
Decentralizing Software Identity
Management

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

Oliver Stengele
aus Heidelberg

Tag der mündlichen Prüfung: 22. Mai 2023
Erster Gutachter: Prof. Dr. rer. nat. Hannes Hartenstein
Zweiter Gutachter: Prof. Dr.-Ing. Stefan Tai

This document is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en

This work was supported in part by the German Federal Ministry of Education and Research within
the project KASTEL_ISE in the Competence Center for Applied Security Technology (KASTEL),
by the Helmholtz Association (HGF) via the topic Engineering Secure Systems, and by the German
Federal Ministry for Economic Affairs and Climate Action within the research project Software-
Defined Car (SofDCar).

https://creativecommons.org/licenses/by/4.0/deed.en

The loss of illusions and the discovery of identity,
though painful at first, can be ultimately
exhilarating and strengthening.

Abraham Maslow

Abstract

Software holds a place of crucial importance in various contexts: business, commerce,
industrial control systems, transportation, logistics, communication, and personal use to
name a few. Consequently, it is vital to obtain software with integrity and an explicit
endorsement from their authoritative source, like their developer or publisher. In this work,
we endeavor to make the interaction between software creators and users more secure
through the establishment and use of explicit identities for software. At the most basic level,
a software identity establishes a unique and persistent reference point to which creators of
software can attach and remove information about binaries of their software. The ability
to remove previously released binaries from a software identity enables developers to react
to security-critical bugs or compromise by clearly stating that these binaries should no
longer be used. Users of a particular software can be informed about both revocations and
new releases by monitoring the corresponding software identity and use it to verify the
integrity and endorsement of newly obtained binaries.

Distributed ledger technologies like Ethereum, or Bitcoin before it, appear to be viable
platforms to realize software identities without relying on a centrally trusted provider.
An open peer-to-peer network establishes consensus on a tamper-proof state history, the
eponymous ledger, and provides access to said history on demand. Ethereum is one of the
earliest distributed ledgers to enable smart contracts, programs deployed to a distributed
ledger that establish and manage a uniquely referenceable part of the overall ledger state.
Crucially, the programming of smart contracts determines how, when, and by whom this
substate can be manipulated.

The first research question of this dissertation aims to explore the viability of distributed
ledger technologies to establish, manage, and use software identities. In particular, we
investigate how useful properties for software identity management and use can be derived
from the security properties provided by distributed ledgers in conjunction with further
assumptions.

In addition to using software identities to augment and secure the distribution of software,
we also explore their use as the basis for independent reviews of software releases. Execut-
ing such reviews on distributed ledgers presents a challenge regarding the disclosure of
results. At the time of writing, no distributed ledger offers a corresponding functionality to
both execute a procedure and document as a result that a set of statements were recorded
independently. The second research question we pursue in this work therefore concerns
the realization of such a disclosure mechanism on distributed ledgers based on existing
cryptographic primitives.

i

Abstract

We approach both research questions by designing, implementing, and evaluating cor-
responding decentralized applications on Ethereum as the most prominent instance of
smart-contract-capable distributed ledgers. More specifically, we measure deployment
and execution costs for smart contracts that comprise our decentralized applications to
determine their practical viability. In two instances, we also evaluate computational effort
that arises outside the ledger. We also semi-formally describe how the security properties
of our proof of concept implementations can be derived from the underlying ledger and
further assumptions.

We find Ethereum as an instance of smart-contract-capable distributed ledgers to be a
viable platform for establishing and using software identities, including the aforementioned
independent reviews. As our software identity management concept relies on rather
fundamental properties of distributed ledgers, it should generalize well to systems other
than Ethereum. By contrast, our concept for coordinated information disclosure relies on
support for cryptographic operations on the ledger itself, which limits its generalizability.
The costs to deploy the required smart contracts are significantly higher than the execution
costs in typical use, which informs our recommendation for future work to improve
the reusability of deployed contract instances. Regarding the coordinated disclosure
of independently generated statements on a distributed ledger, we achieve overall cost
reductions of 20–40% compared to related work by exploiting differing cryptographic
requirements. Our approach to realizing coordinated information disclosure on Ethereum
relies on elliptic curve operations which, while sufficient, are rather limited at the time of
writing. As such, our work adds to the rationale for expanding the set of supported elliptic
curve in the future development of Ethereum.

ii

Zusammenfassung

Software ist in unterschiedlichsten Bereichen von größter Wichtigkeit: Wirtschaft, Han-
del, Industrielle Steueranlagen, Transport, Logistik, Kommunikation, sowie im privaten
Gebrauch um nur einige Beispiele zu nennen. Es ist entsprechend unverzichtbar, Software
mit Integrität und einer expliziten Befürwortung durch den jeweiligen Entwickler oder
Herausgeber zu beziehen. In dieser Arbeit verfolgen wir das Ziel, die Interaktion zwischen
Erstellern und Nutzern von Software durch die Etablierung und Nutzung von expliziten
Identitäten für Software weiter abzusichern. Eine Softwareidentität etabliert in erster Linie
einen eindeutigen und persistenten Bezugspunkt an den Softwareersteller Informationen
zu Binärdateien ihrer Software anhängen und entfernen können. Die Möglichkeit zuvor
veröffentlichte Binärdateien aus einer Softwareidentität zu entfernen erlaubt Entwicklern
auf sicherheitskritische Fehler oder Kompromittierungen zu reagieren, indem sie klar kom-
munizieren, dass bestimmte Binärdateien nicht länger verwendet werden sollten. Nutzer
einer Software können über solche Widerrufe oder neue Versionen informiert werden,
indem sie die entsprechende Softwareidentität beobachten über die sie dann auch die
Integrität und Befürwortung von heruntergeladenen Binärdateien überprüfen können.

Distributed Ledger Technologien wie Ethereum oder zuvor Bitcoin scheinen taugliche
Plattformen für die Umsetzung von Softwareidentitäten zu sein, ohne dabei auf zentrale
Anbieter vertrauen zu müssen. Ein offenes Peer-to-Peer Netzwerk etabliert einen Konsens
über einen manipulationsgeschützten Zustandsverlauf, der namensgebende Ledger, und
ermöglicht Zugriff auf selbigen. Ethereum ist einer der ersten Distributed Ledger, der
sogenannte Smart Contracts ermöglicht. Dabei handelt es sich um Programme, die auf
einem Distributed Ledger installiert und ausgeführt werden und damit einen eindeutig
referenzierbaren Teil des Ledgerzustandes etablieren und verwalten. Einzig und allein die
Programmierung eines Smart Contracts bestimmt darüber, wer den Teilzustand wann und
wie verändern kann.

Die erste Forschungsfrage dieser Dissertation zielt auf die Tauglichkeit von Distributed
Ledger Technologien hinsichtlich der Etablierung, Verwaltung, und Nutzung von Softwarei-
dentitäten ab. Insbesondere untersuchen wir, wie nützliche Eigenschaften für Softwareiden-
titätsmanagement und -nutzung von den Sicherheitseigenschaften des zugrundeliegenden
Distributed Ledgers und weiteren Annahmen abgeleitet werden können.

Neben der Verwendung von Softwareidentitäten zur weiteren Absicherung der Software-
distribution untersuchen wir außerdem ihre Nutzbarkeit als Grundlage für unabhängige
Begutachtungen von Softwareversionen. Die Durchführung solcher unabhängigen Be-
gutachtungen mittels Distributed Ledgern führt unweigerlich zu einer Herausforderung
hinsichtlich der koordinierten Offenlegung der Ergebnisse. Zum Zeitpunkt der Abfassung

iii

Zusammenfassung

dieser Arbeit bietet kein Distributed Ledger eine entsprechende Funktionalität, um die
Erstellung einer Menge unabhängig erstellter Aussagen zu unterstützen oder zu dokumen-
tieren. Die zweite Forschungsfrage dieser Arbeit befasst sich deshalb mit der Umsetzung
eines Offenlegungsmechanismus für Distributed Ledger basierend auf bestehenden kryp-
tografischen Primitiven.

Wir behandeln beide Forschungsfragen, indem wir entsprechende dezentrale Anwen-
dungen konzipieren, implementieren, und evaluieren. Wir nutzen dabei Ethereum als
prominentestes Exemplar eines Smart-Contract-fähigen Distributed Ledgers. Genauer
gesagt messen wir die Installations- und Ausführungskosten jener Smart Contracts, die
für unsere dezentralen Anwendungen nötig sind, um ihre praktische Tauglichkeit zu
bestimmen. In zwei Fällen ermitteln wir außerdem den Rechenaufwand, der abseits des
Ledgers anfällt. Wir zeigen zudem semi-formal, wie die Sicherheitseigenschaften unserer
Proof of Concept Implementierung von dem zugrundeliegenden Distributed Ledger und
weiteren Annahmen abgeleitet werden können.

Wir kommen zu dem Ergebnis, dass Ethereum stellvertretend für Smart-Contract-fähige
Distributed Ledger eine taugliche Plattform für die Umsetzung von Softwareidentitäten
ist, inklusive der zuvor angemerkten unabhängigen Begutachtungen. Da unser Konzept
des Softwareidentitätsmanagements auf eher grundlegenden Eigenschaften von Distribu-
ted Ledgern fußt sollte es sich gut auf andere Systeme übertragen lassen. Im Gegensatz
dazu erfordert unser Konzept für einen Offenlegungsmechanismus die Unterstützung
von bestimmten kryptografischen Operationen auf dem verwendeten Ledger, was die
Übertragbarkeit entsprechend einschränkt. Die Kosten für die Installation der nötigen
Smart Contracts sind signifikant größer als die Ausführungskosten im typischen Gebrauch,
weshalb wir für zukünftige Arbeit empfehlen, die Wiederverwendbarkeit von installierten
Smart Contract Instanzen zu verbessern. Bei der koordinierten Offenlegung von unab-
hängig erstellten Aussagen auf einem Distributed Ledger erzielen wir eine Reduktion der
Gesamtkosten von 20–40% im Vergleich zu verwandter Arbeit, indem wir unterschiedliche
kryptografische Anforderungen ausnutzen. Unser Ansatz um eine koordinierte Offenle-
gung auf Ethereum zu erzielen stützt sich auf Elliptische-Kurven-Operationen die, obwohl
ausreichend, zum aktuellen Zeitpunkt sehr eingeschränkt sind. Entsprechend trägt unsere
Arbeit einen weiteren Grund für die Erweiterung der unterstützten elliptischen Kurven
im Zuge der Weiterentwicklung von Ethereum bei.

iv

Contents

Abstract . i

Zusammenfassung . iii

List of Figures . vii

List of Tables . ix

1. Introduction . 1
1.1. Contributions . 4
1.2. Thesis Outline . 7

2. Fundamentals . 9
2.1. Software Identity Management . 9
2.2. Smart Contract-Capable Distributed Ledger Technologies at the Example

of Ethereum . 13
2.2.1. Network Layer: Peer-to-Peer Network 14
2.2.2. Data Layer: Blockchain . 15
2.2.3. Consensus Layer: Transactions, Fees, and Mining 16
2.2.4. Application Layer: Smart Contracts 18
2.2.5. Distributed Ledgers as Logical Clocks 20

2.3. Decentralized Off-Chain Storage Systems 21

3. Palinodia: Software Identity Management on Ethereum 23
3.1. Problem Statement . 23
3.2. Related Work . 24
3.3. System Model . 25

3.3.1. Roles . 26
3.3.2. Attacker and Trust Model . 27

3.4. Palinodia . 28
3.4.1. On-Chain: Smart Contracts . 28
3.4.2. Off-Chain: Palinodia Client . 34

3.5. Evaluation . 35
3.5.1. Gas Costs & Performance . 36
3.5.2. Security Considerations . 38

3.6. Discussion . 40
3.6.1. Limitations & Future Work . 42

v

Contents

4. ETHTID: Threshold Information Disclosure on Ethereum 45
4.1. Problem Statement . 45
4.2. Related Work . 47
4.3. Fundamentals . 49

4.3.1. Notation & Number Theory . 50
4.3.2. Distributed Key Generation & Threshold Sharing 50

4.4. System Model & Assumptions . 53
4.4.1. Roles . 53
4.4.2. Attacker and Trust Model . 55

4.5. ETHTID . 56
4.5.1. Overview . 56
4.5.2. Phase Structure . 57
4.5.3. Optimizations . 66

4.6. Evaluation . 67
4.6.1. Gas Costs & Performance . 68
4.6.2. Security Considerations . 71

4.7. Discussion . 72
4.7.1. Limitations & Future Work . 74

5. ETHDPR: Decentralized Public Review and Attestation of Software Attribute
Claims on Ethereum . 77
5.1. Problem Statement . 77
5.2. Related Work . 79
5.3. System Model . 80

5.3.1. Roles . 80
5.3.2. Attacker and Trust Model . 81

5.4. ETHDPR . 82
5.4.1. Illustrative Example . 87

5.5. Evaluation . 90
5.5.1. Gas Costs & Performance . 91
5.5.2. Functional & Security Considerations 94

5.6. Generalization . 97
5.7. Discussion . 98

5.7.1. Limitations & Future Work . 99

6. Discussion & Conclusion . 101
6.1. Conclusion . 107

Bibliography . 109

A. Appendix . 117

vi

List of Figures

1.1. Overall Goal . 3
1.2. Contributions Overview . 4

2.1. DLT Layers . 13
2.2. Smart Contract structure . 19

3.1. Access Control Hierarchy . 26
3.2. Palinodia Overview . 28
3.3. Software contract . 29
3.4. Binary Hash Storage contract . 31
3.5. Identity Management contract . 33

4.1. TID Cryptography Overview . 52
4.2. ETHTID System Overview . 54
4.3. ETHTID Sequence Diagram . 58
4.4. ETHTID council member state . 58
4.5. ETHTID Registration . 60
4.6. ETHTID Shadow Distribution . 61
4.7. ETHTID Dispute . 62
4.8. NIZK Proof . 63
4.9. NIZK Proof Verification . 63
4.10. ETHTID Share Distribution . 65
4.11. Costs of distribute_shadows, generate_e, and submit_dispute 69
4.12. Cost comparison between EthDKG and ETHTID 70

5.1. ETHDPR Overview . 81
5.2. ETHDPR Component Interaction Diagram 83
5.3. Simplified ECIES . 84
5.4. Artifact Relations . 85
5.5. Generalization of ETHDPR . 96

A.1. ETHTID pseudocode 1 . 118
A.2. ETHTID pseudocode 2 . 119

vii

List of Tables

3.1. Interface of SW contract . 30
3.2. Interface of BHS contract . 32
3.3. Interface of IDM contract . 33
3.4. Costs of Palinodia contract deployment and use 36
3.5. Performance of Palinodia client and Geth . 37

4.1. Notation Overview . 57
4.2. Interface of ETHTID contract . 59
4.3. Costs of functions independent of threshold and council size 68
4.4. Regression analysis for scaling costs in ETHTID 69

5.1. Costs of publishing CIDs . 91
5.2. Cost overview of integration . 92
5.3. Time of review decryption . 93

ix

1. Introduction

Information technology had and continues to have a profound impact on human society at
a global scale. In conjunction with the Internet, computers in the form of laptops, servers,
smartphones, or tablets, and particularly the software that runs on them, have expanded the
capabilities of humans to communicate, collaborate, and accomplish a wide variety of tasks.
Consequently, software in general has attained critical importance for individuals as well
as businesses and governments, as frequent cyberattacks1 demonstrate. The relationship
between creators and users of software, and specifically the task of ensuring that software
in use is both genuine and secure, is becoming increasingly important.

For the purpose of this work, any particular software can be understood as a collection
of digital objects, i.e. executable binaries, created by a developer for specific execution
environments like operating systems and device types. Software in active development
changes over time with the release of updates as features are added and mistakes are
corrected, leading to new binaries being added to such a collection. For each software, a
corresponding developer acts as an authoritative figure by expressing in some way which
binaries belong to it. In this work, we introduce the notion of explicit software identities to
clarify the affiliation between various binaries of a given software across both versions
and target platforms. Essentially, a software identity establishes a unique reference point
that remains constant even as the software evolves through continual development and
new binaries of it are released.

As software is created by individuals or small groups of developers but can potentially be
used by millions of users, a peculiar and very asymmetric trust relation can form. By using
a software, users implicitly trust its creators to not have included malicious or destructive
functionality, for example. Likewise, a responsible software developer should be interested
in protecting users of their software from risks by informing them of security-critical
updates, for example. In recent years, supply-chain attacks in particular have demonstrated
the need for a reliable way to inform users of a given software version to perform updates
or take other actions.2 With commercial software, developers may be able to contact their
customers directly in such cases. But particularly for freely available open-source software,
direct contact between developers and users may not be possible or reliable, thus impeding
emergency communications.

1 For example, in May 2021, a major fuel pipeline in the U.S. had to be shut down due to a ransomware
attack: https://edition.cnn.com/2021/05/08/politics/colonial-pipeline-cybersecurity-attack/

2 In September 2017, a version of the popular Windows maintenance utility CCleaner was surreptitiously
infected with a Trojan horse malware which spread to 2.27 million systems: https://blog.avast.com/
update-to-the-ccleaner-5.33.6162-security-incident

1

https://edition.cnn.com/2021/05/08/politics/colonial-pipeline-cybersecurity-attack/
https://blog.avast.com/update-to-the-ccleaner-5.33.6162-security-incident
https://blog.avast.com/update-to-the-ccleaner-5.33.6162-security-incident

1. Introduction

Large IT companies like Microsoft, Apple, or Google employ infrastructure to ensure
that users obtain software and updates with authenticity and integrity. In 2009, the
decentralized cryptocurrency Bitcoin demonstrated how an open and dynamic group of
mutually distrustful parties can indeed establish and maintain consensus over an append-
only data structure later coined a blockchain. The following years saw the rise of numerous
variations and iterations of the distributed ledger concept that Bitcoin pioneered, which are
nowadays collectively referred to as distributed ledger technologies (DLT). One such iteration
is Ethereum which was proposed in 2013 by Vitalik Buterin as a more general blockchain-
based platform for decentralized applications and started operations in 2015. As public
infrastructure that is not under the control of any single authority but available to everyone
for the publication and retrieval of information, Ethereum presents an opportunity for
developers to establish and manage identities of their software through stateful programs
recorded on the Ethereum blockchain called smart contracts. Additionally, systems like
Ethereum could also serve as a platform to conduct and document review processes for
software releases in order to potentially discover bugs and mistakes or to attest verified
attributes of the software before its wide-spread deployment. In this way, data related to
these software identities can be stored in a highly available, uniquely referenceable, and
tamper-resistant manner that does not rely on a centralized trusted third party.

Existing approaches to ensuring the authenticity, integrity, and creator endorsement of
software binaries that rely on a public key infrastructure (PKI) exhibit shortcomings,
particularly regarding the persistence, timeliness, and efficacy of revocations [48, 49].
Likewise, work on software certification [46, 71] focuses more on the certification process
itself and less on how certification results can be attached to software or retreived after-
wards. Denney [23] and Heck [41] note in their work the relevance of establishing such
links. With software identity management, we aim to contribute a possible solution to
both of the above issues by enabling precise revocations for binaries and establishing a
persistent point of reference across binaries. By utilizing distributed ledgers as the basis for
software identity management, we avoid depending on centralized providers or repository
managers that have been the victims of attacks [67] and deceits3.

As many other IT platforms, Ethereum has a symbiotic and bidirectional relationship
with applications: Only through varied and useful applications does the platform thrive
and grow, whereas without a platform, applications would not be possible. Just like
the capabilities of the platform inform what applications can be built upon it, so too
can the demands of applications inform the future development of the platform. In this
dissertation, we aim to contribute to both halves of this feedback loop by exploring the
current capabilities of Ethereum at the use case of identity management and subsequent
review of software as depicted in Figure 1.1 while also deriving recommendations for the
future development and operation of Ethereum from the gained insights. More specifically,
our goal is to secure the distribution of software against malicious actors by ensuring
the authenticity, integrity, and creator endorsement of binaries via a distributed ledger.

3 In 2017, a fraudulent application disguised as an update to the widely-used messenger WhatsApp was
published to Google’s Play Store and downloaded by millions of users: https://www.zdnet.com/article/
fake-whatsapp-app-fooled-million-android-users-on-google-play-did-you-fall-for-it/

2

https://www.zdnet.com/article/fake-whatsapp-app-fooled-million-android-users-on-google-play-did-you-fall-for-it/
https://www.zdnet.com/article/fake-whatsapp-app-fooled-million-android-users-on-google-play-did-you-fall-for-it/

1. Introduction

Review
Process

Maintainer

Software

Attr A
Attr B
Attr C

Attribute
Claims

Attr A
A'r B
Attr C

Binary with
verified Attributes

Decentralized Platform

Claimant

Figure 1.1.: The overall goal of our work is to support identity management, review, and attribute bindings
for software binaries via decentralized platforms. While identity concepts for human actors (developers,
claimants, reviewers) are well-known, we introduce explicit identities for software and its binaries to facilitate
their review and make resulting attributes usable to end-users.

Furthermore, we endeavor to show the usefulness of software identities by conducting
and documenting review processes on a distributed ledger to attach decentrally verified
attributes concerning functionality or security characteristics to individual binaries of a
software.

With decentralized consensus systems like Ethereum, a new area of research around their
properties, capabilities, and limitations has opened up. Over the next decades, currently
existing or future decentralized systems could rise to broader adoption by layperson users
and become part of everyday digital life, much like the Internet in general is today. While
it is outside the scope of this work to fully explore the long-term societal ramifications of
such systems, we endeavor to contribute to answering overarching questions through the
examination of a particular use case:

Can distributed ledger technologies enable the establishment, management, and
use of software identities for the purpose of secure software distribution without a
trusted third party?

Once we realized a software identity management system on Ethereum, we aimed to
enable and log an independent review of software releases on Ethereum as well. However,
this revealed a new problem: The process of recording transactions on the Ethereum
blockchain is not designed to facilitate a coordinated publication of multiple transactions.
Yet, such a mechanism is necessary in order to enable reviewers to record their independent
assessments of a software release and tomake the disclosure process transparent afterwards.
Thus, the second research question of this dissertation is as follows:

3

1. Introduction

Palinodia
• Establishes software identities
• Enables verifiable linking and

unlinking of binaries to and
from software identities

• Allows users to monitor the
endorsement status of binaries

ETHTID
• Provides temporally decoupled

asymmetric key pair
• Enables coordinated disclosure

of independent statement on
Ethereum

• Logs process for later inspection

ETHDPR
• Facilitates independent reviews

of software releases
• Enables reviewers to show

their contributions
• Allows monitoring of review

submissions

Figure 1.2.: Overview of the three main contributions of this dissertation. Palinodia enables software
developers to establish and manage software identities. ETHTID facilitates a coordinated disclosure of
independent statements on Ethereum through a temporally decoupled asymmetric key pair. ETHDPR
combines Palinodia software identities and the ETHTID disclosure mechanism to perform and record
reviews of software releases.

Can distributed ledger technologies support cryptographic protocols to achieve
a coordinated disclosure of independent statements on a public ledger without a
trusted third party?

1.1. Contributions

The primary contributions of this dissertation address the aforementioned research ques-
tions in three parts as depicted in Figure 1.2.

Palinodia We design, implement, and evaluate a software identity management system
on Ethereum to empirically determine its feasibility and highlight potential improvements
in the operations of Ethereum. We cover both the part of software developers who establish
and manage software identities through smart contracts as well as the part of users who
wish to obtain data from said contracts in order to validate downloaded binaries before and
during their use. By enabling developers to both publish and revoke individual binaries of
their software on-chain and by enabling users to reliably retrieve this data, we secure the
software distribution process proactively against malicious actors and reactively against
security-relevant bugs. We recognize the importance of access control to this use case and
demonstrate that Ethereum smart contracts serve not only as referenceable data stores
but also as reliable access control mechanisms.

4

1.1. Contributions

ETHTID Independent of our concrete use case below, we define the coordinated disclo-
sure problem and introduce one possible solution via threshold information disclosure by
transferring well-established cryptographic mechanisms to Ethereum smart contracts. A
council of configurable size is tasked via an Ethereum smart contract with the distributed
generation of a temporally decoupled asymmetric key pair: An encryption key is gener-
ated in the present but the corresponding decryption key is held in a threshold-shared
form and only recovered and published at a specified time in the future. Such a key pair
can be used to publish independently generated statements in encrypted form that only
become readable once the corresponding decryption key is published. We evaluate our
implementation regarding scalability in the size of the council versus overall execution
costs and expose fundamental limits and problems with such decentralized procedures. By
carefully analyzing the cryptographic requirements of our approach and applying corre-
sponding optimizations, we are able to reduce the execution costs of our implementation
significantly compared to previous work. While we developed ETHTID to realize our next
contribution, it might be of independent interest to other smart contract applications.

ETHDPR Lastly, we integrate Palinodia and ETHTID to enable a decentralized public
review of software releases on Ethereum. By attaching a list of verification tasks to
a software release in addition to an ETHTID instance for scheduling, a developer can
initiate a time-bounded review process by volunteers. Each reviewer can perform the
requested verification tasks to the best of their abilities and available tools and log their
structured results in encrypted form on the Ethereum blockchain with references to both
the software release in question and the ETHTID instance for eventual disclosure. Through
a coordinated disclosure and the permanence of the resulting record, reviewers are placed
under a mutual competitive pressure to perform their verification tasks accurately and
thoroughly. Conversely, the logged results can be compared post-disclosure and thus
serve as documentation for the performed verification independent of whether or not an
unexpected discovery was made.

Methodology We tackle the aforementioned research questions by designing, imple-
menting4, and evaluating prototypical systems to demonstrate the viability of distributed
ledgers for the use case of software identity management and coordinated software review.
In the latter case, we overcome a functional limitation of our chosen platform in order
to achieve our stated goals. In this way, we show the usefulness of decentralized plat-
forms and how certain shortcomings can be overcome without sacrificing decentralization.
By necessity, we also contribute to the development of a methodology to determine the
practical feasibility of smart contract applications on Ethereum. In particular, as some of
our implementations consist of smart contracts on-chain and clients running off-chain,
we adopt a dual evaluation methodology for these execution environments. In this way,

4 Our implementations are available as a git repository: https://git.scc.kit.edu/dsn-projects/

dissertations/dsim/

5

https://git.scc.kit.edu/dsn-projects/dissertations/dsim/
https://git.scc.kit.edu/dsn-projects/dissertations/dsim/

1. Introduction

we hope to make this emerging and evolving execution environment for decentralized
applications more accessible to the wider scientific community.

Software Identity Concept As a necessary part of our work, we also contribute to the
general concept of identity management for software and thereby enable further research
and development on this subject, which we believe to be of increasing importance. While
our work was enabled and to some extent informed by the emergence of decentralized
platforms, we argue that the concept of software identities has existed implicitly before
then. In this work, we provide an explicit concretization of what software identities require
and enable.

Parts of the contributions of this dissertation have been published in the following previous
works:

• O. Stengele and H. Hartenstein. Atomic information disclosure of off-chained com-
putations using threshold encryption. In International Workshop on Cryptocurrencies
and Blockchain Technology (CBT), 2018, pages 85–93, 2018. [83]

• O. Stengele, A. Baumeister, P. Birnstill, and H. Hartenstein. Access control for binary
integrity protection using Ethereum. In Proceedings of the 24th ACM Symposium on
Access Control Models and Technologies (SACMAT), pages 3–12, 2019. [85]

• O. Stengele, J. Droll, and H. Hartenstein. Practical trade-offs in integrity protection for
binaries via Ethereum. In Proceedings of the 21st International Middleware Conference
Demos and Posters, pages 9–10, 2020. [82]

• J. Schiffl, M. Grundmann, M. Leinweber, O. Stengele, S. Friebe, and B. Beckert.
Towards correct smart contracts: A case study on formal verification of access
control. In Proceedings of the 26th ACM Symposium on Access Control Models and
Technologies (SACMAT), pages 125–130, 2021. [78]

• S. Friebe, O. Stengele, H. Hartenstein, and M. Zitterbart. Coupling smart contracts:
A comparative case study. In 3rd Conference on Blockchain Research & Applications
for Innovative Networks and Services (BRAINS), pages 137–144, 2021. [34]

• O. Stengele, M. Raiber, J. Müller-Quade, and H. Hartenstein. ETHTID: Deployable
threshold information disclosure on Ethereum. In Third International Conference on
Blockchain Computing and Applications (BCCA), pages 127–134, 2021. [86, 87]

• O. Stengele, C. Westermeyer, and H. Hartenstein. Decentralized review and at-
testation of software attribute claims. In IEEE Access, vol. 10, pages 66694–66710,
2022. [84]

6

1.2. Thesis Outline

1.2. Thesis Outline

The remainder of this dissertation is structured as follows. In Chapter 2, we review fun-
damental concepts pertaining to Palinodia and ETHDPR. More specifically, we present a
definition of software identities and give a historic review of implicit software identity
management in various systems and contexts. We also elaborate on the components and
construction of distributed ledgers at the example of Ethereum as the main environment
for our implementations. In Chapter 3, we present Palinodia, our concept and imple-
mentation of a software identity management system on Ethereum. We also present a
user client application to retrieve and use the information contained in Palinodia smart
contracts. In Chapter 4, we introduce the coordinated disclosure problem independent
of our later use case and present ETHTID, our concept and implementation of threshold
information disclosure on Ethereum, as one possible approach to solve it. We provide
separate fundamentals on number theory and threshold secret sharing in this chapter that
underpin the construction of ETHTID. In Chapter 5, we integrate Palinodia and ETHTID
into ETHDPR, a decentralized public review system for attribute claims of software bi-
naries via Ethereum. We also provide a modularized generalization of our construction
to aid in future improvements and extensions. We open Chapters 3 to 5 with dedicated
problem statements before examining work related to their respective contributions, and
provide system models and assumptions for the decentralized applications they cover. The
evaluation of Palinodia, ETHTID, and ETHDPR in their respective chapters consists of
a quantitative measurement of on-chain deployment and execution costs and off-chain
effort as well as a qualitative semi-formal security evaluation. In Chapter 6, we discuss
our results and their generalizability in relation to the aforementioned research questions.
We then further discuss a Sybil problem that arises in Chapters 4 and 5 and potential ways
to address it. Furthermore, we highlight two avenues to expand the concept of software
identities and briefly explore what impact planned updates to Ethereum could have on the
decentralized applications presented in this dissertation.

7

2. Fundamentals

Software has a remarkable position in modern society. In a sense, each software as a
collection of digital objects, i.e. executable binaries, constitutes one logical tool in multiple
distinct but related forms. Similar to physical tools, software is designed and crafted
by one or more individuals but unlike physical tools, software is easily duplicated and
disseminated around the globe. Consequently, it is no surprise that software of all kinds
has attained critical importance on an individual, governmental, economic, and societal
level.

In this chapter, we introduce concepts that are fundamental to our contributions. Specif-
ically, we introduce the notion of software identity management and supplement an
intuitive understanding with historic examples. At the example of Ethereum, we describe
the components and constructions of distributed ledgers. Our contribution in Chapter 4
relies on threshold secret sharing, which we introduce separately in said chapter. Lastly,
our contributions in Chapter 3 and Chapter 5 make use of off-chain data storage, which
we introduce at the end of this chapter with a particular emphasis on the InterPlanetary
File System, since we use it as a stand-in.

2.1. Software Identity Management

The term “software” encompasses a wide range of objects in both scope and complexity.
From small command line programs and graphical desktop applications to entire software
suites or the operating systems necessary to use them, to massive software projects present
in modern day cars or planes. The concept of software identity we propose in this work
deals with this scope by focusing on software distribution and inventory. As long as a
software release has a well-defined binary representation that can be passed through a
cryptographic hash function, the software identity management concept presented in this
work is amenable to it. Dependencies on runtime environments like shared libraries could
also be made explicit through separate software identities, a point we discuss further in
Chapter 6.

In a very broad sense, the philosophical meaning of identity is the relation any object has
only with itself, and conversely, what distinguishes objects from each other. Software,
particularly when actively developed, presents interesting challenges to this concept both
within and across versions. For example, the source code of a particular software version
can be compiled into a plethora of distinct binaries due to compiler options or target
platform, but functionally and semantically, all those binaries are still “the same software”,

9

2. Fundamentals

just different expressions of it. Similarly, the same software can exist in multiple versions
due to bug fixes or feature improvements, in which case such binaries are also functionally
distinct. To deal with these issues, we regard software identities as meta constructs to
which individual binaries are attached through authoritative sources, namely software
creators.

The process of establishing a software identity, attaching and detaching binaries to and
from it, and eventually decommissioning a software identity was already anticipated
in the general identity management framework by the International Organization for
Standardization and International Electrotechnical Commission (ISO/IEC) joint technical
committee [44]. We reprint excerpts from the standard ISO/IEC 24760-1:20191 here for
convenience, starting with the definition of an entity:

entity

item relevant for the purpose of operation of a domain that has recognizably
distinct existence

Note 1 to entry: An entity can have a physical or a logical embodiment.

EXAMPLE A person, an organization, a device, a group of such items,
a human subscriber to a telecom service, a SIM card, a passport, a network
interface card, a software application, a service or a website.

Software takes the role of entity for which we establish both an overarching identity and
partial identities in the form of attached binaries. An identity is defined as:

identity
partial identity

set of attributes related to an entity

[. . .]

In Chapter 5, we also enrich partial software identities with attributes, much like the
standard ISO/IEC 24760-1:2019 allows:

identity management
IDM

processes and policies involved in managing the lifecycle and value, type and
optional metadata of attributes in identities known in a particular domain

Note 1 to entry: In general identity management is involved in interactions
between parties where identity information is processed.

Note 2 to entry: Processes and policies in identity management support the
functions of an identity information authority where applicable, in particular

1 At the time of writing, this standard is publicly available: https://standards.iso.org/ittf/

PubliclyAvailableStandards/index.html

10

https://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
https://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

2.1. Software Identity Management

to handle the interactions between an entity for which an identity is managed
and the identity information authority.

In Chapter 3, we assign the role of identity information authorities to the developers and
maintainers of a given software.

For the purpose of this work, we decompose the identity of a software into three aspects: It
must provide a unique reference, ensure the integrity of attached binaries, and document
the endorsement of binaries by the respective software creator. These aspects stand in a
tight relation to each other: Without a unique reference to a specific software, both the
protection of integrity and the endorsement of an authoritative party make little sense.
Without integrity protection, both the reference and the endorsement could be applied to
a maliciously altered version of a software. And lastly, without an explicit endorsement
by the respective software creator, any statement about a particular software becomes
worthless, since it no longer has to even be the same software. This last hypothetical also
serves as a concise motivation for the importance of access control for software identity
management.

Over the past fifty years of software creation and distribution, authenticity has been a
prominent goal, although the perspective on the matter has shifted: In the early years,
piracy was a significant problem for software creators, whereas consumers were willing
to accept risks of using inauthentic and oftentimes modified versions of software, since
personal computers had not risen to the level of importance they hold today. Nowadays,
consumers have a vested interest in protecting their IT systems from harm or compro-
mise. As a consequence, software users today pay more attention to the authenticity and
legitimacy of software they use. Note that both of these cases relate back to the notion
of software identity management as we address it in this work. However, despite its
relevance, the management of software identities has gone mostly implicit as solutions
arose incidentally in the way software distribution evolved over time.

While software was distributed on physical media, software identity management was
straightforward, at least in theory: With CDs and DVDs being read-only, the integrity of
the software in question was protected incidentally. Similarly, packaging and distribution
chains through brick-and-mortar stores provided a clear endorsement by the authoritative
software creator. Through inventory numbers, a generally low number of available
software, and trademark law, unique referencing was also handled. However in practice,
illegitimate versions of commercial software were created and distributed through the
circumvention of copyright protection mechanisms. Such pirated copies were considered
“the same software” by most users but were certainly not endorsed by the respective
developers.

A more modern context in which software identities are established and managed inciden-
tally or out of necessity are repositories. For example, the Comprehensive TEX Archive
Network (CTAN)2 is a repository of TeX packages, each of which have a unique, human

2 https://www.ctan.org/

11

https://www.ctan.org/

2. Fundamentals

readable name as their identifier, like cleveref, amsmath, or pgfplots. In this case, a cen-
tralized repository manager ensures unique names or identifiers for software and an access
control scheme ensures that only software and updates endorsed by the authoritative
creator are published under the respective identifier. Integrity of downloaded software can
be ensured through cryptographic means like digital signatures or securely distributed
hash fingerprints. It is important to note that a repository manager represents a centralized
trusted third party. One goal of our work is to establish software identity management
akin to repositories without such a centralized party.

With the proliferation of Internet connectivity, especially broadband, throughout the
2000s, digital distribution platforms for software increased in popularity as well. Notable
examples include Valve’s Steam platform, the iOS and Mac App Store for mobile and
desktop Apple devices respectively, Google’s Play Store, and the Microsoft Store. Like
repositories, these platforms also implement a form of software identity management out
of necessity. Being more consumer-facing than repositories, digital software distribution
platforms also include a convenient update mechanism for software. As with repositories,
a platform maintainer represents a centralized party with the ability to block updates or
completely remove any software. In recent years, there have been somewhat successful
attempts at impersonating developers and then circulating bogus applications on these
platforms for monetary gain3.

Another context in which software identities play a significant role are trusted platform
modules (TPMs) and more recently trusted execution environments (TEEs) like Intel’s
Software Guard Extensions (SGX)4 or Keystone5. Broadly speaking, both TPMs and
TEEs consist of hard- and software components to provide a secure environment for the
execution of software. TPMs are used to establish a secure boot chain within a local system
whereas TEEs are used particularly in remote and otherwise untrusted systems. Both
technologies share the goal of achieving dependable and secure software functionality
through cryptographic protocols executed in isolated and trusted hardware. For TPMs and
in certain use cases of TEEs, a central aspect of their functionality is to verify that the right
software is running. The ability to verify that a certain piece of software is running leaves
open the external software identity management problem to determine which software is
deemed correct by its authoritative creator. In this way, our work can complement and
support certain use cases of TPMs and TEEs without relying on an additional trusted third
party.

3 In 2017, a fraudulent application disguised as an update to the widely-used messenger WhatsApp was
published to Google’s Play Store and downloaded by millions of users: https://www.zdnet.com/article/
fake-whatsapp-app-fooled-million-android-users-on-google-play-did-you-fall-for-it/

4 https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/

overview.html
5 https://keystone-enclave.org/

12

https://www.zdnet.com/article/fake-whatsapp-app-fooled-million-android-users-on-google-play-did-you-fall-for-it/
https://www.zdnet.com/article/fake-whatsapp-app-fooled-million-android-users-on-google-play-did-you-fall-for-it/
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://keystone-enclave.org/

2.2. Smart Contract-Capable Distributed Ledger Technologies at the Example of Ethereum

Network Layer

Data Layer

Consensus Layer

Application Layer

Peer-to-Peer Network

Blockchain

Proof of Work

Smart Contracts

Figure 2.1.:DLT layer structure with corresponding components of Ethereum at the time of writing. Network
layer forms the basis of communication; data layer defines the replicated data structure of the ledger;
consensus layer resolves disagreements and ensures consistency of the ledger across replicas; application
layer provides the desired overall functionality of the ledger.

2.2. Smart Contract-Capable Distributed Ledger
Technologies at the Example of Ethereum

With the concept of software identity management as described above, we turn to smart
contract-capable distributed ledger technologies as the primary means to realize a decen-
tralized software identity management system. We focus our description on Ethereum, as
it is the most prominent public and permissionless smart contract platform at the time
of writing and thus the one we chose for our implementations. However, the general
structure we present here has since established itself across multiple DLTs.

After Bitcoin [62] prominently demonstrated the viability of a permissionless consensus
system with a distributed public ledger as its core data structure in 2009, Vitalik Buterin
proposed Ethereum [17] as a more general platform for decentralized applications in
2013. Since then, Bitcoin and Ethereum have grown as both a technological and economic
phenomenon with their respective cryptocurrencies reaching market caps in the billions
and trillions of US dollars6. With the term “Ethereum”, we henceforth refer to the Ethereum
mainnet both as a concept and as a concrete implementation, depending on context. This
distinction is necessary as anyone can start a distributed ledger that is functionally identical
to the Ethereum mainnet. Indeed, a primary evaluation tool for our work is to spin up an
entirely local instance of an Ethereum blockchain to execute transactions.

Like many DLTs, Ethereum can be structured into four layers as depicted in Figure 2.1. All
layers will be described in more detail in the following subsections, but due to their tight
coupling and mutual dependencies, a brief introduction is provided for orientation.

6 https://coinmarketcap.com/historical/20211017/

13

https://coinmarketcap.com/historical/20211017/

2. Fundamentals

The main goal of Ethereum as a whole is to establish one public, deterministic “world
computer”, also known as a replicated state machine. The state in question is replicated
across nodes in an open peer-to-peer network where nodes can join and leave at any
time. In order to handle the (re)joining of nodes, the state history is organized as a
blockchain which is replicated across all nodes and provided to newly joined nodes on
demand. Through its linear arrangement of blocks containing user requests in the form
of transactions, a blockchain allows anyone to replay and verify the state evolution from
the beginning, i.e. the genesis block, or from the last block they processed. A consensus
mechanism ensures that the entire network agrees on exactly one state history by resolving
conflicts that can emerge in the most recent state transitions. Due to the structure of a
blockchain, consensus on the most recent blocks also implies consensus on the state history
up to this point, thereby giving past transactions a high degree of permanence. Lastly,
users interact with this world computer through transactions that can deploy stateful
programs in the form of smart contracts or interact with them. Through the underlying
layers, particularly the consensus mechanism, smart contracts can mediate processes
between mutually distrustful parties as no single party can exert meaningful control over
the ledger as a whole or a contract in particular beyond what it was programmed to do.

It is important to note that Ethereum remains in active development and, due to the nature
of static documents, the description given here can only serve as a snapshot. Changes to
the Ethereum protocol that impact its blockchain are grouped together into so called hard
forks. In this work, we limit our view to the “London” hard fork that went live in August
2021. We note some changes to Ethereum that were applied since then in the following
subsections and how they relate to our work.

2.2.1. Network Layer: Peer-to-Peer Network

The most fundamental layer of Ethereum is an open peer-to-peer network of nodes
running an Ethereum client. At the time of writing, Ethernodes7 and the node tracker
of Etherscan8 report around 3000 nodes on the main Ethereum peer-to-peer network,
albeit with somewhat different country distributions. The primary task of this peer-to-
peer network is to replicate, maintain, and make available the blockchain in addition
to supporting both the consensus and application layer. To this end, nodes propagate
transactions meant to alter the world state in some way which are then grouped together
into new blocks in the consensus layer before being appended to the blockchain in the
data layer. Since this is an open network and no individual node can be trusted, it is vitally
important for the overall safety of Ethereum that nodes validate any data before accepting
and forwarding it. The precise details of these validity checks are defined as part of the
Ethereum protocol9.

7 https://www.ethernodes.org
8 https://etherscan.io/nodetracker
9 https://ethereum.github.io/yellowpaper/paper.pdf

14

https://www.ethernodes.org
https://etherscan.io/nodetracker
https://ethereum.github.io/yellowpaper/paper.pdf

2.2. Smart Contract-Capable Distributed Ledger Technologies at the Example of Ethereum

In order to interact with the Ethereum peer-to-peer network, one has to run an Ethereum
client and connect to peers on the network. Broadly speaking, there are two distinct
modes that an Ethereum client can be run in: full or light. Full nodes form the peer-to-
peer network as described above. They validate and propagate transactions and blocks
while keeping a full copy of the entire blockchain. When a full node joins the network,
it uses a variant of Kademlia [57] to discover and connect to other peers via TCP/UDP
and announce itself. Once the new full node has established connections to other peers, it
starts requesting blockchain data from them in order to establish and validate its own copy,
a process called synchronization which can take several days and involves the transfer
of a terabyte of data at the time of writing. By contrast, light clients save on resources
by requesting, storing, and validating only the bare minimum of data, namely the block
headers, which will be explained in the next subsection. Light clients connect to one or
more full nodes in order to obtain block headers, send or observe transactions, and to obtain
any piece of the world state. Similar to the interaction between full nodes, light clients also
validate data they obtain from full nodes using the hash-linked structure of the blockchain.
However, light clients do not contribute to the dissemination of blockchain data, they
merely request, obtain, and validate data as instructed by applications or end-users.

2.2.2. Data Layer: Blockchain

As a logically centralized, evolving data structure, Ethereum’s blockchain forms the basis
for its consensus and application layer. While this subsection is focused on the construction
of the blockchain itself, many of the properties required for Ethereum’s proper functioning
only emerge in conjunctionwith the consensusmechanism described in the next subsection.
The decentralized applications we present in Chapters 3 to 5 make extensive use of the
blockchain’s structure, most notably the resulting ability to prove the existence, integrity,
and inclusion of any part of Ethereum’s past or current world state.

As the name suggests, a blockchain is comprised of individual blocks, which in turn consist
of a block header and body. Block headers are sequentially numbered and chained together
through a cryptographic hash function: Each header contains the hash of its immediate
predecessor and thus transitively attests to the integrity of the header chain thus far.
Additionally, each block header also contains the root hashes of three Merkle Patricia Tries
(MPT):

• Transactions root, containing all transactions that were executed in the consensus
layer with this block

• Receipts root, containing receipts generated during the execution of those transac-
tions

• State root, which is derived from the resulting world state with all account records,
deployed smart contracts, and their respective state

Similar to Merkle trees [58], MPTs facilitate efficient proofs for the integrity and inclusion
of any piece of data they contain. For any particular leaf of an MPT containing a piece of

15

2. Fundamentals

data, such a proof consists of the hash values of sibling nodes along the path from this
leaf to the root of the tree. By first hashing the data in question and then successively
appending or prepending the sibling hashes along the path and hashing the result, a
verifier can recompute the original root hash and thus be convinced of the inclusion and
integrity of said data. We make indirect use of these proofs in Chapters 3 to 5.

Another noteworthy part of block headers is the so called logs bloom, a Bloom filter [12]
populated with data pertaining to events. During the execution of smart contract code,
events can be emitted which can contain up to three indexed parameters and additional
data. The address of the emitting contract as well as the indexed parameters are added
to the logs bloom. This allows an Ethereum client to efficiently search its copy of the
blockchain for relevant blocks and transactions given an event name or indexed parameters.
As a probabilistic data structure, Bloom filters allow false positives, i.e. that a block meets a
search query but does not actually contain a relevant transaction on closer inspection, but
prevents false negatives, i.e. if a block does not meet a search query it does not contain a
relevant transaction. We make use of this functionality in our smart contract applications
to facilitate security relevant monitoring of events as well as to store and broadcast data
within events.

Lastly, each block header also contains data related to the consensus mechanism covered
in the next subsection.

2.2.3. Consensus Layer: Transactions, Fees, and Mining

With the general structure of the blockchain and the peer-to-peer network maintaining it
covered, we now turn to actual interactions with the system in the form of transactions,
their fee structure, and the process of appending new blocks to the blockchain.

Ethereum differentiates two kinds of accounts: externally-owned accounts and contract
accounts, the latter of which will be covered as part of the application layer in the next
subsection. Externally-owned accounts, as the name suggests, are defined by and controlled
via an asymmetric key pair which is generated by users. Each externally-owned account is
uniquely referenced by the last 20 bytes of the hash of its public key whereas transactions
originating from such an account must be signed with the corresponding private key. The
first time an externally-owned account appears as the recipient of a transaction, it becomes
part of the world state and is henceforth logged in the state snapshot of each block.

Transactions are signed statements by holders of externally-owned accounts to change
the world state in a particular way, for example by transferring Ether, deploying a smart
contract, or calling a function of an already deployed contract. After constructing and
signing a transaction, the account holder submits it to the peer-to-peer network where it
is propagated if and only if it is valid according to the Ethereum protocol [90]. In order for
a transaction to be executed and actually change the world state, it must be included in a
block and become part of the canonical chain.

16

2.2. Smart Contract-Capable Distributed Ledger Technologies at the Example of Ethereum

As mentioned previously, the blockchain as a data structure encodes a history of the world
state machine of Ethereum, it is only through a consensus mechanism that it represents
exactly one canonical and generally accepted history. At the time of writing, mining is
the process by which extending this history is accomplished without a centralized party.
Essentially, miners compete with each other to solve a cryptographic puzzle which is
required by the protocol to form a new valid block. The difficulty of these puzzles is
adjusted by the protocol such that, on average, a new block is found every twelve to
fourteen seconds. In its header, each valid block contains both the current difficulty as well
as a probabilistic proof of the exerted computational work, hence the name “Proof of Work”
for this mechanism. In addition to decentralizing the privilege to extend the blockchain,
mining also serves to establish consensus over the blockchain by resolving disputes. If two
miners each propose a valid new block with the same predecessor block to the network at
approximately the same time, then the blockchain is forked. All miners will then select
either of the branches to extend and eventually one branch will become demonstrably
longer, resolving the issue and reestablishing a linear, canonical history. Lastly, since each
Proof of Work is cryptographically tied to its respective block, the consensus mechanism
also serves to render the entire state history practically immutable: Any change to a
previous block would require a new Proof of Work for this and all subsequent blocks and
overtake the canonical chain in length before it would be considered part of the world
state according to the Ethereum protocol. In addition to requiring more computing power
than all honest miners combined, such an undertaking would hardly go unnoticed since it
has to be performed in full view of the public.

It is important to note that, much like in Bitcoin before Ethereum, such a Proof of Work
mechanism establishes a probabilistic consensus with no definitive finality. The funda-
mental assumption for both systems is that the majority of mining power is controlled
by protocol-abiding, honest miners. Particularly the most recently added blocks can be
rendered stale if a longer suffix to the chain appears on the network that excludes them.
This is called a chain reorg. With each block appended to any particular block, the chances
for a maliciously crafted or naturally occurring chain reorg drop exponentially. While
a chain reorg is always possible for chain suffixes of any length in theory, in practice
seven to 250 confirming blocks are considered sufficient to prevent a reorg. The choice
for the number of confirming blocks is somewhat subjective and depends on the security
demands of an application. With The Merge, which we explain shortly, this rule of thumb
was made more explicit with safe and finalized stages for blocks being defined in-protocol
and exposed to applications by Ethereum clients.

Since transaction in Ethereum can involve the execution of arbitrary smart contract code, it
is vitally important to the system as a whole that no transaction can run forever. Ethereum
accomplishes this through the gas mechanism, which will play an important role in our
evaluations in Chapters 3 to 5. In addition to specifying what a transaction should do, a
sender also specifies the gasprice, the conversion rate from Ether to gas, and the gaslimit,
an upper limit to the amount of gas the transaction is allowed to consume. Each basic
operation of the Ethereum Virtual Machine (EVM), the execution environment of smart
contract code, has a fixed gas cost attached to it, as defined by the Ethereum yellow
paper [90]. The execution of any transaction then either terminates with gas left over,

17

2. Fundamentals

which is reimbursed to the sender, or runs out of gas in which case no state changes are
persisted but the transaction is recorded on-chain as failed. In either case, the consumed
gas is collected by the miner who chose to include the transactions into their newly mined
block.

Blocks in Ethereum are limited by the total amount of gas that their enclosed transactions
can consume. Consequently, senders of transactions compete with each other over this
limited space by setting the gasprice of their transactions depending on the urgency of
their request, their financial means, and the current demand: The higher the gasprice, the
more lucrative it is for a miner to include the transaction in a block, regardless of how
much gas the transaction actually consumes. Conversely, lower gasprice transactions may
take longer to be included in a block but are of course cheaper. With the aforementioned
London hard fork, the protocol change EIP-155910 was deployed to the Ethereum main net
which altered the fee mechanism described above significantly. However, these changes
have no direct influence on the validity of our evaluation as they do not impact the gas costs
per operation on the EVM. While the calculation for transaction fees and their distribution
have changed, the slow upwards trend of the average gasprice has continued as interest in
Ethereum grows. In Chapters 3 to 5, we use the exchange rates as reported by Etherscan11
for July 1st 2022 as part of our cost evaluations.

Lastly, it is worth noting that, in September 2022, Ethereum successfully completed “The
Merge” and transitioned from the Proof of Work consensus mechanism described above to
a Proof of Stake mechanism where computational effort is replaced with staking of Ether
itself to govern the privilege of appending new blocks to the chain. Our smart contract
applications, much like Ethereum as a whole, rely on the existence, safety, and resilience of
a consensus mechanism and not on its exact inner workings. In other words, the solutions
we present and evaluate in Chapters 3 to 5 remain viable even after Ethereum’s transition
to Proof of Stake.

2.2.4. Application Layer: Smart Contracts

First proposed by Nick Szabo in 1997 [88], smart contracts only became practically viable
with the advent of decentralized public infrastructure in the form of blockchains. In
1999, Lawrence Lessig [50] also discussed the notion of “Code is Law” and its importance
to shaping cyberspace. While the concept of mediating procedures between mutually
distrustful parties through technological means like program code is interesting in itself,
we will focus on the implementation of the concept within the context of Ethereum.

Ethereum smart contracts can be described as stateful programs with the additional ability
to receive, hold, and distribute Ether. A simplified structural overview of three exemplary
smart contracts is depicted in Figure 2.2. Each smart contract consists of program code,
which determines both its behavior and an interface towards other accounts, and its current

10 https://eips.ethereum.org/EIPS/eip-1559
11 https://etherscan.io/

18

https://eips.ethereum.org/EIPS/eip-1559
https://etherscan.io/

2.2. Smart Contract-Capable Distributed Ledger Technologies at the Example of Ethereum

0x371… owner : 0x1ae…,
counter : 23

0x4fb… owner : 0xf9e…,
counter : 42

0xc40… start : 5389,
name : „foo“

Figure 2.2.: Simplified structural overview of Ethereum smart contracts. Each contract has a unique address,
shown abbreviated in their top left corner. The first and second contracts have identical code, signified by
the colored </>, but distinct states. The first and third contract also hold Ether.

state, which can be accessed and modified during transactions according to the contract’s
programming. In the case of Ethereum, smart contracts are written in a high-level, object-
oriented, statically typed language like Solidity12 or Vyper13 before being compiled to
EVM bytecode and deployed to the blockchain through a transaction. During deployment,
a contract account with a unique address is created that contains the executable bytecode
in preparation for transactions directed to this account.

A contract’s bytecode becomes part of the world state upon deployment. On the consensus
layer, a deployment transaction for a smart contract establishes a system-wide, verifiable,
and immutable relation between its newly assigned address, its codified behavior, as well
as its past and current state. When calling a smart contract function, the sender of a
transaction can know with certainty what the contract will do, pursuant to the contract’s
current state. While externally-owned accounts are ultimately controlled by humans
through the use of an asymmetric key pair, contract accounts are entirely controlled by
their associated EVM bytecode. However, Ethereum smart contracts are, at least currently,
entirely reactionary, i.e. they can not issue transactions on their own but must instead be
prompted into action by a transaction from an externally-owned account. Note that smart
contracts can call other contracts during the execution of a transaction.

Next to its governing bytecode, each contract account also contains its own state which
is tightly coupled to the overall functionality of the smart contract. Each contract’s state
can only be altered by its code and, likewise, the current state can affect the execution
of transactions in accordance with the contract’s code. This property results form the
way transactions are executed in the consensus layer and persisted on the blockchain:
Nodes in the peer-to-peer network holding a copy of the blockchain accept changes to the
state of any contract only as the result of a valid transaction involving the execution of
the corresponding contract bytecode. In this way, smart contracts are stateful programs
on a blockchain with the added capability of receiving, holding, and redistributing Ether,
depending on their programming.

12 https://docs.soliditylang.org/
13 https://vyper.readthedocs.io/

19

https://docs.soliditylang.org/
https://vyper.readthedocs.io/

2. Fundamentals

Much like the blockchain itself, smart contracts are public in more ways than one: Both
the bytecode and its state are available for anyone to examine; but more crucially, anyone
can interact with a smart contract through a transaction unless codified otherwise. As a
consequence, an important aspect of smart contract design and implementation revolves
around access control, which will be covered in more detail in Chapters 3 and 5.

In this work, smart contracts are not only the primary tool we use to establish, manage,
and augment software identities, they are also an instructive implementation of software
identity themselves. As mentioned previously, each Ethereum smart contract is assigned
a unique address during deployment. For example, in Figure 2.2, the first and second
contract have exactly the same bytecode but distinct addresses and states. Consequently,
a contract address uniquely identifies a particular instance of a smart contract rather than
the contract as an abstract object. However, it is exactly this overarching object which is
distinct from but still related to any particular instance of a software that we endeavor to
make concrete and manage with our work.

2.2.5. Distributed Ledgers as Logical Clocks

Distributed ledgers, by construction and definition, are ever-changing systems. New
transactions are constantly being submitted to peer-to-peer networks, grouped into blocks
and appended to the respective blockchain, and the corresponding world state changes
accordingly. For the proof-of-concept constructions we present in Chapters 3 to 5, it is
worth emphasizing and concretizing the notion of logical time and order a distributed
ledger like Ethereum provides.

On the data layer that we describe in Subsection 2.2.2, a blockchain like Ethereum’s
consists of sequentially numbered blocks. This sequential numbering establishes a total
order for blocks and the transactions they contain14. The block number of the most recent
block is also called Ethereum’s block height. Crucially, the sequence number of a block
is accessible in the EVM during the execution of contained transactions via a Solidity
constant. This way, the outcome of transactions can depend on whether a given block
height has been reached or not. It is important to note, particularly for our approach
in Chapter 4, that such a an application layer deadline mechanism cannot be used to
prevent the dissemination of information contained in a transaction. Even if a transaction
is aborted due to a contract-defined block height not being reached yet, any information
contained in such a transaction is publicly logged on the data layer as part of its execution
on the consensus layer.

In Chapter 4, we model Ethereum as a synchronous public broadcast channel. In doing
so, we abstract away the uncertainty involved with broadcasting messages on Ethereum.
Transactions are included in blocks at the discretion of their respective miners, as we
explain in Subsection 2.2.3, and due to current demand, the time between transaction
submission and its inclusion in a block is neither predictable nor bounded. Depending on

14 The transactions within each block are also totally ordered by the proposing miner.

20

2.3. Decentralized Off-Chain Storage Systems

the chosen gasprice in relation to other pending transactions, this inclusion can happen
sooner, later, or not at all. Especially in conjunction with contract-enforced deadlines as
described above, it is important to choose the corresponding block numbers and intervals
with appropriate leeway.

2.3. Decentralized Off-Chain Storage Systems

Similar to companies like Amazon renting out spare storage resources, so too have de-
centralized markets for storage space emerged based on distributed ledgers. At a high
level, decentralized storage systems can be decomposed into two layers: an incentive
layer and a storage layer. While we only rely on the latter in this work, it is important
to have a basic understanding of both layers to recognize the trade-offs involved in their
use. Two systems that exemplify this two-layer structure are Filecoin15 and Crust16, which
have both established their own distributed ledger as their incentive layer and use the
InterPlanetary File System (IPFS)17 for file management.

On the incentive layer, contracts between storage providers and customers are logged and
enforced. In such contracts, the terms for the storage of files are set, like duration, number
of replications, costs, and obligations for access, i.e. whether a party has to reimburse the
storage provider to download files or whether the customer who uploaded said files has
prepaid for a certain number of downloads. In order to receive payment for their service,
storage providers must prove that they actually hold the files they agreed to store, the
details of such proofs are particular to each system and not relevant for this work.

The file management layer, meanwhile, enables nodes to locate other nodes currently
hosting files of interest to them, obtain files from nodes, and provide files to other nodes
that they are interested in. We simplify a more complex stack of protocols and systems
that make up IPFS for the sake of presentation. For a more detailed characterization of
IPFS, we refer to the work of Henningsen et al. [43].

Files on IPFS are identified based on their content, rather than their storage location,
as the latter can change constantly. A content identifier (CID) based on cryptographic
hash functions provides both a unique reference to a file on IPFS and allows anyone to
verify its integrity once obtained. Using a Kademlia distributed hash table [57], nodes
currently hosting files announce themselves with the corresponding CIDs. To obtain a
file via IPFS given its CID, a client queries this hash table to locate nodes hosting said file.
After obtaining a file from a hosting node or nodes, an IPFS client verifies its integrity by
recomputing and comparing its CID to the one a user or application requested. Depending
on which hash function is used, CIDs in IPFS can be of varying length, as described by the
IPFS documentation18:

15 https://filecoin.io/
16 https://www.crust.network/
17 https://ipfs.io/
18 https://docs.ipfs.io/concepts/content-addressing/

21

https://filecoin.io/
https://www.crust.network/
https://ipfs.io/
https://docs.ipfs.io/concepts/content-addressing/

2. Fundamentals

• CIDv0: 46 characters

• CIDv1 with sha256: 60 characters

• CIDv1 with blake2b-256: 63 characters

• CIDv1 with sha3-512: 111 characters

Note that IPFS on its own is not a storage system in the strictest sense: Users who wish
to distribute a file through it must remain online and available until said file has been
requested and disseminated sufficiently many times to ensure its continued availability
even when the original uploader goes offline. Nevertheless, IPFS suffices for the systems
we describe in Chapters 3 and 5 to log and time-stamp integrity-protecting references to
files too big to store on distributed ledgers directly. For the purpose of our evaluations,
the lengths of these references matter rather than the way in which they are resolved to
obtain actual files. As such, other decentralized off-chain storage systems can be used as
well, the ramifications of which we discuss in Section 5.7.

22

3. Palinodia: Software Identity
Management on Ethereum

The content presented in this chapter has been published previously in the paper “Access
control for binary integrity protection using Ethereum” by Stengele, Baumeister, Birnstill,
and Hartenstein and presented at the 24th ACM Symposium on Access Control Models
and Technologies [85], as well as the demonstration titled “Practical trade-offs in integrity
protection for binaries via Ethereum” by Stengele, Droll, and Hartenstein given at the 21st
international Middleware Conference [82]1.

With the proliferation of distributed ledger technologies, particularly blockchains, over the
past decade, the notion of self-sovereign identities [61, 31] also garnered attention. Broadly
speaking, self-sovereign identities are established, managed, and fully owned by the user
they represent, independent of any identity provider or service. Public blockchains are
particularly well suited to function as a platform for self-sovereign identities due to their
continued existence not depending on any single authority and their core properties as
described in Chapter 2. In this chapter, we examine the case of self-sovereign identities
on public blockchains at the example of Ethereum not for users but for software and
associated binaries.

3.1. Problem Statement

The overarching problem we tackle with our software identity management concept and
implementation is to secure the distribution process of software binaries against malicious
actors and augment it with a robust revocation mechanism, all without relying on a trusted
third party. We consider a software distribution secure if a user can verify the integrity,
authenticity, and creator endorsement of a downloaded binary. A binary has integrity if it
was not modified by an unauthorized party; it is authentic if and only if it was created by
an authoritative source; and it is endorsed if it has not been revoked by its creator.

Based on the above problem statement, it follows immediately that access control is of vital
importance to our solution. Only by ensuring that no party other than the corresponding
software developer can make changes to a given software identity does it become useful.
It is similarly important to protect users, or rather user clients, from being convinced

1 A video recording of this demonstration is available on YouTube: https://www.youtube.com/watch?v=
0AVd5sS2mCc

23

https://www.youtube.com/watch?v=0AVd5sS2mCc
https://www.youtube.com/watch?v=0AVd5sS2mCc

3. Palinodia: Software Identity Management on Ethereum

of false information and tricked into using maliciously altered, inauthentic, or revoked
binaries. We approach this problem by designing and implementing a software identity
management concept that takes advantage of inherent properties of distributed ledgers,
particularly Ethereum, as described in Chapter 2. In particular, software developers should
be able to establish and manage identities for their software by attaching and revoking
binaries through reliably access-controlled means. Meanwhile, users should be able to
reliably obtain and verify information pertaining to the identities of software they intend to
use in order to check the integrity, authenticity, and creator-endorsement of binaries they
downloaded. The software identity management system we present here also serves as the
foundation for the decentralized review and attestation of software claims in Chapter 5.

The remaining chapter is structured as follows. We first present and discuss related work
in Section 3.2 before describing our system model including attacker capabilities and trust
assumptions in Section 3.3. With Section 3.4, we present Palinodia, our decentralized
software identity management system on Ethereum, consisting of on-chain smart contracts
and an off-chain user client. We evaluate the efficiency and performance of Palinodia
in Section 3.5 and show semi-formally how Palinodia’s security properties reduce to the
security properties provided by Ethereum. To end the chapter, we discuss our findings
and highlight limitations and avenues for future work in Section 3.6.

3.2. Related Work

It is worth examining prior and concurrent works in the intersection of blockchains and
software identity management.

Contour by Al-Bassam and Meiklejohn [7] is one of the earlier approaches utilizing
blockchains to augment software distribution. The core of their concept is for a trusted
software distributor to construct a Merkle tree [58] from several binaries, persist the root
hash of this tree on the Bitcoin blockchain, and attach metadata with a proof of inclusion
to each binary. Users of such binaries can then obtain the root hash, whose immutability
and availability is ensured by the Bitcoin blockchain, and verify the proof of inclusion to
convince themselves of the integrity of the binary they obtained. The goal of Al-Bassam
and Meiklejohn was not to establish software identities but rather to ensure “software
transparency”, and indeed there are crucial and instructive differences between their work
and ours to point out. First, a trusted software distributor is necessary to collect hash
fingerprints of binaries to construct and publish a Merkle tree root hash. Consequently, the
respective software developers have to trust this distributor to not also include maliciously
altered versions of their binaries in said root hash, for example. Similarly, neither root
hashes nor the binary hash fingerprints they contain can be revoked. Lastly, since the
hash fingerprint of each binary must be generated before the root hash, the integrity of
metadata attached to binaries can not be protected. This in turn necessitates an additional
mechanism that enables users to distinguish between authentic and counterfeit root hashes
on the Bitcoin blockchain.

24

3.3. System Model

An approach more comprehensive than Contour is Chainiac by Nikitin et al. [66]. The
authors present a decentralized framework to establish update logs for software with
a particular focus on source-to-binary correspondence. While not directly managed by
developers, these update logs can be understood as a form of identity representation for
software, as they also verifiably link together past and future releases of said software.
However, unlike Palinodia, Chainiac offers nomechanism to revoke a particular binary once
it is added to its update log and instead focuses on minimizing causes for such revocations
through thorough reviews and verifiable build processes. In Chapter 5, we extend Palinodia
with similar functionalities. Lastly, Chainiac does not rely on any existing blockchain or
distributed ledger, instead opting to establish “skipchains” for each software, which can
be aggregated for user convenience. In Section 3.6, we elaborate on the implications of
building Palinodia on top of Ethereum.

Contemporary to our work, Guarnizo et al. present SmartWitness [37]. Similar to Palinodia,
SmartWitness also employs smart contracts to establish identities for software and attach
released binaries to it. However, Guarnizo et al. chose to integrate certificate authorities
into their system design as creators and stewards of SmartWitness contract instances.
While software developers still own their SmartWitness instances and are authorized to
attach new binaries to it, the issuing certificate authority retains both the obligation to
renew SmartWitness instances as well as the ability to revoke SmartWitness instances
entirely. Consequently, SmartWitness instances are not self-sovereign software identities.
Guarnizo et al. also installed the aforementioned certificate authorities as gatekeepers
for “security providers”. These security providers are tasked with performing analysis of
binaries logged in SmartWitness instances and are authorized by certificate authorities to
record their findings as a numerical score within said instances. Unlike the extension to
Palinodia we present in Chapter 5, SmartWitness does not employ a mechanism to ensure
the independence of security assessments. SmartWitness also handles metadata attached
to binaries and the verification of binaries by users differently than Palinodia, a point we
explore further in Subsection 3.4.2.

3.3. System Model

It is instructive to first give a more detailed software identity model before describing the
roles and assets involved in Palinodia as well as our attacker and trust model.

For Palinodia, we model software identities as trees of height two, as depicted in Figure 3.1.
The root of each tree, and the cornerstone of each software identity, is a root software
identity. Attached to each root software identity are one or more intermediary software
identities that represent, for example, more concrete facets of a software identity grouped
by target operating system or device type. Lastly, each binary of a given software is
attached to at least one intermediary software identity, thereby attaching it indirectly to
its root software identity.

25

3. Palinodia: Software Identity Management on Ethereum

Root
Software
Identity

Intermediary
Software
Identity

Software
Developer

Software
Maintainer

Binary

PKI

creates binding

creates binding

establishes

establishes
authorises

authenticates

authenticates

creates

Figure 3.1.: Software identity hierarchy on the left and roles on the right with their capabilities displayed
through annotated arrows. The authentication by a conventional PKI is optional.

3.3.1. Roles

We now introduce the roles depicted in Figure 3.1 in more detail. Rather than shouldering
all privileges and responsibilities on a single authority, we opted to define two roles to
demonstrate delegation and more fine-grained access control over a software identity.
However, both roles can be occupied by the same entity.

A software developer takes responsibility for a software by creating it in the first place and
refining its code base over time. They establish and take ownership of a root software
identity. A software maintainer is authorized by a developer to create and distribute
executable binaries from the code base of their software. Similar to developers, maintainers
establish and take ownership of intermediary software identities to which they attach
newly released binaries and from which they can also remove binaries that they consider
no longer fit for use. Likewise, developers attach and detach intermediary software
identities to their root software identity as needed, thereby authorizing or deauthorizing
the corresponding maintainers to release binaries of a given software. By detaching an
intermediary software identity, a developer effectively revokes all binaries associated with
it in bulk.

In addition to the two roles explained above that are actively involved in establishing
and managing software identities, we also define three roles to illustrate various use
cases for software identities and to define an attacker and trust model in the next section.
While we examine the distribution of metadata pertaining to software identities in great
detail, we abstract the distribution of actual binaries to software distribution platforms
(SDPs) which are controlled by SDP owners and have unique identifiers. For the purpose

26

3.3. System Model

of this work, we use software distribution platforms as an umbrella term for repositories,
app stores, software marketplaces, download centers, and other means of distributing
software to end users that are managed and operated by a centralized authority. Users
wish to obtain and use authentic software releases as well as to stay informed about new
releases and revocations of software they use. Lastly, we define auditors as a special kind
of user who obtains and verifies software releases not only for their own use but to verify
the congruence between binaries attached to software identities and those available for
download on SDPs.

3.3.2. Attacker and Trust Model

In order to evaluate the functionality of our proposed software identity management
concept and highlight noteworthy features, we borrow the attacker model by Cappos et
al. [19] and modify it for the context of blockchain applications.

Generally, the goal of an attacker is to trick a user into installing and running manipulated
or vulnerable software to facilitate further compromise of the user’s system. To achieve
this goal, an attacker can modify existing software binaries or create entirely new binaries,
either of which they can distribute via SDPs. Similarly, SDP owners can act maliciously
and attempt to compromise users via their software distribution platform. Regarding the
underlying blockchain of our concept, an attacker can deploy their own smart contracts
and interact with existing smart contracts, like any other user. We also enable an attacker
to occasionally obtain all but one particular private key from software developers and
maintainers and use it to issue valid transactions in their name. Since we build on top of a
public blockchain, an attacker can also join its consensus mechanism as a miner. However,
we must assume that an attacker cannot obtain the majority of mining power as that
would fundamentally break the blockchain system as a whole. An attacker is also unable
to prevent read and write access to the underlying blockchain indefinitely. Similarly, an
attacker can not break cryptographic primitives like signatures or hash functions.

Based on these goals and capabilities, we describe the following attacks based on Cappos
et al. [19]:

• Arbitrary binary: An attacker tries to convince a user to install an untrustworthy
binary.

• Replay attack: An attacker attempts to present outdated versions of legitimate
binaries as current to users in order to exploit vulnerabilities that have since been
discovered in them.

• Freeze Attack: Similarly to replay attacks, an attacker tries to prevent users from
obtaining current information on a given software, particularly revocations.

Opposing an attacker are trust relations between users, software developers and main-
tainers, and the underlying blockchain system. Users trust software developers and
maintainers to not intentionally include malicious functionality in their binaries and that,
in the event of vulnerabilities being discovered, they revoke their endorsement of binaries

27

3. Palinodia: Software Identity Management on Ethereum

Software
Contract

Software
Developer

Software
Maintainer

Blockchain Client

Palinodia Client

On-Chain Layer

binds

uses uses

uses

representsrepresents

Binary Hash
Storage
Contract

Identity
Management

Contract

controls controls

Off-Chain Layer

Figure 3.2.: On- and off-chain components of Palinodia in relation to the two active roles.

in a timely manner. Users similarly trust developers to manage their software identity
with due diligence, particularly when transferring ownership of it to a new developer,
or authorizing and deauthorizing maintainers to manage intermediary identities of their
software. Lastly, users, developers, and maintainers trust peers running the underlying
blockchain system to follow and enforce the system’s protocol not individually, but as a
collective.

3.4. Palinodia

We now present Palinodia, a software identity management system on Ethereum. As
depicted in Figure 3.2, Palinodia is comprised of an on-chain layer in the form of smart
contract instances and an off-chain layer consisting of an unmodified Ethereum client
and a custom Palinodia client. On-chain, smart contract instances both represent root
and intermediary software identities and also function as an access control enforcement
mechanism over said identities. The off-chain components, meanwhile, enable users to
perform verification of downloaded binaries and continuously monitor the Ethereum
blockchain for new releases and revocations of previously released binaries.

3.4.1. On-Chain: Smart Contracts

We begin by describing common features of Palinodia’s smart contracts before describing
each contract type in more detail.

28

3.4. Palinodia

Address

Root Owner

Software Name

Developer

SDP Store

SDP ID 1 Address

SDP ID 2 Address
…

Software Contract

Address
Root Owner

BHS Contract 1

…

Address

SDP ID 1

BHS Contract 2

…

Address

SDP ID 2

…
Address

IDM Contract

Figure 3.3.: Overview and relation of a Software contract to other Palinodia contracts.

Fundamentally, each contract type in Palinodia acts as an access-controlled key-value
registry of contract instance addresses or hash fingerprints of binaries, thereby representing
a software identity hierarchy as depicted in Figure 3.1. While access control during normal
operations is handled through Identity Management contract instances, which we describe
below, ownership of each contract instance and the highest administrative privileges are
tied to a root owner address stored within each contract type. The private keys of root
owner addresses are meant to be stored securely, i.e. in a physical safe or an air-gapped
system, and only be used during contract deployment, when transferring ownership of
contract instances, or in cases of emergency. This precaution allows a software developer
or maintainer to regain control of their contract instances should one of their private keys
in active use be lost or compromised.

Another common feature of all Palinodia contracts is the use of Ethereum events as
introduced in Subsection 2.2.2 to facilitate monitoring of important events, such as changes
in instance ownership, or the publication and revocation of binary hashes. Please recall the
functionality of indexed event parameters to fine-tune search and monitoring queries.

3.4.1.1. Software Contract

The basis for each software identity in Palinodia is a Software (SW) contract instance
deployed and managed by a software maintainer to represent a root software identity as
depicted in Figure 3.1. Table 3.1 gives an overview of its interface. In addition to storing
human-readable data about a software, like its name, the primary purpose of a SW contract
instance is to register and deregister Binary Hash Storage (BHS) contract instances and
store their addresses keyed by their respective SDP IDs as depicted in Figure 3.3. By
adding a BHS contract instance to their SW contract instance via a registerBHSContract

29

3. Palinodia: Software Identity Management on Ethereum

Table 3.1.: Interface of SW contract. Simple calls to retrieve values of attributes are omitted [85]. Indexed
event parameters are underlined.

Name Arguments Functionality Allowed Caller

Transactions
changeRootOwner ROwneraddr

(new)
Replaces the stored root
owner address.

Root Owner (cur.)

setDeveloper IDMaddr Replaces the stored devel-
oper address.

Root Owner

setSoftwareName name Sets the variable software

name.
Developer

registerBHSContract BHSaddr Registers a BHS contract in-
stance by storing the sub-
mitted BHSaddr. The SDP
ID used as storage key is
obtained from the BHS con-
tract instance.

Developer

deregisterBHSContract SDP ID Deregisters the BHS con-
tract instance stored under
SDP ID.

Developer

updateSDP_ID SDP ID (old),
SDP ID (new)

Changes the storage key of
a BHS contract instance.

corr. BHS contract instance

Calls
getBHSContract SDP ID Returns the BHSaddr stored

under SDP ID. Returns 0, if
no such entry exists.

All

Events Emitting Function
ROwnerChange ROwneraddr (old

& new)
Root owner change. changeRootOwner

DevChange IDMDev
addr (old &

new)
Developer change. setDeveloper

DeregisterBHS SDP ID Deregistration of BHS con-
tract instance.

deregisterBHSContract

transaction, a developer can authorize the maintainer owning this BHS contract instance to
publish binaries of their software as described in the next section. During this registration
process, the address of the SW contract instance is stored within the BHS contract instance
to facilitate binary verification, which we describe in more detail in Subsection 3.4.2. It
is important to note at this point that we treat the globally unique address of each SW
contract instance as the identifier of a software identity since it remains constant even if a
developer transfers ownership of a SW contract instance, and thus the software identity.

Next to changes in ownership, the deregisterBHS event is noteworthy as it essentially
signifies a revocation of all binaries registered in the BHS contract instance previously
referenced under the attached SDP ID.

30

3.4. Palinodia

Binary Hash Storage Contract

Address

Root Owner

Software

Maintainer

Hash Store

Hash ID Hash

Hash ID Hash

SDP ID

…

Counter

Counter

Address
Root Owner

…
Address

IDM Contract

…
Address

SW Contract

Publish Counter

Figure 3.4.: Overview and relation of a Binary Hash Storage contract to other Palinodia contracts.

3.4.1.2. Binary Hash Storage Contract

Similar to SW contracts, Binary Hash Storage (BHS) contract instances represent inter-
mediary software identities as depicted in Figure 3.1 and are deployed and managed by
a maintainer. Table 3.2 provides an overview of their interface. As the name implies,
BHS contract instances function as an access-controlled registry for hash fingerprints of
binaries to both facilitate a verification of their integrity and to signify their maintainer’s
endorsement. Each hash fingerprint is keyed by a Hash ID, an identifier chosen by a
maintainer as part of a publishHash transaction, which also emits a publication event on
success. For Palinodia, the main purpose of publication events is for users to be notified
of new releases of software they use. As such, we only defined the publication counter,
which we explain in more detail below, as the only indexed parameter. For the extension of
Palinodia we present in Chapter 5, this event takes on an additional role and the indexing
of its parameters is changed accordingly. In addition to checking that the sender of such
a transaction is authorized to add a new hash, the BHS contract code also ensures that
the chosen Hash ID has not been used before, thereby making Hash IDs unique within
each BHS contract instance. Consequently, a Hash ID together with a corresponding BHS
contract instance address serves to uniquely identify a particular binary of a software that
can also be verifiably traced back to its root software identity. This feature is crucially
important for Chapter 5. To revoke the endorsement of a binary and prevent future verifi-
cation, a maintainer issues a revokeHash transaction with the Hash ID in question as the
only parameter. After ensuring proper authorization of the sending address, as described
above, the corresponding hash is set to 0 to mark it as revoked and a revocation event

31

3. Palinodia: Software Identity Management on Ethereum

Table 3.2.: Interface of BHS contract. Simple calls to retrieve values of attributes are omitted [85]. Indexed
event parameters are underlined.

Name Arguments Functionality Allowed Caller

Transactions
changeRootOwner ROwneraddr (new) Replaces the stored root

owner address.
Root Owner (cur.)

setMaintainer IDMaddr Replaces the stored
maintainer address.

Root Owner

registerSWContract - Completes the binding to
an SW contract instance.

corr. SW contract instance

setSDP_ID SDP ID Changes the stored SDP
ID and calls the stored
SW contract instance to
update its corresponding
storage key.

Maintainer

publishHash HashID, Hash Stores Hash under
HashID.

Maintainer

revokeHash HashID Revokes the hash of
HashID.

Maintainer

Calls
getBinaryStatement HashID Returns the binary

statement consisting of
(Hash,Counter) stored
under HashID. Returns 0,
if no entry exists.

All

Events Emitting Function
ROwnerChange ROwneraddr (old & new) Root owner change. changeRootOwner

MaintChange IDMMaint
addr (old & new) Maintainer change. setMaintainer

Publication cntr, HashID, Hash Publication of hash. publishHash

Revocation HashID Revocation of hash. revokeHash

with the corresponding Hash ID as an indexed parameter is emitted. In Solidity, reading
an unassigned variable returns a default value rather than an error. To distinguish an
unused Hash ID from a revoked one, each BHS contract instance keeps a publish counter
and attaches its current value to each hash upon its registration before incrementing its
value. An unused Hash ID thus returns both a hash and a publish counter of 0, whereas a
revoked Hash ID returns a non-zero publish counter.

3.4.1.3. Identity Management Contract

The last contract type in Palinodia are Identity Management (IDM) contracts. Their inter-
face and functionality is presented in Table 3.3. IDM contract instances allow developers
and maintainers to use multiple Ethereum addresses for any particular Palinodia instance
and rotate them for convenience or security reasons in one contract instance rather than
several. This functionality is particularly useful if the role of developer or maintainer
is actually held by more than one person, each with their own set of addresses. During

32

3.4. Palinodia

Address

Root Owner

Identity Store

Address Certificate CID

Address Certificate CID
…

Identity Management Contract

Address
Root Owner

Address
Developer Group

Address
Developer

Developer
Certificate

Developer Group
Certificate

Ethereum IPFS

Figure 3.5.:Overview of an Identity Management contract and its relation to actors and additional credentials
stored on IPFS.

Table 3.3.: Interface of IDM contract. Simple calls to retrieve values of attributes are omitted [85]. “Identity
store” as allowed caller signifies that any identity currently in the identity store is authorized.

Name Arguments Functionality Allowed Caller

Transactions
changeRootOwner ROwneraddr

(new),
Cert. CID

Replaces the stored root owner ad-
dress.

Root Owner (cur.)

resetIdentitySet - Resets identity store by remov-
ing all stored identities.

Root Owner

addIdentity Identityaddr Adds address of identity to
identity store.

identity store

removeIdentity Identityaddr Removes address of identity from
identity store.

identity store

changeCertificateCID Cert. CID (new) Replace the Cert. CID of the calling
identity.

identity store

Calls
checkIdentity Identity Returns true if identity is contained

in identity store, returns false

otherwise.

All

getIdentityCertCID Identity Returns the stored Cert. CID of iden-
tity.

All

Events Emitting Function
ROwnerChange ROwneraddr (old &

new)
Root owner change changeRootOwner

Reset ROwneraddr Reset of identity store. resetIdentitySet

33

3. Palinodia: Software Identity Management on Ethereum

critical transactions in SW or BHS contract instances, the authorization of the sending
address is checked via the checkIdentity call to the IDM contract instance linked within
the respective SW or BHS contract instance. Additionally, IDM contract instances allow
developers or maintainers to attach further credentials, like a certificate, to their stored
Ethereum address via an IPFS CID. It is important to note that IDM contracts function
as a stand-in for more comprehensive user identity management systems on Ethereum,
like DecentID [33] or other blockchain-based self-sovereign identity systems [74]. We
examined approaches for such couplings at the example of Palinodia and DecentID in
collaboration with Friebe and Zitterbart [34].

3.4.2. Off-Chain: Palinodia Client

With the on-chain components of Palinodia introduced in the previous section, we now
describe the remaining off-chain components and how they facilitate verification of binaries
and monitoring for notable events like revocations.

We start with Palinodia-specific additions to binaries and explain the essential operations
of Palinodia in the order of a typical binary life cycle: from an initial release and update
to its potential revocation. Bundled together with an executable binary is a manifest of
Palinodia-specific metadata, most importantly the address of the BHS contract instance
where this binary is registered and its Hash ID. It is important to note that hashes stored
in BHS contract instances are computed over binary and metadata, thus protecting the
integrity of both.

Please recall from Subsection 2.2.1 that an Ethereum client can obtain and validate data
pertaining to specific smart contract instances either by holding and maintaining a com-
plete copy of the Ethereum blockchain and world state as a full node or by requesting data
from full nodes when running as a light client. Similarly, recall from Subsection 2.2.2 that
Ethereum clients can be instructed to search old blocks or monitor new blocks for specific
events emitted during transactions. Both of these functionalities are crucial for a Palinodia
client to fulfill its purpose.

Installation: When a user installs a binary of a given software for the first time, their
Palinodia client extracts the aforementioned metadata and requests the current state of the
referenced BHS contract instance from a locally running Ethereum client. After ensuring
that the Hash ID of the downloaded binary is not revoked, the Palinodia client compares the
hash retrieved by the Ethereum client to a self-computed hash over binary and metadata
to verify their integrity and endorsement. Next, the Palinodia client requests the current
state of the SW contract instance referenced in the previously obtained BHS contract
instance’s state to ensure that the latter is properly registered in the former. In the event
that any of these checks fail, the Palinodia client alerts the user not to continue with the
software installation. Lastly, as this is the first time this Palinodia client encounters this
root software identity, it asks the user whether or not to add it to its list of trusted software
identities. This trust-on-first-use mechanism involving the user is necessary as there is
currently no reliable way for a Palinodia client to distinguish a software’s correct identity

34

3.5. Evaluation

representation from maliciously created counterfeit identities. Note that the address of the
SW contract instance is stored as a trust anchor. In this way, an established trust relation
between user and software persists even if ownership and control over a given software
identity changes. Such an ownership change is documented on-chain, as described above,
and is communicated to users through their Palinodia client.

After a binary is installed as described above, the Palinodia client instructs its local
Ethereum client to monitor both the SW and BHS contract instances for important events
that signify new releases, revocations of prior releases, or the deregistration of the BHS
contract instance, for example.

Update: When a user updates a previously installed software binary, either prompted
through an update event or another mechanism, integrity and revocation checks are
performed the same way as during initial installation. However, after the Palinodia client
traces the updated binary back to its root software identity, it either recognizes the SW
contract instance’s address as previously trusted or it initiates another trust-on-first-use
loop with the user if the instance is unknown. In the latter case, an attentive user should
become suspicious, especially if the software name stored in the unknown SW contract
instance matches the name of one of its trusted software identities.

Revocation: During a revokeHash transaction, a Revocation event containing the revoked
Hash ID as an indexed parameter is emitted. Ethereum clients running at the time such a
transaction is added to the Ethereum blockchain recognize this event while processing
new blocks based on the included Hash ID that was set up for monitoring by the Palinodia
client during installation or update of the corresponding binary. The Ethereum client then
forwards the revoked Hash ID to the Palinodia client to communicate the revocation of a
currently installed binary to the user. Palinodia and Ethereum clients that were offline at
the time a revocation was published will examine blocks added to the Ethereum blockchain
since they were last online and process Revocation events as described above.

3.5. Evaluation

To gauge the practicality of Palinodia, we implemented all smart contract types described
in Subsection 3.4.1 in Solidity 0.82 and deployed them to a local development blockchain
running the London hard fork using Ganache v7.2.0 of the Truffle Suite development tools.
We then measured gas costs for contract deployment as well as common operations. Simi-
larly, we implemented a Palinodia client in Go and measured its resource consumption and
performance. To measure the time between the issuance of a revocation and a monitoring
Palinodia client alerting its user, we conducted tests on the Ropsten testnet.

We first provide a quantitative evaluation of Palinodia’s on- and off-chain components
before semi-formally discussing security considerations, particularly regarding attacks
described in Subsection 3.3.2.

2 https://git.scc.kit.edu/dsn-projects/dissertations/dsim/-/tree/main/Palinodia/

35

https://git.scc.kit.edu/dsn-projects/dissertations/dsim/-/tree/main/Palinodia/

3. Palinodia: Software Identity Management on Ethereum

Table 3.4.: Gas costs of Palinodia contract deployment and common operations. Conversion of gas to
USD via daily average exchange rates for 1st June 2022 as reported by Etherscan: USD 1817.42 per ETH,
ETH60.06×10−9 per gas.

Operation Gas USD
SW contract
Deployment 1 143 544 124.81
setSoftwareName 5 char Name 41 965 4.58

10 char Name 42 025 4.59
registerBHSContract 135 838 14.83
deregisterBHSContract 50 573 5.52
BHS contract
Deployment 1 077 213 117.57
setSDP_ID 5 char SDP ID 79 745 8.70

10 char SDP ID 79 805 8.71
publishHash 5 char Hash ID 89 607 9.78

10 char Hash ID 89 667 9.79
revokeHash 5 char Hash ID 38 789 4.23

10 char Hash ID 38 849 4.24
IDM contract
Deployment 927 201 101.20
addIdentity 99 050 10.81
removeIdentity 34 996 3.82
changeCertificateCID 46 char CID 42 287 4.62

60 char CID 42 455 4.63
63 char CID 47 731 5.21
111 char CID 53 475 5.84

3.5.1. Gas Costs & Performance

Please recall from Subsection 2.2.3 that deploying and executing smart contracts on
Ethereum incurs costs in the form of gas, which in turn is converted from and to Ether
based on an exchange rate set by a transaction’s sender. Table 3.4 provides a comprehensive
overview of the deployment and execution costs of Palinodia contracts. An important
aspect to consider when interpreting the costs of Table 3.4 is the frequency with which
certain operations are performed. Comparatively costly deployments of contract instances
are only performed rarely. More specifically, only one SW contract is deployed per software
identity whereas the number of BHS contract instances depends on the organizational
needs and distribution paths of a given software. Each actor or mutually trusted group of
actors needs their own IDM contract instance. As mentioned previously, IDM contracts
act as a stand-in for a more comprehensive user identity management system that a user
would have already deployed before using Palinodia. The more frequent operations of hash

36

3.5. Evaluation

Table 3.5.: Performance of the Palinodia client and Geth (v1.9.22, default settings) in light and full synchro-
nization mode on the same device connected to the Ropsten testnet (as of Oct 2020) [82]. Rows: Incoming
network traffic for validating a binary (NT-V) and maintaining synchronization with the blockchain (NT-M);
time spent by respective client during validation (TTV) and revocation (TTR) of a binary. Timing of revoca-
tion begins with issuance and includes time for the transaction to be included in a block and propagated to
Geth. NT-V, TTV, TTR averaged over 100 binaries.

Client Palinodia Geth (light) Geth (full)
RAM 40MB 275 MB 1.4GB
Disk 70MB 500 MB 90 GB
NT-V 0 B 1.5MB 0 B
NT-M 0 B 12 MBd−1 450 MBd−1
TTV 4ms 400 ms 13 ms
TTR 4ms 20 s 20 s

publication and revocation incur reasonable costs compared to the guarantees provided
by the Ethereum ecosystem as we describe in the next section.

It is important to note that costs for operations like setSoftwareName, publishHash, and
changeCertificateCID, that store a string of variable and user-chosen length, depend
not only on the amount of new data being stored but also on the data previously stored
in the corresponding contract variable. Writing to a variable for the first time is more
expensive, whereas freeing up space by replacing a string with a shorter one reduces costs.
In Table 3.4, we report costs for replacing strings of equal length, where applicable. The
lengths of CIDs for changeCertificateCID are chosen based on possible IPFS CID lengths,
as we describe in Section 2.3.

When evaluating the performance of the Palinodia client, it is important to keep the
Ethereum client’s role as gateway to blockchain data in mind. In order to observe both
clients’ interactions in a practical environment, we set up Go Ethereum (Geth) in either
full or light synchronization on the Ropsten test network together with a Palinodia client
on a single machine. At the time of our measurements, the Ropsten test network was a
Proof-of-Work-based blockchain identical to the Ethereum main chain in terms of protocol,
EVM, and 13 s block time with the crucial difference that Ether on Ropsten can be obtained
easily through so called faucets and it holds no monetary value. Ropsten was successfully
transitioned to Proof-of-Stake in June 2022 in preparation for The Merge of Ethereum’s
main net. Running tests like ours on Ropsten rather than main net is both ethically and
financially advisable.

Through our setup, wewere able tomonitor memory, disk, and network resource utilization
during binary validation, continuous monitoring, and revocations. For revocations, we
particularly wanted to measure the delay between issuance of a revocation by a software
developer and a Palinodia client of a corresponding software user processing it. After
setting up Palinodia contract instances on Ropsten and adding them to the Palinodia client
for monitoring through Geth, we issued revocation transactions to Ropsten from the same

37

3. Palinodia: Software Identity Management on Ethereum

machine using the Infura API3, thus allowing us to both time the delay accurately and
ensure that Geth could only learn of revocations via Ropsten. We provide the results of
our measurements in Table 3.5. Please recall from Subsection 2.2.1 that, broadly speaking,
Ethereum clients can operate in a light and full synchronization mode, the trade-offs of
which are both evident and relevant in the above table. In light mode, Geth only receives
and validates block headers, which suffices to perform event monitoring related to new
publications or revocations of binaries in Palinodia instances with a comparatively low disk
footprint. However, to obtain state information of a particular contract instance, a Geth
light client must request it from full clients it is connected to, resulting in approximately
1.5MB of incoming network traffic and a 400ms delay during the validation of a new binary.
A Geth client with full synchronization already holds all state information, resulting in
a much larger disk footprint, but allowing it to respond rather quickly during binary
verification without any additional network traffic. Note that we performed the above
measurements on the Ropsten test net, which gives a useful comparison between resource
demands of light and full sync modes but does not accurately reflect the demands a user
would face when connecting to the Ethereummain net. On the Ethereummain net, the disk
space requirements for a Geth light node are below 500MB4 whereas a full synchronization
demands roughly 750GB as reported by Etherscan5 at the time of writing. Regarding
the propagation of revocations, it is important to note that the time for a corresponding
transaction to be included in a new block is included in the 20 s delay for both light and
full Geth clients. Ropsten aims for the same 13 s block time as the Ethereum main net, but
the competition of new transactions for limited block space is significantly lower than on
main net, making for much more predictable overall revocation delays. Consequently, the
20 s we measured above should be taken as a best-case lower bound.

3.5.2. Security Considerations

We now describe how Palinodia derives its security properties from its construction and
the underlying Ethereum blockchain and peer-to-peer network, beginning with the attacks
described in Subsection 3.3.2. For this evaluation, we assume users only install and use
binaries registered in Palinodia smart contract instances.

Arbitrary binary: An attacker that manipulates authentic binaries to compromise user
systems fails at the integrity checks performed by the Palinodia client before a binary is
installed or executed. To overcome this hurdle, an attacker may deploy their own Palinodia
contract instances and register their manipulated binaries just like a legitimate software
developer or maintainer would. The success of this approach falls back to the trust-on-first-
use loop performed when a Palinodia client encounters a root software identity for the first
time. If a user expects a prompt asking whether to add a new software identity to the set
of trusted identities, an attacker can succeed with a counterfeit Palinodia instance. Even

3 https://docs.infura.io/infura/networks/ethereum
4 https://ethereum.org/en/developers/tutorials/run-light-node-geth/
5 https://etherscan.io/chartsync/chaindefault

38

https://docs.infura.io/infura/networks/ethereum
https://ethereum.org/en/developers/tutorials/run-light-node-geth/
https://etherscan.io/chartsync/chaindefault

3.5. Evaluation

worse, with such a counterfeit software identity in the set of trusted identities of a user’s
Palinodia client, an attacker could deliver updated versions of their manipulated binaries
without raising suspicion. However, if a user is not expecting a trust-on-first-use prompt
because they are supposedly updating a software they already installed, this attack would
fail. Lastly, an attacker could attempt to add maliciously altered binaries to the legitimate
software identity by compromising the necessary key pairs of software developers or
maintainers. Since the attacker leaves plainly obvious proofs of their actions in the form
of transactions on a public ledger, which also emit easily monitorable events enforced
through smart contract code, such an attack only has a brief window of opportunity to
succeed. Through the root owner mechanism in all Palinodia contracts, the compromised
software developers and maintainers are able replace the affected key pairs, repair the
damage caused by an attacker through revocations and updated releases, and reestablish
control over their software identities.

Replay attack: An attacker that attempts to compromise user systems by presenting
authentic, unmodified, but outdated and vulnerable binaries as current fails at the re-
vocation checks performed by the Palinodia client, as long as the responsible software
maintainer revoked the corresponding Hash IDs in their BHS contract instance. Note that
this is the case regardless of whether or not the corresponding software identity is part of
the set of trusted identities within a user’s Palinodia client. Altering the view of a user’s
Ethereum client on the blockchain state in order to hide a particular revocation from both
the Palinodia client and the user challenges the fundamental security assumptions of a
public blockchain system like Ethereum. First, an attacker would have to eclipse a victim
by controlling all connections they have to the Ethereum peer-to-peer network. Then,
assuming that the victim was eclipsed ahead of a particular revocation, an attacker would
have to generate an alternate valid block and subsequent blocks in order to successfully
convince the user’s Ethereum client that the revocation never happened. This would
currently require mining power on par with all honest Ethereum miners combined in
order to keep up with the block creation times the Ethereum client expects. Undoing a
revocation an Ethereum client has already received and processed requires even more
mining power as an attacker would have to generate an alternate blockchain that is longer
than the canonical chain the client already knows. Both of these attacks violate our as-
sumption on the mining power available to attacks as described in Subsection 3.3.2. Lastly,
compromising key pairs is not helpful for this attack as there is no functionality in BHS
contracts to undo a revocation, even for root owners.

Freeze attack: Similar to replay attacks described in the previous paragraph, an attacker
trying to prevent a user’s Ethereum client from obtaining information on the current
state of software identities or attached binaries would encounter similar problems. The
Ethereum protocol currently aims at generating a new block every 13 s. An Ethereum
client that does not receive a new valid block for several minutes would raise suspicion
that something was wrong and the user should investigate. In this context, it is also worth
pointing out how new blocks certify the freshness of software identity information even if
no changes happened. Please recall from Subsection 2.2.2 that part of every block header
is the state root which is computed over the entire Ethereum world state and is used
by Ethereum clients when obtaining and verifying contract instance states. In this way,

39

3. Palinodia: Software Identity Management on Ethereum

a contract instance’s state can be certified and verified as current by cryptographically
proving its inclusion in the state root contained in the most recent block header, regardless
of when it was last modified through a transaction. Another approach an attacker could
take to execute a freeze attack is to prevent software developers or maintainers from
issuing transactions via an eclipse attack. However, similar to scenarios described above,
such an attacker would have to either fabricate a counterfeit blockchain to make it seem
like transactions were executed, or raise suspicion when transactions repeatedly fail to be
recorded on the canonical Ethereum blockchain. Publicly available block explorers like
Etherscan6 can also be used by software developers, maintainers, and users alike to access
current information on the blockchain as a whole or individual contract instances and
transactions.

3.6. Discussion

Based on our results, we can answer the first of our research questions stated in Chapter 1
affirmatively. While further uses for software identities on distributed ledgers are explored
in Chapter 5, Palinodia serves as a necessary foundation and shows how the requirements
for software identities described in Section 2.1 and the properties of Ethereum are well-
aligned: The Ethereum blockchain serves as a tamper-evident, strictly access-controlled,
and therefore reliable source for information on software identities, while the peer-to-peer
network ensures a high availability of this data source and fast dissemination of updates,
like new releases or revocations.

The properties of revocations in Palinodia are worth emphasizing in comparison to existing
approaches like signed binaries and centrally-hosted hash-based verification. Signatures
attached to binaries, while not necessarily establishing a software identity that connects
together multiple binaries, do provide integrity protection and endorsement by an author-
itative source with perfect availability as they are distributed alongside binaries. However,
systems relying on signatures attached to binaries exhibit unreliable revocations [48]
resulting, in part, from one developer certificate being used to sign multiple binaries and
a decoupling between the validity of said developer certificate and signatures for bina-
ries created with it. Centrally-hosted hash-based verification servers, meanwhile, allow
for very precise revocations of individual binaries but may not provide a reliably high
availability as signed binaries. Additionally, such verification servers must be protected
against compromise, otherwise an attacker can legitimize manipulated binaries by adding
their hashes to the respective servers. Using the Ethereum blockchain, Palinodia achieves
both precise and highly available revocations. While deployment and transaction costs for
Palinodia smart contracts are significant, they effectively replace the effort of establishing
and maintaining a verification server with “renting” this functionality from the Ethereum
ecosystem. At the time of writing, reading data from the Ethereum blockchain does not
incur any costs, which is rather beneficial for an application like Palinodia with a very

6 https://etherscan.io/

40

https://etherscan.io/

3.6. Discussion

skewed read and write demand: Each binary hash is written and possibly revoked only
once but read many more times, depending on how many users a software has.

In addition to the security properties described in Subsection 3.5.2, there are also more
incidental benefits to Palinodia’s construction on a public ledger that are worth discussing.
For example, in centrally-managed open-source software repositories like the Node Pack-
age Manager (npm)7, control over well-established packages can be transferred by the
repository operator when they are abandoned by their previous owners. Ohm et al. [67]
report that such ownership transfers have already been used by malicious actors to take
over and weaponize established open source packages in order to attack and compromise
user systems. While Palinodia can not prevent the abandonment of software identities, it
does prevent abandoned identities from being claimed by or reassigned to anyone without
the previous owner’s explicit consent. Note that open source projects using Palinodia could
still be forked to establish their own software identity, a process that would be plainly
visible to both users and developers alike. Specifically, trust relations between users and
an abandoned software identity would not immediately transfer to the software identity of
a forked and revived software but require explicit action by users. This example succinctly
demonstrates one qualitative difference between software identities that are managed
by a centralized authority and self-sovereign software identities like those provided by
Palinodia.

While implementing Palinodia, we made two design decisions that are worth highlighting
here. First, we originally suggested that a Palinodia client could obtain and use pending
revocation transactions to further reduce the delay between their issuance and user
notification. This turned out to be both technically challenging and of questionable value.
On the technical side, Ethereum light clients are not meant to request and process pending
transactions from full nodes, so the protocols used in this interaction do not support this
functionality. Full nodes, however, can obtain pending transactions and be instructed to
forward them to a Palinodia client for further processing, but their operation is rather
demanding as we describe in Subsection 2.2.1. Additionally, the usefulness of pending
revocation transactions is somewhat diminished by the fact that they may not end up
being persisted on the Ethereum chain and thus not be considered actually executed. For
example, if the issuing address of a revocation is deauthorized in the corresponding IDM
contract instance before the revocation is processed or the transaction is invalidated by
its sender because it was issued by mistake, it would not be persisted on-chain. These
scenarios reinforce the recommendations we noted in Subsection 2.2.3 that applications
relying on transactions recorded on-chain should wait for seven or more subsequent blocks
so that a chain reorg is less likely to undo them.

The second design decision concerns the structure of on-chain components and inherent
trade-offs. For example, we opted to deploy one BHS contract instance per software
distribution platform. Alternatively, one single BHS contract instance could be constructed
that is shared by multiple software maintainers, none of whom would have administrative
privileges over the entire instance. This would result in a more complex contract code that

7 https://www.npmjs.com/

41

https://www.npmjs.com/

3. Palinodia: Software Identity Management on Ethereum

would only have to be deployed once per software identity, but it would also increase the
costs for publishing hashes as additional information would have to be stored to support
the more fine-grained access control necessary for such a multi-tenant smart contract.

3.6.1. Limitations & Future Work

Our primary focus with Palinodia was to demonstrate feasibility of software identity
management on a distributed ledger at the example of Ethereum. As such, aspects like
security and contract instance reusability were not observed to the extent of a production-
level deployment. For example, deployed BHS contract instances can be “maliciously
captured” by SW contract instances other than the one intended by a software maintainer.
Similarly, deregistered BHS contract instances are currently left in an unusable state as the
deregistration is only processed within the SW contract instance. A general design pattern
for interlinking smart contract instances under the control of different actors that protects
against unintended links and provides a well-defined linking and unlinking procedure
could be interesting future work.

Similar to the point above, our measurements regarding the performance of the presented
Palinodia client does not consider how the Ethereum peer-to-peer networkwould copewith
a large-scale use of Palinodia, particularly the number of light clients making infrequent
read requests to full nodes. While we made anecdotal observations during our experiments
that light clients had difficulties finding and connecting to full nodes configured to serve
them, a quantitative measurement of the “light client acceptance” of Ethereum’s peer-to-
peer network could be valuable future work to judge the practicality of applications such as
Palinodia. Such measurements would be particularly interesting after Ethereum’s switch
to Proof-of-Stake as part of The Merge and the planned introduction of data sharding
meant to better support applications like ours.

There is also a privacy aspect worth highlighting with the use of Ethereum light clients
in Palinodia. While the delegation of monitoring requests from light to full nodes is
somewhat privacy-preserving through the use of probabilistic Bloom filters, requests for
specific transactions or smart contract instance states eventually leak to the full node
which software the user behind a particular light client is using. Once enough software
identities are in use, full nodes may be able to fingerprint and reidentify light clients based
on their monitoring and retrieval requests. Assuming that light-client serving full nodes
become more abundant as time goes on, developing connection management strategies to
preserve a user’s privacy as much as possible could be interesting future work, both on
Ethereum in particular or on public DLTs in general.

Lastly, each Palinodia software identity currently represents a software in isolation, even
though software of sufficient complexity is rarely self-contained and may instead include
libraries or modules. A logical next step would therefore be an extension to Palinodia such
that relations and dependencies between different software identities can be expressed and

42

3.6. Discussion

recorded as well. Such a feature would be particularly relevant with regard to security-
related revocations as software that depends on a revoked version of a library, for example,
could be identified more easily.

43

4. ETHTID: Threshold Information
Disclosure on Ethereum

The content presented in this chapter has been published previously in the paper titled
“ETHTID: Deployable threshold information disclosure on Ethereum” by Stengele, Raiber,
Müller-Quade, and Hartenstein presented at the 3rd international conference on blockchain
computing and applications [87]. An extended preprint with the same title and by the
same authors is available on arXiv [86].

Public distributed ledgers like Ethereum provide a remarkable set of features as we ex-
plained in Chapter 2 that can be leveraged for applications such as Palinodia, as we showed
in the previous chapter. However, coordinating the disclosure of a set of statements is a
functionality that, at least to our knowledge, no ledger had an inherent need for and it
is therefore not immediately available on any one of them. In recent years, the growing
extent of “front running”, i.e. the use of non-public information in the form of pending
transactions for one’s own financial benefit, particularly by miners in distributed ledgers,
has sparked work to amend this functionality to existing systems [92]. While the problem
we tackle in this chapter differs in its setting and scope to the front running scenario above,
the core problem of managing the release of information in a decentralized way is similar.
Please recall from Chapter 1 that one of our overall goals is to augment software identities,
as described in the previous chapter, with independently verified attributes regarding
specific characteristics, which is the focus of the next chapter. In order for such a review
process to be independent, a coordinated disclosure of results is essential. Similarly, to
prevent reviewers from committing to multiple results and only selectively disclosing some
or none of them depending on the results of others, control over said disclosure should be
delegated. A trusted third party can provide such a functionality rather easily, but since
we aim to build a fully decentralized system, the focus of this chapter is to establish a
decentralized disclosure coordination mechanism.

4.1. Problem Statement

We propose the coordinated disclosure problem independent of our use case as follows:

Each party 𝑝𝑖 ∈ {𝑝1, 𝑝2, . . . , 𝑝𝑛}, with 𝑛 unknown in advance, commits to
message𝑚𝑖 at time t(c)

𝑖
. The public disclosure of the contents of messages𝑚𝑖 at

time t(d) > t(c)
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑛} is coordinated if the following properties hold:

45

4. ETHTID: Threshold Information Disclosure on Ethereum

• Fairness: If the contents of any message𝑚𝑖 are disclosed, then the con-
tents of all messages𝑚 𝑗 , 𝑗 ≠ 𝑖 are disclosed.

• Hiding: Between commitment at time t(c)
𝑖

and disclosure at time t(d), the
contents of message𝑚𝑖 are only known to party 𝑝𝑖 .

• Binding: After commitment at time t(c)
𝑖
, the contents of message𝑚𝑖 are

immutable.

The one-to-one mapping of messages to parties was chosen for readability and is not
strictly required or enforced. Indeed, each party 𝑝𝑖 can commit any number of messages to
be disclosed at time t(d). A corollary property that immediately follows from the fairness
and binding property is that, once committed, the disclosure of individual message contents
cannot be prevented, not even by their respective authors.

One important aspect we need to address at this point is the ability of each 𝑝𝑖 to withdraw
from a coordinated disclosure after committing messages and instead reveal their contents
prematurely and unilaterally. We see this as a fundamental and unavoidable limit as each
party knows what they committed to and they cannot be prevented from disclosing this
information. Crucially, such a deviation is mainly to the detriment of the deviating party
and does not affect the coordinated disclosure of other parties’ message contents. For the
sake of readability, we will omit the explicit mention of this caveat going forward.

In addition to the functionality described above, an equally important goal of our approach
is to record and time-stamp the disclosure process such that the independent generation
of all𝑚𝑖 can be judged afterwards based on their time stamps. Since we intend to use
our disclosure mechanism on a distributed ledger, this time-stamped recording can be
achieved rather gracefully.

We introduce the concept of threshold information disclosure (TID) to realize a coordinated
disclosuremechanism on Ethereum. This approach revolves around a temporally decoupled
asymmetric key pair: An encryption key is provided early to enable the encryption and
commitment of messages whereas the decryption key is released at a specified later time
to realize the disclosure of message contents. Fairness is achieved by making access to
all committed message contents dependent on a singular decryption key. To fulfill the
hiding property, this decryption key cannot be generated or held by a single party. We
therefore task a council with performing a distributed key generation procedure so that the
decryption key is held in a shared state among all council members with no single member
having access to the key itself. The council is also tasked with recovering said decryption
key for its scheduled release. Lastly, to avoid single points of failure, i.e. the disclosure
being dependent on any single council member, we employ threshold secret sharing of
the decryption key, such that only a configurable portion of the council, the eponymous
threshold, must collaborate in order to recover and publish it. Essentially, threshold
information disclosure delegates and decentralizes the privilege and responsibility to grant
public access to an arbitrarily large set of appropriately prepared messages.

The remaining chapter is structured as follows. In Section 4.2, we discuss related work,
both in terms of cryptographic approaches and alternative realizations. With Section 4.3,

46

4.2. Related Work

we provide distinct fundamentals for this cryptography-focused chapter which includes
introducing the threshold secret sharing scheme by Shamir and Feldman’s use of it in a
verifiable manner as crucial parts of threshold information disclosure. We provide our
system model, including roles as well as attacker and trust assumptions in Section 4.4. In
Section 4.5, we present ETHTID, our implementation of threshold information disclosure
on Ethereum, before we evaluate it in Section 4.6. We discuss our findings before examining
limitations and highlighting possible future work in Section 4.7.

4.2. Related Work

We cover related work in two distinct directions: First, we briefly explain available crypto-
graphic primitives and the rationale for our selection. Second, we review and discuss other
approaches to achieve a coordinated disclosure functionality and how our work relates to
them.

Based on our approach of using an asymmetric key pair to facilitate coordinated disclosure,
an early choice in design concerns the underlying cryptosystem. While distributed key
generation (DKG) for factoring-based cryptosystems like RSA exist [13], their probabilis-
tic multi-round structure is significantly less efficient than DKGs for discrete-log-based
cryptosystems that enable Diffie-Hellman(-Merkle) key exchanges [26, 59] or ElGamal
encryption [28], which have a constant number of rounds. In particular, we employ a
variation of the verifiable secret sharing (VSS) scheme by Feldman [30], which consists
of a constant number of communication rounds. In his paper, Feldman cites a prominent
threshold secret sharing scheme by Shamir [80], which we also adopt and introduce in
more detail in Section 4.3. However, it is instructive to briefly examine other threshold
secret sharing schemes and explain why we opted not to use them.

Based on the Chinese remainder theorem, Asmuth and Bloom [3] and Mignotte [60]
independently proposed threshold secret sharing schemes where an integer is decomposed
into a system of simultaneous congruences, with each congruence being a share of the
secret. Through careful selection of moduli and other parameters, it is ensured that
a threshold number of congruences are required to recover a shared secret and fewer
congruences reveal no useful information about it. Kaya and Selçuk present a joint
random secret sharing scheme based on Asmuth Bloom [47], which is unsuitable for our
application for two reasons: First, it requires a shared RSA modulus, which we already
discounted above. Second, the size of shares grows with the number of share holders
and the configured threshold due to the necessarily large moduli, which is not ideal in an
execution environment such as ours where the transmission and storage of every byte
incurs costs.

Blakley presents a threshold sharing scheme based on affine hyperplanes in a vector space
whose dimensionality corresponds to the desired threshold [11]. A shared secret is encoded
as the intersection of these hyperplanes and due to the dimension of the overall vector
space, one needs the designated threshold number of them for recovery. Distributed key

47

4. ETHTID: Threshold Information Disclosure on Ethereum

generation schemes based on the threshold secret sharing scheme by Blakley have only
recently started to appear [73]. However, similar to DKG schemes for Asmuth-Bloom from
above, the size of shares grows with the threshold as it determines the dimensionality of
the underlying vector space, making them similarly unfitting for our application.

We now review alternative and related approaches to coordinated disclosure. When
comparing previous works to our approach, it is instructive to consider the number of
mutually distrusting senders, i.e. they do not wish to disclose their messages to each
other prematurely, and the number of possible recipients of eventually disclosed messages.
ETHTID enables a many-to-many disclosure without a trusted third party.

An early exploration of encrypting messages “to the future” was submitted by May to the
Cypherpunks mailing list in 19931. Rivest, Shamir, andWagner then introduced this notion
to the scientific literature in 1996 [77]. Rivest et al. proposed time-lock puzzles that can
be efficiently generated by a sender but require a configurable amount of computational
work to be solved by a recipient, which is estimated by the sender to take a certain
amount of wall clock time. These puzzles can be attached to encrypted messages such
that the puzzle’s solution grants access to the message. The concept was later improved
by Mao [54] and further studied by Mahmoody et al. [52], among others. In their initial
form, time-lock puzzles based on computational effort constitute a one-to-one disclosure
mechanism: Having multiple senders use the same time-lock puzzle for a coordinated
disclosure either requires a trusted party to generate the puzzle and encrypt messages on
behalf of their senders, or all senders hold the same key, meaning they gain premature
access to each other’s messages. Recipients face a similar problem to access a set of
time-lock encrypted messages. All interested recipients have to independently exert
computational effort to solve the time-lock puzzle unless or until one of them shares
the solution with everyone else. Without a benevolent recipient to share the solution,
it is highly likely that recipients solve a given time-lock puzzle at different times, thus
leading to a rather loosely coordinated disclosure. Malavolta and Thyagarajan [53] present
an approach for homomorphically combinable time-lock puzzles. With their approach,
multiple inputs to an arbitrary function can be time-lock encrypted, the resulting puzzles
can then be combined homomorphically into a single puzzle that, once solved, reveals the
function’s output. Most crucially, the difficulty of the output puzzle does not depend on
the number of inputs. While Malavolta and Thyagarajan describe applications for their
scheme that require an algorithmic transformation of inputs, their approach may also be
applicable to the coordinated disclosure problem.

Another general approach is to use trusted time servers, which release cryptographic
information at specified times, thereby enabling the decryption of messages that were
specifically prepared to be disclosed at those times. Rivest et al. [77], in addition to time-
lock puzzles as described above, also sketched this idea in their paper. The concept was
later improved by Di Crescenzo et al. [24] and Catholo et al. [20]. However, their focus
revolves mostly on anonymity notions between senders, recipients, and the trusted time

1 https://mailing-list-archive.cryptoanarchy.wiki/archive/1993/02/

a421c6fc805dfb4ae4197521e8a9e91dd456e3deab855f12af31a4b1ccccf6cb/

48

https://mailing-list-archive.cryptoanarchy.wiki/archive/1993/02/a421c6fc805dfb4ae4197521e8a9e91dd456e3deab855f12af31a4b1ccccf6cb/
https://mailing-list-archive.cryptoanarchy.wiki/archive/1993/02/a421c6fc805dfb4ae4197521e8a9e91dd456e3deab855f12af31a4b1ccccf6cb/

4.3. Fundamentals

server mediating the disclosure and less on coordinating the public disclosure of messages
by multiple senders as we do. Nevertheless, many-to-one disclosures are straightforward
with these schemes and by creating multiple encrypted messages for multiple recipients,
many-to-many disclosure is also possible. However, the number of encrypted messages
in this approach scales with the product of senders and recipients, posing a challenge to
scalability in addition to relying on a centralized trusted third party.

Within the context of distributed ledgers, the work of Benhamouda et al. [10] is noteworthy
in relation to our approach. They propose to distributedly generate and threshold-share a
single secret and have the parties actively maintaining a distributed Proof-of-Stake ledger,
in their case Algorand2, indefinitely re-share this secret across changing committees as
part of the underlying consensus protocol. In this way, a ledger itself could act as a
cryptographic entity by generating signatures or decrypting information under specified
conditions. Benhamouda et al. suggest that functionalities such as the one we establish
here could be made available in their system as “threshold cryptography as a service”.
However, as far as we could tell, their concept has not been implemented in Algorand and
thus no derived features are available at the time of writing. The way in which such a
service could be derived from an indefinitely re-shared secret is also left as future work.

Lastly, the work of Schindler et al. [79] is of particular relevance as we build upon it and
adapt it to our use case. With EthDKG, Schindler et al. describe a framework for distributed
key generation using Ethereum smart contracts for coordination, communication, and
arbitration of disputes in case of misbehavior. They provide an implementation consisting
of a Solidity smart contract and a Python off-chain application to execute a DKG for
a Boneh–Lynn–Shacham (BLS) group signature scheme [15, 14]. Once established, a
sufficiently large subset of a group can generate signatures that can be verified against
the group’s public key, which is available on the Ethereum blockchain. In their use
case, recovery of the shared secret key is neither necessary nor intended. We adopt the
implementation of EthDKG, extend it with a coordinated recovery and publication of the
shared secret key, and optimize it based on the requirements of our use case, allowing us
to save significant costs.

4.3. Fundamentals

Since we focus more on cryptographic constructions in this chapter, we provide separate
fundamentals here. We first review finite cyclic groups as the fundamental mathematical
object and successively introduce notation and concepts necessary for the remaining
chapter.

2 https://www.algorand.com/

49

https://www.algorand.com/

4. ETHTID: Threshold Information Disclosure on Ethereum

4.3.1. Notation & Number Theory

A group is defined as a set G and a binary operation · on its elements with the following
properties:

• Closure: For all elements 𝑔1, 𝑔2 ∈ G, 𝑔1 · 𝑔2 ∈ G.

• Existence of an identity: There exists an identity3 𝔢 ∈ G such that for all elements
𝑔 ∈ G, 𝔢 · 𝑔 = 𝑔 = 𝑔 · 𝔢.

• Existence of inverses: For all elements 𝑔 ∈ G, there exists an element 𝑔−1 ∈ G such
that 𝑔 · 𝑔−1 = 𝔢 = 𝑔−1 · 𝑔.

• Associativity: For all elements 𝑔1, 𝑔2, 𝑔3 ∈ G, (𝑔1 · 𝑔2) · 𝑔3 = 𝑔1 · (𝑔2 · 𝑔3).

If the setG is finite, the group is called finite and |G| is the order of the group. For notational
convenience, we denote applying the group operation𝑚 times to a group element 𝑔 as
exponentiation:

𝑔𝑚 = 𝑔 · 𝑔 · · · · · 𝑔︸ ︷︷ ︸
𝑚 times

.

It is straightforward to see that the conventional rules for exponentiation also apply, i.e.
𝑔𝑚 · 𝑔𝑚′ = 𝑔𝑚+𝑚

′ and (𝑔𝑚)𝑚′ = 𝑔𝑚𝑚′ .

A finite group is cyclic if all of its elements can be described as powers of a particular
element called the generator, denoted as 𝑔. Let 𝑝 = |G| be the order of the group, then:

G =
{
𝑔0, 𝑔1, 𝑔2, . . . , 𝑔𝑝−1

}
.

Naturally, 𝑔0 = 𝔢. It is important to note that 𝑔 and its powers are group elements whereas
exponents are integers modulo 𝑝 , or Z𝑝 for short. Similarly, addition and multiplication
in the exponent are also integer operations. Analogous to the use of exponentiation, the
discrete logarithm for finite cyclic groups is also well defined and of central importance
to corresponding cryptosystems. For a group element ℎ = 𝑔𝑥 , its discrete logarithm is
dlog𝑔 ℎ = 𝑥 , i.e. the number of times 𝑔 was applied to itself using the group operation to
result in ℎ. The security of discrete-log cryptosystems is based on selecting finite cyclic
groups for which computing discrete logarithms is believed to be hard. Using the example
above, given 𝑥 , computing ℎ = 𝑔𝑥 should be efficient whereas the inverse, deriving 𝑥 from
ℎ, should be computationally infeasible.

4.3.2. Distributed Key Generation & Threshold Sharing

With notation and fundamental concepts covered above, we now turn to distributed key
generation (DKG) and threshold sharing in discrete-log-based cryptosystems. On the
surface, DKG in discrete-log-based cryptosystems is rather straightforward: Let G be a

3 We use the Gothic font 𝔢 here to avoid a collision in notation later in the chapter.

50

4.3. Fundamentals

cyclic group of order 𝑝 with generator 𝑔 in which computing the discrete logarithm is hard.
In a council of size𝑛, everymember 𝑐𝑖 draws a random𝑑𝑖 ∈ Z𝑝 , publishes 𝑒𝑖 B 𝑔𝑑𝑖 and keeps
𝑑𝑖 to themselves. The council encryption key is then 𝑒 B

∏𝑛
𝑖=1 𝑒𝑖 = 𝑔

∑𝑛
𝑖=1 𝑑𝑖 = 𝑔𝑑 . However,

in such a construction, every piece 𝑑𝑖 would be required to recover 𝑑 , thereby enabling
any council member to prevent recovery and thus disclosure by simply not participating.
By integrating threshold secret sharing into the key generation, this dependency can be
alleviated to a configurable extent.

We introduce the primary functionality of threshold secret sharing below by using the
auxiliary role of a centralized dealer, which will be obviated later. A dealer wants to share
a secret 𝑠 among 𝑛 parties such that 𝑡 + 1 of them need to cooperate to recover 𝑠 and 𝑡

or fewer parties can not learn anything useful about the secret 𝑠 . To do this, the dealer
generates a share of the secret 𝑠 for each party. By construction, 𝑡 + 1 correct shares suffice
to recover 𝑠 and any fewer shares reveal no useful information about it. The parameter 𝑡
is the eponymous threshold. As mentioned in Section 4.2, we employ the threshold secret
sharing scheme by Shamir within the verifiable secret sharing scheme by Feldman, both
of which we introduce here.

In his seminal paper [80], Shamir proposed a secret sharing scheme using modular arith-
metic on polynomials. To share a secret integer 𝑠 ∈ Z𝑝 among 𝑛 parties, a dealer first
chooses a finite field of prime order 𝑝 . Next, the dealer embeds the secret 𝑠 as the constant
term in a polynomial of degree 𝑡 with all other coefficients 𝑎𝑖 drawn uniformly at random
from Z𝑝 :

𝑓 (𝑥) = 𝑠 + 𝑎1𝑥 + 𝑎2𝑥2 + · · · + 𝑎𝑡𝑥𝑡 (mod 𝑝).
By evaluating their polynomial at distinct points 𝑥𝑖 , the dealer generates the value 𝑦𝑖 =
𝑓 (𝑥𝑖) for party 𝑐𝑖 . The share for party 𝑐𝑖 is then 𝑟𝑖 = ⟨𝑥𝑖, 𝑦𝑖⟩ and is transmitted confidentially
by the dealer. If 𝑡 +1 share holders 𝑖1, . . . , 𝑖𝑡+1 exchange their respective shares and perform
a Lagrange interpolation [89], they can recover the polynomial 𝑓 (𝑥) and with it the shared
secret 𝑠:

𝑠 =

𝑡+1∑︁
𝑘=1

©«
𝑡+1∏
𝑙=1,
𝑙≠𝑘

𝑥𝑖𝑙

𝑥𝑖𝑙 − 𝑥𝑖𝑘
𝑦𝑖𝑘

ª®®®¬ . (4.1)

Note that knowledge of only 𝑡 shares conveys no useful information about the secret 𝑠:
For any guessed last share, the above interpolation gives a unique polynomial and any
value of 𝑠 remains possible. As such, the secret sharing scheme by Shamir is information-
theoretically secure: No amount of computing power would enable an adversary to know
with certainty whether or not they guessed a set of valid shares and recovered the correct
secret.

On its own, Shamir’s scheme is vulnerable to malicious dealers that distribute inconsistent
shares, which would lead to different secrets based on which 𝑡 + 1 shares were used for
recovery. Feldman [30] presents a scheme to use Shamir’s secret sharing in a verifiable way
by forcing a dealer to publicly commit to their polynomial in such a way that recipients of
shares can check their correctness and overall consistency. To do this, a finite cyclic group
of prime order 𝑝 with generator 𝑔 for which the discrete logarithm is hard to compute is

51

4. ETHTID: Threshold Information Disclosure on Ethereum

𝑠! 𝑓!(⋅) ⟨𝑥" , 𝑦!→"⟩

𝑠 𝑓(⋅) ⟨𝑥" , 𝑦"⟩

contains
generates shadows

𝑡 + 1 shadows define

contains

𝑡 + 1 shares define

𝑛 shadows
define

𝑛 polynomials
define

𝑛 secrets
define

could generate shares

Figure 4.1.:Overview of cryptographic objects during threshold information disclosure, consisting of Feldman
DKG, threshold sharing, and recovery. Solid arrows show necessary relations and operations. Dashed arrows
signify implicit relations. Dotted arrows show operations that are possible but not necessary.

used. The dealer broadcasts commitments4 to their polynomial coefficients 𝑔𝑠, 𝑔𝑎1, . . . , 𝑔𝑎𝑡
to all parties while transmitting secret shares 𝑟𝑖 to each party confidentially. Each party 𝑐𝑖
can then verify that the share 𝑟𝑖 = ⟨𝑥𝑖, 𝑦𝑖⟩ they received is correct by checking it against
the previously broadcast polynomial commitments using the following equation:

𝑔𝑦𝑖
?
= 𝑔𝑠

𝑡∏
𝑘=1
(𝑔𝑎𝑘)𝑥𝑘𝑖 (4.2)

Notice that the polynomial of the share issuer is essentially reevaluated at the point 𝑥𝑖 in
the exponent on the right side of the above equation to result in the value 𝑦𝑖 if the check
passes.

By exploiting the fact that polynomials and their commitments5 are additively homomor-
phic, Feldman’s VSS scheme can be executed 𝑛 times in parallel with each council member
acting as dealer in one execution, which is commonly referred to as Joint-Feldman VSS.
Essentially, each council member 𝑐𝑖 threshold-shares their contribution 𝑠𝑖 such that these 𝑛
sharings can be combined into one sharing of the combined secret 𝑠 . In this way, a council
can generate 𝑠 in threshold-shared form without a centralized trusted dealer and later
recover and publish it to achieve threshold information disclosure (TID). We provide an
overview of the cryptographic objects involved in TID and their relations in Figure 4.1 to
accompany the following description.

4 Note that we use the term “commitment” for the sake of readability. This construction does not constitute
a commitment scheme in the strict cryptographic sense as it does not fulfill the hiding property: Given 𝑠 ,
it is trivial to see that 𝑔𝑠 commits to it. However, since all to-be-committed values in our construction are
drawn randomly from a sufficiently large set and never explicitly revealed, this is not an issue.

5 Note that polynomial commitments are elements of a finite cyclic group. Since we introduced the
multiplicative notation above, the term “additive” is somewhat misleading here. However, combining two
commitments with the corresponding group operation yields a commitment to their sum in the exponent:
𝑔𝑎 · 𝑔𝑏 = 𝑔𝑎+𝑏 .

52

4.4. System Model & Assumptions

Each council member 𝑐𝑖 threshold-shares a secret 𝑠𝑖 among 𝑛 council members, including
themselves, as explained previously such that the resulting shares can be combined into a
sharing of the sum of all secrets 𝑠 B

∑𝑛
𝑖=1 𝑠𝑖 . For the sake of clarity, we use the term shadow

𝑢𝑖→ 𝑗 to refer to shares of the secret 𝑠𝑖 of member 𝑐𝑖 generated for member 𝑐 𝑗 . We reserve
the term share 𝑟𝑖 for shares of the group secret 𝑠 that member 𝑐𝑖 generates from shadows{
𝑢 𝑗→𝑖

}𝑛
𝑗=1. Each member 𝑐𝑖 embeds their secret 𝑠𝑖 into a polynomial 𝑓𝑖 (𝑥) as described

above. In order for the shadows to be additively combinable, it is vitally important that all
dealers generate the shadow for member 𝑐 𝑗 by evaluating their respective polynomials at
the same value 𝑥 𝑗 , not doing so results in provably invalid shadows that will be handled in
our implementation. Upon receiving shadows 𝑢𝑖→ 𝑗 =

〈
𝑥 𝑗 , 𝑦𝑖→ 𝑗 = 𝑓𝑖 (𝑥 𝑗)

〉
from all members

𝑐𝑖 , including themselves, and verifying their correctness via Equation (4.2), member 𝑐 𝑗 can
combine these 𝑛 shadows into a share 𝑟 𝑗 =

〈
𝑥 𝑗 , 𝑦 𝑗 =

∑𝑛
𝑖=1𝑦𝑖→ 𝑗

〉
of the group secret. By

construction, 𝑡 + 1 of the shares ⟨𝑥𝑖, 𝑦𝑖⟩ , 𝑖 = 1, 2, · · · , 𝑛 now uniquely define a polynomial
𝑓 (𝑥) with 𝑓 (0) = ∑𝑛

𝑖=1 𝑠𝑖 = 𝑠 . Note that, before the combined secret 𝑠 is recovered, none of
the council members have access to it. TID concludes with the scheduled recovery and
publication of the secret 𝑠 by pooling 𝑡 + 1 correct shares 𝑟𝑖 and performing a Lagrange
interpolation via Equation (4.1).

4.4. System Model & Assumptions

Before describing ETHTID, our implementation of threshold information disclosure on
Ethereum, in detail, we provide a system, attacker, and trust model here and further specify
our assumptions.

As we alluded to in Subsection 2.2.5, we treat Ethereum, more specifically its consensus and
application layers as described in Subsections 2.2.3 and 2.2.4, as a synchronous, publicly
accessible and viewable, authenticated, and reliable broadcast channel. In the synchronous
communication model, sent (broadcast) messages are delivered with a known finite upper
bound Δ. In our case, Δ describes the time between sending a transaction to the Ethereum
peer-to-peer network and it being recorded on-chain and visible to anyone. Note that
this is a model assumption that abstracts away some of the uncertainties of submitting
transactions to be recorded on the Ethereum blockchain that depend on current transaction
demand and fees, for example. We discuss the implications of this gap between model and
reality further in Section 5.7. As we describe in Section 2.2, Ethereum as a whole is both
accessible to and viewable by anyone. All transactions on Ethereum are cryptographically
associated with their sending account, thereby ensuring sender authenticity and non-
repudiation. Lastly, we model Ethereum as a reliable broadcast channel since it ensures
through consensus that, once a transaction has been added to the blockchain, anyone can
access it and, more importantly, everyone observes the same transaction.

4.4.1. Roles

Our system model contains the following roles as depicted in Figure 4.2:

53

4. ETHTID: Threshold Information Disclosure on Ethereum

Smart Contract

𝑒 𝑑

Data

Users

Initiator

Council

1

2

3

4 6

5

7

Figure 4.2.: System overview. (1) Initiator deploys smart contract with parameters and incentives. (2) Council
members register with the contract by submitting data and a collateral. (3) Council members communicate
through the smart contract to generate the encryption key 𝑒 and establish a sharing of the decryption key 𝑑 .
In case of misbehavior, members submit a dispute to the contract to enforce consequences. (4) Users can
obtain encryption key 𝑒 . (5) At a codified time, council members reconstruct and submit decryption key 𝑑 to
the smart contract. (6) Users and the general public can obtain decryption key 𝑑 . (7) Based on their behavior,
council members receive a reward in addition to their collateral and are released from their obligation.

An initiator sets the council size, recovery threshold, reconstruction schedule, and deploys
an ETHTID smart contract instance to orchestrate and coordinate a TID procedure. In
practice, such an initiator would also provide an incentive for participation. As the party
deploying a particular ETHTID contract instance, an initiator could use the opportunity to
include malicious or deceitful functionality to the detriment of other parties. We discuss
this aspect further in Section 4.7 and offer remedial measures in Subsection 4.7.1.

Council members facilitate threshold information disclosure by performing the distributed
key generation, threshold sharing, and scheduled reconstruction of the encryption/de-
cryption key pair. Council members would be required to submit a collateral that can be
destroyed or redistributed in case of provable misbehavior. At the conclusion of a given
ETHTID instance, each council member would reclaim their collateral in addition to their
share of the reward provided by the initiator.

Users are the main beneficiaries of each ETHTID instance as the provided encryption
key allows them to commit to the release of arbitrary messages. Other than obtaining
the encryption key, once available, and using it to prepare their messages, users have
no further interaction with an ETHTID instance. Indeed, once their encrypted messages
are published in some way, users can become entirely inactive as the disclosure of their
messages is then dependent on the publication of the corresponding decryption key.

Lastly, not depicted in Figure 4.2, the general public, including users who actively partic-
ipated, can use a particular instance’s decryption key after its publication to access the
contents of previously committed messages. It is important to note that none of the above
roles are mutually exclusive: An initiator can also be a council member and they can also

54

4.4. System Model & Assumptions

commit to the disclosure of messages as a user. Problems only arise if too many council
members are actually under the control of an attacker or they collude with each other, a
notion we concretize in the next subsection.

4.4.2. Attacker and Trust Model

In our model, attackers can pursue two diametrically opposed goals in regards to disclosure:
First, they can try to obtain the decryption key of a particular instance prematurely and
either use the resulting exclusive access to committed messages for their own benefit or
publish the key before it was scheduled to. Second, an attacker can attempt to prevent the
coordinated disclosure entirely by ensuring that the decryption key cannot be recovered
and published.

To accomplish these goals, an attacker can control or compromise up to the threshold
𝑡 number of council members, thereby obtaining any secret information they hold and
deciding their behavior throughout a given ETHTID execution, particularly their participa-
tion in the scheduled reconstruction of the threshold-shared decryption key. Similar to the
previous chapter, attackers can also deploy and use smart contracts as well as participate
in the consensus mechanism of the underlying blockchain. However, we must assume that
attackers cannot gain control of the blockchain’s consensus layer as that would allow them
to prevent specific transactions from being executed, violating the communication model
we outlined above. More generally, we assume attackers are not able to delay the execu-
tion of valid transactions long enough to force their senders to miss a contract-specified
deadline. Similarly, we also assume that attackers cannot prevent read access to blockchain
data indefinitely. Unlike transactions, read requests are not subject to time constraints
and it is sufficient for our construction that they succeed eventually. Lastly, attackers
are computationally bounded and cannot break cryptographic assumptions. In particular
they are unable to compute discrete logarithms or find collisions in cryptographic hash
functions.

Users trust that at least 𝑡 +1 council members execute the coordinated disclosure procedure
honestly: They participate correctly in the distributed key generation and sharing, issue
disputes if they receive invalid shadows, provide their share of the decryption key to
facilitate its scheduled recovery and publication, and they keep it secret until then. As in
the previous chapter, initiators, council members, and users trust the parties maintaining
the underlying blockchain in aggregate to follow and enforce its protocol, particularly the
procedures and checks codified in smart contracts.

We note at this point the tension governing the choices of the threshold 𝑡 in relation to
the council size 𝑛 with regards to preventing attacks and ensuring successful and timely
recovery of decryption keys. With up to 𝑡 council members compromised by an attacker
and the assumption that at least 𝑡 + 1members follow the prescribed protocol honestly, we
have an immediate lower bound of 𝑛 ≥ 2𝑡 + 1, which also results from a similar argument
for the synchronous reliable broadcast communication model described above. However,
as the compromise or control of 𝑡 council members by an attacker represents a worst

55

4. ETHTID: Threshold Information Disclosure on Ethereum

case scenario, larger and particularly smaller councils for a fixed threshold are still viable
choices in practice with corresponding trade-offs: A larger council simplifies both intended
recovery of the decryption key as well as compromise by an attacker, as more parties are
available for either case. By contrast, a smaller council impedes both of these scenarios
but also lowers the amount of members that can remain inactive before recovery and
publication of the decryption key becomes impossible, thereby preventing a coordinated
disclosure. At the extreme end of the latter option with 𝑛 = 𝑡 +1, no redundancy remains as
all shares are required for recovery and a single inactive, malicious, or compromised council
member suffices to prevent recovery. This edge case is equivalent to the simple distributed
key generation without threshold secret sharing from the beginning of Subsection 4.3.2.

4.5. ETHTID

We now present ETHTID, our concept and implementation of a threshold information
disclosure mechanism as an Ethereum smart contract.

4.5.1. Overview

The interface of the ETHTID smart contract is described in Table 4.2. For convenience, we
provide an overview of our notation in Table 4.1. As mentioned in the beginning of the
chapter, our goal was not only to facilitate coordinated disclosure on a public ledger, but
also to document the process such that disclosed messages can be judged as independently
generated afterwards.

A crucial component of Ethereum that enables our implementation of ETHTID are pre-
compiled contracts for addition and scalar multiplication of points on the Barreto-Naehrig
(BN) elliptic curve [5]. Contrary to what the term implies, precompiled contracts are not
actual smart contracts but rather optimized implementations of certain functions that were
added to the EVM during hard forks to expand its capabilities. The term probably stems
from the fact that precompiled contracts are called and used as if they were contracts
deployed to specially reserved addresses. The precompiled contracts most relevant for
our work were proposed in EIP-1966 and deployed with the Byzantium hard fork in 2017.
With the Istanbul hard fork in 2019, EIP-11087 was deployed, which reduced the gas costs
for these precompiled contracts as their implementations had been further optimized in
the meantime.

One aspect we omitted from our implementation to instead focus on demonstrating prac-
tical viability is incentivization: As each council performs a distributed key generation,
sharing, and recovery not for their own benefit but as a service to users, a scheme to
both reward participation and discourage misbehavior is needed in practice. Yakira et

6 https://eips.ethereum.org/EIPS/eip-196
7 https://eips.ethereum.org/EIPS/eip-1108

56

https://eips.ethereum.org/EIPS/eip-196
https://eips.ethereum.org/EIPS/eip-1108

4.5. ETHTID

Table 4.1.: Overview of notation.

Symbol Description
𝑛 Size of council.
𝑡 Threshold. 𝑡 + 1 cooperating council members can

reconstruct the shared decryption key.
t(d) Point in time for disclosure via reconstruction and

publication of the shared decryption key.
⟨𝑒, 𝑑⟩ Encryption and decryption key. The latter is

threshold-shared among the council.
⟨𝑒𝑖, 𝑑𝑖⟩ Contributions of council member 𝑐𝑖 to encryption and

decryption key.
{𝐴𝑖,𝑘}𝑡𝑘=1 Commitments to polynomial coefficients of member 𝑐𝑖 .
𝑢𝑖→ 𝑗 , 𝑢𝑖→ 𝑗 Decrypted and encrypted shadow from council member

𝑐𝑖 to member 𝑐 𝑗 .
𝑟𝑖 Share of decryption key 𝑑 held by council member 𝑐𝑖 .
⟨pk𝑖, sk𝑖⟩ Ephemeral key pair of council member 𝑐𝑖 needed to

generate symmetric key 𝑘𝑖, 𝑗 . pk𝑖 is submitted during
registration.

𝑘𝑖, 𝑗 Symmetric key between council members 𝑐𝑖 and 𝑐 𝑗 , used
to encrypt/decrypt shadows.

𝜋 (𝑘𝑖, 𝑗) Zero-knowledge proof of correctness for 𝑘𝑖, 𝑗 , submitted
as part of dispute. Generation and verification depicted
in Figures 4.8 and 4.9 respectively.

al. [91] provide a thorough game-theoretic framework that could, with some adjustments,
be combined with ETHTID. Compared to ETHTID, the Escrow-DKG that Yakira et al. use
to model their incentive scheme subdivides certain operations and has thus more oppor-
tunities to file complaints. Additionally, the authors also handle unjustified complaints,
which are precluded in EthDKG and ETHTID through a cryptographic construction. In the
following description of ETHTID, we note occasions where an incentive scheme would
come into play and we discuss the consequences our cryptographic construction has on
incentivization in Subsection 4.6.2.

4.5.2. Phase Structure

ETHTID proceeds in six phases as depicted in Figure 4.3, which we now describe in
detail. We accompany the following description with pseudocode to outline the core
operations of ETHTID from the viewpoint of a council member. A contiguous version of
this pseudocode is provided in Appendix A. Figure 4.4 depicts the variables and arrays
that define the state of each council member that will be used in all pseudocode excerpts
in this section. Being executed via a public broadcast channel in the form of the Ethereum
blockchain means that each pseudocode excerpt of ETHTID consists of two parts, one to

57

4. ETHTID: Threshold Information Disclosure on Ethereum

𝑐! 𝑐" , 𝑗 ≠ 𝑖 SC Initiator

deploy

register

distribute shadows

obtain shadows

dispute

generate 𝑒

submit 𝑑

distribute shares

obtain shares

1

2

3

4

5

6

Figure 4.3.: Sequence diagram of one ETHTID execution with time going from top to bottom. One council
member 𝑐𝑖 is displayed separately from the remaining members 𝑐 𝑗 to signify transactions to the smart
contract (SC) that only one council member needs to execute. Solid arrows show state-changing transactions,
dotted arrows show read requests, dashed arrows show broadcast transactions. (1: Initialization) Initiator
deploys smart contract instance. (2: Registration) Council members register with the contract instance
and submit their ephemeral public key for the purpose of shadow distribution. (3: Shadow Distribution)
Council members publish commitments to their respective polynomials and encrypted shadows for other
council members. Likewise, council members obtain shadows encrypted for them and verify their correctness
against polynomial commitments. (4: Dispute) In case a member receives an inconsistent shadow, they file
a non-interactive dispute to disqualify the offending sender. (5: Commitment) Encryption key 𝑒 can be
generated based on member submissions from phase 3 that were not disqualified in phase 4. With encryption
key 𝑒 , messages can be committed for scheduled disclosure. This phase can last significantly longer than any
other, depending on the schedule set by the initiator in phase 1. (6: Disclosure)Members submit their share
of the decryption key 𝑑 . Once enough valid shares are public, 𝑑 can be recovered and submitted by one
member. During its submission, the correctness of the decryption key 𝑑 is verified against the encryption
key 𝑒 generated in phase 5.

t // Threshold codified in contract

members // Set of member indices

pks[] // Ephemeral public keys of other members for shadow encryption/decryption

sk𝑖 // Own secret key for shadow encryption/decryption

enc_shadows[] // Encrypted shadows broadcast by other members

es[] // Contributions to encryption key of all members, including self

poly_comms[] // Commitments to polynomials of all members, including self

dec_shadows[] // Decrypted shadows necessary for generating own share

shares[] // Shares necessary for decryption key recovery

Figure 4.4.: List of variables and arrays defining the state of an ETHTID council member. Arrays are indexed
by elements of the set members, which corresponds to the Ethereum addresses of council members.

58

4.5. ETHTID

Table 4.2.: Interface of ETHTID contract. Simple calls to retrieve values of attributes are omitted [86].

Name Arguments Functionality

Transactions
register pk𝑖 Council member commit to the participa-

tion in the protocol and submit ephemeral
public key pk𝑖 for the encryption of shad-
ows.

distribute_shadows {𝑢𝑖→𝑗 } 𝑗≠𝑖 , 𝑒𝑖 , {𝐴𝑖,𝑘 }𝑡𝑘=1 Each council member 𝑐𝑖 broadcasts en-
crypted shadows for other members and
commits to their own polynomial for veri-
fication.

submit_dispute {𝑢𝑖→𝑗 } 𝑗≠𝑖 , 𝑒𝑖 , {𝐴𝑖,𝑘 }𝑡𝑘=1, 𝑘𝑖, 𝑗 , 𝜋 (𝑘𝑖, 𝑗) Member 𝑐 𝑗 files dispute against member
𝑐𝑖 . Contains distribute_shadows broad-
cast of member 𝑐𝑖 . Correctness of key 𝑘𝑖, 𝑗
and invalidity of shadow 𝑢𝑖→𝑗 is verified
before member 𝑐𝑖 is disqualified.

generate_e - Derives encryption key 𝑒 from submitted
contributions 𝑒𝑖 of qualified, i.e. not dis-
qualified, members 𝑐𝑖 .

distribute_share 𝑟𝑖 Member 𝑐𝑖 broadcasts their share of the
decryption key 𝑑 for reconstruction.

submit_d 𝑑 Submit recovered decryption key 𝑑 . Cor-
rectness is checked against encryption key
𝑒 derived in generate_e.

Events
ShadowDistribution senderaddr, {𝑢𝑖→𝑗 } 𝑗≠𝑖 , 𝑒𝑖 , {𝐴𝑖,𝑘 }𝑡𝑘=1 Broadcast of encrypted shadows and com-

mitments during distribute_shadows.
Dispute senderaddr, accusedaddr, 𝑘𝑖, 𝑗 , 𝜋 (𝑘𝑖, 𝑗) Valid call of submit_dispute by sender

against accused.
EK 𝑒 Publication of encryption key.
ShareDistribution senderaddr, 𝑟𝑖 Broadcast of share by member 𝑐𝑖 .
DK 𝑑 Publication of decryption key.

prepare a broadcast and the other to receive broadcasts by other participants. We also
introduce a slight change in notation here to improve the readability of these pseudocode
excerpts. In the explanation of the Joint-Feldman VSS in Section 4.3, we emphasized
the importance of a consistent mapping between participants and polynomial evaluation
points for the purpose of generating shadows so that they can be combined into valid
shares. We adopt from Schindler et al. [79] the ingenious approach of using the Ethereum
addresses of registered participants for this mapping. These externally-owned addresses,
which we briefly introduced in Subsection 2.2.3, are pre-established and easily accessible
information for both smart contracts and participants alike and due to being generated
via a cryptographic hash function, there is only a negligible chance of collisions. In the
following pseudocode excerpts, we say that council member 𝑐𝑖 has address 𝑖 and simplify
shadows from 𝑢 𝑗→𝑖 =

〈
𝑥𝑖, 𝑦 𝑗→𝑖 = 𝑓 𝑗 (𝑥𝑖)

〉
to 𝑢 𝑗→𝑖 = 𝑓 𝑗 (𝑖) and likewise for shares. We also

use the addresses of council members to index data structures in Figure 4.4, like the public
keys used for shadow encryption and decryption pks[]. For persistently storing received

59

4. ETHTID: Threshold Information Disclosure on Ethereum

Prepare register():
Draw sk𝑖 uniformly at random from Z𝑝 and store it persistently
Generate pk𝑖 = 𝑔sk𝑖

Set members← members ∪ 𝑖
Send transaction register(pk𝑖)

Receive register(pk𝑗) from 𝑐 𝑗 :
Set pks[j]← pk𝑗
Set members← members ∪ 𝑗

Figure 4.5.: Pseudocode for preparing and receiving registrations to ETHTID contract instances.

values in these data structures, we use arrows, for example pks[j]← pk 𝑗 , whereas we use
equal signs in the computation and labeling of temporary variables.

During initialization, an initiator deploys an ETHTID smart contract through a transaction
submitted to the Ethereum peer-to-peer network. In our implementation, the threshold 𝑡
is codified as a fraction of the number of participants that register in the next phase.
Additionally, the initiator of a particular ETHTID instance also defines the schedule of
all subsequent phases relative to the block that contains the deployment transaction. In
a practical setting, an ETHTID instance would also need to be supplied with a reward
during or shortly after initialization in order for prospective council members to decide
on their participation.

In the registration phase, council members register with a particular ETHTID smart contract
instance and submit a newly generated ephemeral public key pk𝑖 B 𝑔sk𝑖 to be stored within
the contract while keeping the corresponding secret key sk𝑖 to themselves, as depicted in
Figure 4.5. These key pairs are only used for the exchange of encrypted shadows between
council members via a particular ETHTID smart contract instance and discarded afterwards.
The reason for exchanging encrypted shadows in this way rather than letting council
members do so confidentially off-chain is to enable the non-interactive dispute resolution
that we describe below. In practice, volunteers would also submit a required deposit with
their registration which can be destroyed or redistributed in the event they provably
misbehave. For our proof of concept implementation, we used a simple first-come-first-
serve8 registration mechanism, which is very much vulnerable to Sybil attacks [27], the
ramifications of which we examine in more detail in Subsection 4.6.2. Once the registration
phase ends based on block height, the size of the council 𝑛, the Ethereum addresses of its
members, and the threshold 𝑡 as a fraction of 𝑛 are fixed.

With all necessary parameters settled, council members can proceed to distribute shadows
as depicted in Figure 4.6. Please recall from Section 4.3 that each council member 𝑐𝑖
draws a random polynomial 𝑓𝑖 (𝑥) = 𝑑𝑖 +

∑𝑡
𝑘=1 𝑎𝑖,𝑘𝑥

𝑘 containing as its y-intercept their
contribution to the decryption key. Based on this polynomial, member 𝑐𝑖 generates 𝑒𝑖 = 𝑔𝑑𝑖 ,

8 Contrary to the common use of this phrase, participants register to serve as council members, hence
“serve” instead of “served”.

60

4.5. ETHTID

Prepare distribute_shadows():
Obtain t from ETHTID contract
Draw 𝑑𝑖 uniformly at random from Z𝑝
Generate 𝑒𝑖 = 𝑔𝑑𝑖

Set es[i]← 𝑒𝑖
Draw {𝑎𝑖,𝑘 }𝑡𝑘=1 uniformly at random from Z𝑝
Generate {𝐴𝑖,𝑘 = 𝑔𝑎𝑖,𝑘 }𝑡

𝑘=1
Set poly_comms[i]← {𝐴𝑖,𝑘 }𝑡𝑘=1
for 𝑙 ∈ members do // Generate shadows for other members and self

Generate 𝑢𝑖→𝑙 = 𝑑𝑖 +
∑𝑡

𝑘=1 𝑎𝑖,𝑘𝑙
𝑘

if 𝑙 = 𝑖 then // Shadow for self

Set dec_shadows[i]← 𝑢𝑖→𝑙

else // Shadow for other member

Load pk𝑙 ← pks[l]
Generate 𝑘𝑖,𝑙 = pksk𝑖

𝑙

Generate 𝑢𝑖→𝑙 = 𝑢𝑖→𝑙 ⊕ H(𝑘𝑖,𝑙 ∥ 𝑙)
end

end
Send transaction distribute_shadows({𝑢𝑖→𝑗 } 𝑗∈members\𝑖 , 𝑒𝑖 , {𝐴𝑖,𝑘 }𝑡𝑘=1)

Receive distribute_shadows({𝑢 𝑗→𝑙 }𝑙∈members\𝑗 , 𝑒 𝑗 , {𝐴 𝑗,𝑘 }𝑡𝑘=1) from 𝑐 𝑗 :
Set enc_shadows[j]← {𝑢 𝑗→𝑙 }𝑙∈members\𝑗
Set es[j]← 𝑒 𝑗
Set poly_comms[j]← {𝐴 𝑗,𝑘 }𝑡𝑘=1
Generate 𝑘𝑖, 𝑗 = pksk𝑖

𝑗

Generate 𝑢 𝑗→𝑖 = 𝑢 𝑗→𝑖 ⊕ H(𝑘𝑖, 𝑗 ∥ 𝑖) // Decrypt shadow for self

if 𝑔𝑢 𝑗→𝑖 ≠ 𝑒 𝑗
∏𝑡

𝑘=1𝐴
𝑖𝑘

𝑗,𝑘
then // Shadow invalid

Call submit_dispute against 𝑐 𝑗 // See Figure 4.7

else // Shadow valid

Set dec_shadows[j]← 𝑢 𝑗→𝑖

end

Figure 4.6.: Pseudocode for preparing and receiving shadow distribution broadcasts in ETHTID.

which acts both as a commitment to 𝑑𝑖 and as their contribution to the encryption key,
and {𝐴𝑖,𝑘 = 𝑔𝑎𝑖,𝑘 }𝑡

𝑘=1, the remaining commitments to their polynomial used for shadow
verification. Next, member 𝑐𝑖 generates shadows {𝑢𝑖→ 𝑗 = 𝑓𝑖 (𝑗)} 𝑗∈members, including one
for themselves. Please recall that 𝑗 above is the registered Ethereum address of member
𝑐 𝑗 interpreted as an integer. The dispute resolution function that we explain in the next
phase enforces adherence to this principle by all members as any shadows not generated
in this way are provably invalid and cause for disqualification. By reducing shadows to
just their y-coordinate, since their x-coordinate is public knowledge, the costs for their
inclusion in transactions is reduced significantly.

61

4. ETHTID: Threshold Information Disclosure on Ethereum

Prepare submit_dispute():
Load pk𝑗 ← pks[j]
Generate 𝑘𝑖, 𝑗 = pksk𝑖

𝑗

Generate 𝜋 (𝑘𝑖, 𝑗) via Figure 4.8
Load {𝑢 𝑗→𝑙 }𝑙∈members\𝑗 ← enc_shadows[j]
Load 𝑒 𝑗 ← es[j]
Load {𝐴 𝑗,𝑘 }𝑡𝑘=1, 𝑘𝑖, 𝑗 ← poly_comms[j]
Send transaction submit_dispute({𝑢 𝑗→𝑙 }𝑙∈members\𝑗 , 𝑒 𝑗 , {𝐴 𝑗,𝑘 }𝑡𝑘=1, 𝑘𝑖, 𝑗 , 𝜋 (𝑘𝑖, 𝑗))

Receive submit_dispute({𝑢 𝑗→𝑙 }𝑙∈members\𝑗 , 𝑒 𝑗 , {𝐴 𝑗,𝑘 }𝑡𝑘=1, 𝑘𝑚,𝑗 , 𝜋 (𝑘𝑚,𝑗)) against 𝑐 𝑗 by 𝑐𝑚:
// ETHTID contract adjudicates validity of dispute, members process a valid

dispute as follows

Set members← members \ 𝑗
Delete pks[j]
Delete enc_shadows[j]
Delete dec_shadows[j]
Delete es[j]
Delete poly_comms[j]

Figure 4.7.: Pseudocode for preparing and receiving disputes in ETHTID.

Each member encrypts shadows for other members as follows. Based on the ephemeral
public keys registered in the ETHTID smart contract, both members 𝑐𝑖 and 𝑐 𝑗 derive a
shared secret via Diffie-Hellman(-Merkle) key exchange [26, 59]: 𝑘𝑖, 𝑗 = pksk𝑖

𝑗
= pksk𝑗

𝑖
= 𝑘 𝑗,𝑖 .

Since Ethereum does not provide any symmetric encryption primitives, the authors of
EthDKG opted to use a one-time pad encryption, which we adopt without changes and
recall here for completeness. As reusing the same pad leaks some information about the
plaintext, 𝑐𝑖 and 𝑐 𝑗 derive unique pads from their shared secret through a cryptographic
hash function before encrypting the shadow for the other member:

𝑢𝑖→ 𝑗 = 𝑢𝑖→ 𝑗 ⊕ H(𝑘𝑖, 𝑗 ∥ 𝑗).
Decryption functions analogously by the recipient creating the same pad and applying it
with the XOR operator to the encrypted shadow. This construction exploits the fact that
both the y-coordinate of shadows and the output of the Keccak hash function in Ethereum,
H() above, are 256 bit values. Lastly, each council member 𝑐𝑖 distributes both encrypted
shadows and polynomial commitments in a transaction that calls distribute_shadows
of the ETHTID smart contract instance. Rather than storing all submitted values in the
contract state, which would be rather expensive, only the contribution to the encryption
key 𝑒𝑖 and one hash over both encrypted shadows and commitments is stored. While
the contribution 𝑒𝑖 is necessary to derive the full encryption key 𝑒 on-chain, the hash
over the broadcast values is necessary for the contract to verify their integrity when
they are resubmitted as part of a dispute. All submitted values are also emitted in a
ShadowDistribution event for easier retrieval by other council members.

Each council member 𝑐𝑖 retrieves the values broadcast by all other members, decrypts
shadows intended for themselves as described above, and verifies their validity against

62

4.5. ETHTID

Algorithm 1: DLEQ(𝑔, pk𝑖, pk 𝑗 , 𝑘𝑖, 𝑗 , sk𝑖)
To show that dlog𝑔 (pk𝑖) = dlogpk𝑗 (𝑘𝑖, 𝑗) holds without revealing the discrete logarithm sk𝑖 , a
prover proceeds as follows

Draw𝑤 uniformly at random from Z𝑝
Compute 𝑡1 = 𝑔𝑤 and 𝑡2 = pk𝑤𝑗
Compute 𝑐 = H(𝑔 ∥ pk𝑖 ∥ pk𝑗 ∥ 𝑘𝑖, 𝑗 ∥ 𝑡1 ∥ 𝑡2)
Compute 𝑟 = 𝑤 − sk𝑖𝑐 (mod 𝑝)
Output 𝜋 (𝑘𝑖, 𝑗) = ⟨𝑐, 𝑟 ⟩

Figure 4.8.: Non-interactive zero-knowledge proof of correctness for symmetrical encryption keys.

Algorithm 2: DLEQ-Verify(𝑔, pk𝑖, pk 𝑗 , 𝑘𝑖, 𝑗 , 𝜋 (𝑘𝑖, 𝑗))
To check the correctness of a proof 𝜋 (𝑘𝑖, 𝑗) = ⟨𝑐, 𝑟 ⟩, showing that dlog𝑔 (pk𝑖) = dlogpk𝑗 (𝑘𝑖, 𝑗) holds,
i.e. that 𝑘𝑖, 𝑗 is correct, a verifier proceeds as follows

Compute 𝑡 ′1 = 𝑔𝑟 · pk𝑐𝑖 and 𝑡 ′2 = pk𝑟𝑗 · 𝑘𝑐𝑖, 𝑗
Output VALID if 𝑐 = H(𝑔 ∥ pk𝑖 ∥ pk𝑗 ∥ 𝑘𝑖, 𝑗 ∥ 𝑡 ′1 ∥ 𝑡 ′2)
Output INVALID otherwise

Figure 4.9.: Verification procedure for the proof in Figure 4.8

the polynomial commitments of its sender via Equation (4.2) as depicted in the second
half of Figure 4.6. In the event that member 𝑐𝑖 obtained an incorrect share from member
𝑐 𝑗 , 𝑐𝑖 files a dispute by submitting a transaction calling the submit_dispute function of
the ETHTID contract, which is depicted in Figure 4.7. As part of this transaction, the
issuing member 𝑐𝑖 resubmits the encrypted shadows and polynomial commitment values
that the accused member 𝑐 𝑗 broadcast during shadow distribution so that the contract
can verify the shadow in question. The integrity of this replayed broadcast is verified
by the contract via the previously stored hash. In order for the contract to decrypt the
shadow 𝑢 𝑗→𝑖 , member 𝑐𝑖 must also submit the shared key 𝑘𝑖, 𝑗 and prove its correctness
without revealing their ephemeral private key sk𝑖 . Without such a correctness proof,
it would be trivial to disqualify any honest member through unfounded disputes by
including an incorrect shared key, which in turn would make the decrypted shadow look
invalid. Broadcasting the ephemeral secret key sk𝑖 directly is also not advisable as that
would immediately reveal all shadows generated by member 𝑐𝑖 , which in turn can be
used to recover their polynomial and ultimately their contribution to the decryption
key 𝑑𝑖 , effectively disqualifying themselves. We adopt from Schindler et al. [79] a non-
interactive zero-knowledge proof and verification scheme derived from the works of
Chaum and Pedersen [21] and Camenisch and Stadler [18], which we introduce here for
completeness.

Please recall that the shared key 𝑘𝑖, 𝑗 is generated by member 𝑐𝑖 as pksk𝑖𝑗
and that both the

ephemeral public keys pk𝑖 and pk 𝑗 have been submitted to and stored in the ETHTID
contract instance that a dispute is submitted to. To prove the correctness of the shared
key 𝑘𝑖, 𝑗 thus reduces to proving the equality between two discrete logarithms: dlog𝑔 (pk𝑖)

63

4. ETHTID: Threshold Information Disclosure on Ethereum

and dlogpk𝑗 (𝑘𝑖, 𝑗), which are both sk𝑖 , without revealing it. In an interactive proof, a prover
would commit to a random value𝑤 via the values 𝑔𝑤 and pk𝑤𝑗 , the verifier would supply a
challenge 𝑐 , and the prover would then complete the proof by calculating 𝑟 = 𝑤 − 𝑐sk𝑖 . To
verify the proof, a verifier would check to see if 𝑔𝑟 · pk𝑐𝑖 = 𝑔𝑤 and if pk𝑟𝑗 · 𝑘𝑐𝑖, 𝑗 = pk𝑤𝑗 . The
ability to compute 𝑟 such that both of these checks hold proves knowledge of sk𝑖 but more
importantly that both discrete logarithms are equal. Note that the prover has to commit to
𝑤 , the result in the exponent, before knowing the challenge 𝑐 . It is this logical dependence
that unequivocally proves knowledge of sk𝑖 as there is no efficient way to compute a
suitable response 𝑟 otherwise. Such an interactive proof can be made non-interactive via
the Fiat-Shamir heuristic [32]: By replacing the verifier-supplied challenge 𝑐 with a value
derived from instance-specific data via a cryptographic hash function H(), including it in
the supplied proof, and adjusting the verification accordingly, the zero-knowledge proof
and thus the entire dispute handling can be completed in a single transaction. Note that
the aforementioned dependence of a prover committing to𝑤 before knowing the challenge
𝑐 remains in the non-interactive setting. Figures 4.8 and 4.9 depict this non-interactive
zero-knowledge proof generation and verification concisely.

With the resubmitted broadcast of the accused member 𝑐 𝑗 and the shared key 𝑘𝑖, 𝑗 verified,
the ETHTID contract can decrypt and verify the shadow in question via Equation (4.2).
If the shadow is indeed incongruent with the corresponding polynomial commitments,
member 𝑐 𝑗 is disqualified from the remaining procedure and their contribution 𝑒 𝑗 is
discarded. Other members observe the contract-defined outcome of a dispute and if the
dispute is valid, i.e. member 𝑐 𝑗 distributed an invalid shadow, discard all information they
received from member 𝑐 𝑗 as depicted in the second half of Figure 4.7. With an incentive
scheme in place, member 𝑐 𝑗 would also lose the deposit they submitted during registration.
A dispute transaction is aborted and no state changes are persisted in case any of the above
checks fail. Once the dispute phase ends, based on elapsed blocks, it can be assumed that
the distributed key generation and threshold sharing was concluded correctly and that
any 𝑡 + 1 council members can recover the shared decryption key 𝑑 with their shares.

The submission phase begins with a council member calling the function generate_e

through a transaction, during which the ETHTID contract instance combines the contri-
butions 𝑒𝑖 of the remaining, qualified council members into the group encryption key 𝑒 .
The generation of 𝑒 is also documented through the EK event on the Ethereum blockchain.
With the encryption key 𝑒 , users of a given ETHTID instance can prepare their messages
to be disclosed in a coordinated way at time t(d). In Chapter 5, we describe this process in
more detail using a Diffie-Hellman(-Merkle) key exchange whereas we initially envisioned
the use of ElGamal encryption [86]. Depending on the schedule set by the initiator in the
beginning, this phase can last for days, weeks, or months. Similar to the previous phases,
the end of this phase is specified via the height of the Ethereum blockchain. Due to the
variance in block creation time in Ethereum, the more blocks are specified to pass in this
phase, the more uncertain the time for disclosure becomes in wall clock time.

Once the time for disclosure t(d), specified as height of the Ethereum blockchain, has
arrived, qualified council members are encouraged to recover and publish the decryption
key 𝑑 as depicted in Figure 4.10. To facilitate recovery, they can submit their shares

64

4.5. ETHTID

Prepare distribute_share():
Generate 𝑟𝑖 =

∑
𝑗∈members dec_shadows[j]

Set shares[i]← 𝑟𝑖
Send transaction distribute_share(𝑟𝑖)

Receive distribute_share(𝑟 𝑗) from 𝑐 𝑗 :
Generate 𝑒 =

∏
𝑙∈members es[l] or obtain 𝑒 from ETHTID contract

for 𝑘 = 1 to 𝑡 do // Combine polynomial commitments

Generate 𝐴𝑘 =
∏

𝑙∈members𝐴𝑙,𝑘 // From poly_comms[l]
end

if 𝑔𝑟 𝑗 = 𝑒
∏𝑡

𝑘=1𝐴
𝑗𝑘

𝑘
then // Share is valid

Set shares[j]← 𝑟 𝑗
if |shares| = 𝑡 + 1 then // Enough valid shares for recovery

Compute 𝑑 via Equation (4.3)
Send transaction submit_d(𝑑)

end
end

Figure 4.10.: Pseudocode for preparing and receiving share distribution broadcasts in ETHTID.

𝑟𝑖 via a helper transaction to distribute_share which merely broadcasts the share in
a ShareDistribution event and does not affect the ETHTID contract state in any way.
Note that ShareDistribution does not include a validity check for the submitted share
as that would be both expensive and pointless at this stage of the protocol. Unlike the
distribute_shadows transaction, the use of distribute_share is technically optional as
council members can publish or exchange their shares in any other way so long as one
member can recover and publish the decryption key 𝑑 in a timely manner to release the
council as a whole from its contractual obligation. The correctness of shares 𝑟𝑖 can be
verified similar to shadows as depicted in the second part of Figure 4.10. Please recall from
Section 4.3 that the decryption key 𝑑 is the y-intercept of the group polynomial which is
defined as the sum of the polynomials of qualified members. Just like how contributions
𝑒𝑖 were combined to form the encryption key 𝑒 , so too can the polynomial commitments
{𝐴𝑖,𝑘}𝑡𝑘=1 of all qualified members be combined into commitments {𝐴𝑘 =

∏𝑛
𝑖=1𝐴𝑖,𝑘}𝑡𝑘=1 to

the group polynomial. Then, these commitments can be used to verify the correctness
of shares with Equation (4.2). Let 𝑅 ⊂ members with |𝑅 | = 𝑡 + 1 be the council members
participating in the recovery of 𝑑 by publishing valid shares, the decryption key can then
be recovered via Lagrange interpolation [89] as:

𝑑 =
∑︁
𝑘∈𝑅

©«
∏
𝑙∈𝑅\𝑘

𝑙

𝑙 − 𝑘 𝑟𝑘
ª®¬ . (4.3)

Please recall that the indices above are stand-ins for the Ethereum addresses of council
members interpreted as integers. One council member can then submit the recovered
decryption key 𝑑 to the ETHTID smart contract instance via a transaction to the submit_d
function, during which the contract verifies that 𝑔𝑑 = 𝑒 . Once the correct decryption key 𝑑

65

4. ETHTID: Threshold Information Disclosure on Ethereum

has been submitted, the council has fulfilled its contractual obligation and the contents of
all appropriately prepared messages become available to anyone. Similar to the generation
of the encryption key, the release of the decryption key is also recorded with a DK event
on the Ethereum blockchain, unequivocally ending the submission phase.

4.5.3. Optimizations

In the above description of ETHTID, we pointed out aspects of EthDKG that we adopted.
In this section, we describe in more detail what we changed compared to EthDKG in
order to save costs and explain why these changes are both sensible and safe. We provide
quantitative measurements on the cost savings in Subsection 4.6.1.

The first optimization is rather straightforward but noteworthy nonetheless. The Barreto-
Naehrig curve that Ethereum supports is a so called “pairing-friendly” bilinear elliptic
curve, a feature that EthDKG makes use of in its distributed generation of a BLS signature
key pair [15, 14]. Since ETHTID only requires a discrete log key pair, we were able to forgo
any operation that relies on the bilinearity property of the BN curve, including pairing
checks. The reason we still use the BN curve is that there is currently no alternative
available on Ethereum. EIP-18299 or EIP-196210 would potentially allow us to use elliptic
curves that are better suited to our application, such as secp256k111 or curve2551912, but
they have not seen much activity in recent years. However, with Ethereum’s switch to
Proof of Stake completed in September 2022, such functional improvements to support
new or improve existing applications may garner more attention. With ETHTID, we add
to the rationale for including operations on elliptic curves besides the existing BN curve.

The second optimization we made revolves around biasing of generated key pairs and our
deliberate choice of accepting such attacks rather than defending against them. Gennaro
et al. [36] demonstrate that many DKG procedures for discrete-log-based cryptosystems,
including the Joint-Feldman VSS we use, are vulnerable to biasing of the shared secret by
an attacker. In our protocol, such an attack would be performed by an attacker controlling
or posing as multiple, but not more than 𝑡 , council members and selectively disqualifying
some of them to bias the resulting key pair. These biasing attacks are possible because an
attacker can simulate what the decryption key would look like based on which of their
contributions are included before the dispute phase ends. EthDKG defends against this
kind of attack through a mechanism by Neji et al. [65], which necessitates an additional
broadcast by all participants and reconstruction of key contributions of parties that remain
inactive after the dispute phase. We deliberately chose to accept the risk of adversarial
council members biasing the key pair during the DKG setup in favor of saving significant
costs for the following three reasons:

9 https://eips.ethereum.org/EIPS/eip-1829
10 https://eips.ethereum.org/EIPS/eip-1962
11 http://www.secg.org/sec2-v2.pdf
12 https://www.rfc-editor.org/rfc/rfc7748

66

https://eips.ethereum.org/EIPS/eip-1829
https://eips.ethereum.org/EIPS/eip-1962
http://www.secg.org/sec2-v2.pdf
https://www.rfc-editor.org/rfc/rfc7748

4.6. Evaluation

• Security Foundation: The security of our construction is based on the difficulty
of computing discrete logarithms and not the uniformly random distribution of the
used key pair. In an updated version of their original paper, Gennaro et al. [35] show
that in such cases, a biasing attacker gains no significant advantage as computing
discrete logarithms remains difficult even with a limited degree of biasing.

• Attacker Costs: To participate with more than one identity in an ETHTID execution
in order to execute a biasing attack, an attacker would have to bear additional costs
and, depending on the incentive scheme used, be willing to lose security deposits
required during registration.

• Limited Lifetime: By construction, each key pair generated in an ETHTID execution
has a limited lifetime before the decryption key is published. This leaves an attacker
only little time to take advantage of a bias they added to a given key pair.

In our original paper [87, 86], we also showed that biasing attacks on an ETHTID key pair
are unnecessary if said key pair is used for ElGamal encryption because such ciphertexts
can be biased afterwards. In Chapter 5, we end up using a Diffie-Hellman(-Merkle) key
exchange rather than ElGamal encryption of to-be-disclosed messages, but we reproduce
our security argument here for completeness:

Given a discrete log key pair 𝑑, 𝑒 = 𝑔𝑑 , an ElGamal encryption of a message𝑚 ∈ Z𝑝 is
constructed by sampling a random element 𝑟 ∈ Z𝑝 and computing (𝑐1, 𝑐2) = (𝑔𝑟 , 𝑒𝑟 ·𝑚). Now
assume that, during a distributed generation of the above key pair, an attacker waits and
observes all 𝑒𝑖 from honest parties, computing an unbiased encryption key 𝑒 =

∏
𝑒𝑖 . The

attacker may then choose any bias 𝑏 and force the resulting encryption key to be 𝑒 = 𝑒 ·𝑔𝑏 .
Whatever attack an adversary can perform on ciphertexts encrypted with the biased key 𝑒
can also be performed against ciphertexts created with the unbiased key 𝑒 . Given 𝑒 and a
cipher text (𝑐1, 𝑐2) = (𝑔𝑟 , 𝑒𝑟 ·𝑚), and given 𝑏, this cipher text can be transformed to the
biased encryption key 𝑒 : (𝑐1, 𝑐2) = (𝑐1, 𝑐2 · 𝑐𝑏1) = (𝑔𝑟 , 𝑒𝑟 · 𝑔𝑟𝑏 ·𝑚) = (𝑔𝑟 , (𝑒 · 𝑔𝑏)𝑟 ·𝑚) which
is a valid cipher text under 𝑒 = 𝑒 · 𝑔𝑏 .

Consequently, an attacker gains no advantage by introducing a bias in the distributed key
generation process because any ElGamal ciphertexts created with an unbiased key pair
can simply be biased afterwards as well.

4.6. Evaluation

Before evaluating our implementation of ETHTID, it is instructive to briefly examine the
complexity of our concept. As mentioned previously, ETHTID proceeds in six phases
as depicted in Figure 4.3, but only two of those phases are broadcast rounds where each
council member is supposed to send a transaction: registration and shadow distribution.
Looking at these two phases more closely, the registration transaction is of constant size as
it only contains one ephemeral public key regardless of council size or threshold. However,
the shadow distribution transaction does scale with both of those parameters as it contains

67

4. ETHTID: Threshold Information Disclosure on Ethereum

Table 4.3.:Costs of functions independent of threshold 𝑡 and council size𝑛. Conversion of gas to USD via daily
average exchange rates for 1st June 2022 as reported by Etherscan: USD 1817.42 per ETH, ETH60.06×10−9
per gas.

Function Gas USD
Contract Deployment 1 879 437 205.13
register 113 914 12.43
distribute_share 25 834 2.82
submit_d 56 729 6.19

𝑛 − 1 encrypted shadows and 𝑡 + 1 polynomial commitment values13. Disputes, meanwhile,
are a single transaction by only one member that inherits its scaling behavior from
the shadow distribution transaction as it resubmits encrypted shadows and polynomial
commitments. Lastly, for a successful recovery only 𝑡 share submission transactions
are necessary, either via the Ethereum blockchain or another communication channel,
followed by one transaction by a member who has not yet submitted their share to submit
𝑑 . Overall, the message complexity of ETHTID as a protocol scales quadratically with the
number of council members.

Like Palinodia in the last chapter, we implemented ETHTID14 as an Ethereum smart
contract in Solidity 0.8 and deployed it to a local development blockchain on the London
hard fork using Ganache v7.2.0 of the Truffle Suite development tools.

We first provide a gas cost evaluation before examining ETHTID’s security properties and
their limits in more detail.

4.6.1. Gas Costs & Performance

We measured gas costs for contract deployment as well as all mandatory and optional
transactions for a full execution of the coordinated disclosure protocol with varying
council size 𝑛 and thresholds 𝑡 . In particular, we examined the “simple majority” threshold
𝑡 = ⌈𝑛/2⌉ − 1 and the “supermajority” case of 𝑡 = ⌈2𝑛/3⌉ − 1. To automate the gas cost
evaluation, we adopted and expanded the Python application of EthDKG that Schindler et
al. [79] kindly made public along with their Solidity implementation of EthDKG. As we
observed very regular and predictable costs, we capped our evaluation at 𝑛 = 256. For
better intuition, we again report costs in both units of gas and in USD based on the daily
average exchange rates for 1st June 2022 as reported by Etherscan15.

In Table 4.3, we provide costs that are independent of council size and threshold. While
both distribute_share and submit_d are essentially a broadcast of a single 256 bit value,
their difference in execution cost stems from two additional operations in submit_d: First,

13 Please recall that the contribution 𝑒𝑖 is also a commitment to the constant part of 𝑓𝑖 (𝑥)
14 https://git.scc.kit.edu/dsn-projects/dissertations/dsim/-/tree/main/ETHTID
15 https://etherscan.io/

68

https://git.scc.kit.edu/dsn-projects/dissertations/dsim/-/tree/main/ETHTID
https://etherscan.io/

4.6. Evaluation

64 128 192 256
0

1

2

0

100

200

·106

Size of Council 𝑛

Ga
s

US
D

ds 𝑡 = ⌈𝑛/2⌉ − 1
ds 𝑡 = ⌈2𝑛/3⌉ − 1

generate_e

(a) Costs of distribute_shadows (ds) for thresholds 𝑡 =

⌈𝑛/2⌉ − 1 and 𝑡 = ⌈2𝑛/3⌉ − 1, and generate_e, which is
independent of 𝑡 .

64 128 192 256
0

0.5

1

1.5

0

50

100

150

200
·106

Size of Council 𝑛

Ga
s

US
D

𝑡 = ⌈𝑛/2⌉ − 1
𝑡 = ⌈2𝑛/3⌉ − 1

(b) Costs of submit_dispute for thresholds 𝑡 = ⌈𝑛/2⌉ − 1
and 𝑡 = ⌈2𝑛/3⌉ − 1.

Figure 4.11.: Conversion of gas to USD via daily average exchange rates for 1st June 2022 as reported by
Etherscan: USD 1817.42 per ETH, ETH60.06×10−9 per gas. [87]

Table 4.4.: Best fit curves for scaling costs in ETHTID based on linear and quadratic regression.

Function Best Fit Curve
distribute_shadows (𝑡 = ⌈𝑛/2⌉ − 1) 2462𝑛 + 99 664
distribute_shadows (𝑡 = ⌈2𝑛/3⌉ − 1) 2944𝑛 + 101 121
generate_e 9866𝑛 + 85 518
submit_dispute (𝑡 = ⌈𝑛/2⌉ − 1) 5291𝑛 + 76 745
submit_dispute (𝑡 = ⌈2𝑛/3⌉ − 1) 6832𝑛 + 81 042
Total (happy case) 2474𝑛2 + 233 696𝑛 + 2 076 171
Total (sad case) 2474𝑛2 + 239 013𝑛 + 2 155 784

a check is performed to ensure that the submitted decryption key is consistent with the
encryption key generated during generate_e. Second, the submitted decryption key is
stored as part of the contract state to ensure its long-term availability whereas shares
submitted during distribute_share are merely emitted as part of a ShareDistribution
event.

With Figure 4.11, we show the execution costs of operations that scale with council size
and threshold. Figure 4.11a shows the costs for shadow distribution and encryption key
generation. Note that the broadcast as part of distribute_shadows consists of 𝑛 − 1
encrypted shadows and 𝑡 + 1 values for the polynomial commitment, thus leading to
a scaling behavior in both variables. While only 𝑒𝑖 , i.e. the first value in a polynomial
commitment, along with a hash over both encrypted shadows and commitments is stored
as part of the contract state, each byte submitted as part of a transaction incurs a small
gas cost. Additionally, the gas price for the hashing operation scales with the size of its
input, which also depends on the council size 𝑛 and threshold 𝑡 . The execution costs for
generate_e only scale linearly with council size, as that parameter determines the number
of contributions 𝑒𝑖 that must be combined during this transaction. Figure 4.11b meanwhile

69

4. ETHTID: Threshold Information Disclosure on Ethereum

64 128 192 256
0

1

2

3

0

1

2

3

4
·108

Size of Council 𝑛

Ga
s

·104

US
D

EthDKG Happy
EthDKG Sad

ETHTID Happy
ETHTID Sad

(a) Total execution costs of EthDKG and ETHTID with 𝑡 =

⌈𝑛/2⌉ − 1.

8 16 32 64 128 192 256
0

20

40

Size of Council 𝑛

Ga
sS

av
in
gs

(%
)

Happy Case
Sad Case

(b) Relative cost savings achieved by ETHTID compared to
EthDKG.

Figure 4.12.: Happy case: No misbehavior, all members participate honestly. Sad case: One incorrect shadow
distribution and subsequent dispute and only 𝑡 + 1 council members remain to complete each protocol.
Conversion of gas to USD via daily average exchange rates for 1st June 2022 as reported by Etherscan:
USD 1817.42 per ETH, ETH60.06×10−9 per gas. [87]

displays the costs for submit_dispute where none of the checks described in Section 4.5
fail and cause an early abort. The majority of costs for filing valid disputes arises from
the evaluation of Equation (4.2), which scales with the threshold 𝑡 as it determines the
degree of the polynomial. Since the values broadcast during distribute_shadows by an
offending member are resubmitted as part of submit_dispute, the council size has a small
influence as well. One pair of executions that demonstrates this influence very neatly are
𝑛 = 192, 𝑡 = ⌈2𝑛/3⌉ − 1 = 127 with 1 388 745 gas and 𝑛 = 256, 𝑡 = ⌈𝑛/2⌉ − 1 = 127 with
1 432 846 gas, since they have the same threshold but different council sizes. During the
execution of submit_dispute, the additional 64 encrypted shadows lead to additional costs
of 44 101 gas or USD 4.81 with the exchange rates quoted in Figure 4.11. In Table 4.4, we
provide linear and quadratic fits of the scaling costs displayed in Figures 4.11 and 4.12a.

To demonstrate the efficacy of our optimizations as outlined in Subsection 4.5.3, we
performed a direct comparison of the overall execution costs of EthDKG and ETHTID
and depict the results in Figure 4.12. We examine two scenarios for both applications: a
happy case where no participant misbehaves and only the minimally necessary amount
of transactions are executed, and a sad case where one participant distributes invalid
shadows and necessitates the filing of a dispute and only the minimally necessary number
of participants remain active to complete each protocol. For the purpose of this comparison,
we repeated the automated gas cost evaluation of EthDKG on the London hard fork after
minimally updating the EthDKG code to comply with Solidity version 0.8. In the happy
case, the overall costs for ETHTID are comprised of one contract deployment, 𝑛 calls
of register and distribute_shadows each, one call of generate_e, 𝑡 + 1 broadcasts via
distribute_share, and finally one call of submit_d. For the sad case, one execution
of submit_dispute is added. Note that EthDKG does not include the functionality to
recover and publish the distributedly generated group secret. However, based on our
measurements from Table 4.3, the overhead for adding such functionality would be rather
small in comparison to the other costs. The EthDKG equivalent of submit_d would also be

70

4.6. Evaluation

slightly more expensive as a pairing check would be required during the validity check of
the submitted key. The plot in Figure 4.12a very clearly shows the cost impact of the biasing
defenses in EthDKG that we deliberately omitted in ETHTID. Additionally, the discrepancy
between happy and sad case for EthDKG and ETHTID also shows the potential cost impact
that inactive or misbehaving participants can have due to these defenses. Overall, we
observe gas savings of 20–40% depending on council size and scenario as depicted in
Figure 4.12b.

At the time of writing, blocks in Ethereum have a limit of 30×106 gas that can be consumed
by transactions, although the protocol incentivizes miners to keep blocks half-full and
reserve the remaining capacity to feather short-term spikes in transaction demand. As
such, all operations we evaluated above fall well below this limit and are thus technically
feasible, albeit financially challenging, to execute. The first operation that would run into
the soft 15×106 gas limit would be submit_dispute. Using the corresponding linear fit
curve in Table 4.4 with 𝑡 = ⌈𝑛/2⌉ − 1 yields a limit of 𝑛 = 2820. Plugging 𝑛 = 2820 into
the quadratic fit curve for the total happy case costs in Table 4.4 suggests overall costs of
20.3×109 gas or USD 2.2×106 with the exchange rates quoted in Figure 4.12.

4.6.2. Security Considerations

Unlike Palinodia, ETHTID derives the desired properties we stated in Section 4.1 in parts
from its underlying ledger, from its cryptographic construction, and from the behavior of
each council. In this section, we clarify these relations and their limits.

Fairness: ETHTID achieves the fairness property by construction and through the avail-
ability guarantees of its underlying ledger. Since the contents of all appropriately prepared
messages are dependent on the availability of the decryption key, which either is or is
not persistently stored as part of an ETHTID contract instance’s state, either all message
contents are available or none are. Furthermore, the availability of ledger data ensures that,
if the decryption key is published via a transaction, it is available to everyone eventually.
An attacker seeking to hide a published decryption key from a particular user would have
to either prevent them from accessing ledger data indefinitely, which is rather obvious to
said user, or produce a convincing alternate ledger where the decryption key was never
published, which would break the fundamental DLT assumptions we stated in Section 4.4.
Lastly, the availability of committed messages is also relevant to the fairness property. We
consider this aspect more prevalent to applications using ETHTID and examine it further
in the next chapter.

Hiding: The hiding property in ETHTID is achieved through both its cryptographic
construction as well as the behavior of an instance’s council. Through the use of distributed
key generation and threshold secret sharing coupled with the assumption that no more
than 𝑡 council members are Sybil identities of an attacker or compromised, the decryption
key is unavailable to any party before its scheduled recovery. Consequently, the contents of
all appropriately prepared messages remains known only to their authors until disclosure.
To break the hiding property, an attacker would have to obtain the decryption key 𝑑

71

4. ETHTID: Threshold Information Disclosure on Ethereum

before the time of disclosure. Computing dlog𝑔 𝑒 is precluded by the assumption that
discrete logarithms are difficult to compute for the underlying cyclic finite group, which
applies to the Barreto Naehrig curve we use, and the computational bound we assume
for attackers. A more approachable attack avenue is to compromise or bribe sufficiently
many council members to obtain 𝑡 + 1 valid shares prematurely and privately recover the
decryption key 𝑑 , which violates our assumption that at most 𝑡 members of a council are
corrupt or compromised. At first glance, it would seem compelling to equip ETHTID smart
contracts with the ability to punish council members if anyone else provided information
that was supposed to remain secret, thereby making the first and necessary step towards
such a collusion a significant risk. However, due to the core functionality of threshold
secret sharing, assigning blame for such information leaks with certainty is not possible.
Please recall from Figure 4.1 the operations marked with dotted arrows that were possible
but not necessary for Joint-Feldman VSS. In particular, 𝑡 + 1 members can pool shadows
they received from member 𝑐𝑖 to recover their polynomial 𝑓𝑖 (𝑥) and use it to recreate
shadows for any other council member 𝑐 𝑗 . Similarly, 𝑡 + 1 members can recover the group
polynomial 𝑓 (𝑥) not only to recover the decryption key 𝑑 but also to generate shares
𝑟𝑖 of other council members. Consequently, any information that council members are
supposed to keep secret, besides the ephemeral secret key sk𝑖 , can become public through
no fault of their own, making a punishment mechanism as sketched above more of a
liability than a useful feature.

Binding: ETHTID on its own does not ensure the binding property as it mostly depends on
the mechanism by which messages are committed and stored until and beyond disclosure,
i.e. implementation details of an application using ETHTID for coordinated disclosure.
Similar to the message availability mentioned above for the fairness property, we examine
this aspect in more detail in the next chapter. To give a brief preview, by logging integrity-
protecting references to encrypted messages on-chain and disseminating them through a
decentralized file sharing protocol like the InterPlanetary File System (IPFS), the binding
property can be achieved. In this case, the immutability of committed messages is derived
from the immutability and availability properties of the ledger used to log the references,
whereas the availability of messages is derived from the functional properties of the
employed distribution and storage system.

4.7. Discussion

With ETHTID, we demonstrate that orchestrating and documenting a coordinated dis-
closure is possible on smart-contract-capable public ledgers that support the necessary
elliptic curve operations. By carefully analyzing the requirements of our use case, we
are able to significantly lower costs compared to previous works like EthDKG. While we
developed ETHTID for our particular use case of enabling decentralized software reviews,
which is the main focus of the next chapter, we also believe that it has independent value
to facilitate or simplify other processes with similar requirements, like sealed-bid auctions,
appraisal of digital or physical objects, or the enforcement of press embargoes. Note that

72

4.7. Discussion

the construction of ETHTID places no restrictions on the size or type of messages that can
be disclosed. Through Diffie-Hellman(-Merkle) key exchange or by encrypting a symmet-
ric key via ElGamal encryption, arbitrarily large files can be prepared for a coordinated
disclosure. Also note that, while the public availability of encryption and decryption keys
is essential in ETHTID, the to-be-disclosed messages do not have to be public. As such,
public ETHTID instances can also be used to disclose messages to a limited number of
parties by restricting the dissemination of prepared messages.

Since the availability of both encryption and decryption keys is not restricted in ETHTID,
multiple applications can use and rely on a single instance with a suitable schedule.
However, this may be a double-edged sword in practice when a council’s adherence to said
schedule is primarily motivated through incentives. From a game-theoretic point of view,
applications that attach themselves to an existing ETHTID instance should contribute to
its reward pool to inoculate its council against bribery, which becomes increasingly more
enticing the more potentially valuable information is governed by said instance. This
dynamic has the potential to result in a tragedy of the commons where a publicly available
resource, i.e. an ETHTID instance, is rendered useless through overuse.

On the topic of economic concepts, ETHTID in conjunction with the previously men-
tioned work by Yakira et al. [91] is a concrete example of a notion that has only become
practical with decentralized ledgers supporting smart contracts: the intertwining of cryp-
tographic protocols with economic rewards. In particular, DLTs enable “credible threats
and promises”, a fundamental concept of economic game theory: If conditions that a smart
contract can verify are met, consequences can be enforced as specified in the contract’s
code. In the case of ETHTID, this mostly concerns the functionality of filing disputes
against council members that distribute invalid shadows. Curiously enough, the fact that
disputes can be filed and consequences can be enforced should lead to this functionality
being rarely used in practice, if ever. The dispute mechanism acts as a deterrent since all
potential and actual participants are keenly aware of its existence and efficacy. One way to
ensure that valid disputes are filed in practice despite their high costs is to set the required
deposit during registration high enough to reimburse the issuer with (part of) the deposit
of the offender, killing two birds with one stone.

Another aspect of ETHTID that can, to some extent, be addressed via economic means
and the assumption of rational behavior on the side of council members is the recovery
of the decryption key itself. Without any external pressure on the council as a whole,
none of its members would want to release their share first, as withholding it confers a
temporary position of advantage: When 𝑡 shares have become public, any member holding
an undisclosed share can privately recover the decryption key and thus access the contents
of to-be-disclosed messages before anyone else. An ETHTID smart contract can minimize
the window of opportunity to abuse such a position by incentivizing the council as a whole
to recover and publish the decryption key quickly, for example by decreasing the reward
for the council based on the number of blocks that pass between the scheduled and actual
publication of the decryption key. In applications like the one we present in the next
chapter, where coordinated disclosure is used as a means to document the independent

73

4. ETHTID: Threshold Information Disclosure on Ethereum

creation of statements, the window for committing such statements should therefore close
a few blocks before the decryption key is scheduled to be published.

Despite our goal to not rely on a centralized trusted party to realize a coordinated disclosure
mechanism, ETHTID does include one role of particular importance that warrants a closer
examination: the initiator. Before deploying an ETHTID contract instance, an initiator
has the opportunity to not only set required protocol parameters like the threshold and
phase schedule, but also to include disruptive functionality in the contract to, for example,
steal the deposits of unwitting participants by self-destructing the contract prematurely.
However, after deploying such a deceitful contract to the Ethereum blockchain, it is
available for anyone to examine and uncover its malicious features. Overcoming the
difficulties involved in such an examination falls within the research effort of extending
software examination methods and tools to smart contracts [2].

Lastly, it is worth discussing a fundamental assumption underlying ETHTID, namely the
independence of council members. The first-come-first-serve registration mechanism we
employed in our proof of concept is plainly vulnerable to Sybil attacks [27]. In our paper [87,
86], we suggest the option of an initiator manually selecting council members for their
instance, but this merely shifts the onus from the smart contract to the initiator and does
not provide a sufficient solution to the Sybil problem. There are some approaches in the
literature to achieve a certain Sybil resilience within decentralized systems, like the work
by Gupta et al. [39, 38], but their suitability for applications like ETHTID remains an open
question. In addition to such intrinsic approaches, the possibility of extrinsic solutions
to the Sybil problem is also noteworthy. In particular, identities on distributed ledgers
could be backed by government institutions to prevent natural persons from controlling
more than one verified identity. One such approach was recently described by Maram
et al. [55] which tasks a permissioned committee with processing credential requests.
Through cryptographic means like secret sharing and secure multi-party computations,
such requests contain government-issued unique identifiers like social security numbers or
tax identification numbers that are then used for deduplication. Based on the assumption
that the included identifiers are unique, not easily forgeable, and securely provisioned,
attempts by natural persons to create multiple independent Sybil identities are stifled. The
previously mentioned cryptographic techniques also ensure that the committee does not
learn sensitive or personal data about credential requesters. Like in ETHTID, this last
point also rests on the assumption that a sufficiently large portion of the committee is
honest, incorruptible, and immune to compromise.

4.7.1. Limitations & Future Work

Similar to Palinodia, our focus with ETHTID was to demonstrate feasibility first and
leave further optimizations as future work. Prime among such improvements is to make
ETHTID instances capable of running more than one coordinated disclosure protocol,
either sequentially or even in parallel. By reusing existing instances, deployment costs
can be amortized over multiple executions and certain operations like council member
registrations may not have to be repeated each time. Supporting sequential executions

74

4.7. Discussion

is markedly simpler as the registered council can change neatly between executions due
to resignations, registrations, or disqualifications and there are no side-effects between
executions. Parallel execution, meanwhile, presents a myriad of possible scenarios that
have to be handled properly by the contract implementation. For example, a council
member participating in two executions can be disqualified in one via a dispute, which
could reveal a valid shadow in the other execution if the keys submitted during registration
are reused and the disputing member also participates in both executions. Managing the
status of registered members also becomes more complex compared to the sequential
case with members joining before participating in any execution, being locked in while
participating in at least one execution, and signaling their resignation before completing
executions they are currently involved in. Having only few reusable ETHTID instances
also limits the amount of validation effort and curtails the abilities of initiators of protocol
executions to deceive participants: Since they can only set required parameters and not
alter the general logic of the already deployed contract instance, scenarios as the one
sketched in the discussion above are ruled out.

We noted on several occasions the integration of the incentive scheme by Yakira et al. [91]
as future work. They examine scheduled disclosure scenarios similar to our problem
statement via an “Escrow-DKG” protocol derived from the work of Pedersen [72] and
Feldman [30] that includes more opportunities for participants to file disputes against each
other compared to ETHTID. However, their focus is less on a practical implementation and
more on the game-theoretic modelling of incentives and punishments to direct the behavior
of participants and to discourage collusions. One noteworthy contribution of Yakira et
al. concerns the collusion dynamic between participants. They show how collusions
can be discouraged through framing, i.e. one colluding party publishing evidence of an
active collusion to punish all participants and gain a small reward. In Subsection 4.6.2, we
explain the crux of threshold cryptosystems with regards to assigning definitive blame
for unintended behavior in more detail than Yakira et al., but the end result is the same:
In case of a proven collusion, all participants must be economically punished. Due to
the differences between Escrow-DKG that they base their game theoretic analysis on
and ETHTID, integration of both concepts is not entirely straightforward, especially in
conjunctionwithmaking the contract reusable as described above, which turns the protocol
from a one-time game into a repeatedly played game that changes the game-theoretic
modelling significantly. Many of the complaints Yakira et al. use to economically punish
offenders and reward reporters are either obviated through ETHTID’s construction or they
are issued and handled implicitly during a given protocol execution. For example, in their
Escrow-DKG, Yakira et al. separate the submission of a hash of a participants contribution
𝑒𝑖 and the submission of the contribution 𝑒𝑖 itself, which necessitates complaints if the
second transaction does not happen or the hash does not match. In ETHTID, a hash of 𝑒𝑖 is
never submitted and council members that registered but did not distribute their shadows
in time can be handled during generate_e without separate complaints.

75

4. ETHTID: Threshold Information Disclosure on Ethereum

Lastly, future work on ETHTID may also include taking advantage of improvements
to Ethereum, particularly the adoption of EIP-182916, EIP-196217, or a similar EIP, that
would allow ETHTID to use a better-fitting and potentially less costly elliptic curve
in its construction. In this way, we present an additional use case to motivate further
development of Ethereum.

16 https://eips.ethereum.org/EIPS/eip-1829
17 https://eips.ethereum.org/EIPS/eip-1962

76

https://eips.ethereum.org/EIPS/eip-1829
https://eips.ethereum.org/EIPS/eip-1962

5. ETHDPR: Decentralized Public Review
and Attestation of Software Attribute
Claims on Ethereum

The content presented in this chapter has been published previously in the open access
journal IEEE Access under the title “Decentralized Review and Attestation of Software
Attribute Claims” by Stengele, Westermeyer, and Hartenstein [84].

With Palinodia and ETHTID thoroughly presented in the previous two chapters, we
now face the task of integrating these components into a system for decentralized public
reviews of software releases that we outlined in Chapter 1. The goal of such a system is to
facilitate the review of binaries from initialization and execution to the recording of results
without introducing a trusted third party. Ideally, this integration should not sacrifice
any properties of its constituent components and be cost efficient. With Palinodia and
ETHTID being built on Ethereum, we opted to design and implement our decentralized
public review system ETHDPR on Ethereum as well.

5.1. Problem Statement

It is helpful to first expand on the rough problem statement from Chapter 1. Given
a particular binary of a software, the task at hand is to enable a self-selected group
of reviewers to examine said release regarding a specified set of attribute claims and
independently record their assessment on a distributed ledger. Having potential reviewers
decide for themselves whether or not to participate in the review of a given software
release removes the need for a party with the power to grant and rescind this privilege but
adds complexity to the processing of results, as we discuss later in this chapter. For the
purpose of our work, we broadly define software attributes as statements about a binary
that can be verified, falsified, or judged by a human actor either innately or through the
use of tools. In this way, software attributes can concern the functionality, performance,
or security properties of binaries. The main reason for performing such reviews is to
enable relying parties, e.g. users of a software, to have greater confidence in a given binary
without needing to perform the corresponding examination themselves. In the case of
end users, it is worth noting that this practice lessens the trust in software developers
described in Chapter 3 to a certain extent, following the adage “trust, but verify”.

77

5. ETHDPR: Decentralized Public Review and Attestation of Software Attribute Claims on Ethereum

In order for the results of a software review to be meaningful and useful, we specify a set
of five objectives that we strive to fulfill with our concept and implementation [84]:

O1 Reviews should be created independently.

O2 Review process should be censorship resilient.

O3 Review process should be transparent1 and enable traceability of artifacts.

O4 Review artifacts, including results, should be identifiable, persistently available, and
traceable to the review instance and the software release under review.

O5 Possible attribute claims and review consolidation methods should be use case
agnostic.

Note that we use the term review to refer to both the process and its result. With artifacts,
we describe all digital objects necessary for or generated as part of a review process,
including software binaries and their source code, specifications, and review results.

The first three objectives deal with the review process as a whole. To avoid single points
of trust and to put reviewers under mutual competition to perform reviews thoroughly,
each review should be performed by more than one reviewer. This in turn necessitates the
independent creation of results as described in O1. By independent, we mean that each
reviewer must finalize their results without knowledge of any other results pertaining to
the same review. Next, in order to prevent reviews from being maliciously skewed, the
process as a whole should be resilient against censorship (O2). In particular, this means
that both the announcement of a review as well as the entirety of elicited results should
ultimately be available to anyone. Lastly, O3 encapsulates the need for transparency and
the ability to relate review artifacts to each other. With transparency, we describe the
ability of any party to observe all steps of a review process. Traceability, meanwhile,
encompasses the ability of any party to understand the provenance and authorship of and
relations between artifacts pertaining to any particular review process.

With O4, we group together objectives regarding artifacts themselves. Similar to the
subject of a review, i.e. a binary, and all involved roles, artifacts necessary for or created
during a review must also be uniquely identifiable in order to be traceable, for example.
Next, the persistent availability of artifacts is of vital importance. A review cannot be
performed if some of its necessary artifacts are unavailable and, similarly, a review whose
results are (partially) unavailable afterwards is of diminished value. With identifiability
and availability covered, the last overarching objective for artifacts is to take advantage of
the aforementioned traceability and unequivocally connect artifacts to the software under
review as well as the respective review instance.

Lastly, O5 describes our aim to construct a system that can accommodate a wide spectrum
of attribute claims. Put differently, the way a review process is executed on a distributed
ledger should not restrict the kinds of attribute claims that can be examined and attested.

1 Transparent in the sense of enabling any party to observe and scrutinize all aspects of review processes.

78

5.2. Related Work

The remaining chapter is structured as follows. In Section 5.2, we review related work.
With Section 5.3, we explain our system model, including roles of active participants, and
the underlying attacker and trust model. We describe our concept and implementation of
a decentralized public review system (ETHDPR) for software binaries based on Palinodia
and ETHTID in Section 5.4 before evaluating it in Section 5.5. In Section 5.6, we provide
a generalization of ETHDPR to give a concise description of its modular construction,
thereby facilitating adaptation and future improvements of the whole system by improving
or replacing individual components. We end the chapter with a discussion, an overview of
the limitations of our work, and remaining open questions in Section 5.7.

5.2. Related Work

The practice of reviewing software for the purpose of quality control is well-established
in the literature [76, 75]. More closely related to the approach presented here is the
practice of software certification [46, 23, 41] to attest, for example, compliance with
standards or regulatory requirements. While these works describe what a software review
or certification entails, the work we present here investigates how such reviews can be
performed without a centralized trusted party by utilizing distributed ledgers.

Another approach to ensure the safe use of software was proposed by Necula et al. in the
form of proof-carrying code (PCC) [63, 64]. As the name implies, the core idea is for a
software creator to attach proofs to code that can be checked efficiently on a user’s system
before installing or running it. Such proofs can, for example, show that a given piece of
software will not consume more than a certain amount of memory during execution or that
it will never access memory outside a specified address space. In this way, the adherence
of new software to policies regarding resource or data usage set by a user’s system can
be ensured. The approach we present here is both contrasted and complementary to
proof-carrying code. Proof-carrying code places the “burden of proof” on the software
creators before the release of a binary whereas our approach is to enable the review of
a published binary by parties other than its creator. The statements about software that
PCC can support are limited but their validity can be checked with certainty and fully
automatically on a user’s system. Our approach places no restrictions on the types of
software attribute claims that can be evaluated by requiring the active participation of
multiple human reviewers. As a consequence, the approach in this work does not aim
to achieve certainty on the attested software attribute claims but instead enables relying
parties to judge the reliability of individual results in comparison to the results of other
reviewers.

At a glance, initiating, conducting, and recording a software review on a public ledger
bears similarities to blockchain oracles [1, 42] in that answers to specific questions should
be determined and recorded on-chain. The crucial difference between blockchain oracles
and decentralized software reviews as we conduct them in this work lies in how their
results are being used: Oracles feed real-world information like weather data, results of
sport competitions, or stock prices to smart contracts such that on-chain transactions that

79

5. ETHDPR: Decentralized Public Review and Attestation of Software Attribute Claims on Ethereum

depend on this data can be executed and funds moved accordingly. Meanwhile, the results
of software reviews, while being recorded on-chain, are primarily meant to be aggregated
and used by relying parties, i.e. users of a software, without the need for any on-chain
enforcement. As we describe later in this chapter, in our implementation, the results of
reviews are in fact entirely inaccessible to smart contracts. The advantage we gain in
turn are low and constant costs for logging review results on-chain, thereby allowing
for arbitrarily large or complex attributes to be elicited. This difference in use of results
directly influences the requirements placed on their creation. Since the distribution of
funds can depend on the veracity and accuracy of data provided by oracles, great care must
be taken to harden them against compromise or misuse. By contrast, individual reviews of
a software release do not immediately affect any critical on-chain construction and relying
parties can decide for themselves how much credibility they assign to each one.

Lastly, we re-review two works from Chapter 3 and show how their functionality beyond
establishing identities for software relate to ETHDPR: Chainiac by Nikitin et al. [66] and
SmartWitness by Guarnizo et al. [37]. While Chainiac does not include the evaluation
of to-be-released binaries regarding arbitrary attributes, great attention is given to the
“source to binary correspondence” via collectively trusted build servers and reproducible
builds. In the approach presented here, the same correspondence between code and binary
can be checked via reproducible builds as part of a review in addition to other attributes.
SmartWitness distinguished itself from Palinodia by allowing accredited security providers
to rate the security of binaries registered with a given SmartWitness instance. Supposedly
due to logging said ratings on-chain, Guarnizo et al. limited these ratings to numerical
values between zero and ten and, unlike ETHDPR, there is no mechanism coordinating the
release of assessments by multiple providers. Consequently, later ratings in SmartWitness
may be influenced by ratings submitted earlier.

5.3. System Model

As with the previous two chapters, we begin by giving an overview of our system model,
particularly the involved roles depicted in Figure 5.1 and our assumptions regarding
attackers and trust. Similar to ETHTID, our focus in this work is to demonstrate the
feasibility of conducting decentralized public reviews of software releases on distributed
ledgers and, as such, certain aspects like incentivization or reputation management of
reviewers are left for future work.

5.3.1. Roles

The role of maintainer is inherited from Palinodia and was described in Section 3.3. By
creating and publishing new binaries of a software, maintainers contribute the primary
object of a review. As a passing remark, maintainers can also incorporate past review
results into the future development of their software. Claimants provide the secondary
object of review in the form of attribute claims a given binary should be examined against.

80

5.3. System Model

Public Review
Process

Maintainer

Software

Attr A
Attr B
Attr C

Attribute
Claims

Attr A
Attr B
A'r C

Binary with
verified Attributes

Decentralized Platform

Reviewer
Claimant

Relying Party

Figure 5.1.:Overview of ETHDPR. Maintainer publishes new binary and attaches it to their software identity.
Claimant submits set of attribute claims to be reviewed. Reviewers examine the new release against the
stated claims and publish their results. Relying parties can obtain binary with attached review results. [84]

For the sake of presentation, we assume that claimants state reasonable and suitable
claims about software. Unrealistic claims should only pose a mild inconvenience in our
approach and not threaten any of the objectives stated above. A self-selected set of
reviewers examines binaries independently and publishes their attributions according to
their individual findings. It is important to note the difference between a software attribute
claim and an actual software attribute in the context of this work: An attribute claim is
merely a way to elicit and direct the investigations as part of a software review. Without
the corresponding results, a claim has no basis or merit on its own. A software attribute
is a concise and subjective statement by a particular reviewer whether a certain claim
about a given software binary holds or not. Lastly, relying parties make use of the resulting
software attributes. In the case of end users, a collection of review results may inform
their decision on whether or not to use a certain release of a software. Similarly, software
maintainers can also be relying parties when it comes to using and building upon other
software based on their attributes. As in previous chapters, none of the above roles are
mutually exclusive and we term their union as stakeholders of a given software.

5.3.2. Attacker and Trust Model

We first describe the capabilities and limitations of our attacker model before describing
possible goals.

Similar to the attackermodels described in Subsection 3.3.2 and Subsection 4.4.2, an attacker
for ETHDPR is computationally bound and cannot break cryptographic assumptions, in

81

5. ETHDPR: Decentralized Public Review and Attestation of Software Attribute Claims on Ethereum

particular the first2 and second3 pre-image resistance properties of cryptographic hash
functions and the computation of discrete logarithms. An attacker is also unable to prevent
read and write access to the underlying blockchain for a period of time long enough for
any other party to miss a particular deadline. For example, an attacker cannot prevent a
reviewer from recording their results on-chain long enough for the review period to close.
In the case of read accesses, there are no hard deadlines that can be missed. Instead, we
assume that every attempt to read blockchain data must succeed eventually. Likewise, an
attacker cannot gain significant control over the consensus mechanism of the underlying
distributed ledger. In particular, an attacker cannot induce a fork in the ledger to change or
delete past records and they cannot forcibly add invalid transactions to the ledger. Lastly,
an attacker can interact with the application layer of said ledger just like any other user
by deploying new smart contract instances or by interacting with existing instances.

The first possible goal of an attacker is to sabotage a review by preventing either the
announcement or certain elicited results from reaching a particular user. In conjunction
with Palinodia, such an attack could serve the purpose of having a user install and run
software with vulnerabilities that were discovered during said review, thereby opening an
avenue for the attacker to further compromise said user’s system. Essentially, this attack
serves to challenge the censorship-resilience objective O2. A second way for an attacker
to undermine a review instance is to submit mutually contradictory results to different sets
of parties with the goal of splitting their views of the results. In other contexts, especially
consensus systems, such behavior is known as “equivocation”.

Similar to ETHTID, the decentralized public review mechanism we propose here is imme-
diately vulnerable to Sybil attacks [27] by reviewers looking to amplify their voice and
maliciously skew results. We consider Sybil resistance a strongly related and crucial but
ultimately out-of-scope problem for the present work.

5.4. ETHDPR

We now present ETHDPR, a decentralized public review system for software releases
on Ethereum. With Figure 5.2, we provide an overview of an ETHDPR execution from
the initialization of a review to its conclusion. We first describe an ETHDPR execution
abstractly before illustrating it with an example in Subsection 5.4.1.

Before a review can be performed, a Palinodia software identity must be established
on Ethereum by a developer and maintainer, particularly a Binary Hash Storage (BHS)
contract as described in Subsection 3.4.1.2. Please recall that a HashID together with
the address of the BHS contract instance where it was registered serve as both a unique
identifier for a given software release as well as a way to obtain additional information
about the corresponding software identity via the Ethereum peer-to-peer network. While

2 Given a hash ℎ, it is difficult to find a message𝑚 such that ℎ = H(𝑚)
3 Given a message𝑚1, it is difficult to find a message𝑚2 such that H(𝑚1) = H(𝑚2)

82

5.4. ETHDPR

Palinodia

Rev 1

BHS Contract

HashID

RevLog

dec.
key

Time

Off-chain Artifact

On-chain Artifact

! Ethereum Event

Reference

!
RevLog

!

Reviews
Rev 2

Rev 2Rev 1

ETHTID
!

At
tr

ib
ut

e
Co

ns
ol

id
at

io
n

M
ec

ha
ni

sm

1

enc.
key

!

3

Review
Prompt

!

2 4 4 5 6

Smart Contract

Figure 5.2.:Overview of actors, smart contracts, events, and artifacts in an ETHDPR execution. (1)Maintainer
establishes software identity via Palinodia. (2)Maintainer publishes a new binary hash to a BHS contract
referencing a review prompt containing attribute claims to be verified and a reference to an ETHTID instance
for scheduling and disclosure coordination. (3) Council of ETHTID instance releases an encryption key.
(4) Reviewers examine software release, encrypt their results via the ETHTID encryption key, and make
to-be-disclosed results available via IPFS. Each reviewer time-stamps a reference to their review results
within the review period through their own Review Log (RevLog) smart contract and link it to both the
software under review and ETHTID instance for coordinated disclosure. (5) Council of ETHTID instance
releases decryption key, thereby ending the review period. (6) Relying parties can obtain and decrypt review
results associated with a software release. Additionally, attributes can be consolidated further by relying
parties or other stakeholders. [84]

we introduced the roles of maintainer and claimant separately in Subsection 5.3.1, they are
both occupied by the software maintainer responsible for a given BHS contract instance.
In preparation for the release and review of their new software binary, a maintainer
prepares a JSON-formatted review prompt to state both the claimed attributes of a new
software release as well as the address of an ETHTID contract instance to enforce the
review schedule. This can either be a preexisting instance with a suitable schedule or
a newly created instance with a schedule chosen by the maintainer. Depending on the
stated claims, CID based references to other digital objects, like the binary’s source code
or (in)formal specifications can also be part of the review prompt.

With a software identity established, a review for a new binary is initiated by the respective
maintainer as part of the publishHash transaction, which stores the hash of the newly
released binary as part of a BHS contract instance’s state, keyed by a HashID. Rather than
storing the CID of a review prompt also as part of the contract state, a significantly cheaper
but equally suitable option is to include the CID within the Publication event that is
emitted during the publishHash transaction. This construction is sensible as CIDs only
need to be logged on-chain to be retrieved by clients and they never serve as the basis for a

83

5. ETHDPR: Decentralized Public Review and Attestation of Software Attribute Claims on Ethereum

r

ETHTID
dec. key

ETHTID
enc. key

S

AES
Key

R

DH DH

Key Derivation
Function (SHA3)

Figure 5.3.:A key derivation procedure akin to the Elliptic Curve Integrated Encryption Scheme (ECIES) [56].
To prepare their review results for a coordinated disclosure, each reviewer derives a unique AES key by first
generating a random, ephemeral discrete log key pair (𝑟, 𝑅) and then performing a Diffie-Hellman(-Merkle)
key exchange [26, 59] with 𝑟 and an ETHTID encryption key to generate a shared secret 𝑆 . Through a key
derivation function (SHA-3 in our case), each reviewer generates a unique AES key from 𝑆 to encrypt their
results. Each reviewer attaches 𝑅 to their review, thereby enabling any relying party to recover 𝑆 and the
AES key once the corresponding ETHTID decryption key is available.

future change to a contract instance’s state4. Note that this inclusion extends the purpose
of the Publication event frommerely announcing the release of a new binary to also serve
as the cornerstone for a review. Consequently, the event needs to be easily retrievable
both during and after each review. The way we chose to ensure this retrievability is to add
the HashID to the indexed parameters of the Publication event. Since every Palinodia-
registered binary includes metadata containing both its HashID as well as the BHS contract
instance address where it is registered, a Palinodia client can issue a very targeted search
query to its associated Ethereum client to retrieve a corresponding Publication event and
see if a review is or was performed on this particular release.

Once the review prompt is announced on-chain and available via IPFS along with the
software binary in question and other review artifacts, self-selected reviewers can begin
their examination. It is important to note that, in accordance with our objective O5, the
only restriction we place on the tools and methods used for a software evaluation is that
both examination goals and results must be encodable as text, even if only as IPFS CIDs to
images or other multimedia files. Reviewers compile their results in a JSON-formatted
review, consisting of a header with necessary information and an encrypted payload
containing the actual review results. More specifically, the header of a review contains
both the BHS contract instance address and HashID to uniquely identify the reviewed
binary as well as the ETHTID contract instance address where the decryption key to access
the payload can be retrieved, once available. The last necessary component of the header
concerns the encryption of the attached payload such that it can be decrypted once the
ETHTID decryption key is released.

Aswe brieflymentioned in the previous chapter, a symmetric encryption key can be derived
from an ETHTID encryption key via a Diffie-Hellman(-Merkle) key exchange, a common

4 Event data is inaccessible to smart contract instances, even those that emitted said events.

84

5.4. ETHDPR

BHS ContractpublishHash
(HashID,Hash,CID) HashID Hash

PublishingEvent(
HashID,
Hash, CID)

Review Prompt
ETHTID_c,
Attr 1:

Repr. Build
…

ETHTIDgenerate_e
()

EK(
𝑒)𝑒

RevLogpublishReview
(BHS_c, HashID, CID)

Review(
BHS_c, HashID,
CID)

Review
BHS_c, HashID,
ETHTID_c, R,
<enc>Attr 1:

Yes, …
…</enc>

ETHTIDsubmit_d
(𝑑)

DK(
𝑑)𝑒 𝑑

Transaction
(with parameters)

Smart Contracts
(with resulting state)

Emitted Events
(Indexed, Data)

Referenced
Off-chain Artifacts

Figure 5.4.: Relations between transactions, smart contracts with their resulting states, emitted events, and
referenced off-chain artifacts. Colors denote references, either as contract instance addresses (ETHTID_c,
BHS_c), strings (HashID), or IPFS CIDs. Underlined event attributes are indexed for the purpose of monitoring
and searching. On-chain artifacts are stored as part their respective contract instance’s state and depicted as
rectangular boxes. The purple value 𝑅 in Review corresponds to the elliptic curve point of the same name
from Figure 5.3.

approach to hybrid encryption called Elliptic Curve Integrated Encryption Scheme (ECIES),
a simplified overview of which we provide in Figure 5.3. Basically, each reviewer randomly
generates an ephemeral discrete log key pair ⟨𝑟, 𝑅 B 𝑔𝑟 ⟩, such that a key exchange between
either 𝑟 and the ETHTID encryption key or 𝑅 and the corresponding decryption key lead
to the same shared elliptic curve point 𝑆 . By converting 𝑆 into a normalized form5 and
canonical encoding, a 256 bit symmetric encryption key can be derived through a key
derivation function like SHA-3. Each reviewer includes 𝑅 in the header of their review and
encrypts the payload with the derived key using symmetric encryption like the Advanced
Encryption Standard (AES). The payload of each review consists of a reviewer’s assessment
of claims stated in the review prompt, primarily whether or not they attest to the binary
in question fulfilling the stated claims. Further information can also be included for each
claim, like additional assumptions that the reviewer had to make or which tools and
settings they used in their examination. Note that the above key derivation can only be
performed by anyone besides the author of a review once the ETHTID instance publishes
its decryption key.

Similar to the review prompt above, individual reviews also need to be logged on-chain to
prove their creation before the publication of the ETHTID decryption key. For this purpose,

5 Points on elliptic curves can have more than one representation that are more efficient for certain opera-
tions, but they can always be converted to a unique normalized form. For a more detailed explanation, we
refer to section 3.2 of “Guide to Elliptic Curve Cryptography” by Hankerson, Menezes, and Vanstone [40].

85

5. ETHDPR: Decentralized Public Review and Attestation of Software Attribute Claims on Ethereum

Listing 5.1: C source code of our toy example software. The code implements a precision-loss calculation
for the state of charge in an electric vehicle. It computes the rounded floor value soc_rounded of a decimal
number encoded as the integer soc via factor.
in t en coded_ f l o o r (in t soc , char f a c t o r) {

i f (soc < 0) {
return −1 ;

} e l se i f (f a c t o r == 0) {
return −1 ;

}
in t max = 101 ∗ f a c t o r ;
i f (soc >= max) {

return −1 ;
}

in t s o c _po i n t = soc % f a c t o r ;
in t soc_rounded = soc − s o c _po i n t ;

return soc_rounded ;
}

we employ a minimalist Review Log (RevLog) smart contract for each reviewer. Each
RevLog contract instance only provides one access-controlled function to emit a Review
event containing a BHS contract instance address and HashID as indexed parameters
and an IPFS CID of the review as data. The emission of such events ties together the
Ethereum address of a review author with an integrity-protecting reference to their
results alongside the aforementioned time-stamping. This way, anyone in possession of a
Palinodia-registered binary can efficiently recover not only the CID of a review prompt, if
one was published, but also the CIDs of all submitted reviews by instructing their Ethereum
client to search for corresponding events in the block-range specified by the referenced
ETHTID instance. With these CIDs, both review prompt and elicited reviews can then
be obtained and their integrity verified via an IPFS client. With Figure 5.4, we give an
overview of how review prompt, reviews, and contract instances are interconnected.

With the publication of the ETHTID decryption key, the submission period for reviews
ends and the payload of properly prepared reviews can be decrypted. Depending on the
needs of relying parties and the nature of reviewed and attested claims, the results of
reviews can be consolidated in different ways. As we focused more on the execution and
coordination of software reviews, we can only give suggestions on possible consolidation
methods, in part also because some form of reputation management or credibility score for
reviewers is necessary as well. For binary claims, a majority vote may be suitable, whereas
for claims on a gradient, a weighted average could be fitting. For certain claims, the
existence of a single valid counterexample may overrule any other consolidation strategy.
We elaborate this point further in Section 5.6.

86

5.4. ETHDPR

Listing 5.2: Example review prompt. A review prompt uniquely references a review instance by stating
its corresponding ETHTID instance address as well as the BHS contract instance address and HashID of
the software binary under review. The purpose of a review prompt is to state the claims that should be
investigated in this review instance. Claims may reference additional information in the form of claim
artifacts. In the example we abbreviate the values of references with ellipses for the sake of readability.
{

" e t h t i d _ c o n t r a c t _ a d d r " : " 0 x71d . . . " ,
" b h s _ c on t r a c t _ a dd r " : " 0 xb85 . . . " ,
" hashID " : " PrecLoss − 1 . 0 " ,
" c l a i m _ a r t i f a c t s " : {

" s ou r ce_code " : "QmWj2 . . . " ,
" b u i l d _ i n f o " : "QmRju . . . " ,
" f o rm a l _ s p e c i f i c a t i o n " : "QmaZu . . . " ,
" frama − c _ i n f o " : "QmTCj . . . " ,
" i n f o rm a l _ s p e c i f i c a t i o n " : "QmUBY . . . "

} ,
" c l a im s " : {

" c1 " : " Bu i l d i s r e p r o d u c i b l e from $ { sour ce_code } u s ing $ { b u i l d _ i n f o
} " ,

" c2 " : " Formal v e r i f i c a t i o n o f the $ { sou r ce_code } ’ s p r e c i s i o n − l o s s
f u n c t i o n a l i t y i s r e p r o d u c i b l e in Frama−C with $ {
f o rm a l _ s p e c i f i c a t i o n } and $ { frama − c _ i n f o } . " ,

" c3 " : " $ { f o rm a l _ s p e c i f i c a t i o n } o f p r e c i s i o n − l o s s f u n c t i o n a l i t y i s
v a l i d with r e s p e c t to the so f tware ’ s $ { i n f o rm a l _ s p e c i f i c a t i o n
} . " ,

" c4 " : " P o t e n t i a l l y unwanted u n s p e c i f i e d behav i o r was not d e t e c t e d
in $ { sou r ce_code } with r e s p e c t to the so f tware ’ s $ {
i n f o rm a l _ s p e c i f i c a t i o n } . "

}
}

5.4.1. Illustrative Example

To better illustrate the construction and interactions between parties during an ETHDPR
execution, we provide the following example. Sharing precise information about a device’s
charge level have lead to privacy issues in the past [69, 68]. The same has recently been
shown for internet-of-things devices [51] and electric vehicles [16]. Our toy software
example, the source code of which is depicted in Listing 5.1, implements a function to
reduce the precision of the state of charge of an electric vehicle so that this information
can be shared with services outside the vehicle while better protecting the car owner’s
privacy. In addition to using Palinodia to enable car owners to verify the authenticity of
software running in their vehicles, an original equipment manufacturer (OEM) now also
uses ETHDPR to demonstrate to both end users and other relying parties that the software
does exactly what it is supposed to do and nothing else.

In addition to the source code and build info, both a formal and an informal specification
of the software’s functionality are made available via IPFS for review purposes. The OEM
maintaining this software states the following claims for the purpose of this example in
their review prompt depicted in Listing 5.2:

87

5. ETHDPR: Decentralized Public Review and Attestation of Software Attribute Claims on Ethereum

Listing 5.3: Formal Specification in the ANSI/ISO C Specification Language (ACSL) [8] of the exemplary
review prompt claim artifact formal_specification. The OEM formally specifies the expected functionality
of the software binary under review and corresponding source_code (see Listing 5.1).
/ ∗@ as s i g n s \ no th ing ;

b ehav i o r i n v a l i d :
assumes soc < 0 | | f a c t o r < 1

| | soc >= 101 ∗ f a c t o r ;
en su r e s \ r e su l t == −1 ;

b ehav i o r v a l i d :
assumes soc >= 0 && f a c t o r >= 1

&& soc < 101 ∗ f a c t o r ;
/ / v a l i d r e su l t range
en su r e s 0 <= \ r e su l t <= 100 ∗ f a c t o r ;
/ / soc_rounded i s rounded
en su r e s \ r e su l t % f a c t o r == 0 ;
/ / soc_rounded i s f loor o f soc
en su r e s \ r e su l t <= soc

< \ r e su l t + f a c t o r ;
comple te b eh av i o r s i n v a l i d , v a l i d ;
d i s j o i n t b eh av i o r s i n v a l i d , v a l i d ;

∗ /

in t en coded_ f l o o r (in t soc , char f a c t o r) ;

Listing 5.4: Frama-C/WP plug-in command of the exemplary review prompt claim artifact frama-c_info
that specifies how the OEM executed the claimed reproducible formal verification of the code in Listing 5.1.
frama −c −wp −wp− r t e example . c \

−then − r e p o r t

C1 The distributed binary can be built reproducibly6 from its source code

C2 The implementation of the precision-loss functionality can be verified formally

C3 The formal and informal specifications are congruent and sound

C4 There is no hidden or unspecified functionality present

For the purpose of this example, we focus on claims C2 and C3. Using the ANSI/ISO C
Specification Language (ACSL) [8], the OEM formally specifies the intended functionality
of the precision-loss function as shown in Listing 5.3, particularly regarding invalid and
valid ranges of inputs and the correct rounding down of the output. To execute the
formal verification of the C source code, the OEM recommends Frama-C with its weakest
predicate (WP) plug-in [9] and provides the corresponding instruction in Listing 5.4 as
the frama-c_info artifact in the review prompt. Note that other tools for this kind of
verification could be used as well.

6 From https://reproducible-builds.org/: “A build is reproducible if given the same source code, build
environment and build instructions, any party can recreate bit-by-bit identical copies of all specified
artifacts.”

88

https://reproducible-builds.org/

5.4. ETHDPR

Listing 5.5: Frama-C/WP plug-in verification report as an exemplary attachment explanation of a review
result such as the attestation in Listing 5.6. Some details are omitted for readability.
[k e r n e l] P a r s i n g example . c

(with p r e p r o c e s s i n g)
[r t e] anno t a t i n g f u n c t i o n en cod ed_ f l o o r
[wp] 15 go a l s s chedu l ed [. . .]
[wp] Proved go a l s : 15 / 15
Qed : 5 (0 . 6 8 ms−7ms−60ms)
Alt −Ergo 2 . 4 . 1 : 10 (1ms−26ms−191ms)
[. . .]

−−−
−−− S t a t u s Repor t Summary
−−−

15 Comple te ly v a l i d a t e d
15 To t a l

−−−

Listing 5.6: Example review result structure stating an attestation of claims C2 and C3 while abstaining
from other claims of this review instance.
{

" c1 " : { } ,
" c2 " : {

" a t t e s t a t i o n " : t rue ,
" a t t a chment " "Qmb1d . . . "

} ,
" c3 " : {

" a t t e s t a t i o n " : t r u e
} ,
" c4 " : { }

}

Listing 5.7: Example review structure. Analogous to a review prompt (see Listing 5.2), a review is uniquely
referenced by the CID of its corresponding review prompt, ETHTID contract instance address, and software
binary. The review also contains the encrypted results (see Listing 5.6) as well as an elliptic curve point to
recover the AES key with which the results can be decrypted once the ETHTID decryption key becomes
available.
{

" r ev i ew_prompt_c id " : "QmYGc . . . " ,
" e t h t i d _ c o n t r a c t _ a d d r " : " 0 x71d . . . " ,
" b h s _ c on t r a c t _ a dd r " : " 0 xb85 . . . " ,
" hashID " : " PrecLoss − 1 . 0 " ,
" e t h t i d _ e c i e s _ a e s _ k e y " : " (1 2 9 8 . . . , 7 8 1 5 2 . . .) " ,
" e n c r y p t e d _ r e s u l t s " : " . . . "

}

89

5. ETHDPR: Decentralized Public Review and Attestation of Software Attribute Claims on Ethereum

After the new precision loss binary is released and the review is announced with the
CID of the review prompt shown in Listing 5.2, a reviewer with experience in Frama-C
decides to participate in the review and attestation of claims C2 and C3. They examine
the specification in Listing 5.3 and compare it to the informal specification provided under
the informal_specification reference in the review prompt to decide on their attestation
of claim C3 and, for the sake of this example, find the specifications to be sound and
congruent. They then execute the formal verification as specified in Listing 5.4 against
the source code from Listing 5.1 to decide on claim C2. They find that the verification
passes successfully, the abbreviated output of which is shown in Listing 5.5. Based on
these results, they compile their review payload as shown in Listing 5.6, where they also
include a reference to their Frama-C output as an attachment to their attestation of C2.
Note that reviewers can abstain from attesting claims, C1 and C4 in this example. Finally,
the reviewer derives a unique AES key as depicted in Figure 5.3 and uses it to encrypt their
results from Listing 5.6 to construct their review as depicted in Listing 5.7. They then log,
and thereby announce, their review through their RevLog contract and make it available
via IPFS for other relying parties to obtain in preparation for its scheduled disclosure.

Once the review period ends with the release of the ETHTID decryption key, relying parties
can decrypt and consolidate the results of all submitted reviews based on their needs.
Claim C1 is of particular note in this regard, as a verified source-to-binary correspondence
through reproducible builds allows the transference of claims between source code, i.e.
claims C2-4 in this example, and the distributed binary. However, as shown in the above
example, not all reviewers must attest to all claims in their reviews. Instead, it would be
sufficient for a later consolidation of attributes that each claim was examined and attested
by some credible reviewers.

5.5. Evaluation

Analogous to the previous two chapters, we constructed ETHDPR based on Palinodia and
ETHTID, together with the RevLog contract, in Solidity 0.87 and deployed it to a local
development blockchain on the London hard fork using Ganache v7.2.0 of the Truffle Suite
development tools. Similar to ETHTID, we also implemented the off-chain operations
of reviewers and relying parties, particularly the generation, encryption, and decryption
of reviews, as a Python application. We use IPFS CIDs to estimate realistic costs for
the on-chain storage of references to files located off-chain and otherwise exclude the
performance of IPFS from the evaluation of ETHDPR. For a detailed evaluation of the
performance of IPFS, we refer to the work by Shen et al. [81].

As before, we first provide a quantitative evaluation of gas costs and relevant off-chain
operations before examining ETHDPR’s security properties.

7 https://git.scc.kit.edu/dsn-projects/dissertations/dsim/-/tree/main/ETHDPR

90

https://git.scc.kit.edu/dsn-projects/dissertations/dsim/-/tree/main/ETHDPR

5.5. Evaluation

Table 5.1.: Cost of publishing review prompt IPFS CIDs alongside binary hashes to BHS contract instances
and publishing CIDs of reviews through RevLog contract instances. The length of HashIDs included in either
transaction type is fixed at ten characters. The cost of publishHash with a CID length of zero corresponds
to the Palinodia base case from Table 3.4. Conversion of gas to USD via daily average exchange rates for 1st
June 2022 as reported by Etherscan: USD 1817.42 per ETH, ETH60.06×10−9 per gas.

publishHash publishReview

CID Length Gas USD Gas USD
0 89 667 9.79 - -
46 92 135 10.06 29 471 3.22
60 92 301 10.07 29 639 3.24
66 92 831 10.13 30 171 3.29
111 93 835 10.24 31 171 3.40

5.5.1. Gas Costs & Performance

To examine the practical feasibility of our approach, we tackle the on- and off-chain
components differently: As with previous chapters, we examine the gas costs for on-
chain operations to judge their practicality. While the elliptic curve integrated encryption
scheme we employ for the off-chain encryption and decryption of review payloads is
common practice, it is not generally used with the Barreto-Naehrig curve that Ethereum
currently limits us to. As such, we perform conventional performance tests to demonstrate
that, even with an unconventional curve, the effort of encrypting and decrypting sets of
review payloads remains acceptable.

In Table 5.1, we show the costs of publishing CIDs for review prompts and reviews. In
Table 5.2, we present a cost overview of Palinodia and ETHTID and the increases to
deployment and operational costs that arose through their integration into ETHDPR. Note
the effect of the changes to the Publication event we described in Section 5.4: Changing
the included HashID from an unindexed to an indexed event parameter and including a
CID as a string adds a minimum of 2468 gas to the overall transaction costs. Also of note is
a subsequent increase to the deployment costs of BHS contracts from 1 077 213 to 1 129 719,
an increase of 52 506 gas or USD5.73. Compared to adding a CID to events that would
be emitted regardless, publishing CIDs to reviews is markedly more expensive, despite
the corresponding transactions merely verifying the sender as the owner of a RevLog
contract instance and emitting an event. For each RevLog contract instance, we observe
deployment costs of 253 815 gas or USD 27.70. The disproportionately large increases in
costs between CIDs of length 60 and 66, as well as between 66 and 111 in either scenario
above are due to a padding of strings and other parameters to the nearest 32 B as defined
by the Ethereum contract ABI specification8. As IPFS CIDs only use ASCII characters, the
length of strings in characters and bytes is interchangeable. Table 5.2 succinctly shows that,
compared to the deployment and operational costs of Palinodia and ETHTID, the increases

8 https://docs.soliditylang.org/en/develop/abi-spec.html

91

https://docs.soliditylang.org/en/develop/abi-spec.html

5. ETHDPR: Decentralized Public Review and Attestation of Software Attribute Claims on Ethereum

Table
5.2.:Costoverview

ofintegrating
Palinodia

and
ETH

TID
into

ETH
D
PR.A

“-”underIntegration
denotesthatno

changesw
ere

necessary
and

thuscosts
rem

ained
unchanged.A

“-”underInitialVersion
denotesthattherespectivecontractorfunction

w
asadded

during
integration.Allom

itted
functionsofPalinodia

contractsrem
ain

unchanged.Conversion
ofgasto

USD
via

daily
average

exchange
ratesfor1stJune

2022
asreported

by
Etherscan:USD

1817
.42

perETH
,

ETH
60
.06×10 −9pergas.

D
eploym

entC
osts

InitialVersion
Integration

D
elta

Contract
Gas

USD
Gas

USD
Gas

USD
Com

m
ent

SW
1143544

124
.81

-
-

-
-

O
ne

persoftw
are

BH
S

1077213
117

.57
1129719

123
.31

52506
5
.73

O
ne

perm
aintainer

ID
M

927201
101

.20
-

-
-

-
O
ne

perdeveloper/m
aintainer

ETH
TID

1879437
205

.13
-

-
-

-
O
ne

perreview
period

RevLog
-

-
253815

27
.70

253815
27
.70

O
ne

perreview
er

O
perationalC

osts
Function

Gas
USD

Gas
USD

Gas
USD

Com
m
ent

p
u
b
l
i
s
h
H
a
s
h

89667
9
.79

92301
10
.07

2634
0
.28

O
nce

per
binary.

10
char

H
ashID.Integrated

version
w
ith

CID
length

of60.
p
u
b
l
i
s
h
R
e
v
i
e
w

-
-

29639
3
.24

29639
3
.24

O
nce

persubm
itted

review.CID
length

of60.
r
e
v
o
k
e
H
a
s
h

38849
4
.24

-
-

-
-

10
charH

ashID.
ETH

TID
execution

4559309
497

.63
-

-
-

-
𝑛

=
16
,𝑡

=
7,happy

case,excluding
deploy-

m
ent.

92

5.5. Evaluation

Table 5.3.: Mean decryption time in seconds (rounded to two decimals) of different sized review sets with
different review payload sizes over 100 repetitions. [84]

Review
Set Size

Attachment Size per Review inMB
0 0.2 0.4 0.6 0.8 1.0

10 0.10 0.12 0.14 0.17 0.19 0.21
20 0.21 0.25 0.29 0.33 0.37 0.41
30 0.31 0.38 0.44 0.51 0.57 0.63
40 0.41 0.49 0.58 0.67 0.75 0.84
50 0.52 0.63 0.72 0.84 0.95 1.06

to both costs as a consequence of their integration into ETHDPR is rather small. It is
particularly noteworthy that ETHTID remained entirely unchanged as it was conceived
from the start to be a neatly encapsulated service to other decentralized applications.
Comparing deployment to operational costs also reinforces the future goal of making
contract instances as reusable as possible that we raised in Subsections 3.6.1 and 4.7.1.

To evaluate the effort for encrypting and decrypting reviews of varying size, we used an
OpenStack virtual machine running Ubuntu 20.04 on four virtual 2.4GHz AMD EPYC
CPUs and 8GB RAM with Python 3.8.10. Just like in the ETHTID Python application,
we use the py_ecc module9 for elliptic curve operations and combine it with the SHA-3
implementation of the hashlib Python library10 to derive symmetric encryption keys
from ETHTID encryption and decryption keys. In the following evaluation, we use the
implementation of the Advanced Encryption Standard (AES) in Galois Counter Mode
(GCM) of the cryptography Python module11 for the encryption and decryption of review
payloads.

We generate reviews with random payloads of varying sizes and average the time for their
encryption and decryption over 100 iterations to curb anomalies and outliers. For the
encryption of reviews, which includes the key derivation shown in Figure 5.3 and the AES
encryption of their payload, we observe a linear correlation between payload size and run
time: We measured a baseline of 0.02 s for reviews without a payload to encrypt, i.e. just
the key derivation, and 0.18 s for a review with a 1MB payload.

The decryption of review payloads is somewhat more intricate. A relying party compiling
reviews for a given binary will most likely have to decrypt multiple payloads once the
ETHTID decryption key becomes available. Additionally, cases of “blind plagiarism” can
be identified during the decryption process. While reviewers cannot access the contents of
other reviewer’s submitted payloads, they can trivially copy both the attached curve point
for key derivation and the encrypted payload in its entirety to blindly copy someone else’s
results without actually performing any work themselves. As simple as such a plagiarism

9 https://github.com/ethereum/py_ecc
10 https://docs.python.org/3/library/hashlib.html
11 https://cryptography.io/

93

https://github.com/ethereum/py_ecc
https://docs.python.org/3/library/hashlib.html
https://cryptography.io/

5. ETHDPR: Decentralized Public Review and Attestation of Software Attribute Claims on Ethereum

is to perform, so too is it simple to detect: While processing reviews in the order they
were logged on-chain, the attached ECIES curve points are stored after checking their
uniqueness compared to previously stored points. Reviews that contain an ECIES curve
point from a previously processed review are then ignored. In Table 5.3, we provide the
average time to process 10 to 50 reviews with payload sizes between 0 and 1MB, including
the aforementioned plagiarism check and payload decryption. We observe a linear growth
in decryption time for both the number of processed reviews and payload size.

5.5.2. Functional & Security Considerations

We now compare our implementation of ETHDPR against the objectives we stated in the
beginning of the chapter, which we repeat here for convenience.

O1 (Reviews should be created independently): The independent generation of reviews is
enabled and supported in ETHDPR via a coordinated information disclosure mechanism,
but it cannot be enforced or guaranteed. Consequently, the fulfillment of this objective rests
on the assumption that self-selected reviewers are willing to properly use the disclosure
coordination mechanism. A malicious reviewer looking to cheat off other reviewer’s
results without their cooperation would have to compromise a sufficiently large portion
of the associated ETHTID instance’s council to obtain the necessary decryption key early.
Lastly, detecting and punishing collusions via on-chain mechanisms is currently not an
option in ETHDPR, primarily due to reviews being stored off-chain and thus inaccessible
to smart contracts.

O2 (Review process should be censorship resilient): ETHDPR’s resistance against censorship
must be examined separately for its on- and off-chain parts. Similar to replay and freeze
attacks on Palinodia that we examined in Subsection 3.5.2, an attacker looking to hide
the announcement of a software review or particular attributions would have to break
fundamental properties of the underlying distributed ledger. Preventing a particular user’s
Ethereum client from obtaining any blockchain data would raise suspicion after mere
minutes as new blocks are expected to be generated every 13 s. Creating a convincing
alternate chain where specific transactions are removed would require computational
resources that exceed our attacker model assumptions. However, unlike Palinodia, on-
chain records are only half the battle in ETHDPR, as they mostly contain references to
off-chain artifacts available via IPFS. IPFS itself does not guarantee the availability of these
artifacts. Instead, their creators and other stakeholders of a given software must store
and disseminate them upon request. In addition to hosting their own review, it would
seem sensible for reviewers of a particular software release to also store and provide both
the review prompt as well as reviews of other participants. Censoring any particular
artifact becomes increasingly challenging the further said artifact has been propagated
and replicated. In summary, the long-term availability of off-chain artifacts rests upon
the assumption that the willingness of reviewers to participate extends to the hosting and
sharing of artifacts, both their own and those created by other reviewers, in addition to
the general functionality of IPFS.

94

5.5. Evaluation

Akin to censorship, an equivocation attack by a malicious reviewer aiming to split the
public view on a particular release by submitting two or more mutually contradicting
attestations faces similar hurdles. Without breaking the fundamental properties of the
underlying ledger as explained above, everyone will see all attestations by such an attacker,
thus foiling their attack. Alternatively, an attacker may attempt to provide contradictory
attestations under a single CID, which would require a hash collision, thereby violating
the second preimage resistance property of cryptographic hash functions. However,
significantly easier than the above approaches, an equivocation attacker could instead
create Sybil identities to submit contradictory attestations. Without a Sybil-resistant
reviewer identity system, ETHDPR in its current form remains vulnerable to such attacks
with two mitigating factors: First, the costs for such an attack scale linearly with the
number of established Sybil identities and the number of logged attestations. And second,
based on the fundamental properties of distributed ledgers, the entire attack must be
executed in plan view of the public, where attentive observers may draw attention to it.

O3 (Review process should be transparent and enable traceability of artifacts): Note how a
distributed ledger with its fundamental properties, most prominently a highly available
public consensus on one world state per block, provides a base layer of transparency for
ETHDPR upon which the traceability of artifacts is built. Through transactions and events,
critical steps like the announcement of a review, the beginning and end of the review period,
and the time-stamping of reviews are unequivocally and irrevocably written to a tamper-
proof public log. However, in order to take advantage of this transparency for the purpose
of traceability, participants must adhere to a common protocol, i.e. the name and structure
of events containing correct references to contract instances and off-chain artifacts. For
example, a review that is logged on-chain in a protocol-deviating way will not be found
by protocol-adhering parties. Generally, misbehavior from claimants/maintainers or
reviewers in ETHDPR is mainly detrimental to the respective party in the sense that review
announcements or reviews, while being logged on-chain, are not discoverable by parties
following the protocol. However, much like the availability argument above, the ledger
on its own is not sufficient in the case of ETHDPR due to artifacts being stored off-chain.
Assuming artifacts are available via IPFS, their traceability is again dependent on their
creators including the specified references to other artifacts. In summary, transparency in
ETHDPR relies on both the properties of public ledgers and participants’ willingness to
use it properly. Traceability, meanwhile, requires transparency and additionally relies on
participants to properly include the necessary references and to provide and disseminate
artifacts via IPFS.

O4 (Review artifacts, including results, should be identifiable, persistently available, and
traceable to the review instance and the software release under review): ETHDPR derives
these properties from already introduced assumptions. Review artifacts stored off-chain
inherit unique identifiers from IPFS in the form of hash-based CIDs. To break this property,
an attacker would have to generate two distinct files with the same CID, which is equivalent
in difficulty to finding a collision in a cryptographic hash function. The availability of
artifacts depends on the willingness of their creators and other interested parties to provide
and disseminate them via IPFS, as explained above for objective O2. An attacker aiming
to make the file behind a given CID unavailable would have to compromise all IPFS nodes

95

5. ETHDPR: Decentralized Public Review and Attestation of Software Attribute Claims on Ethereum

Software Identity
Management

At
tr

ib
ut

e
Co

ns
ol

id
at

io
n

M
ec

ha
ni

sm

Rev 1
Rev 2

Review Notary Mechanism

Rev 3

Time

Rev 1
Rev 2
Rev 3 Attr

1 2 4 4 43 5 7

Disclosure Coordination
Mechanism

86

Figure 5.5.: A generalization of ETHDPR. (1) Maintainer establishes software identity. (2) Claimant initiates
review by publishing attribute claims to be verified. (3) Setup for disclosure coordination mechanism
completed, starting the review period. (4) Reviewers submit reviews through notary mechanism to time-
stamp them within the review period. (5) Disclosure coordination mechanism ends the review period,
making contents of all appropriately prepared reviews public. (6) Relying parties can obtain review results
and perform aggregation. (7) Review results are consolidated into concise attributes and attached to software
identity. (8) Relying parties obtain consolidated attributes of a software binary. [84]

holding and providing said file or convince their owners to “unpin” this file and no longer
provide it on request. Lastly, the ability to trace artifacts back to review instances and
software releases relies on the artifacts’ creators to include corresponding references. Note
that ETHDPR in its current form cannot enforce any conditions on the structure or content
of off-chain artifacts, as their contents are inaccessible to on-chain smart contracts.

O5 (Possible attribute claims and review consolidation methods should be use case agnostic):
ETHDPR achieves this objective by construction. By using IPFS as an off-chain storage
and distribution mechanism for artifacts and only storing CIDs on-chain, ETHDPR avoids
limits on the kind or size of artifacts that would have arisen by storing them on-chain. In
its current form, ETHDPR supports software claims and attestations that can be expressed
as text and encoded in JSON formatted files. By utilizing the interlinking of files inherently
available in IPFS, complex multimedia documents could also be included in software
attestations, but their encryption for a coordinated disclosure remains as future work. It is
worth reiterating that gaining this flexibility in the scope and structure of review artifacts is
the result of a deliberate trade-off, the downside of which is ETHDPR’s inability to enforce
any rules on their content via smart contracts. Essentially, with the power to construct
artifacts in any way they see fit comes the individual responsibility of maintainers and
reviewers to do so sensibly.

96

5.6. Generalization

5.6. Generalization

In addition to a proof of concept, ETHDPR also serves as one particular instance of a
more general structure for a decentralized independent review application, which we
explore in more detail in this section. Figure 5.5 shows an abstraction of Figure 5.2 with
implementation details condensed into distinct mechanisms.

In ETHDPR, Palinodia provides the necessary identities for software as the primary object
of reviews. Other systems like SmartWitness [37] or Chainiac [66] could also fulfill the
same functionality for software. More generally, whatever digital object should be reviewed
needs to be uniquely identifiable and referenceable both for the purpose of executing
reviews as well as attaching results and attestations. In Figure 5.5 this is the main task of
the (Software) Identity Management component. Similarly important for reviews of digital
objects is an integrity-protecting binding between its identity representation and the object
itself. Without such a binding, the correspondence between what reviewers examine and
what relying parties obtain is not ensured, defeating the purpose of performing reviews.

Next, ETHDPR includes ETHTID as a Disclosure Coordination Mechanism in order to
both enable the publication of independently generated review results and to make that
fact evident afterwards. With front-running attacks on blockchains and corresponding
defenses garnering more attention in recent years [29] and coordinated disclosure of
transactions being one approach for defensive measures, distributed ledger platforms
may look to include mechanisms to provide functionalities similar to ETHTID on their
protocol level, like Algorand [10]. As ETHTID has shown, decentralized applications to
provide disclosure coordination can be built independent of particular use cases. Thus,
even consensus-layer front-running defenses on distributed ledgers may be integrated
into a decentralized review application.

Tying together the author of a reviewwith an integrity-protecting time stamp and reference
to said review is the main purpose of RevLog smart contract instances in ETHDPR as
its Review Notary Mechanism. Rather than deploying a RevLog instance per reviewer,
another approach would be to deploy a single autonomous contract instance without
any access control where a review author’s Ethereum address is included in the emitted
event. Please recall that a secondary purpose of these events is to make reviews for a
given software discoverable to any interested party. Since notary services were one of the
earliest use cases explored on distributed ledgers [6], multiple services exist today [25]
that could be adapted for a decentralized review application with the biggest hurdle being
the aforementioned discoverability of reviews for a given software release.

Lastly, the Attribute Consolidation Mechanism of ETHDPR is mostly left as future work.
Please recall that each review consists of one ormore attributions by the respective reviewer
for a given software release and stated claims. However, after all such attestations are
recorded and disclosed, the logical next step is to consolidate them to approximate a
more complete picture of a software’s characteristics. We expect two broad classes of
consolidation approaches to be possible for review applications like ETHDPR:

97

5. ETHDPR: Decentralized Public Review and Attestation of Software Attribute Claims on Ethereum

• Individual consolidation: Much like we explained above for ETHDPR, the consoli-
dation of attributes can be performed by relying parties individually, depending on
their needs and requirements for a particular software release. Such a consolidation
may not necessarily consider each review instance in isolation but instead include
past performances of reviewers to gauge the reliability of their attributions in com-
parison with the attributions of others. Depending on the number of reviews and
attestations to consider, a manual approach may not be feasible and software-based
aids could be necessary, which of course introduces the possibility of a circular de-
pendence: The software to support the consolidation of software attributions would
have to be reviewed itself to ensure it is functioning properly and can be relied on.

• Collective consolidation: By contrast to the above approach, a consolidation of
published attributes could also be logged on-chain to spare relying parties the burden
of performing it themselves. Part of this process, and the on-chain documentation,
would have to include the resolution of conflicting attributes and the overall rationale
behind the resulting consolidated attributes. To avoid reliance a centralized trusted
party to perform this consolidation, a transparent and decentralized mechanism
would be necessary.

Note how the difference between individual and collective consolidation reflects a core
trade-off in decentralized applications between individual responsibility and delegation
out of necessity or convenience.

5.7. Discussion

As a proof of concept, ETHDPR demonstrates that, through the combination of appropriate
decentralized applications, software reviews can be executed and persisted on distributed
ledgers. By presenting a use case for software identities on distributed ledgers, ETHDPR
further adds to the affirmation of our first research question from Chapter 1. As a public
infrastructure, decentralized platforms like Ethereum can serve as a singular and neutral
“common ground” to focus the attention of all involved parties without relying on a
centralized provider. Without the ability to modify or rescind statements after they are
added to a distributed ledger, it stands to reason that greater care is taken by their authors
beforehand, which is rather beneficial for the use case examined in this thesis. Likewise,
many conceivable attacks leave undeniable and indelible evidence behind that can be
analyzed by anyone. The append-only nature and high availability of distributed ledgers,
coupled with additional assumptions for the long-term availability of off-chain artifacts in
our case, can also serve as a robust history for each reviewer to build a reputation.

Despite all the benefits that distributed ledgers offer, a fundamental issue remains in that
technological means can enable and encourage independent work but they can hardly
enforce or guarantee it. Software attributes, as we define them for this work, require
a human actor to ultimately decide whether or not to attest certain characteristics to a
particular release. The same human actors have the capacity to forego any disclosure

98

5.7. Discussion

coordination mechanism and just publish their findings, thereby putting the independence
of subsequent reviews into question. Likewise, collusions between reviewers may become
discourageable in future iterations, but they are most likely not going to be entirely
preventable through technological means either. If there is an advantage to be gained
from privately sharing or aligning results between reviewers during the review period,
like a reduced work load, then some reviewers may do so. If done subtly enough, even the
on-chain records and off-chain artifacts may not reveal that some reviewers colluded.

Regarding the disclosure of individual review results, there is also a subtle implementation
detail worth emphasizing. Please recall that, during the preparation of an encrypted report
for coordinated disclosure, each reviewer generates an ephemeral discrete-log key pair
to perform an ECIES key derivation using a Diffie-Hellman(-Merkle) key exchange and
a cryptographic hash function. While the public half of said key pair, which we labeled
𝑅, is added to a reviews plaintext header, the private half 𝑟 is both a risk and a possible
fallback mechanism. If an attacker were to compromise a reviewer and obtain 𝑟 covertly,
they would gain premature access to said reviewer’s results that were propagated via
IPFS in encrypted form. However, in the same way, holding on to 𝑟 would give reviewers
an opportunity to individually disclose their results should the disclosure coordination
mechanism fail to release its decryption key on schedule. Note that 𝑟 or the ETHTID
decryption key are the only feasible ways to recover the symmetric key to decrypt an
ETHDPR review. Even publishing the plaintext of a review payload does not help in this
regard as it cannot be encrypted and compared to the published review payload without
recovering the same AES key. Consequently, without 𝑟 or the ETHTID decryption key, a
reviewer cannot prove which results are contained in their time-stamped and encrypted
review.

Lastly, it is worth addressing our decision to realize ETHDPR, and its constituent parts, in
a permissionless environment. While it allowed us to avoid relying on centralized trusted
parties, it also highlighted the remaining challenge of establishing Sybil-resistant identities
for ETHTID council members and ETHDPR reviewers. However, by the same argument,
the concepts presented in this thesis can be transferred to a permissioned environment
with minimal changes. In a permissioned setting, there exists an authority that grants
and potentially revokes permission for parties to actively participate. Such a gatekeeping
authority is in a position to thwart or at least hamper the creation of Sybil identities and
to enforce lasting consequences for repeated misbehavior.

5.7.1. Limitations & Future Work

There are two design decisions we made in ETHDPR that highlight possible improvements
and subsequent challenges. First, by tightly coupling the initiation and execution of
software reviews to Palinodia, particularly the transaction to register a new software
binary with its on-chain identity, there can only ever be one review per release. Similar to
ETHTID, this greatly simplifies the overall organization as there cannot be simultaneous
reviews with potentially overlapping claims and different disclosure schedules, but it also
prevents subsequent reviews with refined claims or new ones that became relevant at a

99

5. ETHDPR: Decentralized Public Review and Attestation of Software Attribute Claims on Ethereum

later point in time. This design decision also limits the power to select attribute claims and
initiate a review to maintainers. In its current form, ETHDPR does not allow any other
party to contribute attribute claims based on their demands for a particular software. To
address these limitations, future improvements to ETHDPR could focus on making the
selection of attribute claims and initiation of reviews more flexible while avoiding the
aforementioned pitfalls.

The second design decision relates to reviews and attestations being attached to binaries
of a given software, i.e. the lowest level of a software identity in Palinodia. Please recall
the two-tiered tree-like structure of software identities we introduced in Chapter 3 with a
root software identity as the root, intermediary software identities as the middle layer,
and individual binaries as the leaves of said tree. Depending on how developers and main-
tainers organize their software identity, i.e. how they chose to differentiate intermediary
software identities, there may be significant overlap between the binaries attached to each
intermediary identity. Reviewing the same or similar claims for each new release may
thus be inefficient and redundant. Instead, claims and attestations could also be attached
to intermediary identities based on a common code base for example. However, this raises
the issue of determining when such higher level claims need to be reevaluated due to
significant changes between releases.

In this thesis, we consider each software in a standalone manner, but in practice, software
of significant complexity is often built with libraries or comprised of separate reusable
modules and thus more tightly interrelated. A future extension to Palinodia to represent the
interrelations between different software identities that we highlighted in Subsection 3.6.1
could also be transferred to ETHDPR to avoid redundant review work. For example, a
library could be reviewed and attested regarding compliance with a particular standard.
Software using that library could then either inherit the standard-compliance attribute
directly or have a simplified review regarding the proper use of said library to receive a
derived attribute. This way, the thorough and comprehensive work to determine standard-
compliance would only be necessary when the library is updated and not with every
release of software that includes said library.

100

6. Discussion & Conclusion

In Chapter 1, we stated two research questions regarding the usefulness and adaptability
of distributed ledgers for the purpose of establishing and utilizing software identities. The
first question asked:

Can distributed ledger technologies enable the establishment, management, and
use of software identities for the purpose of secure software distribution without a
trusted third party?

With Palinodia, we demonstrate at the example of Ethereum that distributed ledgers are
already a viable platform to establish and manage identities for software to secure their
distribution and revocation. By providing a uniquely referenceable, verifiable, and highly
available record in addition to a consensus-enforced and customizable access control
mechanism, distributed ledgers are well-suited to this use case. As a concept, Palinodia
derives its security from fundamental DLT properties and, as such, should be applicable to
other ledgers besides Ethereum. We note that our implementation of Palinodia utilizes
an Ethereum-specific feature, namely events, to simplify monitoring of and searching for
relevant on-chain data, particularly revocations of past releases. While the details of such
a functionality on other ledgers may vary, the ability to search for and obtain specific data
is rather essential to the usability of any given DLT and should therefore be available. As
such, Palinodia and ETHDPR as proof of concepts on Ethereum provide an affirmatory
answer to the general research question with minor caveats.

In order to realize an independent review of binaries as an additional use case for software
identities, we faced the problem that, at the time of writing, Ethereum does not provide a
mechanism to coordinate the disclosure of on-chain statements. Transactions submitted
to the Ethereum peer-to-peer network are disseminated quickly before eventually being
added to a block. Afterwards, it is not evident from the on-chain record which transactions
were created independently, i.e. without each sender knowing about the other transactions,
even if they end up in the same block. Overcoming this limitation lead to our second
research question:

Can distributed ledger technologies support cryptographic protocols to achieve
a coordinated disclosure of independent statements on a public ledger without a
trusted third party?

With ETHTID, we transferred established cryptographic protocols in the form of dis-
tributed key generation in conjunction with threshold secret sharing and recovery to the
execution environment of distributed ledgers. By tasking a council with the responsibility

101

6. Discussion & Conclusion

of generating a temporally decoupled asymmetric key pair, arbitrarily many statements
can be encrypted such that their disclosure depends on the release of a single cryptographic
key that no single party holds before its recovery. In our proof of concept implementation,
Ethereum smart contracts provide two essential features: First, through their address, they
establish a unique point of reference for each execution instance to obtain the aforemen-
tioned key pair. Second, by codifying parts of the cryptographic protocol, they provide
participants with means to punish demonstrable misbehavior. It is the second feature
that limits the generalizability of our results to other distributed ledgers. Ethereum is
currently limited to only one elliptic curve that, while not particularly well suited to our
use case, was sufficient to realize our proof of concept implementation. Depending on
which cryptographic operations are available on other ledgers as part of their application
layer, a disclosure coordination mechanism akin to ETHTID may or may not be feasible on
them. As such, we can only affirm our second research question with some reservations.
However, our work provides a set of requirements a distributed ledger must fulfill in order
to support one way of implementing a disclosure coordination mechanism.

Both our disclosure coordination mechanism as well as our system for independent reviews
of software releases contain at their core a Sybil problem that is worth examining in more
detail. It is instructive to briefly consider the Sybil defenses present in the consensus layers
of Bitcoin and Ethereum, namely Proof of Work (PoW) and Proof of Stake (PoS). In both
cases, the goal is to prevent a malicious party from gaining a disproportionate amount of
control by inextricably linking the operation of proposing a new block with a limited and
precious resource1, computation power for PoW and locked capital for PoS. Yet, there is a
crucial difference between PoW and PoS when it comes to the significance of identities. In
Bitcoin’s Proof of Work, on-chain identities of miners are only significant for the collection
block rewards. For the purpose of block generation, it is irrelevant how any given miner
allocates their computational resources to on-chain identities.

Proof of Stake works markedly different. To give a brief overview, rather than miners
running hardware to generate Proofs of Work, Proof of Stake defines validators who
lock a certain amount of cryptocurrency, the eponymous stake, in a smart contract in
order to be eligible for proposing blocks of the ledger for that very cryptocurrency. A
consensus-enforced cryptographic protocol selects an eligible validator responsible for
constructing and signing each new block. If a validator provably misbehaves, for example
by not publishing a block on time or by including invalid transactions, their stake can be
partially destroyed or redistributed. For the purpose of this discussion, the crucial point is
the tight coupling between stake and on-chain identities as well as their cryptographic
selection. Note that a natural person can be in control of multiple validator identities if
they have the necessary capital for the stake.

Proof of Work and Proof of Stake may be viable approaches to tackling the Sybil problem
present in council formation for coordinated disclosure and publishing reviews for soft-
ware respectively. Extending ETHTID from one single to multiple sequential executions
as sketched in Subsection 4.7.1 would enable a PoS-based Sybil defense as follows: Parties

1 This approach was anticipated by Douceur in 2002 [27].

102

6. Discussion & Conclusion

interested in acting as council members register with a staking contract where they also
deposit a certain amount of currency as stake. For each ETHTID instance, a council can
be cryptographically selected from parties registered with the staking contract. Economic
rewards and punishments from an ETHTID execution can then be applied via the stak-
ing contract. While not participating in any ETHTID instance, a registered party can
deregister from the staking contract to reclaim their stake and any rewards they earned.
With enough registered parties and a well-balanced staking requirement, the amount of
currency necessary to break the threshold of any particular ETHTID execution would
be insurmountable for most parties outside of nation state attackers without preventing
legitimate participation.

By contrast, Proof of Work is more suitable as a Sybil defense for ETHDPR reviews. Similar
to its originally envisioned use case of spam prevention under the name Hashcash [4],
each submitted review could include a nonce chosen by its author which, when hashed
together with a review’s CID, would produce an output hash. In order to probabilistically
prove the amount of computational work expended on a given review, each review author
would spend some time after finalizing their review to find a nonce that leads to an output
hash as numerically small as possible before logging their review on-chain as described in
Chapter 5. Unlike Bitcoin, where there is a protocol-defined global difficulty that a block’s
Proof of Work must meet to be valid, it could be left to relying parties to set their individual
PoW difficulty during review aggregation or use the attached Proofs of Work for weighing
reviews against each other. This way, spamming multiple reviews to influence relying
parties would require substantial computational resources without preventing legitimate
participation. There are two noteworthy benefits of this construction compared to the way
PoW is used in Bitcoin: First, preparing reviews for software releases is an occasional and
temporally bounded task compared to the continuous operation of Bitcoin miners. Second,
and more importantly, all computational effort spent on reviews is relevant whereas the
work by all Bitcoin miners except for the lucky winner who proposes a valid new block
first is essentially wasted. These two factors alleviate PoW’s preeminent downside, i.e. its
environmental impact [45], at least for this application.

While Proof of Work and Proof of Stake are commonly regarded as interchangeable
consensus mechanisms in the context of distributed ledgers, their use as Sybil defenses
sketched above suggest that there are subtle differences in their applicability to other
contexts that may be worth investigating further. Proof of Stake requires a clear and
fixed association between identities and their stake, thus lending itself to applications
like ETHTID where discrete identities are required. Proof of Work, by contrast, sidesteps
identities to some extent by focusing solely on demonstrating computational work that
can be allocated and shifted between identities easily.

Another point to consider is that PoW and PoS are not mutually exclusive for applications
such as those examined in this work. In the case of the PoS-based construction above,
potential council members registered with a staking contract could also be required to
provide a Proof of Work when joining the council of a new ETHTID instance. The difficulty
of this PoW could, for example, be determined by the numerical difference between the
addresses of the ETHTID instance and the registered member. As with all Sybil defense

103

6. Discussion & Conclusion

mechanisms, it is crucial to strike a balance between allowing legitimate and sensible
participation while encumbering malicious actors. Whether such a combined approach is
practical and beneficial remains as future work.

Independent of improvements to practical implementations, there is also the concept of
software identities that can be expanded further. Please recall that the goal for this work,
next to elucidating and concretizing the concept itself, was to use software identities to
augment and secure the distribution and inventory of software. Put differently, software
identities as we define them allow users to obtain binaries with authenticity, integrity, and
the endorsement of their respective creators, which can be rescinded through revocations.
However, software is created and distributed in order to be used. A logical next step is
therefore to extend the concept of software identities to also encompass the complexities of
practical software use. For the purpose of this discussion, we explore two aspects, namely
variants and configurations.

In fields like automotive software, which we briefly touched on with the illustrative
ETHDPR example in Subsection 5.4.1, a software release can consist of several variants
for different car models or feature sets, for example. Essentially, variants are a more
fine-grained subdivision of versioned binaries that we used as the lowest layer of soft-
ware identities. Keeping track of the resulting complexity is already an area of current
research [70]. In order for software identities to be deployed in contexts such as the
automotive software industry, they must also be able to cope with variants. One particular
challenge that arises in conjunction with distributed ledgers is the increased amount of
information that must be stored and disseminated to secure the distribution of variants for
a particular software release. The naive approach of storing hashes for all variants on-chain
would more than likely run into high costs on public ledgers and scalability problems in
general. However, a layer of indirection using Merkle trees, distributed hash tables, or
other forms of verifiable off-chain storage may be feasible to secure the distribution of
variants while retaining a distributed ledger as a trust anchor. Sidetree2 is a specification
by the Decentralized Identity Foundation that is currently exploring this approach.

Configurations, meanwhile, encompass the ways in which a particular software binary is
being executed. They are particularly important for long-running software on servers or
appliances where they can influence a software’s security. Revocations of released binaries
could be made more nuanced through the incorporation of configurations. For example,
by including information regarding vulnerable configurations in a revocation, users of the
affected software, or rather a client running on their systems, could determine whether
the revocation is relevant to them based on the configuration the software in question is
currently running. Another way to utilize configurations in software identities could be
for developers or maintainers to provide ready-to-use configurations for their software
and log them similar to binaries so that users can obtain both with the same guarantees.

It is worth exploring the long-term ramifications that applications such as the ones pre-
sented in this thesis could have. Assuming that distributed ledgers are increasingly

2 https://identity.foundation/sidetree/spec/

104

https://identity.foundation/sidetree/spec/

6. Discussion & Conclusion

employed as verifiable data sources for decentralized applications that average users in-
teract with, potential issues on both the consumer and provider side come to mind. For
consumers, i.e. applications a user wishes to access, to obtain data from a distributed ledger,
a corresponding client would have to be available. While each application could bundle in
an appropriate distributed ledger client and have it run in a light synchronization mode, it
would be more efficient to run one instance per ledger client on the operating system level
so that multiple applications can obtain chain data without a redundant use of storage
and bandwidth. Including such clients as system services would also take care of potential
usability problems in selecting, configuring, and maintaining them by firmly placing them
into the responsibility of operating system providers. Ideally, the ability to obtain data
from distributed ledgers would become as reliable, convenient, and omnipresent as lookups
in the Domain Name System (DNS) are today.

On the provider side of ledger data, the capabilities to satisfy the growing number of read
requests that an increasing popularity of decentralized applications would cause also needs
to be addressed. The full node and light client paradigm that we describe in Subsection 2.2.1
defines two factions between which tensions may arise as the aforementioned read demand
grows. Full nodes forming the peer-to-peer network of a given ledger are implicitly
incentivized to tightly interconnect with each other in order to obtain and forward new
ledger data efficiently. Light clients, however, are pure beneficiaries of full nodes as they
exclusively request ledger data but never provide anything to full nodes in return. As a
consequence, full nodes would allocate only little, if any, of their limited bandwidth and
computational resources to serving light clients. If light clients become ubiquitous as we
project above, the currently present resource allocation dilemma would severely limit
a given ledger’s ability to support decentralized applications. Similar to the practice of
establishing mirrors for popular repositories like the Comprehensive TEX Archive Network
(CTAN)3, it may be in the public interest to establish and communally fund light-client-
friendly full nodes for popular distributed ledgers to facilitate reliable and decentralized
access.

Looking closer at Ethereum, there are several future developments planned that could
address some of the general points and potential issues sketched above. During the writing
of this thesis, Ethereum successfully executed “The Merge” and transitioned its consensus
layer from Proof of Work to Proof of Stake in September 2022. While there are several
interrelated updates on the roadmap for Ethereum, for the purpose of this discussion, we
highlight only two, namely sharding and proposer builder separation.

The core idea of sharding is to separate the state of a given ledger into disjoint substates
in order to reduce the burden on full nodes by having them deal with only one or a few
shards rather than the whole state. Keeping shards consistent while allowing cross-shard
transactions is among the challenges currently being worked on. Assuming that sharding
in Ethereum becomes possible, proponents argue that a lower barrier to run a full node,
albeit for just some shards, will lead to more nodes being run. Ideally, an increased number
of nodes would help the Ethereum peer-to-peer network deal with the aforementioned

3 https://www.ctan.org/mirrors/

105

https://www.ctan.org/mirrors/

6. Discussion & Conclusion

increase in demand for chain data due to decentralized applications, such as those presented
in this work. Whether or not the previously described disadvantaged position of light
clients will be affected by sharding remains to be seen.

The construction of blocks out of pending transactions that we describe in Subsection 2.2.3
has more subtleties in practice. Broadly speaking, through the careful selection and
ordering of transactions, coupled with the ability of miners/validators to insert their own
transactions into blocks they are currently building, economic value can be extracted in
the form of fees and arbitrage. Without countermeasures, this Miner/Maximal Extractable
Value (MEV)4 can lead to a centralization of power as wealthy miners or validators can
extract more MEV than those with less capital. Through projects like MEV-boost5, the task
of building blocks and proposing them can already be separated in Ethereum. Ethereum
developers currently aim to realize Proposer Builder Separation (PBS) on the protocol
level as part of “The Splurge”, one of four long-term update paths enabled by The Merge.
Essentially, builders compete with each other to construct lucrative blocks and presenting
them to proposers with a bid. Proposers, i.e. Proof of Stake validators, then select the block
with the highest bid to propose to the network. There are currently several open questions
regarding the details of PBS, many of which revolve around technical means to ensure
incentive-compatibility of the overall construction, i.e. that it is most profitable for all
involved parties to adhere to the protocol. One particular challenge in this separation of
duties is the handling of knowledge, more specifically the commitment to and later reveal
of particular data. A disclosure coordination mechanism like ETHTID could be useful in
PBS or it may be more efficient to implement such a mechanism on the protocol level as
well which could then be leveraged for applications like ETHDPR. However, depending on
how a disclosure coordination mechanism is realized on the protocol level of Ethereum, it
may present a trade-off between schedule flexibility and cost compared to ETHTID.

Before ending this discussion, a few circular points are worth addressing. In Chapter 1, we
noted the symbiotic and bidirectional relationship between decentralized platforms and
the applications they enable. This, of course, not only applies to Ethereum but to software
in general as well. Projecting the notion of software identities into a possible future,
operating systems and their provided services or libraries could also have referenceable
identities. Requirements of software applications regarding their execution environments
can then also be explicitly noted via attributes attached to their respective identity by their
creators.

A very fundamental assumption when using smart contracts to mediate processes between
mutually distrusting parties is that they work as intended and that their creator did not
include deceitful or malicious functionality. We raise and discuss this point in more detail
in Chapter 4. Seeing how enabling independent reviews of software binaries for the
purpose of uncovering such functionalities, among other goals, is the focus of Chapter 5,

4 To the best of our knowledge, the term was coined within the context of Proof of Work [22], hence
“Miner [. . .]”, and the established abbreviation was then retrofitted to be applicable to Proof of Stake and
potentially other consensus mechanisms that do not rely on miners.

5 https://boost.flashbots.net/

106

https://boost.flashbots.net/

6.1. Conclusion

it is conceivable to subject smart contract code to such reviews via ETHDPR, for example,
before deployment. Formal methods can be a cornerstone of such reviews, which we
investigated in a collaboration with Schiffl et al. [78].

6.1. Conclusion

In this dissertation, we examined the capabilities of distributed ledgers at the example of
Ethereum regarding their viability to establish and utilize identities for software. Through
designing and implementing three ultimately interrelated decentralized applications, we
provide both a quantitative cost estimation and semi-formal security arguments showing
how desired application features can be derived from native DLT properties.

With Palinodia, we demonstrated that Ethereum in conjunction with an appropriate user
client can perform the function of an authentication server to secure the distribution of
binaries. Furthermore, Palinodia enables a reliable, persistent, and precise revocation for
individual binaries without relying on a trusted third party. To overcome a functional
limitation of Ethereum and facilitate an independent review process, we devised and im-
plemented ETHTID to enable coordinated threshold information disclosure. By leveraging
existing, albeit suboptimal, elliptic curve functionality on Ethereum, we decentralized
the responsibility to reveal the contents of appropriately prepared messages to a council
of configurable size. We note that ETHTID may be of independent interest in other use
cases that require a decentralized yet coordinated disclosure of information. Building
upon Palinodia and ETHTID, we designed and implemented ETHDPR to facilitate de-
centralized public reviews of attribute claims for software binaries. By utilizing IPFS for
off-chain file distribution, we circumvented high on-chain storage costs while retaining
the ability to log time-stamped integrity-protecting references to documents on-chain.
Through this decoupling, ETHDPR does not constrain tools or methods that can be used
for evaluation.

In ETHTID and ETHDPR, we encountered two variants of a problem that appears funda-
mental to decentralized applications regarding the independence of active parties: For two
identities in an ETHTID council, it appears difficult to ensure that they actually represent
and are under the control of two independent parties, i.e. the classic Sybil problem as
stated by Douceur [27]. For reviewers in an ETHDPR execution, it is even more difficult, if
not entirely impossible through technological means, to ensure that they perform reviews
independently. Particularly the latter observation points to a rather profound fact that is
often overlooked. Distributed ledger technologies are a communication technology that
are embedded in, influence, and rely upon a social structure that maintains and uses them,
much like the telegraph, radio, landline phone, mobile phone, and the Internet before them.
Since previous communication technologies have changed the ways in which humans com-
municate and interact, it stands to reason that distributed ledgers may also have a similar
impact once they become more widely relevant and usable. Understanding the long-term
impact DLTs may have on society at large will be an interesting cross-disciplinary effort
between computer science, economics, and the social sciences.

107

Bibliography

[1] John Adler et al. “Astraea: A Decentralized Blockchain Oracle”. In: IEEE International
Conference on Internet of Things and IEEE Green Computing and Communications
and IEEE Cyber, Physical and Social Computing and IEEE Smart Data. IEEE, July 2018,
pp. 1145–1152.

[2] Monika di Angelo and Gernot Salzer. “A Survey of Tools for Analyzing Ethereum
Smart Contracts”. In: IEEE International Conference on Decentralized Applications
and Infrastructures. IEEE, 2019, pp. 69–78.

[3] C Asmuth and J Bloom. “A modular approach to key safeguarding”. In: IEEE Trans-
actions on Information Theory 29.2 (1983), pp. 208–210.

[4] Adam Back. Hashcash - A Denial of Service Counter-Measure. Tech. rep. 2002.
[5] Paulo S L M Barreto and Michael Naehrig. “Pairing-Friendly Elliptic Curves of Prime

Order”. In: Selected Areas in Cryptography. Ed. by Bart Preneel and Stafford Tavares.
Berlin, Heidelberg: Springer, 2006, pp. 319–331.

[6] Massimo Bartoletti and Livio Pompianu. “An empirical analysis of smart contracts:
platforms, applications, and design patterns”. In: Financial Cryptography and Data
Security. Ed. by Michael Brenner et al. Cham: Springer International Publishing,
2017, pp. 494–509.

[7] Mustafa Al-Bassam and Sarah Meiklejohn. “Contour: A Practical System for Binary
Transparency”. In: Data Privacy Management, Cryptocurrencies and Blockchain Tech-
nology. Ed. by Joaquin Garcia-Alfaro et al. Cham: Springer International Publishing,
2018, pp. 94–110.

[8] Patrick Baudin et al. ACSL: ANSI/ISO C Specification Language. Version 1.17. CEA
LIST and INRIA. 2021.

[9] Patrick Baudin et al.WP Plug-in Manual. FRAMA-C 24.0 (Chromium). CEA LIST.
2021.

[10] Fabrice Benhamouda et al. “Can a Public Blockchain Keep a Secret?” In: Theory of
Cryptography. Ed. by Rafael Pass and Krzysztof Pietrzak. Cham: Springer Interna-
tional Publishing, 2020, pp. 260–290.

[11] George Robert Blakley. “Safeguarding cryptographic keys”. In: International Work-
shop on Managing Requirements Knowledge. Los Alamitos, CA, USA: IEEE, 1979,
pp. 313–318.

[12] Burton Howard Bloom. “Space/Time Trade-offs in Hash Coding with Allowable
Errors”. In: Communications of the ACM 13.7 (1970), pp. 422–426.

109

6. Bibliography

[13] Dan Boneh and Matthew Franklin. “Efficient generation of shared RSA keys”. In:
Advances in Cryptology. Ed. by Burton S Kaliski. LNCS. Berlin, Heidelberg: Springer,
1997, pp. 425–439.

[14] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from theWeil Pairing”.
In: Journal of Cryptology 17 (2004), pp. 297–319.

[15] Dan Boneh et al. “Aggregate and Verifiably Encrypted Signatures from Bilinear
Maps”. In: Advances in Cryptology. Ed. by Eli Biham. Berlin, Heidelberg: Springer,
2003, pp. 416–432.

[16] Alessandro Brighente, Mauro Conti, and Izza Sadaf. “Tell Me How You Re-Charge, I
Will Tell You Where You Drove To: Electric Vehicles Profiling Based on Charging-
Current Demand”. In: European Symposium on Research in Computer Security. Ed. by
Elisa Bertino, Haya Shulman, and Michael Waidner. Cham: Springer International
Publishing, 2021, pp. 651–667.

[17] Vitalik Buterin. A next-generation smart contract and decentralized application plat-
form. white paper. 2014.

[18] Jan Camenisch andMarkus Stadler. Proof systems for general statements about discrete
logarithms. Tech. rep. 260. Zürich: ETH Zürich, Department of Computer Science,
1997.

[19] J Cappos et al. “A look in the mirror: Attacks on package managers”. In: ACM
Conference on Computer and Communications Security. New York, NY, USA: ACM,
2008, pp. 565–574.

[20] Julien Cathalo, Benoît Libert, and Jean-Jacques Quisquater. “Efficient and Non-
interactive Timed-Release Encryption”. In: Information and Communications Security.
Ed. by Sihan Qing et al. Berlin, Heidelberg: Springer, 2005, pp. 291–303.

[21] David Chaum and Torben Pryds Pedersen. “Wallet Databases with Observers”. In:
Advances in Cryptology. Ed. by Ernest F Brickell. Berlin, Heidelberg: Springer, 1992,
pp. 89–105.

[22] Philip Daian et al. “Flash Boys 2.0: Frontrunning in Decentralized Exchanges, Miner
Extractable Value, and Consensus Instability”. In: IEEE Symposium on Security and
Privacy. 2020, pp. 910–927. doi: 10.1109/SP40000.2020.00040.

[23] Ewen Denney and Bernd Fischer. “Software Certification and Software Certificate
Management Systems”. In: IEEE/ACM International Conference on Automated Soft-
ware Engineering, Workshop on Software Certificate Management. New York, NY,
USA: ACM, 2005.

[24] Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan. “Con-
ditional Oblivious Transfer and Timed-Release Encryption”. In: Advances in Cryp-
tology. Ed. by Jacques Stern. Berlin, Heidelberg: Springer, 1999, pp. 74–89.

[25] Damiano Di Francesco Maesa and Paolo Mori. “Blockchain 3.0 applications survey”.
In: Journal of Parallel and Distributed Computing 138 (2020), pp. 99–114.

[26] W Diffie and M Hellman. “New directions in cryptography”. In: IEEE Transactions
on Information Theory 22.6 (1976), pp. 644–654.

110

https://doi.org/10.1109/SP40000.2020.00040

6. Bibliography

[27] John R Douceur. “The Sybil Attack”. In: Peer-to-Peer Systems. Berlin, Heidelberg:
Springer, Mar. 2002, pp. 251–260.

[28] Taher Elgamal. “A public key cryptosystem and a signature scheme based on discrete
logarithms”. In: IEEE Transactions on Information Theory 31.4 (1985), pp. 469–472.

[29] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. “SoK: Transparent
Dishonesty: Front-Running Attacks on Blockchain”. In: Financial Cryptography and
Data Security. Ed. by Andrea Bracciali et al. Vol. 11599. LNCS. Cham: Springer, 2020,
pp. 170–189.

[30] Paul Feldman. “A Practical Scheme for Non-interactive Verifiable Secret Sharing”.
In: Annual Symposium on Foundations of Computer Science. 1987, pp. 427–438.

[31] MD Sadek Ferdous, Farida Chowdhury, and Madini O Alassafi. “In Search of Self-
Sovereign Identity Leveraging Blockchain Technology”. In: IEEE Access 7 (2019),
pp. 103059–103079.

[32] Amos Fiat and Adi Shamir. “How to Prove Yourself - Practical Solutions to Identifi-
cation and Signature Problems”. In: Advances in Cryptology. Vol. 263. LNCS. Berlin,
Heidelberg: Springer, 1986, pp. 186–194.

[33] Sebastian Friebe, Ingo Sobik, and Martina Zitterbart. “DecentID: Decentralized and
Privacy-Preserving Identity Storage System Using Smart Contracts”. In: IEEE Interna-
tional Conference On Trust, Security And Privacy In Computing And Communications,
International Conference On Big Data Science And Engineering. IEEE, 2018, pp. 37–42.

[34] Sebastian Friebe et al. “Coupling Smart Contracts: A Comparative Case Study”. In:
Conference on Blockchain Research Applications for Innovative Networks and Services.
IEEE, 2021, pp. 137–144.

[35] Rosario Gennaro et al. “Secure Distributed Key Generation for Discrete-Log Based
Cryptosystems”. In: Journal of Cryptology 20.1 (2007), pp. 51–83.

[36] Rosario Gennaro et al. “Secure distributed key generation for discrete-log based
cryptosystems”. In: Financial Cryptography and Data Security. Ed. by Jacques Stern.
Vol. 1592. LNCS. Berlin, Heidelberg: Springer, 1999, pp. 295–310.

[37] Juan Guarnizo, Bithin Alangot, and Pawel Szalachowski. “SmartWitness: A Proac-
tive Software Transparency System using Smart Contracts”. In: ACM International
Symposium on Blockchain and Secure Critical Infrastructure. BSCI. New York, NY,
USA: ACM, 2020, pp. 117–129.

[38] Diksha Gupta, Jared Saia, and Maxwell Young. “Bankrupting Sybil Despite Churn”.
In: IEEE International Conference on Distributed Computing Systems. IEEE, 2021,
pp. 425–437.

[39] Diksha Gupta, Jared Saia, andMaxwell Young. “Peace Through Superior Puzzling: An
Asymmetric Sybil Defense”. In: IEEE International Parallel and Distributed Processing
Symposium. IEEE, 2019, pp. 1083–1094.

[40] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

111

6. Bibliography

[41] Petra Heck, Martijn Klabbers, and Marko van Eekelen. “A software product certifi-
cation model”. In: Software Quality Journal 18 (2009), pp. 37–55.

[42] Jonathan Heiss, Jacob Eberhardt, and Stefan Tai. “From Oracles to Trustworthy Data
On-Chaining Systems”. In: IEEE International Conference on Blockchain. IEEE, 2019,
pp. 496–503.

[43] Sebastian Henningsen et al. “Mapping the Interplanetary Filesystem”. In: IFIP Net-
working Conference. IEEE, 2020, pp. 289–297.

[44] ISO/IEC 24760-1: IT Security and Privacy — A framework for identity management.
Standard. ISO/IEC, 2019.

[45] Benjamin A Jones, Andrew L Goodkind, and Robert P Berrens. “Economic estimation
of Bitcoin mining’s climate damages demonstrates closer resemblance to digital
crude than digital gold”. In: Scientific Reports 12.14512 (2022).

[46] Mark P Jones. Dealing with Evidence: The Programatica Certificate Abstraction. Tech.
rep. 2002.

[47] Kamer Kaya and Ali Aydın Selçuk. “A Verifiable Secret Sharing Scheme Based on
the Chinese Remainder Theorem”. In: Progress in Cryptology. Ed. by Dipanwita Roy
Chowdhury, Vincent Rijmen, and Abhijit Das. Vol. 5365. LNCS. Berlin, Heidelberg:
Springer, 2008, pp. 414–425.

[48] Doowon Kim et al. “The Broken Shield: Measuring Revocation Effectiveness in the
Windows Code-Signing PKI”. In: USENIX Security Symposium. USENIX Association,
2018.

[49] Nikita Korzhitskii and Niklas Carlsson. “Revocation Statuses on the Internet”. In:
Passive and Active Measurement. Springer, Cham, 2021, pp. 175–191.

[50] Lawrence Lessig. Code: And Other Laws of Cyberspace, Version 2.0. 2nd. 2006.
[51] Anthony Bahadir Lopez et al. “A Security Perspective on Battery Systems of the

Internet of Things”. In: Journal of Hardware and Systems Security 1.2 (2017), pp. 188–
199.

[52] Mohammad Mahmoody, Tal Moran, and Salil Vadhan. “Time-Lock Puzzles in the
Random Oracle Model”. In: Advances in Cryptology. Ed. by Phillip Rogaway. Berlin,
Heidelberg: Springer, 2011, pp. 39–50.

[53] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. “Homomorphic Time-
Lock Puzzles and Applications”. In: Advances in Cryptology. Ed. by Alexandra
Boldyreva and Daniele Micciancio. Cham: Springer, 2019, pp. 620–649.

[54] Wenbo Mao. “Timed-Release Cryptography”. In: Selected Areas in Cryptography.
Ed. by Serge Vaudenay and Amr M Youssef. Vol. 2259. LNCS. Berlin, Heidelberg:
Springer, 2001, pp. 342–357.

[55] Deepak Maram et al. “CanDID: Can-Do Decentralized Identity with Legacy Com-
patibility, Sybil-Resistance, and Accountability”. In: IEEE Symposium on Security and
Privacy. IEEE, 2021, pp. 1348–1366.

112

6. Bibliography

[56] Víctor Gayoso Martínez, Luis Hernández Encinas, and Carmen Sánchez Ávila. “A
Survey of the Elliptic Curve Integrated Encryption Scheme”. In: Journal of Computer
Science and Engineering 2 (2 2010).

[57] Petar Maymounkov and David Mazières. “Kademlia - A Peer-to-Peer Information
System Based on the XORMetric”. In: International Workshop on Peer-to-Peer Systems.
Vol. 2429. LNCS. Berlin, Heidelberg: Springer, 2002, pp. 53–65.

[58] Ralph CMerkle. “A Digital Signature Based on a Conventional Encryption Function”.
In: Conference on the Theory and Application of Cryptographic Techniques. Vol. 293.
LNCS. Berlin, Heidelberg: Springer, 1987, pp. 369–378.

[59] Ralph C Merkle. “Secure Communications over Insecure Channels”. In: Communica-
tions of the ACM 21.4 (1978), pp. 294–299.

[60] Maurice Mignotte. “How to share a secret”. In:Workshop on Cryptography. Ed. by
Thomas Beth. Vol. 149. LNCS. Berlin, Heidelberg: Springer, 1982, pp. 371–375.

[61] Alexander Mühle et al. “A survey on essential components of a self-sovereign
identity”. In: Computer Science Review 30 (2018), pp. 80–86.

[62] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. white paper. 2008.
url: https://bitcoin.org/bitcoin.pdf.

[63] George C Necula. “Proof-Carrying Code”. In: ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL. New York, NY, USA: ACM, 1997,
pp. 106–119.

[64] George C Necula and Peter Lee. “Safe, Untrusted Agents Using Proof-Carrying
Code”. In: Mobile Agents and Security. Vol. 1419. LNCS. Berlin, Heidelberg: Springer,
1998, pp. 61–91.

[65] Wafa Neji, Kaouther Blibech, and Narjes Ben Rajeb. “Distributed key generation pro-
tocol with a new complaint management strategy”. In: Security and Communication
Networks 9.17 (2016), pp. 4585–4595.

[66] Kirill Nikitin et al. “CHAINIAC: Proactive Software-Update Transparency via Col-
lectively Signed Skipchains and Verified Builds”. In: USENIX Security Symposium.
USENIX Association, 2017.

[67] Marc Ohm et al. “Backstabber’s Knife Collection: A Review of Open Source Software
Supply Chain Attacks”. In: International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Ed. by Clémentine Maurice et al. Vol. 12223.
LNCS. Cham: Springer, 2020, pp. 23–43.

[68] Lukasz Olejnik, Steven Englehardt, and Arvind Narayanan. “Battery Status Not
Included: Assessing Privacy inWeb Standards”. In: International Workshop on Privacy
Engineering. Ed. by José M del Álamo, Seda F Gürses, and Anupam Datta. San Jose,
CA, USA: CEUR Workshop Proceedings, 2017, pp. 17–24.

[69] Łukasz Olejnik et al. “The Leaking Battery”. In: Data Privacy Management, and
Security Assurance. Ed. by Joaquin Garcia-Alfaro et al. Vol. 9481. LNCS. Cham:
Springer International Publishing, 2015, pp. 254–263.

113

https://bitcoin.org/bitcoin.pdf

6. Bibliography

[70] Stefan Otten et al. “Model-based Variant Management in Automotive Systems En-
gineering”. In: International Symposium on Systems Engineering. IEEE, 2019, pp. 1–
7.

[71] Rajwinder Kaur Panesar-Walawege et al. “Characterizing the Chain of Evidence
for Software Safety Cases: A Conceptual Model Based on the IEC 61508 Standard”.
In: International Conference on Software Testing, Verification and Validation. 2010,
pp. 335–344.

[72] Torben Pryds Pedersen. “A Threshold Cryptosystem without a Trusted Party”. In:
Advances in Cryptology. Vol. 547. LNCS. Berlin, Heidelberg: Springer, 1991, pp. 522–
526.

[73] Shiyue Qin et al. “Distributed secret sharing scheme based on the high-dimensional
rotation paraboloid”. In: Journal of Information Security and Applications 58.102797
(2021).

[74] Tripti Rathee and Parvinder Singh. “A systematic literature mapping on secure iden-
tity management using blockchain technology”. In: Journal of King Saud University
- Computer and Information Sciences 34 (8 2022), pp. 5782–5796.

[75] Peter C Rigby and Christian Bird. “Convergent Contemporary Software Peer Review
Practices”. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. ESEC/FSE. New York, NY, USA: ACM, 2013, pp. 202–212.

[76] Peter C Rigby, Daniel M German, and Margaret-Anne Storey. “Open Source Soft-
ware Peer Review Practices: A Case Study of the Apache Server”. In: International
Conference on Software Engineering. ICSE. New York, NY, USA: ACM, 2008, pp. 541–
550.

[77] R L Rivest, A Shamir, and D A Wagner. Time-lock puzzles and timed-release crypto.
technical report. Massachusetts Institute of Technology, 1996.

[78] Jonas Schiffl et al. “Towards Correct Smart Contracts: A Case Study on Formal
Verification of Access Control”. In: ACM Symposium on Access Control Models and
Technologies. SACMAT. New York, NY, USA: ACM, 2021, pp. 125–130.

[79] Philipp Schindler et al. EthDKG: Distributed Key Generation with Ethereum Smart
Contracts. preprint on https://eprint.iacr.org/2019/985. 2019.

[80] Adi Shamir. “How to share a secret”. In: Communications of the ACM 22.11 (1979),
pp. 612–613.

[81] Jiajie Shen et al. “Understanding I/O Performance of IPFS Storage: A Client’s Per-
spective”. In: International Symposium on Quality of Service. IWQoS. New York, NY,
USA: ACM, 2019.

[82] Oliver Stengele, Jan Droll, and Hannes Hartenstein. “Practical Trade-Offs in Integrity
Protection for Binaries via Ethereum”. In: International Middleware Conference. New
York, NY, USA: ACM, 2020, pp. 9–10.

114

https://eprint.iacr.org/2019/985

6. Bibliography

[83] Oliver Stengele and Hannes Hartenstein. “Atomic Information Disclosure of Off-
Chained Computations Using Threshold Encryption”. In: Data Privacy Management,
Cryptocurrencies and Blockchain Technology. Ed. by Joaquin Garcia-Alfaro et al.
Vol. 11025. LNCS. Cham: Springer International Publishing, 2018, pp. 85–93.

[84] Oliver Stengele, Christina Westermeyer, and Hannes Hartenstein. “Decentralized
Review and Attestation of Software Attribute Claims”. In: IEEE Access 10 (2022),
pp. 66694–66710.

[85] Oliver Stengele et al. “Access Control for Binary Integrity Protection using Ethereum”.
In: ACM Symposium on Access Control Models and Technologies. SACMAT. New York,
NY, USA: ACM, 2019, pp. 3–12.

[86] Oliver Stengele et al. ETHTID: Deployable Threshold Information Disclosure on Ethereum.
preprint on https://arxiv.org/abs/2107.01600. 2021.

[87] Oliver Stengele et al. “ETHTID: Deployable Threshold Information Disclosure on
Ethereum”. In: International Conference on Blockchain Computing and Applications.
2021, pp. 127–134.

[88] Nick Szabo. “Formalizing and Securing Relationships on Public Networks”. In: First
Monday 2.9 (1997).

[89] EdwardWaring. “Problems concerning interpolations”. In: Philosophical Transactions
of the Royal Society of London 69 (1779), pp. 59–67.

[90] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. yellow
paper on https://ethereum.github.io/yellowpaper/paper.pdf. 2014.

[91] David Yakira, Ido Grayevsky, and Avi Asayag. Rational Threshold Cryptosystems.
preprint on https://arxiv.org/abs/1901.01148. 2019.

[92] Haoqian Zhang et al. “Flash Freezing Flash Boys: Countering Blockchain Front-
Running”. In: IEEE International Conference on Distributed Computing Systems Work-
shops. IEEE, 2022, pp. 1–6.

115

https://arxiv.org/abs/2107.01600
https://ethereum.github.io/yellowpaper/paper.pdf
https://arxiv.org/abs/1901.01148

A. Appendix

On the following pages, we provide the pseudocode excerpts from Subsection 4.5.2 in
contiguous formatting.

117

A. Appendix

t // Threshold codified in contract

members // Set of member indices

pks[] // Ephemeral public keys of other members for shadow encryption/decryption

sk𝑖 // Own secret key for shadow encryption/decryption

enc_shadows[] // Encrypted shadows broadcast by other members

es[] // Contributions to encryption key of all members, including self

poly_comms[] // Commitments to polynomials of all members, including self

dec_shadows[] // Decrypted shadows necessary for generating own share

shares[] // Shares necessary for decryption key recovery

Prepare register():
Draw sk𝑖 uniformly at random from Z𝑝 and store it persistently
Generate pk𝑖 = 𝑔sk𝑖

Set members← members ∪ 𝑖
Send transaction register(pk𝑖)

Receive register(pk𝑗) from 𝑐 𝑗 :
Set pks[j]← pk𝑗
Set members← members ∪ 𝑗

Prepare distribute_shadows():
Obtain t from ETHTID contract
Draw 𝑑𝑖 uniformly at random from Z𝑝
Generate 𝑒𝑖 = 𝑔𝑑𝑖

Set es[i]← 𝑒𝑖
Draw {𝑎𝑖,𝑘 }𝑡𝑘=1 uniformly at random from Z𝑝
Generate {𝐴𝑖,𝑘 = 𝑔𝑎𝑖,𝑘 }𝑡

𝑘=1
Set poly_comms[i]← {𝐴𝑖,𝑘 }𝑡𝑘=1
for 𝑙 ∈ members do // Generate shadows for other members and self

Generate 𝑢𝑖→𝑙 = 𝑑𝑖 +
∑𝑡

𝑘=1 𝑎𝑖,𝑘𝑙
𝑘

if 𝑙 = 𝑖 then // Shadow for self

Set dec_shadows[i]← 𝑢𝑖→𝑙

else // Shadow for other member

Load pk𝑙 ← pks[l]
Generate 𝑘𝑖,𝑙 = pksk𝑖

𝑙

Generate 𝑢𝑖→𝑙 = 𝑢𝑖→𝑙 ⊕ H(𝑘𝑖,𝑙 ∥ 𝑙)
end

end
Send transaction distribute_shadows({𝑢𝑖→𝑗 } 𝑗∈members\𝑖 , 𝑒𝑖 , {𝐴𝑖,𝑘 }𝑡𝑘=1)

Receive distribute_shadows({𝑢 𝑗→𝑙 }𝑙∈members\𝑗 , 𝑒 𝑗 , {𝐴 𝑗,𝑘 }𝑡𝑘=1) from 𝑐 𝑗 :
Set enc_shadows[j]← {𝑢 𝑗→𝑙 }𝑙∈members\𝑗
Set es[j]← 𝑒 𝑗
Set poly_comms[j]← {𝐴 𝑗,𝑘 }𝑡𝑘=1
Generate 𝑘𝑖, 𝑗 = pksk𝑖

𝑗

Generate 𝑢 𝑗→𝑖 = 𝑢 𝑗→𝑖 ⊕ H(𝑘𝑖, 𝑗 ∥ 𝑖) // Decrypt shadow for self

if 𝑔𝑢 𝑗→𝑖 ≠ 𝑒 𝑗
∏𝑡

𝑘=1𝐴
𝑖𝑘

𝑗,𝑘
then // Shadow invalid

Call submit_dispute against 𝑐 𝑗 // See Figure 4.7

else // Shadow valid

Set dec_shadows[j]← 𝑢 𝑗→𝑖

end

Figure A.1.: Pseudocode from the viewpoint of council member 𝑐𝑖 .

118

A. Appendix

Prepare submit_dispute():
Load pk𝑗 ← pks[j]
Generate 𝑘𝑖, 𝑗 = pksk𝑖

𝑗

Generate 𝜋 (𝑘𝑖, 𝑗) via Figure 4.8
Load {𝑢 𝑗→𝑙 }𝑙∈members\𝑗 ← enc_shadows[j]
Load 𝑒 𝑗 ← es[j]
Load {𝐴 𝑗,𝑘 }𝑡𝑘=1, 𝑘𝑖, 𝑗 ← poly_comms[j]
Send transaction submit_dispute({𝑢 𝑗→𝑙 }𝑙∈members\𝑗 , 𝑒 𝑗 , {𝐴 𝑗,𝑘 }𝑡𝑘=1, 𝑘𝑖, 𝑗 , 𝜋 (𝑘𝑖, 𝑗))

Receive submit_dispute({𝑢 𝑗→𝑙 }𝑙∈members\𝑗 , 𝑒 𝑗 , {𝐴 𝑗,𝑘 }𝑡𝑘=1, 𝑘𝑚,𝑗 , 𝜋 (𝑘𝑚,𝑗)) against 𝑐 𝑗 by 𝑐𝑚 :
// ETHTID contract adjudicates validity of dispute, members process a valid dispute

as follows

Set members← members \ 𝑗
Delete pks[j]
Delete enc_shadows[j]
Delete dec_shadows[j]
Delete es[j]
Delete poly_comms[j]

Prepare distribute_share():
Generate 𝑟𝑖 =

∑
𝑗∈members dec_shadows[j]

Set shares[i]← 𝑟𝑖
Send transaction distribute_share(𝑟𝑖)

Receive distribute_share(𝑟 𝑗) from 𝑐 𝑗 :
Generate 𝑒 =

∏
𝑙∈members es[l] or obtain 𝑒 from ETHTID contract

for 𝑘 = 1 to 𝑡 do // Combine polynomial commitments

Generate 𝐴𝑘 =
∏

𝑙∈members𝐴𝑙,𝑘 // From poly_comms[l]
end

if 𝑔𝑟 𝑗 = 𝑒
∏𝑡

𝑘=1𝐴
𝑗𝑘

𝑘
then // Share is valid

Set shares[j]← 𝑟 𝑗
if |shares| = 𝑡 + 1 then // Enough valid shares for recovery

Compute 𝑑 via Equation (4.3)
Send transaction submit_d(𝑑)

end
end

Figure A.2.: Pseudocode from the viewpoint of council member 𝑐𝑖 .

119

	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis Outline

	Fundamentals
	Software Identity Management
	Smart Contract-Capable Distributed Ledger Technologies at the Example of Ethereum
	Network Layer: Peer-to-Peer Network
	Data Layer: Blockchain
	Consensus Layer: Transactions, Fees, and Mining
	Application Layer: Smart Contracts
	Distributed Ledgers as Logical Clocks

	Decentralized Off-Chain Storage Systems

	Palinodia: Software Identity Management on Ethereum
	Problem Statement
	Related Work
	System Model
	Roles
	Attacker and Trust Model

	Palinodia
	On-Chain: Smart Contracts
	Off-Chain: Palinodia Client

	Evaluation
	Gas Costs & Performance
	Security Considerations

	Discussion
	Limitations & Future Work

	ETHTID: Threshold Information Disclosure on Ethereum
	Problem Statement
	Related Work
	Fundamentals
	Notation & Number Theory
	Distributed Key Generation & Threshold Sharing

	System Model & Assumptions
	Roles
	Attacker and Trust Model

	ETHTID
	Overview
	Phase Structure
	Optimizations

	Evaluation
	Gas Costs & Performance
	Security Considerations

	Discussion
	Limitations & Future Work

	ETHDPR: Decentralized Public Review and Attestation of Software Attribute Claims on Ethereum
	Problem Statement
	Related Work
	System Model
	Roles
	Attacker and Trust Model

	ETHDPR
	Illustrative Example

	Evaluation
	Gas Costs & Performance
	Functional & Security Considerations

	Generalization
	Discussion
	Limitations & Future Work

	Discussion & Conclusion
	Conclusion

	Bibliography
	Appendix

