, ω ∼ pω(ω).

Here, ω = [ω1,ω2] is a stochastic variable with the
probability density pω(ω). The density pω(ω) can be
obtained by fitting a log-normal distribution to the
measured ω from several aging experiments [22].
Figure 4 (middle) indicates some examples of
stochastic aging decay Aω(t) by sampling ω from
pω(ω). The left part of figure 5 visualizes multiple

6



Flex. Print. Electron. 8 (2023) 025018 H Zhao et al

Figure 4. Considered variations and uncertainty in this work. Left: a uniformly distributed printing variation. Middle: stochastic
aging degradation of printed resistors, each curve represents a sample of aging decay. Right: input data with normal distributed
measurement noise.

Figure 5. Effect of different variation factors on the primitive circuits. Left: exemplary trajectories of the weights with aging
conductances. Middle: exemplary characteristic curves of ptanh circuit with aging and 10% printing variation. Right: exemplary
characteristic curves of negative weight circuit with aging and 10% printing variation.

weight trajectories due to the stochastic aging of
conductances in a resistor crossbar. Notably, as the
crossbar functions as a voltage divider and each con-
ductance ages following a stochastic curve, the res-
ulted weights may experience aging along distinct
trajectories.

3.3. Sensing uncertainty
Measurement uncertainty is a quantitative assessment
that provides an estimate of the potential range of
the true value of a physical quantity with a spe-
cific level of confidence [37]. The uncertainty arises
due to various processes during the measurement,
including the intrinsic error of the measuring instru-
ment, the coupling between the measuring instru-
ment and the system being measured, changes in
measurement conditions, and the imperfections in
the calibration procedure. Therefore, it is imperative
to respect the measurement uncertainty during the
design of a robust and reliable printed neuromorphic
circuit. Moreover, since the pNN works directly with
sensors in analog domain instead of digital, it is more
sensitive to sensing uncertainties.

As measurement uncertainty is the cumulat-
ive outcome of various stochastic variables arising
from the processes mentioned above, it is often
modeled by a Gaussian distribution in the signal
processing community, in accordance with the cent-
ral limit theorem [38] and the principle of max-
imum entropy [39]. In this work, we model the
noisy input signals by multiplying the original input

x by a Gaussian distributed random variable ν.
Consequently, higher inputs exhibit more variation.
Formally, this is expressed as

xnoisy = ν ⊙ x, ν ∼N (1,σ),

where σ refers to the uncertainty of themeasurement.

3.4. Dependability-aware training of pNNs
To include the aforementioned influence into the
design of dependable printed neuromorphic circuits,
we propose a framework that is capable of incorpor-
ating all relevant factors into the training of pNNs, as
illustrated in figure 6.

For each resistor crossbar, the learnable conduct-
ance is processed by a straight-through estimator to
maintain its printability. Once converted to a print-
able value, the stochastic variable ε is element-wise
multiplied to simulate printing vaiations for each
conductance. Subsequently, the aging decay Aω(t)
is multiplied to reflect the aging behaviors of con-
ductances already affected by printing variations.
Finally, the resulting conductances are transformed
to the corresponding weights in the weighted-sum
operation.

Regarding the nonlinear circuits, we do not con-
sider their parameters learnable but rather fixed to
certain design values. For details on how these para-
meters can be learned, see [31]. Nevertheless, we still
account for their printing variations and aging beha-
viors during training. The nonlinear circuits com-
prise two types of components, namely resistors,

7
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Figure 6. Data flow in the dependability-aware training for printed neural networks. The gray part indicates the main data flow,
the green box contains the data processing for weighted-sum resistor crossbar, the red box indicates the processing of nonlinear
circuits, while the bottom yellow box refers to the target dataset.

characterized by their conductances, and transistors,
characterized by their geometric features (width W
and length L). We consider both printed neural net-
works and aging effects for the printed resistors, but
for the transistors, we only consider printed neural
networks on W and L, as their aging behavior is still
not sufficiently studied. After the aged parameters for
the nonlinear circuits, i.e. (qA)aged and (qN)aged, have
been calculated, they can be mapped to the auxili-
ary parameters (ηA)aged and (ηN)aged via differenti-
able surrogate nonlinear circuit models. These aux-
iliary parameters can then be utilized to construct
negative weight functions and tanh-like transforma-
tion functions, whichwill be integrated into pNNs for
weighted-sum and activation functions, respectively.

As machine learning is generally a data-driven
optimization process, training machine learning
models is tailored to certain target datasets. A dataset
typically comprises two components, i.e. the meas-
urement x, which serves as the input to the machine
learning model, and the corresponding ground truth
y, which is considered the target output (e.g. the class
in a classification task) from the model. The training
process involves finding a set of parameters (usually,
weights) that allows the model output to approxim-
ate the desired output with a given input signal. It
should be noted that, despite the inherent measure-
ment error present in the input signal x in the dataset,
applying extra noise to the input data is still highly
desirable to enhance the tolerance to input noise [40].

With consideration of these stochastic processes,
the output ŷ of pNNs, and consequently, the loss
L(ŷ,y) is no longer a deterministic value, but rather
a stochastic distribution with respect to ν, ε, ω.
Therefore, the loss of the pNN can be denoted
by L(x,y,Θ,ν,ε,ω, t). In general, gradient-based

numerical optimizers for neural networks require the
loss to be expressed as a deterministic scalar value
instead of a function or distribution. To solve this
problem, we adopt the expectation to assess the value
of the loss and obtain the dependability-aware train-
ing objective function, i.e.

L(x,y,Θ)

= Eν

{
Eε

{
Eω

{ˆ 1

0
L(x,y,Θ,ν,ε,ω, t)dt

}}}

=

˘

ν,ε,ω,t

L(x,y,Θ,ν,ε,ω, t)pt(t)pω(ω)pε

× (ε)pν(ν)dtdωdεdν. (3)

For simplify, the lifetime was normalized to t ∈
[0,1]. Additionally, the integral over the lifetime
was expressed as a mathematically equivalent expec-
ted value with respect to a uniform distribution
pt(t) = U [0,1] to allow for a consistent treatment
with the random variables ν, ε, ω in the following.
Consequently, ν, ε, ω, and t can be summarized by
one stochastic variable γ := [ν,ε,ω, t] with density
pγ(γ) = pν(ν) · pε(ε) · pω(ω) · pt(t). Thus, equation
(3) can be written as

L(x,y,Θ) =

ˆ
γ

L(x,y,Θ,γ)pγ(γ)dγ. (4)

Unfortunately, due to the complexity of L(·), usually
no analytical solution for equation (4) can be found.
We thus employ Monte Carlo integration [41] to
obtain an approximation of equation (4). According
to the law of large numbers [42], the expected value

8
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of a function can be estimated by the average of the
results obtained from multiple samples, i.e.

Eγ{L(x,y,Θ,γ)}=
ˆ
γ

L(x,y,Θ,γ)pγ(γ)dγ

≈ 1

Nγ

∑
γ ′

L(x,y,Θ,γ ′), (5)

where γ ′ = [ν ′,ε ′,ω ′, t ′] describes a set of Nγ

samples drawn from the distribution pγ(γ).With this
approach, each time the loss need to be computed,
equation (5) can be employed to obtain an estim-
ate by drawing Nγ samples from pγ(γ). Similar to
the objective, also gradients for equation (4) can be
obtained via Monte Carlo gradient estimation via

∇ΘL(x,y,Θ)≈ 1

Nγ

∑
γ′

∇ΘL(x,y,Θ,γ′).

These estimated gradients can then be used by com-
mon gradient-based optimization algorithms such as
SGD [43] or Adam [44].

4. Experiments

To evaluate the effectiveness of the dependability-
aware training of pNNs, we implemented the pro-
posed training approach with PyTorch [45] and con-
duct experiments on the 13 benchmark datasets3

which were also used in the comparable works, such
as [22, 31]. The benchmark dataset exhibits a com-
plexity and scenario that align with the target applica-
tion domains of PE. Specifically, datasets with a mod-
est number of inputs and outputs (generally fewer
than ten) are more appropriate, due to the large fea-
ture size and low integration density of PE.

Due to the large number of circuits required to
obtain statistical results w.r.t. to the stochastic vari-
ations, evaluating the proposed dependability-aware
training by printing hardware circuits poses a signific-
ant challenge and high cost. Therefore, we verify the
proposed algorithm at simulation level based on the
well-established printed process design kit [23]. The
functionality of the real printed neuromorphic hard-
ware has been experimentally validated in [10, 46].

4.1. Experiment setup
For the experiment, we use a consistent topology
(#inputs-3-#outputs) for all pNNs on each dataset.
For the nonlinear circuits, predefined values ηA =
ηN = [0,1,0,12.3] for tanh-like activation circuits
and negative weight circuits are employed. Regarding
the training, we employ full-batch training with the

3 Datasets: 1Acute Inflammation, 2Balance Scale, 3Breast Cancer
Wisconsin, 4Cardiotocography, 5Energy Efficiency (y1), 6Energy
Efficiency (y2), 7Iris, 8Mammographic Mass, 9Pendigits, 10Seeds,
11Tic-Tac-Toe Endgame, 12Vertebral Column (2 cl.), 13Vertebral
Column (3 cl.).

Adam [44] optimizer (in default parameterization)
to update parameters in pNNs. In each training
epoch, we sampled Nγ = 5000 stochastic variables
γ ′ for Monte Carlo integration. To prevent over-
fitting, we calculated the loss on validation set for
early-stopping [47] after each parameter update. We
start with an initial learning rate of 0.1 and halve it
after a patience (updates without improvement) of
100-epochs on the validation set. Additionally, the
training process is stopped, when the learning rate
decreases below 10−4. We choose ϵ= 0.1 to reflect
the printing variation, as typical printing resolutions
range from 20 µm to 100 µm [48], whereas the com-
ponent feature sizes in printed neuromorphic circuits
are on the order of 1 µm [10]. Therefore, ±10% can
be seen as a reasonable estimate. Moreover, we take
σ= 0.1 for ν to simulate sensing uncertainty of the
inputs x. As loss function, we adopted the same func-
tion provided in [10], which is a hardware-aware loss
function designed for pNNs.

4.2. Ablation study
In this work, multiple factors that could potentially
impact the results are considered. To investigate the
effects of these factors independently and jointly, we
conduct an ablation study. Specifically, we conducted
experiments on all possible combinations of the three
factors (eight combinations in total) to assess their
combinatorial effects. To facilitate the identification
of individual experiments, they are numbered from
Exp. 1 to Exp. 8. Furthermore, the terms ‘aging beha-
vior,’ ‘printing variation,’ and ‘sensing uncertainty’
are abbreviated to ‘AG’, ‘PV’, and ‘SU’, respectively
(see table 1 for details). The abbreviation with an
additional over line indicates that, the experiment is
unaware of the corresponding factor, e.g. AG refers
to AG-unaware training.Hence, the specific pNNs are
only trainedwith consideration of the specific factors,
while for testing, all effects, i.e. AG, PV, and SU are
included.

4.3. Evaluation
After training, we choose pNNs based on the best val-
idation loss, as it would be the one selected for fabric-
ation. We evaluate the resulted pNNs on the test set
base onNγ = 5000 samples. As an evaluation metric,
we adopt the measuring-aware accuracy (MAA) [10],
which is hardware-related accuracy that considers the
threshold for reliably measuring output voltages for
classification.

In this work, dependability is conceptualized to
reflect two aspects of the performance of the pNNs,
i.e. accuracy and robustness. Here, the accuracy and
robustness are indicated by the mean MAA and the
standard deviation (std) ofMAA w.r.t. the stochastic
variable γ. Thus, the metrics are calculated on each
dataset and reported in table 1. As a summary, the
averaged values of all the dataset for each experiment
are also reported.
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Table 1. The mean and standard deviation of measuring-aware accuracy (MAA) w.r.t. stochastic variable γ on each dataset for each
experiment.

Notation Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8

Awareness AG,PV,SU AG,PV,SU AG,PV,SU AG,PV,SU AG,PV,SU AG,PV,SU AG,PV,SU AG,PV,SU

Dataset

1 0.92± 0.10 0.92± 0.08 0.98± 0.06 0.98± 0.06 1.00± 0.00 1.00± 0.00 1.00± 0.01 1.00± 0.00
2 0.63± 0.27 0.63± 0.28 0.75± 0.17 0.76± 0.18 0.81± 0.03 0.80± 0.03 0.81± 0.03 0.81± 0.02
3 0.88± 0.12 0.89± 0.13 0.97± 0.01 0.96± 0.01 0.97± 0.00 0.97± 0.00 0.96± 0.01 0.96± 0.00
4 0.75± 0.12 0.70± 0.19 0.78± 0.16 0.81± 0.09 0.84± 0.03 0.84± 0.03 0.85± 0.05 0.85± 0.03
5 0.69± 0.22 0.64± 0.25 0.83± 0.13 0.84± 0.11 0.91± 0.04 0.90± 0.06 0.90± 0.05 0.92± 0.03
6 0.74± 0.13 0.75± 0.09 0.82± 0.09 0.83± 0.06 0.84± 0.05 0.85± 0.04 0.85± 0.04 0.86± 0.03
7 0.84± 0.08 0.85± 0.11 0.87± 0.11 0.87± 0.11 0.92± 0.05 0.94± 0.03 0.93± 0.06 0.92± 0.05
8 0.54± 0.18 0.56± 0.14 0.66± 0.14 0.68± 0.13 0.72± 0.10 0.74± 0.09 0.75± 0.06 0.75± 0.06
9 0.10± 0.10 0.10± 0.10 0.37± 0.10 0.51± 0.07 0.44± 0.06 0.57± 0.05 0.48± 0.05 0.54± 0.05
10 0.76± 0.13 0.74± 0.11 0.78± 0.12 0.82± 0.07 0.82± 0.04 0.86± 0.03 0.85± 0.05 0.86± 0.03
11 0.59± 0.19 0.66± 0.15 0.80± 0.08 0.75± 0.10 0.76± 0.06 0.79± 0.09 0.73± 0.09 0.81± 0.07
12 0.57± 0.13 0.65± 0.09 0.64± 0.10 0.76± 0.07 0.61± 0.10 0.73± 0.07 0.61± 0.07 0.77± 0.06
13 0.50± 0.15 0.60± 0.12 0.59± 0.13 0.71± 0.08 0.63± 0.11 0.76± 0.06 0.63± 0.09 0.75± 0.07

Average 0.66± 0.15 0.67± 0.14 0.76± 0.11 0.79± 0.09 0.79± 0.05 0.83± 0.04 0.80± 0.05 0.83± 0.04

Table 2. Independent effects of aging (AG), printing variation (PV), and sensing uncertainty (SU) in the dependability-aware training of
pNNs.

Improvement

Awareness Averaged experiments Averaged MAA Accuracy (mean MAA) Robustness (std MAA)

AG-aware Exp. 5, 6, 7, 8 0.811± 0.046 13.03% 61.58%
AG-unaware Exp. 1, 2, 3, 4 0.718± 0.120

PV-aware Exp. 3, 4, 7, 8 0.794± 0.071 7.99% 26.46%
PV-unaware Exp. 1, 2, 5, 6 0.735± 0.096

SU-aware Exp. 2, 4, 6, 8 0.779± 0.077 3.89% 13.26%
SU-unaware Exp. 1, 3, 5, 7 0.750± 0.089

Through the comparison of Exp. 8 and Exp. 1,
we conclude that, with consideration of all three
factors in the training process, a substantial 27%
improvement in accuracy and a 74% improvement in
robustness.

4.4. Analysis
Upon evaluating the performance of pNNs for each
experiment on the test set, we conducted a quantit-
ative analysis to determine the independent influence
of each factor on the final results, as well as the rela-
tionships between them.

4.4.1. Independent analysis
To analyze the impact of a certain factor independ-
ently of other factors, we divided the eight experi-
ments into two groups (e.g. experiments with, and
withoutAG-aware training) and average the perform-
ance respectively. Table 2 summarizes the analysis of
each factor.

It is evident from table 2, that AG-aware train-
ing provides the most significant improvement
in both accuracy and robustness, namely 13.03%
and 61.58%. This is followed by PV-aware train-
ing, which achieves an improvement of 7.99% in
average MAA and 26.46% in robustness. Lastly,

the SU-aware training approach delivers the lowest
accuracy improvement of 3.89% and lowest robust-
ness improvement of 13.26%.

Based on the given comparison, we conclude that
the three stochastic factors exhibit different degrees of
influence on the pNNs: as AG and PV lead to changes
in every conductance (thus weight) of the pNNs,
whereas SU only explicitly affects the first weighted-
sum operation (multiplicatively), which results in the
weaker impact on the performance of the pNNs.
On the other hand, for the comparison of AG and
PV, we hypothesize that AG has a more substantial
impact on the conductance than PV (based on the
input noise, variations, and AG behavior assumed in
this experiment). Consequently, AG-aware training
yields greater improvements compared to PV-aware
training.

4.4.2. Joint analysis
Despite the independent analysis of the impact of
each factor on pNNs, their actual effects are not
entirely independent of each other. To assess their
relationships, we evaluate the improvement provided
by each factor in different settings (see figure 7 for
accuracy and figure 8 for robustness).
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Figure 7. Combinatorial effects of aging (AG), printing variation (PV), and sensing uncertainty (SU) on the accuracies in the
dependability-aware training of pNNs.

Figure 8. Combinatorial effects of aging (AG), printing variation (PV), and sensing uncertainty (SU) on the robustness in the
dependability-aware training of pNNs.

Figure 7(a) demonstrates that AG-aware training
can substantially improve the accuracy of pNNs from
standard training (unaware of neither AG nor PV nor
SU). The same is true when only SU-aware training is
used. Conversely, it offers less improvement for pNNs
that have already trained with consideration of PVs.
We hypothesize that PV and AG effect may have sim-
ilar effects in training pNNs, which renders the addi-
tional improvement of AG-aware training over PV-
aware training insignificant. This hypothesis is also
supported by figure 7(b).

In figure 7(b), it can be seen that PV-aware
training can significantly increase the accuracy of
pNNs from standard training and SU-aware training.
However, PV-aware training offers only less improve-
ment when AG-aware training is already employed.
This suggests that the AG effects not only have a sim-
ilar influence as PV, namely perturbing the result-
ing weights, but also exert a stronger impact than
PV. Therefore, additional PV-aware training has little
benefit when AG-aware training is already utilized.
In contrast to PV- and AG-aware training, SU-aware
training offers around 2%–3% improvement in all
cases, as shown in figure 7(c). This indicates that the
impact of SU may be orthogonal to that of PV or AG.

Regarding robustness, similar effects are
observed. From figure 8, it is evident that both AG-
and PV-aware training can substantially enhance the
robustness of pNNs. However, as they might have

similarmechanisms of influence on pNNs, their com-
bined effect exhibits some overlapping. Moreover,
since the impact of AG ismore significant than that of
PV, the additional PV-aware training in conjunction
with AG-aware training does not bring significant
benefits. Orthogonal to them, SU-aware training con-
sistently provides stable improvement in robustness.

4.5. Discussion
In this section, we perform experiments to confirm
the effectiveness of the dependability-aware train-
ing of pNNs. Our results demonstrate that the pro-
posed method can enhance the accuracy and robust-
ness of pNNs by 27% and 74%, respectively. Among
all effects considered in training, AG-aware training
yields the most significant improvement. While PV-
aware training also contributes significantly, our abla-
tion study reveals that PV and AG effect may have
similar potential mechanisms on the pNNs, suggest-
ing that the contribution of AG-aware training may
partly cover that of PV-aware training.

Notably, SU-aware training consistently delivers
improvement in accuracy and robustness across all
experiments. This suggests that, SU might have a
distinct mode of effect on pNNs compared to the
other two factors. Even though the improvement
from SU-aware training is slightly lower than that
from PV- and AG-aware trainings, it is possibly due
to the choice of σ value. We suspect that, the effect
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of SU-aware training may change with different σ
values. Nevertheless, due to the possibly orthogonal
effects to the other two factors, it is meaningful to
consider SU to improve the dependability of pNNs.

Although the dependability-aware training is
conducted at fully algorithmic level, the outcomes
from the ablation study may also indicate the impact
of various factors on network performance, and thus,
guide the development of the hardware technolo-
gies. For instance, AG-aware training demonstrates
a substantial enhancement in network performance,
implying that, the AG process may exert a more pro-
nounced effect on circuits. Consequently, in fabrica-
tion, it is suggestible to prioritize the efforts both in
the materials as well as in the process to reduce the
impact of AG, including the adoption of passivation
techniques or superior materials that display lower
AGvariation.

5. Conclusion

PE has gained increasing interest in emerging
domains, such as the IoT and wearable devices, as
it offers several advantages over traditional silicon-
based electronics. These advantages include flexib-
ility, bio-compatibility, lightweight, high customiz-
ability, and ultra-low cost. However, PE also suffers
from some limitations, such as large feature sizes,
large latencies, low integration density, high vari-
ation, and low device count. To this regard, printed
analog neuromorphic circuits become attractive, as
they leverage the benefits of PE while evading its
drawbacks. Moreover, by interconnecting multiple
simple primitive subcircuits, printed neuromorphic
circuits are capable of implementing even complex
functionalities.

In this work, we focus on investigating the
dependability of printed analog neuromorphic
circuits, with a particular focus on three critical
factors that influence their performance, namely,
PV, AG effect, and SU. To respect these factors
into the design of printed neuromorphic circuits,
stochastic models of these factors are established.
Subsequently, to account these factors into the
training of pNNs, a modified objective function is
developed. Experimental results indicate that incor-
porating the modeled stochastic variations in the
training process can improve the expected accuracy
and robustness. Additionally, the ablation study is
conducted to reveal the contribution of each influen-
cing factor independently and jointly. The ablation
study suggests that AG-aware training contributes
the most, and SU-aware training contributes the least
to the dependability of pNNs. However, it is worth
noting that, the combination of AG-aware and PV-
aware training does not greatly improve the overall
performance of pNNs, as their improvements may
overlap. In contrast, the effect of SU-aware training
appears to be independent of the other two factors.

Although the improvement from SU-aware train-
ing is relatively smaller compared to the other two
factors, it is still worth to be considered for improv-
ing the dependability of pNNs, because it may rep-
resent another pattern of behavior that affects the
performance of pNNs.

In futurework, effort will be dedicated to studying
the influence of further factors in the printing pro-
cess, including printing speed, printing throughput,
heat treatment, post-processing, etc. By developing
mathematical models for these procedures, the influ-
ence will be explicitly incorporated into the design
process of printed neuromorphic circuits, and thus
enabling the improvement of the circuit dependab-
ility with respect to those factors.

Data availability statement

All data that support the findings of this study are
included within the article (and any supplementary
files).

Acknowledgment

This work has been partially supported by the Carl-
Zeiss-Foundation as part of ‘stay young with robots’
(JuBot) project and the European Research Council
(ERC).

ORCID iD

Haibin Zhao https://orcid.org/0000-0001-7018-
1159

References

[1] Khodadadi F et al 2016 Internet of things: an overview
Internet of Things vol 80 (Elsevier) p 3

[2] Seneviratne S, Hu Y, Nguyen T, Lan G, Khalifa S,
Thilakarathna K, Hassan M and Seneviratne A 2017 IEEE
Commun. Surv. Tutor. 19 2573

[3] Schaefer D, Cheung WM 2018 Proc. CIRP 72 1022
[4] Asulin M, Michael I, Shapira A and Dvir T 2021 Adv. Sci.

8 2004205
[5] Kaidarova A et al 2019 NPJ Flex. Electron. 3 15
[6] Labiano I I and Alomainy A 2021 Flex. Print. Electron.

6 025010
[7] Chang J et al 2012 Challenges of printed electronics on

flexible substrates 55th Int. Midwest Symp. on Circuits and
Systems (IEEE) p 582

[8] Reddy A, Narakathu B B, Atashbar M Z, Rebros M,
Rebrosova E and Joyce M K 2011 Proc. Eng. 25 120

[9] Zhao H et al 2022 Printed electrodermal activity sensor with
optimized filter for stress detection Proc. 2022 ACM Int.
Symp. on Wearable Computers (ACM) p 112

[10] Weller D D, Hefenbrock M, Beigl M, Aghassi-Hagmann J
and Tahoori M B 2021 Sci. Rep. 11 1

[11] Kirkup L and Frenkel R B 2010 Introduction to Uncertainty in
Measurement (Reliability Engineering) (New York:
Springer) (https://doi.org/10.1007/978-0-387-46328-5_1)

[12] Khan S, Lorenzelli L and Dahiya R S 2015 IEEE Sens. J.
15 3164

[13] Hamasha MM, Dhakal T, Alzoubi K, Albahri S, Qasaimeh A,
Lu S and Westgate C R 2012 IEEE J. Disp. Technol. 8 385

12

https://orcid.org/0000-0001-7018-1159
https://orcid.org/0000-0001-7018-1159
https://orcid.org/0000-0001-7018-1159
https://doi.org/10.1016/b978-0-12-805395-9.00001-0
https://doi.org/10.1109/COMST.2017.2731979
https://doi.org/10.1109/COMST.2017.2731979
https://doi.org/10.1016/j.procir.2018.03.240
https://doi.org/10.1016/j.procir.2018.03.240
https://doi.org/10.1002/advs.202004205
https://doi.org/10.1002/advs.202004205
https://doi.org/10.1038/s41528-019-0061-5
https://doi.org/10.1038/s41528-019-0061-5
https://doi.org/10.1088/2058-8585/ac0ac1
https://doi.org/10.1088/2058-8585/ac0ac1
https://doi.org/10.1109/MWSCAS.2012.6292087
https://doi.org/10.1016/j.proeng.2011.12.030
https://doi.org/10.1016/j.proeng.2011.12.030
https://doi.org/10.1145/3544794.3558479
https://doi.org/10.1038/s41598-021-88396-0
https://doi.org/10.1038/s41598-021-88396-0
https://doi.org/10.1007/978-0-387-46328-5_1
https://doi.org/10.1109/JSEN.2014.2375203
https://doi.org/10.1109/JSEN.2014.2375203
https://doi.org/10.1109/JDT.2011.2176532
https://doi.org/10.1109/JDT.2011.2176532


Flex. Print. Electron. 8 (2023) 025018 H Zhao et al

[14] Chang J S, Facchetti A F and Reuss R 2017 IEEE J. Emerg. Sel.
Top. Circuits Syst. 7 7

[15] Chung S, Kim S O, Kwon S-K, Lee C and Hong Y 2011 IEEE
Electron Device Lett. 32 1134

[16] Shao F, Wan Q 2019 J. Phys. D: Appl. Phys.
52 143002

[17] Cui Z 2016 Printed Electronics: Materials, Technologies and
Applications (New York: Wiley) (https://doi.org/10.1002/
9781118920954)

[18] Conti S et al 2020 Nat. Commun. 11 3566
[19] Huber B Popp P B, Kaiser M, Ruediger A and Schindler C

2017 Appl. Phys. Lett. 110 143503
[20] Weller D, Cadilha Marques G, Aghassi-Hagmann J

and Tahoori M B 2018 IEEE Electron Device Lett.
39 831

[21] Kondo M et al 2018 Design of ultraflexible organic
differential amplifier circuits for wearable sensor
technologies IEEE Int. Conf. on Microelectronic Test
Structures (ICMTS) p 79

[22] Zhao H et al 2022 Aging-aware training for printed
neuromorphic circuits Proc. 41st IEEE/ACM Int. Conf. on
Computer-Aided Design (ACM) (https://doi.org/10.1145/
3508352.3549411)

[23] Rasheed F, Hefenbrock M, Beigl M, Tahoori M B and
Aghassi-Hagmann J 2018 IEEE Trans. Electron Devices
66 146

[24] Yu Z, Abdulghani A M, Zahid A, Heidari H, Imran M A and
Abbasi Q H 2020 IEEE Access 8 67085

[25] Schuman C D et al 2017 A survey of neuromorphic
computing and neural networks in hardware (arXiv:
1705.06963)

[26] Sebastian A, Le Gallo M, Khaddam-Aljameh R and
Eleftheriou E 2020 Nat. Nanotechnol. 15 529

[27] Eshraghian J K et al 2019 Analog weights in ReRAM DNN
accelerators Int. Conf. on Artificial Intelligence Circuits and
Systems (AICAS) (IEEE) (https://doi.org/10.1109/AICAS.
2019.8771550)

[28] Weller D D et al 2020 Programmable neuromorphic circuit
based on printed electrolyte-gated transistors 25th Asia and
South Pacific Design Automation Conf. (ASP-DAC)
p 446

[29] Nawrocki R A, Voyles R M and Shaheen S E 2014 Trans.
Electron Devices 61 3513

[30] Ansari M, Fayyazi A, Banagozar A, Maleki M A, Kamal M,
Afzali-Kusha A and Pedram M 2017 IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 37 1602

[31] Zhao H et al 2023 Highly-bespoke robust printed
neuromorphic circuitsDesign, Automation and Test in Europe
(DATE) (IEEE) (https://doi.org/10.5445/IR/1000156490)

[32] Bengio Y et al 2013 Estimating or propagating gradients
through stochastic neurons for conditional computation
(arXiv:1308.3432)

[33] Onses M S, Sutanto E, Ferreira P M, Alleyne A G and
Rogers J A 2015 Small 11 4237

[34] Bielecka U, Lutsyk P, Janus K, Sworakowski J and
Bartkowiak W 2011 Org. Electron. 12 1768

[35] Fraboni B, Cosseddu P, Wang Y Q, Schulze R K, Di Z F,
Cavallini A, Nastasi M and Bonfiglio A 2011 Org. Electron.
12 1552

[36] Lu K, Yao R, Wang Y, Ning H, Guo D, Liu X, Tao R, Xu M,
Wang L and Peng J 2019 J. Mater. Sci. 54 14778

[37] Dieck R H 2017Measurement Uncertainty: Methods and
Applications 5th edn (ISA)

[38] Montgomery D C et al 2010 Applied Statistics and Probability
for Engineers (New York: Wiley)

[39] Jaynes E T 1957 Phys. Rev. 106 620
[40] Taylor L et al 2018 Improving deep learning with generic

data augmentation Symp. Series on Computational
Intelligence (SSCI) (IEEE) p 1542

[41] Caflisch R E 1998 Acta Numer. 7 1–49
[42] Dekking F M et al 2005 A Modern Introduction to Probability

and Statistics: Understanding Why and How vol 488 (Berlin:
Springer) (https://doi.org/10.1007/1-84628-168-7)

[43] Amari S 1993 Neurocomputing 5 185–96
[44] Kingma D P et al 2014 Adam: a method for stochastic

optimization (arXiv:1412.6980)
[45] Paszke A et al 2019 Pytorch: an imperative style,

high-performance deep learning library Advances in Neural
Information Processing Systems 32 (Curran Associates, Inc.)
p 8024

[46] Singaraju S A, Weller D D, Gspann T S, Aghassi-Hagmann J
and Tahoori M B 2022 Sensors 22 4000

[47] Yao Y, Rosasco L and Caponnetto A 2007 Constr. Approx.
26 289

[48] Khan S, Lorenzelli L and Dahiya R S 2014 IEEE Sens. J.
15 3164

13

https://doi.org/10.1109/JETCAS.2017.2673863
https://doi.org/10.1109/JETCAS.2017.2673863
https://doi.org/10.1109/LED.2011.2156757
https://doi.org/10.1109/LED.2011.2156757
https://doi.org/10.1088/1361-6463/aafd79
https://doi.org/10.1088/1361-6463/aafd79
https://doi.org/10.1002/9781118920954
https://doi.org/10.1002/9781118920954
https://doi.org/10.1038/s41467-020-17297-z
https://doi.org/10.1038/s41467-020-17297-z
https://doi.org/10.1063/1.4978664
https://doi.org/10.1063/1.4978664
https://doi.org/10.1109/LED.2018.2826361
https://doi.org/10.1109/LED.2018.2826361
https://doi.org/10.1109/ICMTS.2018.8383769
https://doi.org/10.1145/3508352.3549411
https://doi.org/10.1145/3508352.3549411
https://doi.org/10.1109/TED.2018.2867461
https://doi.org/10.1109/TED.2018.2867461
https://doi.org/10.1109/ACCESS.2020.2985839
https://doi.org/10.1109/ACCESS.2020.2985839
https://arxiv.org/abs/1705.06963
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1109/AICAS.2019.8771550
https://doi.org/10.1109/AICAS.2019.8771550
https://doi.org/10.1109/ASP-DAC47756.2020.9045211
https://doi.org/10.1109/TED.2014.2346700
https://doi.org/10.1109/TED.2014.2346700
https://doi.org/10.1109/TCAD.2017.2764070
https://doi.org/10.1109/TCAD.2017.2764070
https://doi.org/10.5445/IR/1000156490
https://arxiv.org/abs/1308.3432
https://doi.org/10.1002/smll.201500593
https://doi.org/10.1002/smll.201500593
https://doi.org/10.1016/j.orgel.2011.06.027
https://doi.org/10.1016/j.orgel.2011.06.027
https://doi.org/10.1016/j.orgel.2011.05.018
https://doi.org/10.1016/j.orgel.2011.05.018
https://doi.org/10.1007/s10853-019-03941-7
https://doi.org/10.1007/s10853-019-03941-7
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1109/SSCI.2018.8628742
https://doi.org/10.1017/S0962492900002804
https://doi.org/10.1017/S0962492900002804
https://doi.org/10.1007/1-84628-168-7
https://doi.org/10.1016/0925-2312(93)90006-o
https://doi.org/10.1016/0925-2312(93)90006-o
https://arxiv.org/abs/1412.6980
https://doi.org/10.3390/s22114000
https://doi.org/10.3390/s22114000
https://doi.org/10.1007/s00365-006-0663-2
https://doi.org/10.1007/s00365-006-0663-2
https://doi.org/10.1109/JSEN.2014.2375203
https://doi.org/10.1109/JSEN.2014.2375203

	Highly-dependable printed neuromorphic circuits based on additive manufacturing
	1. Introduction
	2. Preliminary
	2.1. Printed electronics
	2.2. Printed neuromorphic circuits
	2.2.1. Resistor crossbar
	2.2.2. Tanh-like transformation circuit
	2.2.3. Negative weight circuit

	2.3. Printed neural network
	2.3.1. Inference
	2.3.2. Constraints


	3. Methodology
	3.1. Printing variation
	3.2. Aging effect
	3.3. Sensing uncertainty
	3.4. Dependability-aware training of pNNs

	4. Experiments
	4.1. Experiment setup
	4.2. Ablation study
	4.3. Evaluation
	4.4. Analysis
	4.4.1. Independent analysis
	4.4.2. Joint analysis

	4.5. Discussion

	5. Conclusion
	References




