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1. INTRODUCTION

The transient stability of electrical power systems has been
studied for a long time. While it has been shown that
in lossless grids, equilibria with so-called phase cohesivity
are always stable, this is not true for the lossy case
(Skar, 1980), i.e. for nonneglible transfer conductances.
The case of significant transfer losses occurs especially in
low-voltage grids (Engler and Soultanis, 2005).

A commonly used model for the analysis of the tran-
sient stability when a disturbance occurs, are the multi-
machine swing equations, which describe power grid dy-
namics dominated by the behavior of synchronous gener-
ators. The continued use of this model for modern grids
with higher proportions of inverter-based power generation
is motivated by the widespread use of model-matching
control techniques (virtual synchronous generators) em-
ulating synchronous machines. Linearization of the swing
equations leads to a second order linear ODE. While many
results exist for this system class from the area of mechan-
ics, there is still ongoing research into the topic of so-called
nonconservative systems (see e.g. Kirillov (2013)), which
include a skew-symmetric part in the stiffness matrix.
In the linearization of power systems, transmission losses
introduce the skew-symmetric part; a similar effect also
results from the properties of phase-shifting transformers.

There are some sufficient conditions for the stability of
nonconservative systems based on a Lyapunov approach
(Kwatny et al., 1985), conditions that rely on commuta-
tivity and eigenvalue conditions (Bulatovic, 2020), but not
all of them can be applied for our system class, or they
require higher computational effort, or the assumptions of
the conditions are not met in our application. However,
under assumptions specific to the use-case, such as the
topology of the network, the type of damping, or the kind
of equilibrium, simple stability tests are possible.

The present paper offers shorter proofs of two stability
theorems by Skar (1980). In preparation of the proofs,
some results which are useful by themselves are formulated
in lemmas. Moreover, a theorem for the case of uniform
damping is strengthened by formulating it as a necessary
and sufficient condition. The relationship between the
number of zero eigenvalues of the second-order system
and a coefficient matrix is addressed. Variants of stability
tests for the uniformly damped system based on the
Brauer eigenvalue shifting theorem and the Gershgorin
circle theorem are proposed.

The plan of the paper is as follows: Section 2 describes the
multi-machine swing equation model for transient analysis
of power systems, the properties of the nonlinear system
and its linearization about an equilibrium. In Section
3, a parameter-based stability test is derived. Section
4 considers systems with uniform damping ratio for all
generators and provides new results for the stability of the
equilibrium subspace.

2. ELECTRICAL POWER SYSTEMS

For modeling the transient behavior of the electrical power
grid, we use the multi-machine swing equation

miθ̈i + diθ̇i + Pei(θ)− Pmi = 0, i = 1, . . . , n, (1)

where the variable θ denotes the electrical angle at the
generator nodes. The electrical power transmitted over the
lines is given by

Pei(θ) =

n∑
j=1

EiEj |Yij | cos(γij − θi + θj). (2)

Table 1 gives the physical interpretation of the parameters.
Such a model considering only the generator buses is
commonly used, e.g. by Gholami and Sun (2020), and
can be derived from a model including further buses with
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Lutz Gröll ∗ Adam Kastner ∗ Tessina H. Scholl ∗

Veit Hagenmeyer ∗

∗ Karlsruhe Institute of Technology, Karlsruhe, Germany (e-mail:
{lutz.groell, adam.kastner, tessina.scholl, veit.hagenmeyer}@kit.edu)

Abstract: Analysis of the small-signal stability of power system is commonly based on the swing
equation model. Due to the special structure of the power grid swing equations, an equilibrium
set corresponding to a so-called frequency equilibrium has to be analyzed. We present two new
and short proofs for two tests by Skar concerning both the nonuniformly and the uniformly
damped system. Based on the latter we derive a simple stability test for uniformly damped
systems, which does not rely on eigenvalue computations. The nonhyperbolicity of the equilibria
in original coordinates is tackled by the concept of normally hyperbolic invariant manifolds. The
derivations are completely based on the theory of quadratic pencils.

Keywords: Power and Energy Systems, Power System Stability, Quadratic Matrix Pencils,
Networked Systems

1. INTRODUCTION

The transient stability of electrical power systems has been
studied for a long time. While it has been shown that
in lossless grids, equilibria with so-called phase cohesivity
are always stable, this is not true for the lossy case
(Skar, 1980), i.e. for nonneglible transfer conductances.
The case of significant transfer losses occurs especially in
low-voltage grids (Engler and Soultanis, 2005).

A commonly used model for the analysis of the tran-
sient stability when a disturbance occurs, are the multi-
machine swing equations, which describe power grid dy-
namics dominated by the behavior of synchronous gener-
ators. The continued use of this model for modern grids
with higher proportions of inverter-based power generation
is motivated by the widespread use of model-matching
control techniques (virtual synchronous generators) em-
ulating synchronous machines. Linearization of the swing
equations leads to a second order linear ODE. While many
results exist for this system class from the area of mechan-
ics, there is still ongoing research into the topic of so-called
nonconservative systems (see e.g. Kirillov (2013)), which
include a skew-symmetric part in the stiffness matrix.
In the linearization of power systems, transmission losses
introduce the skew-symmetric part; a similar effect also
results from the properties of phase-shifting transformers.

There are some sufficient conditions for the stability of
nonconservative systems based on a Lyapunov approach
(Kwatny et al., 1985), conditions that rely on commuta-
tivity and eigenvalue conditions (Bulatovic, 2020), but not
all of them can be applied for our system class, or they
require higher computational effort, or the assumptions of
the conditions are not met in our application. However,
under assumptions specific to the use-case, such as the
topology of the network, the type of damping, or the kind
of equilibrium, simple stability tests are possible.

The present paper offers shorter proofs of two stability
theorems by Skar (1980). In preparation of the proofs,
some results which are useful by themselves are formulated
in lemmas. Moreover, a theorem for the case of uniform
damping is strengthened by formulating it as a necessary
and sufficient condition. The relationship between the
number of zero eigenvalues of the second-order system
and a coefficient matrix is addressed. Variants of stability
tests for the uniformly damped system based on the
Brauer eigenvalue shifting theorem and the Gershgorin
circle theorem are proposed.

The plan of the paper is as follows: Section 2 describes the
multi-machine swing equation model for transient analysis
of power systems, the properties of the nonlinear system
and its linearization about an equilibrium. In Section
3, a parameter-based stability test is derived. Section
4 considers systems with uniform damping ratio for all
generators and provides new results for the stability of the
equilibrium subspace.

2. ELECTRICAL POWER SYSTEMS

For modeling the transient behavior of the electrical power
grid, we use the multi-machine swing equation

miθ̈i + diθ̇i + Pei(θ)− Pmi = 0, i = 1, . . . , n, (1)

where the variable θ denotes the electrical angle at the
generator nodes. The electrical power transmitted over the
lines is given by

Pei(θ) =

n∑
j=1

EiEj |Yij | cos(γij − θi + θj). (2)

Table 1 gives the physical interpretation of the parameters.
Such a model considering only the generator buses is
commonly used, e.g. by Gholami and Sun (2020), and
can be derived from a model including further buses with

Some Notes on Two Tests for Stability in
Lossy Power Systems
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The case of significant transfer losses occurs especially in
low-voltage grids (Engler and Soultanis, 2005).

A commonly used model for the analysis of the tran-
sient stability when a disturbance occurs, are the multi-
machine swing equations, which describe power grid dy-
namics dominated by the behavior of synchronous gener-
ators. The continued use of this model for modern grids
with higher proportions of inverter-based power generation
is motivated by the widespread use of model-matching
control techniques (virtual synchronous generators) em-
ulating synchronous machines. Linearization of the swing
equations leads to a second order linear ODE. While many
results exist for this system class from the area of mechan-
ics, there is still ongoing research into the topic of so-called
nonconservative systems (see e.g. Kirillov (2013)), which
include a skew-symmetric part in the stiffness matrix.
In the linearization of power systems, transmission losses
introduce the skew-symmetric part; a similar effect also
results from the properties of phase-shifting transformers.

There are some sufficient conditions for the stability of
nonconservative systems based on a Lyapunov approach
(Kwatny et al., 1985), conditions that rely on commuta-
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the conditions are not met in our application. However,
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theorems by Skar (1980). In preparation of the proofs,
some results which are useful by themselves are formulated
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damping is strengthened by formulating it as a necessary
and sufficient condition. The relationship between the
number of zero eigenvalues of the second-order system
and a coefficient matrix is addressed. Variants of stability
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Brauer eigenvalue shifting theorem and the Gershgorin
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The plan of the paper is as follows: Section 2 describes the
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generators and provides new results for the stability of the
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constant impedance loads via Kron reduction (Kron, 1939,
Ch. 10).

In vector-matrix notation, (1) becomes

Mθ̈ +Dθ̇ + Pe(θ)− Pm = 0n, (3)

where M and D are diagonal matrices. Note that while the
systems configuration space has dimension n, the state-
space has dimension 2n with elements (θ, θ̇) = (θ, ω) ∈
R2n.

The equilibrium conditions for system (3) are

Pe(θ) = Pm (4a)

θ̇ = 0n (4b)

Pe is translationally invariant, i.e.

Pe(θ) = Pe(θ + c1n) with c ∈ R. (5)

Therefore, any equilibrium point (θe, 0n) is part of a one-
dimensional equilibrium manifold

Enl = {(θe + c1n, 0n) : c ∈ R}. (6)

Because of this, any equilibrium point of the system will
be nonhyperbolic.

While it is possible to obtain a hyperbolic equilibrium by
considering a state space of dimension 2n−1, we prefer to
operate in the original system, which has other advantages
due to its structure as a second-order system.

We place the following assumptions on the nonlinear
system:

N1 All generators have positive inertia and damping, i.e.
mi, di > 0.

N2 The undirected graph associated with the grid is
connected.

N3 The equilibrium set is phase cohesive, i.e. 0 < γij −
θi + θj < π.

2.1 Linearization of the Swing Equation

Linearization of (3) about any point of the equilibrium
manifold Enl leads to the system

Mẍ+Dẋ+ Lx = 0n, (7)

where x = ∆θ and L = ∂Pe

∂θ⊤


θ=θe

with entries

lij =




n
k=1,k ̸=i

EiEk|Yik| sin(γik − θei + θek), i = j

−EiEj |Yij | sin(γij − θei + θej), i ̸= j.

(8)

Clearly, the matrix L has the row sum zero property

L1n = 0n. (9)

From the state space representation

d

dt


x
ẋ


=


0n×n In

−M−1L −M−1D

 
x
ẋ


,

Table 1. System Parameters

Symbol Parameter

mi inertia constant
di damping constant
Pmi mechanical power
Ei generator voltage amplitude
Yij complex entries of nodal admittance matrix
γij = arg Yij argument of admittance

it follows immediately that (7) has a nontrivial equilibrium
subspace

Elin ⊇ span(1n)× {0n}. (10)

To conclude that equality holds in (10), it is necessary to
show that the geometric multiplicity of the zero eigenvalue
of L is one. As consequences of the connectedness of the
network and the phase cohesiveness of the equilibrium
follow some interesting matrix properties used later. They
directly imply that zero is a simple eigenvalue of L.

2.2 Connectedness and Phase Cohesiveness

Firstly, we establish system properties based on the above
assumptions.

Lemma 1. (Gholami and Sun (2020)). If the equilibrium
is phase cohesive, then the directed graph associated with
L is strongly connected with positive weights if and only
if the undirected network graph is connected.

Lemma 2. (Lancaster and Tismenetsky (1985, 15.1.1)).
A square matrix is irreducible if and only if its directed
graph is strongly connected.

In the following we frequently use the fact that L is an M-
matrix, i.e., a matrix that can be split into A = sIn − B,
s > 0, B ≥ 0 with s ≥ ρ(B), the spectral radius of B
(Ostrowski’s definition).

Lemma 3. For a phase cohesive equilibrium of a network
described by a connected undirected graph, L is a singular,
irreducible M-matrix with lii > 0 and lij ≤ 0, i ̸= j with
a simple zero eigenvalue.

Proof. The strong phase cohesiveness assumption implies
that L is a Z-matrix, i.e., lij ≤ 0, i ̸= j. Since the
network graph is connected, there is at least one nonzero
off-diagonal entry in each row. Consequently, lii > 0 due
to the zero-sum property. A Z-matrix is an M-matrix if the
real part of each nonzero eigenvalue is positive (Berman
and Plemmons, 1994, thm. 6.4.6). By Gershgorin’s circle
theorem all eigenvalues lie in

G =
n

i=1

B(lii, lii)

= B(lkk, lkk) with lkk as largest diagonal entry of L,

and with lkk > 0 all real parts of each nonzero eigen-
value of L are positive. Since the rows of L sum to zero,
(λ, v) = (0, 1n) is a eigenpair of L. Consequently, L is
singular. By Lemmas 1 and 2, it is irreducible. A singular,
irreducible M-matrix of order n has rank n − 1 (Berman
and Plemmons, 1994, thm. 6.4.16). Using the results of
Hershkowitz and Schneider (1985), especially their Propo-
sition 3.1, L is diagonally semistable. Consequently, it can
only have semisimple eigenvalues on the imaginary axis.
Combining the geometric multiplicity of 1 for the zero
eigenvalue due to the rank n − 1 property, its algebraic
multiplicity is also 1. □

By Lemma 3, zero is a simple eigenvalue of L and so it is
proven that the equilibrium set is

Elin = span(1n)× {0n}. (11)

In the following, we show that this equilibrium subspace
is a normally hyperbolic invariant manifold (Eldering,
2013). For this, the existence of additional zero eigenvalues

(Section 2.3) and of purely imaginary eigenvalues (Section
3) of the quadratic pencil has to be excluded.

2.3 Relations between eigenvalues of pencils and coefficient
matrices

When considering matrix pencils, it is often desirable
to conclude properties of the pencil from properties of
the coefficient matrices. Essentially, one is interested in
the location of eigenvalues with respect to the real and
imaginary axes. There are many results based on the
degree of instability (Poincaré instability degree, Kirillov
(2013)), the Krein index, and the Krein signature (Kollár,
2011). We summarize only some results concerning the
zero eigenvalue, supplemented by two results for uniform
damping and note that Lemma 5 is another supplement
for a special case.

Lemma 4. Let σ(Q) denote the spectrum defined as multi-
set of the eigenvalues ofQ(λ). Between the zero eigenvalues
of L and the ones of Q(λ) = Inλ

2 + Dλ + L exist the
following relations:

(i) card(σ(Q) = 0) ≥ geom(λ(L) = 0) = dimkerL
(ii) card(σ(Q) = 0) = alg(λ(L) = 0) if D = ζIn, ζ ̸= 0.
(iii) geom(σ(Q) = 0) = geom(λ(L) = 0) if D = ζIn,ζ ̸= 0.
(iv) card(σ(Q) = 0) = geom(λ(L) = 0) if and only if

kerL ∩ ker herD ∩ ker skhD = {0n}, supposed L is a
Hermitian matrix

(v) card(σ(Q) = 0) = 2 geom(λ(L) = 0) if kerL ⊆ kerD,
supposed D,L Hermitian

Proof. (i) card(σ(Q) = 0) = alg(λ(Q(0) = 0) ≥
geom(λ(Q(0)) = dimkerQ(0) = dimkerL
(ii)
(iii) With D = ζIn, Q(λ) = λ(λ + ζ)In + L, resp.

Q̃(µ) = µIn − (−L). For k = alg(λ(L) = 0),

χQ̃(µ) = det(µIn + L) = µn + · · ·+ ckµ
k; ck ̸= 0

χQ(λ) = det(Q(λ))

= (λ(λ+ ζ))n + · · ·+ ck(λ(λ+ ζ))n

= λ2n + · · ·+ ckζ
kλk since ck, ζ ̸= 0.

(iv) Q(λ) corresponds to

d

dt

[
x
ẋ

]
=

[
0 In
−L −D

] [
x
ẋ

]
, compact ξ̇ = Aξ.

Then geom(σ(Q) = 0) = corankA = 2n − rankA = n −
rankL = geom(λ(L) = 0), where the full rank of the
second block column was used for rankA = n+ rankL.
(v) Bilir and Chicone (1998, prop. 3)
(vi) (Kollár, 2011, sec. 4) □

Note that the inequality in (i) can be strict. See

Q(λ) =

[
1 0
0 1

]
λ2 +

[
1 −1
−1 1

]

where Q(λ) has two zero eigenvalues while L has only one
zero eigenvalue. Here, even

card(σ(Q) = 0) > alg(λ(L) = 0).

Moreover, (vi) provides a stronger statement in this case.

Remark: Despite the special cases, there is no general
result for the relation between card(σ(Q) = 0) and
alg(λ(L) = 0) available if D is an arbitrary singular
matrix. Consider

Q(λ) =

[
1 0
0 1

]
λ2 +

[
1 0
0 2

]
λ+

[
1 −1
1 −1

]
,

where Q(λ) has one and L has two zero eigenvalues and

Q(λ) =

[
1 0
0 1

]
λ2 +

[
3 −2
−2 1

]
λ+

[
1 −1
−1 1

]
,

where Q(λ) has two and L has only one zero eigenvalue.

Since Lemma 4 in combination with the above remark
yield no statement for our application, it is necessary to
use the additional properties of L to derive a statement on
the number of zero eigenvalues of the pencil.

Lemma 5. (Zero is a simple eigenvalue of the pencil).
The pencil Q(λ) = Mλ2 +Dλ+ L with positive diagonal
matrices M , D and a singular, irreducible matrix L admits
a simple eigenvalue λ = 0.

Proof. Q(0)1n = L1n = 0 shows the eigenpair (0, 1n).
To clarify that λ = 0 is a simple eigenvalue, it is shown that
the linear coefficient c1 of the characteristic polynomial

detQ(λ) = λ2n + c2n−1λ
2n−1 + · · ·+ c1λ

does not vanish; c0 = 0 because λ = 0. Using Jacobi’s
formula (Horn and Johnson, 2012, thm. 0.8.10), the linear
coefficient is given by

c1 =
d

dλ
detQ(λ)

∣∣∣∣
λ=0

= tr(Q′(λ) adjQ(λ))|λ=0

= tr(D adjL).

Since L is a singular, irreducible matrix by Lemma 3,
each proper principal submatrix of L is a nonsingular M-
matrix (Berman and Plemmons, 1994, thm. 6.4.16). Since
all principle minor of a nonsingular M-matrices are positive
(Berman and Plemmons, 1994, thm. 6.2.3), the cofactors
in the main diagonal of the adjugate adjL are positive.
Together with D positive follows tr(D adjL) > 0. □

We can now formulate that based on the assumptions N1–
N3 on the nonlinear system (3), the linear system (7)
fulfills:

L1 M and D are positive diagonal matrices.
L2 L is a singular, irreducible M -matrix with a simple

zero eigenvalue associated with the eigenvector 1n,
positive diagonal and nonnegative off-diagonal ele-
ments.

3. PARAMETER-BASED STABILITY TEST FOR
NONUNIFORM DAMPING

The test by Skar (1980, thm. 2.6.iii) is a simple formula
containing the parameters of Table 1 and the equilib-
rium point. Since the test gives a sufficient condition for
stability based on the linearized system, we formulate it
in dependence of the matrices in (7). Notably, it does
not require exact eigenvalue calculations since it is de-
rived from the Gershgorin circle theorem. This theorem
in its standard version for constant matrices has some
generalizations to polynomial matrices (Michailidou and
Psarrakos, 2018) and non-polynomial pencils (Bindel and
Hood, 2015). Eigenvalues at infinity, unbounded regions,
or unimodular pencils introduce some difficulties into these
generalizations, but in our system class with a nonsingular
matrix M , the generalization can easily be performed via
an argument concerning λ-parametrized matrices.
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For this, the quadratic eigenvalue problem Q(λ)v = 0n is
rewritten as a generalized eigenvalue problem

µMv = (−Dλ− L)v =: A(λ)v (12)

with µ = λ2. Hence, each generalized eigenvalue µ of
the λ-parametrized EVP lies within at least one of the
Gershgorin discs

|miµ− aii(λ)| ≤ ri(A(λ)) =

n∑
j=1,j ̸=i

|aij(λ)|. (13)

Since µ as eigenvalue of (12) and λ as eigenvalue of Q(λ)
are coupled by µ = λ2, it follows from (13) that all
eigenvalues λ of Q(λ) are contained in the set

Gr =
n⋃

i=1

{λ ∈ C : |qii(λ)| ≤ ri(Q(λ))} . (14)

Now we are ready to provide a new, short proof for Skar’s
test, which also differs significantly from the proof of
a closely related result by Nieuwenhuis and Schoonbeek
(1997, cor. 1).

Theorem 6. (Linear Skar test, Skar (1980, thm. 2.6.iii)).
The equilibrium subspace Elin of the linear swing equation
(7) under the linear assumptions is globally exponentially
stable, if

lii ≤
d2i
2mi

, ∀i ∈ {1, . . . , n}. (15)

Proof. By the assumptions, L is a Z-matrix with lii =∑
j ̸=i |lij |. This translates (14) into

Gr =

n⋃
i=1

{
λ ∈ C : |miλ

2 + diλ+ lii| ≤ lii
}
.

Obviously, the set G contains the roots of mis
2 + dis +

lii = 0. They are in C−, i.e. in the open left half plane,
by Hurwitz’ criterion, since mi, di, lii > 0. Hence, it is to
clarify how large can lii be such that G admits only the
origin as a common point with the imaginary axis. We
check for additional common points with s = iω in

|mi(iω)
2 + di(iω) + lii| = lii

m2
iω

4 + (d2i − 2milii)ω
2 = 0,

which should have no real root except ω = 0. This is the
case if and only if d2i −2milii ≥ 0, as in (15). By Lemma 5,
zero is a simple eigenvalue of the pencil, which corresponds
to the equilibrium set. Hence, the 2n − 1 remaining
eigenvalues are in C− by the above Gershgorin argument.
Linearity ensures the global exponential stability. □

In order to remain in the second-order system setting,
we do not work in a reduced state space of dimension
2n − 1, which would lead to a statement of stability of
an equilibrium point as in the work of Skar (1980). We
instead consider the stability of the equilibrium set Enl.
Theorem 7. (Nonlinear Skar test, Skar (1980, Thm. 3.6.v)).
Under the nonlinear assumptions, the equilibrium set Enl
of the swing equation is locally uniformly exponentially
stable under the condition

∑
j ̸=i

EiEj |Yij | sin(γij − θi + θj) ≤
d2i
2mi

. (16)

Proof. As shown in the proof for the linear case, under
condition (15), a simple eigenvalue at λ = 0 is the only

eigenvalue on the imaginary axis. Moreover, this eigen-
value corresponds to the equilibrium set. Consequently,
the transverse dynamics is locally determined only by all
the other eigenvalues. As these are all located in C−, the
equilibrium set is an exponentially stable normally hy-
perbolic manifold. Time-invariance of the system ensures
uniformity. □

Remark: Although the test (16) is conservative, it attests
stability for the IEEE standard test systems (Gholami and
Sun, 2020). The applicability in inverter-based grids is a
topic of current research.

4. CASE OF UNIFORM DAMPING

In conventional grids, the ratio between the inertia and
damping for the synchronous machines is often nearly
the same. This means that by left-muliplication with the
inverse of the inertia matrix a scalar ratio matrixM−1D =
dIn with d > 0 results. Especially in modern inverter-
based grids working with the principle of model-matching
control, such a uniform damping ratio can be realized. This
kind of damping is also relevant in mechanical systems,
where it is referred to as mass-proportional damping, a
special case of Rayleigh damping. In order to simplify
the wording, we refer to dIn as the uniform damping
matrix. Since M is positive definite, the required left-
multiplication with L results in a new matrix M−1L = L̃.
Once again in order to simplify the wording, we denote
L̃ by L in the following because L̃ shares the matrix
properties of L described in the previous section. Hence,
we analyze the following system:

ẍ+ dẋ+ Lx = 0. (17)

Applying Theorem 6 to (17), we obtain

max
i

lii ≤
d2

2
. (18)

With a restricted structure D = dIn compared to D
diagonal, better conditions for stability will be derived in
the next section.

4.1 A stability criterion for uniform damping

We give a stronger version of (Skar, 1980, thm. 2.6.ii)
for the case of uniform damping, which has a shorter
proof thanks to application of the complex Routh-Hurwitz
criterion.

Theorem 8. The number of zero eigenvalues of the qua-
dratic pencil Q(λ) = Inλ

2 + dInλ + L with d > 0
and of L coincide and all nonzero eigenvalues of Q(λ)
have negative real parts if and only if for each nonzero
eigenvalue νi = αi + βii, i = 1, . . . , n of L,

αid
2 > β2

i (19)

or in other notation

d > dcrit = max
i

|Imλi(L)|√
Reλi(L)

. (20)

Proof. The zero eigenvalues and nonzero eigenvalues of
L are considered separately. The characteristic equation
of the pencil det(Q(λ)) = det(λ(λ + d)In + L) = 0 yields
the relation −νi = λ(λ+ d), respectively

λ2 + dλ+ νi = 0. (21)

For each zero eigenvalue νi = 0, λ2 + dλ = 0 leads to one
zero eigenvalue λ = 0 of the pencil and an additional stable
eigenvalue at λ = −d. For each nonzero eigenvalue νi ∈
C, (21) is a complex polynomial. The complex Hurwitz
theorem, known as the Bilharz-Schur theorem (Bilharz,
1944), establishes Hurwitz stability for the polynomials
(21) if and only if (19) applies. □

The importance of Theorem 8 lies in the fact that the
pencil eigenvalue problem can be reduced to a common
eigenvalue problem for L. Using estimates for the location
of the eigenvalues of L, sufficient criteria for stability
without calculating the full spectrum of L can be provided.

4.2 Estimates for the eigenvalues of L

Instead of applying the Gershgorin circle theorem directly
to L, we first apply the well-known Brauer eigenvalue
shift theorem (Horn and Johnson, 2012, thm. 2.4.10.1).
According to this theorem, the zero eigenvalue associated
with the 1-vector can be shifted via

B = L+ 1nw
∗, (22)

where the arbitrary vector w ∈ Cn is chosen as a real
vector since this is the best choice in the present real
eigenvalue problem.

Example 9. Consider the matrix

L =

[
3 −1 −2
−2 3 −1
−1 −4 5

]
(23)

with eigenvalues λ1(L) = 0, λ2/3(L) = 5.5 ± i
√
3/2. By

applying (22) with w = [1 2 1]
⊤
, we obtain

B =

[
4 1 −1
−1 5 0
0 −2 6

]
,

where λ1(B) = w⊤1n = 4. The eigenvalues and row
Gershgorin discs of both matrices are presented in Figure
1. The example shows that the shift has multiple effects:

Fig. 1. Eigenvalues and row Gershgorin circles of the
example matrices

the diagonal elements are increased and the Gershgorin
row radii ri are reduced, and the zero eigenvalue is shifted
into the C+.

To estimate the location of the nontrivial eigenvalues
νi ̸= 0 of L, we apply the row Gershgorin circle theorem
to B, obtaining

|νi − bii| ≤ ri =
∑
j ̸=i

|bij |

|νi − (lii + wi)| ≤
∑
j ̸=i

|lij + wj | .

The boundaries of the Gershgorin discs are described by

β2
i = r2i − (αi − bii)

2.

Combining this with (19) results in

d2αi = r2i − (αi − bii)
2,

which has no real solutions if
d2

2
> bii −

√
b2ii − r2i

d2

2
> lii + wi −

√
(lii + wi)2 −

( ∑
j ̸=i

|lij + wj |
)2

. (24)

Hence, all nontrivial eigenvalues of the pencil are in C− if
(24) holds for all i.

Note that the case wi = 0 for all i is a strict version of the
inequality (18). Although (24) can be evaluated easily, it
is not well-suited for the choice of appropriate wi. For this
purpose, we recall the well-known inequality√

x2 − y2 > |x| − |y|, |x| > |y|. (25)

With (25), a weaker sufficient condition than (24) is
obtained:

d2

2
>

∑
j ̸=i

|lij + wj | , (26)

supposed that w is chosen such that lii ≥
∑

j ̸=i |lij + wj |.
Although (26) is weaker than (24), it is still better than
(18), if for the critical index lii >

∑
j ̸=i |lij + wj | holds.

From (26), it is obvious that the wi should be chosen
positive, because lij , i ̸= j are negative, and they also
contribute to increasing the main diagonal elements.

We will now discuss multiple estimates that can be used
in applying Theorem 8:

• To guarantee that no row Gershgorin circles increases
in size, i.e. ri(B) ≤ ri(L) for all i,

wj = min
i̸=j

|lij | (27)

can be used, which ensures that no off-diagonal ele-
ments become positive.

• Another choice which guarantees that ri(B) ≤ ri(L)
for all i is

wi = min
k

med
j ̸=k

|lkj |, (28)

the minimum of the rowwise medians of off-diagonal
elements.

• The choice of the columnwise median of off-diagonal
elements

wj = med
i̸=j

|lij | (29)

minimizes the column Gershgorin radii cj(B). In con-
trast to the methods using the row Gershgorin radii,
the resulting column radii can be calculated from the
elements of L more directly: Let xkj , k = 1, . . . , n− 1
with x1j ≥ x2j ≥ · · · ≥ xn−1,j be the ordered off-
diagonal elements l1j , . . . , lj−1,j , lj+1,j , . . . , lnj . For
odd n, the median is wj = x(n−1)/2,j and the radius

cj(B) =
(n−3)/2∑

i=1

xij −
n−1∑

i=(n+1)/2

xij . (30)
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For each zero eigenvalue νi = 0, λ2 + dλ = 0 leads to one
zero eigenvalue λ = 0 of the pencil and an additional stable
eigenvalue at λ = −d. For each nonzero eigenvalue νi ∈
C, (21) is a complex polynomial. The complex Hurwitz
theorem, known as the Bilharz-Schur theorem (Bilharz,
1944), establishes Hurwitz stability for the polynomials
(21) if and only if (19) applies. □

The importance of Theorem 8 lies in the fact that the
pencil eigenvalue problem can be reduced to a common
eigenvalue problem for L. Using estimates for the location
of the eigenvalues of L, sufficient criteria for stability
without calculating the full spectrum of L can be provided.

4.2 Estimates for the eigenvalues of L

Instead of applying the Gershgorin circle theorem directly
to L, we first apply the well-known Brauer eigenvalue
shift theorem (Horn and Johnson, 2012, thm. 2.4.10.1).
According to this theorem, the zero eigenvalue associated
with the 1-vector can be shifted via

B = L+ 1nw
∗, (22)

where the arbitrary vector w ∈ Cn is chosen as a real
vector since this is the best choice in the present real
eigenvalue problem.

Example 9. Consider the matrix

L =

[
3 −1 −2
−2 3 −1
−1 −4 5

]
(23)

with eigenvalues λ1(L) = 0, λ2/3(L) = 5.5 ± i
√
3/2. By

applying (22) with w = [1 2 1]
⊤
, we obtain

B =

[
4 1 −1
−1 5 0
0 −2 6

]
,

where λ1(B) = w⊤1n = 4. The eigenvalues and row
Gershgorin discs of both matrices are presented in Figure
1. The example shows that the shift has multiple effects:

Fig. 1. Eigenvalues and row Gershgorin circles of the
example matrices

the diagonal elements are increased and the Gershgorin
row radii ri are reduced, and the zero eigenvalue is shifted
into the C+.

To estimate the location of the nontrivial eigenvalues
νi ̸= 0 of L, we apply the row Gershgorin circle theorem
to B, obtaining

|νi − bii| ≤ ri =
∑
j ̸=i

|bij |

|νi − (lii + wi)| ≤
∑
j ̸=i

|lij + wj | .

The boundaries of the Gershgorin discs are described by

β2
i = r2i − (αi − bii)

2.

Combining this with (19) results in

d2αi = r2i − (αi − bii)
2,

which has no real solutions if
d2

2
> bii −

√
b2ii − r2i

d2

2
> lii + wi −

√
(lii + wi)2 −

( ∑
j ̸=i

|lij + wj |
)2

. (24)

Hence, all nontrivial eigenvalues of the pencil are in C− if
(24) holds for all i.

Note that the case wi = 0 for all i is a strict version of the
inequality (18). Although (24) can be evaluated easily, it
is not well-suited for the choice of appropriate wi. For this
purpose, we recall the well-known inequality√

x2 − y2 > |x| − |y|, |x| > |y|. (25)

With (25), a weaker sufficient condition than (24) is
obtained:

d2

2
>

∑
j ̸=i

|lij + wj | , (26)

supposed that w is chosen such that lii ≥
∑

j ̸=i |lij + wj |.
Although (26) is weaker than (24), it is still better than
(18), if for the critical index lii >

∑
j ̸=i |lij + wj | holds.

From (26), it is obvious that the wi should be chosen
positive, because lij , i ̸= j are negative, and they also
contribute to increasing the main diagonal elements.

We will now discuss multiple estimates that can be used
in applying Theorem 8:

• To guarantee that no row Gershgorin circles increases
in size, i.e. ri(B) ≤ ri(L) for all i,

wj = min
i̸=j

|lij | (27)

can be used, which ensures that no off-diagonal ele-
ments become positive.

• Another choice which guarantees that ri(B) ≤ ri(L)
for all i is

wi = min
k

med
j ̸=k

|lkj |, (28)

the minimum of the rowwise medians of off-diagonal
elements.

• The choice of the columnwise median of off-diagonal
elements

wj = med
i̸=j

|lij | (29)

minimizes the column Gershgorin radii cj(B). In con-
trast to the methods using the row Gershgorin radii,
the resulting column radii can be calculated from the
elements of L more directly: Let xkj , k = 1, . . . , n− 1
with x1j ≥ x2j ≥ · · · ≥ xn−1,j be the ordered off-
diagonal elements l1j , . . . , lj−1,j , lj+1,j , . . . , lnj . For
odd n, the median is wj = x(n−1)/2,j and the radius

cj(B) =
(n−3)/2∑

i=1

xij −
n−1∑

i=(n+1)/2

xij . (30)
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For even n, any value xn/2−1,j ≥ wj ≥ xn/2,j can
be used for the not uniquely defined median, and the
column Gershgorin radii are obtained as

cj(B) =
n/2−1∑
i=1

xij −
n−1∑
i=n/2

xij . (31)

In the case of a matrix L associated with a weight-
balanced graph, i.e. L⊤1n = 0n, we have cj(B) ≤
bjj , and the Gershgorin circles are within C+. Note
however, that for L which are not weight balanced,
there are some cj(L) > ljj , and there may be some
cj(B) > bjj even after this shift.

• An optimal choice for w is

wopt = argmin
w∈Rn

+

max
i∈{1,...,n}

(32)

lii + wj −
√

(lii + wj)2 −
( ∑

j ̸=i

|lij + wj |
)2

,

which obtains the best approximation using the Ger-
shgorin circle theorem. However, the added compu-
tational cost would be better spent on eigenvalue
calculations.

Remark: Marsli and Hall (2020) proposed the method of
Gershgorin disks of the second type for constant row-
sum matrices. This method offers inclusion regions for the
nontrivial eigenvalues. The estimates are generally better
than with the classical Gershgorin disks, because smaller
column radii are obtained. The comparison of the radius
formula in Marsli and Hall (2020) and (30) and (31) shows
that the shift using the columnwise medians offers a better
estimate.

4.3 Comparison of the shifting approaches

We apply the methods proposed in the previous section
to the matrix (23) and present the discovered minimal d
which guarantee stability in Table 2. Note that the method

Table 2. Minimal uniform damping for example
(23) by different estimates

Method w dmin

(18) (0, 0, 0) 3.1623
(27) (1, 1, 1) 1.2679
(28) (1.5, 1.5, 1.5) 1.2114
(29) with ci(B) (1.5, 2.5, 1.5) 1.3343
(29) with ri(B) (1.5, 2.5, 1.5) 0.9684
(32) (1.3459, 2.4698, 2) 0.7157
exact N/A 0.3693

using the columnwise median off-diagonal elements may
still work even for matrices that are not weight-balanced.

Although for all the proposed choices of w in Section 4.2
examples can be designed where a specific choice offers
no improvement, our comprehensive studies show that in
common electrical networks after a Kron reduction dense
matrices L appear. For them, an improvement in nearly
all cases was observed.

5. FURTHER RESEARCH

Motivated by the success of the shifting approach in
Section 4, we want to try to derive eigenvalue estimations

for the pencil directly for a new stability test. Another
research direction is to use the stability margin measured
with the spectral abscissa of the nontrivial eigenvalues to
derive intervals around the uniform damping ratio.
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