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Abstract

The maximum diameter of a drop impacting on a flat solid surface is studied
theoretically assuming axi-symmetric spreading without splashing. The en-
ergy balance between the initial state of the drop (sphere diameter d0) and
that a maximum spread (contact diameter dm) is closed by two novel con-
cepts. For the gas-liquid surface area, an approximate spherical cap model
is proposed. Energy loss by viscous dissipation is related to the total en-
ergy dissipation when the drop has come to rest. The fractional dissipation
upon maximum spread is modelled as a function of an impact parameter (P )
that combines the power laws of the capillary and viscous regimes depending
on a regime discrimination parameter (A). Exponents of the Weber (We)
and Reynolds (Re) numbers in P = WeRe−2/5 are determined by asymp-
totic analysis. The parameter A is determined from experimental data as a
function of the advancing contact angle (θa). In this way, an explicit model
for the maximum spread factor (βm = dm/d0) is proposed which includes
the scaling laws βm ∼ We1/2, βm ∼ We1/4 and βm ∼ Re1/5 and is in good
agreement with experimental data for wide ranges of We, Re and θa.

Keywords: drop impact, maximum spread factor, energy balance

1. Introduction

Drop collision with a wall is an important element of various industrial
spray processes including spray cooling (Liang and Mudawar, 2017; Breit-
enbach et al., 2018), spray coating (Ye and Domnick, 2017), combustion
(Moreira et al., 2010) and ink-jet printing (Castrejon-Pita et al., 2013) to
name a few. The state of fluid dynamic knowledge is summarised in various
reviews (Rein, 1993; Yarin, 2006; German and Bertola, 2009; Marengo et al.,
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2011; Josserand and Thoroddsen, 2016; Fang et al., 2022). The main dimen-
sionless parameters governing the dynamics of drop spreading on a dry wall
are the impact Weber number (We = ρd0u

2
0/σ) and the impact Reynolds

number (Re = ρd0u0/µ). Here, u0 and d0 are the impact velocity and initial
drop diameter while ρ, µ and σ indicate the density, dynamic viscosity and
surface tension of the liquid, respectively.

In addition to the above parameters, the drop impact dynamics depends
on the wetting properties of the solid. The wettability of a surface by a
liquid is commonly characterised by the contact angle (θ), where different
definitions exist (Marmur et al., 2017). For an ideal smooth and chemically
homogeneous surface, the equilibrium contact angle (θe) is uniquely defined
by the single minimum of the Gibbs free energy (the change in the surface
energy of the solid due to wetting). In practice, any solid surface is hetero-
geneous at small scales because of either topographic roughness or chemical
defects. In experiments then an apparent (global) contact angle is routinely
obtained, which is the contact angle measured at a length scale much bigger
than the surface structure or variations in its chemical composition (Butt
et al., 2022). For real surfaces, the Gibbs energy possesses multiple min-
ima points which correspond to several possible metastable states of a static
drop (Kung et al., 2019). The contact angle of a static drop (θs) is therefore
not unique but within a range θr ≤ θs ≤ θa. Here, θr and θa denote the
receding/advancing contact angles which are the lowest/highest metastable
contact angles that can be measured (e.g. by decreasing or increasing the
volume of a drop). The metastable static states thus give rise to contact
angle hysteresis ∆θ = θa − θr ≥ 0. For water, ∆θ is typically larger than
10◦, even on seemingly smooth and homogeneous rigid surfaces (Butt et al.,
2022). For a contact line that is not static but moving, the dynamic contact
angle (θd) is affected by the velocity of the flow due to viscous effects. Hydro-
dynamic theories of wetting relate the deviation of θd from the equilibrium
contact angle to the capillary number (Voinov, 1976; Cox, 1986).

Of great interest for technical applications is the maximum spread factor
βm = dm/d0 where dm is the maximum spread diameter of the drop. Ap-
proaches for predicting βm can be classified in scaling laws (Collings et al.,
1990; Clanet et al., 2004; Fedorchenko et al., 2005), empirical correlations
(Asai et al., 1993; Scheller and Bousfield, 1995; Bayer and Megaridis, 2006)
and models based on a momentum balance (Clanet et al., 2004; Roisman,
2009; Gordillo et al., 2019) or an energy balance (Engel, 1955; Ford and Fur-
midge, 1967; Madejski, 1976; Chandra and Avedisian, 1991; Park et al., 2003;
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Yonemoto and Kunugi, 2017). The latter approach established a balance be-
tween the kinetic and surface energies before impact and at maximum spread
while accounting for dissipation.

For the inviscid (or capillary) regime (limit Re → ∞), the scaling law
βm ∼ We1/2 is obtained by assuming that initial kinetic energy is completely
converted into surface at maximum spread (Collings et al., 1990; Bennett and
Poulikakos, 1993). This scaling was experimentally confirmed by Laan et al.
(2014) who studied the impact of four different liquids (among them water
and blood) with different viscosity on five different surfaces (20◦ ≤ θs ≤ 90◦).
Experiments by Clanet et al. (2004) on the impact of water droplets on
a strongly water-repellent surface (θe = 170◦) show in contrast a scaling
βm ∼ We1/4, which is explained by a mass balance argument using the
impact capillary length.

In the viscous regime it is assumed that most of the initial kinetic energy
has been dissipated upon maximum spread. Dissipation has been proposed
to scale as Wm ∼ µ(u0/hm)d0d

2
m (Chandra and Avedisian, 1991) or Wm ∼

µ(u0/hm)d
3
m (Clanet et al., 2004), where hm is the droplet height at maximum

spread. Together with volume conservation (hmd
2
m ∼ d30) this yields βm ∼

Re1/4 (Chandra and Avedisian, 1991) and βm ∼ Re1/5 (Clanet et al., 2004),
respectively. The latter scaling has been observed in various experiments
(Madejski, 1976; Fedorchenko et al., 2005; Eggers et al., 2010).

To distinguish between the viscous and the capillary regime, an impact
parameter P = WeRe−4/5 was proposed by Clanet et al. (2004) which was
revised to P = WeRe−2/5 by Eggers et al. (2010). Since most of the scaling
models were developed for a limited range of We and Re, they cannot be
applied as a general model for a broader range of the impact regime (Marengo
et al., 2011). Universal models based on rescaling combine one inviscid regime
where βm ∼ Wen with either n = 0.5 (Laan et al., 2014; Lee et al., 2016b)
or n = 0.25 (Wang et al., 2022) with the viscous regime βm ∼ Re1/5 using
an approximation function that provides a smooth cross-over between both
regimes.

For high viscosity liquids, the contribution of viscous dissipation is im-
portant and models based on an energy balance rather than a momentum
balance are more suitable (Eggers et al., 2010). While the initial kinetic and
surface energies in energy balance approaches from literature are always iden-
tical, models differ in approximation of gas-liquid surface energy at maximum
spread and dissipation upon maximum spread. Variation in the dissipation
arise from different assumptions on the time scale and the velocity profile in
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Figure 1: Sketch of initial drop at the moment of impact (left) and models for drop shape
at maximum spread (right). The variables s0 and sm denote the normalised gas-liquid
interfacial area before impact and at maximum spreading, respectively.

the spreading film. Differences in gas-liquid surface energy arise on assump-
tions of the droplet shape at the maximum spread, which is often considered
as a cylindrical disc with negligible height (Ford and Furmidge, 1967), a flat
cylinder with finite height (Mao et al., 1997) or a spherical cap (truncated
sphere), see Fig. 1. The cylinder model was found to be suitable for drop im-
pact with small values of the Ohnesorge number (Oh =

√
We/Re < 0.002),

whereas the spherical cap model is appropriate when Oh is high (Kim and
Chun, 2001). Further differences in surface energy arise from the choice of
the characteristic contact angle. Some authors argue in favour of the equilib-
rium contact angle θe (Bennett and Poulikakos, 1993; Mao et al., 1997; Park
et al., 2003) while others propose the advancing contact angle θa (Chandra
and Avedisian, 1991; Pasandideh-Fard et al., 1996; Du et al., 2021) or the
dynamic contact angle θd (Vadillo et al., 2009).

The diverse impact dynamics of drops make formulating a general pre-
diction model, valid over large ranges of We, Re and θ difficult. Accordingly,
the range of applicability of existing models is often limited. The cubic equa-
tion for βm proposed by Mao et al. (1997) e.g. predicts negative or imaginary
numbers for large values of θ (Park et al., 2003). A comprehensive overview
on historical models or correlations used to predict the maximum spreading
factor is provided in Table S1 of Liang et al. (2019). In particular miss-
ing so far is a mechanistic model for maximum spread which includes all
experimentally observed scaling regimes where βm ∼ (We1/4,We1/2, Re1/5).

4



In this work, significant progress in development of an universal model for
βm based on an energy balance instead of rescaling is reported. The study is
restricted to the normal impact of a single spherical drop consisting of a vis-
cous liquid (µ > 0) on a dry, smooth, chemically homogeneous and partially
wetting rigid solid surface under isothermal conditions. In addition it is as-
sumed that the initial kinetic energy is sufficiently low so that the spreading
is completely axi-symmetric, the advancing lamella stays in contact with the
solid surface, and no fragmentation into secondary droplets (splashing) or
breakup during receding occurs. The splashing threshold depends on wetta-
bility and viscosity and we refer to Almohammadi and Amirfazli (2019) for
a general empirical relationship that captures available experimental data.
Novelties proposed in the present paper are as follows: (i) a drop deforma-
tion model which improves currents models for hydrophobic substrates, (ii)
a dissipation model which accounts for the proper upper physical bound for
energy dissipation, and (iii) an explicit model for the maximum spread factor
which includes all three scaling laws with respect to We and Re and is in
reasonable agreement with experimental data from literature.

2. General energy balance

In the present energy balance approach, any influence of the air surround-
ing the droplet is neglected as the gas viscosity and density are usually orders
of magnitude smaller than the liquid viscosity and density, respectively. Since
gravitational potential energy accounts typically only for less than 2% of to-
tal initial energy, it is neglected as well. This assumption is reasonable for
drops whose diameter is below the capillary length

√
σ/(ρg) which is about

2.7 mm for water. Thus, we deal with kinetic energy (Ek) and surface energy
(Es) only. The energy balance between the initial energy of the drop at time
t = 0 and the energy at time t > 0 is

Es,0 + Ek,0 = Es(t) + Ek(t) +W (t), (1)

where W (t) ≥ 0 denotes the energy loss by dissipation upon time t.
When a falling drop approaches a solid surface perpendicularly, a dimple

forms at its bottom prior to impact due to the cushioning air layer thereby
transforming a point contact into one along a ring, with a thin disk of air
entrapped. The air-disk contracts rapidly into a small central bubble on the
substrate, to minimise surface energy (Josserand and Thoroddsen, 2016).
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Similar to other energy balance studies we assume here instead that the
drop is spherical (diameter d0, gas-liquid surface area S0 = πd20) and in point
contact with the surface at time t = 0. We furthermore assume that all
the liquid has identical downward velocity velocity u0 resulting in the initial
kinetic energy Ek,0 = πρLu

2
0d

3
0/12. Kinetic energy at time t > 0 is related to

the initial kinetic energy as Ek(t) = Ck(t)Ek,0. Normalising Eq. (1) by the
initial gas-liquid surface energy, σS0, yields

Es,0 − Es(t)

σS0

+ (1− Ck(t))
We

12
=

W (t)

σS0

. (2)

For We = 12, the drops initial kinetic and gas-liquid surface energies are
equal. With definition of the reduced Weber number Wer = We/12, the
initial kinetic energy thus dominates for Wer > 1 while the initial gas-liquid
interfacial energy dominates for Wer < 1 (Zhang and Zhang, 2019).

The initial surface energy is Es,0 = σS0 + γgsAgs,0 where γgs is the gas-
solid surface energy and Ags,0 the area of the initially dry spatially extended
solid surface. The surface energy at time t is

Es(t) = σS(t) + γlsAls(t) + γgs[Ags,0 − Als(t)]. (3)

Here, S(t) is the area of the gas-liquid interface, Als(t) is the wetted surface
area and γls is the liquid-solid surface energy. Because the values of γgs and
γls cannot be measured independently, Young’s equation γgs − γls = σ cos θ
is commonly used to relate their difference to the contact angle θ ∈ (0, π).
We neglect any gas that may be entrapped by the drop and assume that
the wetted surface is circular in shape with instantaneous contact diameter
d(t) so that Als(t) = πd2(t)/4. With the instantaneous spreading factor
β(t) = d(t)/d0 and the notations s(t) = S(t)/S0 and w(t) = W (t)/(σS0) the
energy balance in Eq. (2) can be expressed as

1− s(t) + 0.25 cos(θ)β2(t) + (1− Ck(t))Wer = w(t). (4)

Equation (4) represents the non-dimensional energy balance for time t > 0.
Here, we are interested in the maximum spread factor βm = β(tm) =

dm/d0, where tm denotes the time of maximum spreading and dm = d(tm).
It should be noted that with the present definitions, βm characterises the
maximum diameter of the wetted surface area, which may differ from the
maximum drop dimension observed laterally or from above, depending on the
contact angle at maximum spread. The kinetic energy at maximum spread,
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Ek(tm), may be not negligible for impact on free-slip surfaces or when a
circular flow occurs in the rim (Wildeman et al., 2016; Lin et al., 2022). For
impact on no-slip surfaces as considered here, numerical simulations show
that Ek(tm) is typically less than 5% of the total initial energy (Lee et al.,
2016a; Zhang et al., 2021) but can be much higher for drops bouncing from
hydrophobic surfaces (Samkhaniani et al., 2021). Here we set Ck(tm) = 0
and thus neglect remaining kinetic energy at maximum spreading, similar to
most other energy balance approaches. With this assumption, Eq. (4) yields

1 +Wer − sm + 0.25β2
m cos θ = wm, (5)

where all local instantaneous fluid dynamics from the begin of the impact
process until maximum spread are integrally accumulated in the dissipation
term wm. To derive a relation for βm from the energy balance (5) models for
sm and wm are required. In literature, most often one of two different shape
models for sm = sm(βm) is used, whereas the number of dissipation models
of the form wm = wm(βm,We,Re) is much larger.

3. New concepts for closure of the energy balance

In this Section, novel concepts for sm and wm are proposed for closure of
Eq. (5) in order to derive a model for βm.

3.1. Drop deformation and gas-liquid surface area at maximum spread

Solution of Eq. (4) requires a model for s(t), i.e. the normalised gas-liquid
surface area at time t > 0. This area is closely related to drop deformation
during impact, which can be quite complex (Renardy et al., 2003; Lee et al.,
2016a; Wildeman et al., 2016). Modelling drop shape during impact requires
a drop deformation model, which means that during spreading the droplet
can change its shape depending on β(t) but not its volume. For high We or
for liquids with low viscosity, drop deformation is significant resulting in large
values of βm. The drop typically takes the shape of a thin disc-shaped liquid
layer (called lamella) with or without a rim. This shape can be modelled by a
disc with negligible height where sdisc(β) = β2/4. For a cylindrical drop with
uniform thickness and finite lateral area, the normalised gas-liquid surface
area is obtained by a mass balance as scyl(β) = β2/4 + 2/(3β).

For estimating sm, the disc model was introduced by Ford and Furmidge
(1967) and is used e.g. in Collings et al. (1990), Chandra and Avedisian
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(1991) and Pasandideh-Fard et al. (1996). The cylinder model for sm was
introduced by Mao et al. (1997) and is widely used since then (Roisman
et al., 2002; Ukiwe and Kwok, 2005; Budakli, 2021; Du et al., 2021; Zhang
et al., 2021; Aksoy et al., 2022). More advanced shape models account for
the additional gas-liquid area of a lamella with a rim. The relative size of the
rim was proposed to depend on an adjustable parameter that is a function of
viscosity (Attané et al., 2007), on the contact angle (Gao and Li, 2014) or on
a thickness parameter that is a function of We (Wang et al., 2019). Willis
and Orme (2003) theoretically analysed for the case of binary drop collision
the total surface area on a torus (the extreme case with rim) and pancake
(the extreme case without rim) with the same volume and maximal diameter
and showed trivial difference between the cases.

For low We or liquids with high viscosity, values of βm are lower and
drop deformations are similar in shape to a spherical cap (sc), as assumed by
Park et al. (2003) and Li et al. (2010). In another approach, Yonemoto and
Kunugi (2017) computed the gas-liquid surface at maximum spread as the
harmonic average of the surfaces of a spherical cap and a disc. In a recent
experimental study on the effect of liquid viscosity, Qin et al. (2019) stated
that the difficulty of establishing a predicting model for droplet spreading
below We ≈ 30 roots in the absence of an asymptotically accurate model for
droplet shape. In the following, a drop deformation model is proposed which
is suitable for low and for high values of We.

For a spherical cap, the normalised area of the curved surface is

ssc(θ) =
3

√
2

(2 + cos θ)2(1− cos θ)
(6)

while the spreading factor is

βsc(θ) =
3

√
4 sin3 θ

(2 + cos θ)(1− cos θ)2
. (7)

A relation between the normalised curved surface area and the spreading
factor of a spherical cap seems to be missing in literature. In the Appendix,
the following relationship is derived

ssc(β) =

3

√
β6 + 8

√
β6 + 16 + 32− β2

4
+

β4

4 3

√
β6 + 8

√
β6 + 16 + 32

. (8)
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This non-monotonic relation is displayed in Fig. 2. The local minimum is
obtained for β = 3

√
2 ≈ 1.26 which corresponds by Eq. (7) to θ = π/2. For

0 ≤ β ≤ 4
√
12 ≈ 1.86 it is 1/ 3

√
2 ≤ ssc ≤ 1 and the relation ssc(β) is not

unique as the same value for ssc is obtained by two different values of β.
Introducing sm = ssc(βm) according to Eq. (8) in the energy balance (5)

will result in a rather complicated implicit equation for βm. Here, we are
interested in a maximum spread model that is explicit in βm. To this end we
introduce the approximation

β6 + 8
√

β6 + 16 + 32 ≈ (β2 + 4a)3 (9)

where 0 ≤ a ≤ 1. Inserting approximation (9) into Eq. (8) yields the new
approximate spherical cap (asc) deformation model

sasc(β, a) = a+
1

4

β4

β2 + 4a
, (10)

where a defines the value of sasc for β = 0. For a = 0, the model yields the
disc model.

Figure 2: Normalised gas-liquid surface area (s) as function of spreading factor (β). Com-
parison of disc model, cylinder model, spherical cap model and approximate spherical cap
model (with three different values of parameter a).
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Figure 2 compares the normalised gas-liquid surface area as function of
spread factor β for the different models. For β > 4 all curves overlap almost.
The differences increase with decrease of β. For β → 0 it is sdisc → 0
and scyl → ∞. As both shape models are not compatible with the initial
state s0 = 1, they are (in contrast to the sc model) unsuited to describe the
drop deformation during the entire impact process. In contrast to ssc, sasc is
monotonic in β. For a = 0.5 and β > 1.5, sasc is in good agreement with ssc.
For a = 0.75 and β > 1.5, sasc is in good agreement with scyl. For a = 1 and
β < 0.5, sasc is in good agreement with Eq. (8) and only the choice a = 1
ensures sasc → ssc in the limit β → 0.

3.2. Modelling of dissipation upon maximum spread

The second difficulty in the energy balance approach is the modelling of
normalised accumulative dissipation upon maximum spreading wm. During
the spreading of a liquid film, several types of dissipative processes can occur
at different locations such as the wedge of fluid behind the contact line, the
close vicinity of the contact line or in the precursor film (de Gennes, 1985).
For drop impact, different dissipation mechanisms may dominate depending
on Weber number. At sufficiently high We, dissipation within the viscous
boundary layer that forms near the solid surface during the spreading pro-
cess is often assumed to be dominant. The energy dissipated in the viscous
boundary layer can be accounted for only if the flow in the spreading drop
is known. For inertia dominated drop collisions, Roisman (2009) obtained
an analytical self-similar solution for the viscous flow in the spreading drop
which satisfies the full Navier–Stokes equations. In the context of the energy
balance approach, Chandra and Avedisian (1991) proposed the first mech-
anistic model for the dissipation term. Since then, many models have been
proposed where dissipation is expressed as power of βm with different expo-
nents ranging typically from 2 to 5. In combination with the disc or cylinder
approximation for drop shape this results in maximum spread models of very
different form that are usually implicit in βm, see e.g. Aksoy et al. (2022) for
an overview.

It is quite obvious that there exists an upper bound for the energy that
can be dissipated during the entire impact process. Current models for dissi-
pation from literature do, however, not account for the proper upper physical
bound. Under the assumption that there is no fragmentation, the total dissi-
pation (W∞) can be evaluated from the energy balance Eq. (4) for terminal
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time t∞. Since the terminal kinetic energy is zero Ck(t∞) = 0 it follows

w∞ = 1 +Wer − (s∞ − 0.25β2
∞ cos θ), (11)

where w∞ = W∞/(σS0). On the right hand side of this non-dimensional
equation, the first two terms denote initial surface and kinetic energy while
the terms in the bracket represent the terminal surface energy. The upper
bound for dissipation is thus given by the difference between the total initial
energy and the terminal surface energy. Energy balance models for βm in
literature do not consider the terminal surface energy of the drop so far.
Its importance is, however, highlighted by the rescaling model of Lee et al.
(2016b) where the capillary energy at zero impact velocity is included in the
maximum spreading model.

As mentioned before, in energy balance approaches in literature dissi-
pation upon maximum spread (Wm) is commonly expressed as power of βm,
with normalised dissipation upon maximum spread wm = Wm/(σS0) depend-
ing additionally on We and Re (Madejski, 1976; Chandra and Avedisian,
1991; Pasandideh-Fard et al., 1996; Mao et al., 1997; Wildeman et al., 2016).
The author is not aware on any model for Wm that is a function of θ. Any
dependence of Wm on wettability can therefore only be implicit and hidden
in βm. For a dissipation model where wm = wm(βm,We,Re) it follows

wm

w∞
=

wm(βm,We,Re)

1 +Wer − s∞(β∞, θ) + 0.25β2
∞ cos θ

. (12)

Physically, the ratio on the left hand side should be in the range 0 ≤
wm/w∞ ≤ 1. On the right hand side of Eq. (12), the numerator is a di-
rect function of Re but not of θ while the denominator is a direct function
of θ but not of Re. Due to this discrepancy, common literature models for
Wm will hardly meet the restriction 0 ≤ Wm ≤ W∞ in general. To avoid
this inconsistency and to account for the terminal surface energy, we propose
to model the dissipation upon maximum spread as wm = fww∞ where w∞
is given by Eq. (11) and fw is a function that describes relative dissipation
upon maximum spread and satisfies 0 ≤ fw ≤ 1. With this restriction on the
range of fw, the proposed model automatically ensures 0 ≤ Wm ≤ W∞.

To transfer the energy balance into a relation that is explicit in βm, the
function fw will be modelled here independent on βm. While this may seem
to be a strong assumption, it is actually not. Since βm = βm(We,Re, θ) any
function fw = fw(βm) can be rewritten as fw = fw(We,Re, θ).
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4. Model for maximum spread during drop impact

The general model is obtained by inserting the deformation model for sm
given by Eq. (10) and the dissipation model wm = fww∞ into the energy
balance (5). This yields

1

4

β4
m

β2
m + 4a

− cos θ

4
β2
m − (1− a+Wer − fww∞)︸ ︷︷ ︸

=Q

= 0, (13)

where the sum of the four terms in the brackets is denoted by Q for the
sake of brevity. So far, the latter equation is unclosed in a and fww∞. For
a = 0 (the disc model) and θ = θa two well known literature models for
maximum spreading can be recovered. For fww∞ = 3WeRe−1β4

m/8 equa-
tion (13) reduces to the model of Chandra and Avedisian (1991) while for
fww∞ = WeRe−0.5β2

m/3 the model of Pasandideh-Fard et al. (1996) is ob-
tained. Here, we model fw and w∞ independently and assume that fw is no
direct function of βm so that Eq. (13) results is a quadratic equation for β2

m.
The determination of the total energy dissipation w∞ via Eq. (11) requires

knowledge of the terminal drop shape when the drop has come to rest. Here,
the terminal drop shape is taken as a spherical cap so that

w∞ = 1− ssc + 0.25β2
sc cos θ︸ ︷︷ ︸

e∆s

+Wer

= 1− 3
√

0.25(2 + cos θ)(1− cos θ)2︸ ︷︷ ︸
e∆s

+Wer,
(14)

where we used Eq. (6) and Eq. (7). The term e∆s(θ) expresses the differ-
ence between initial and terminal surface energy, normalised by σS0. As θ
increases from 0 to π, e∆s decreases monotonically from 1 to 0. The value
e∆s = 0 reflects that the initial and terminal surface energies become iden-
tical in the limit θ → π as the drop is in both cases in point contact with
the surface. For Wer ≫ 1 or θ → π, the term e∆s can be neglected so that
w∞ ≈ Wer.

Equation (13) has four real roots for a > 0, from which only the following
is relevant here

βm =

√
2(Q+ a cos θ) + 2

√
(Q+ a cos θ)2 + 4aQ(1− cos θ)

1− cos θ
. (15)
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The term in the denominator shows the prominent role of surface wettability,
as recently highlighted by Wang et al. (2022). The condition βm > 0 requires
Q > 0, where Q is defined in Eq. (13). The minimum of Q is obtained for
fw = 1. In this case Q = 1−a−e∆s(θ) is independent on Wer. The condition
Q > 0 is then equivalent to the condition

a < 3
√

0.25(2 + cos θ)(1− cos θ)2. (16)

The term under the cubic root is minimum (with value 0) in the limit θ → 0
and maximum (with value 1) in the limit θ → π. While the condition βm > 0
is thus always fulfilled for a = 0 (the disc model), it is in the limit fw → 1
not generally fulfilled for 0 < a ≤ 1. This weakness of the model may be a
consequence of approximation (9).

4.1. Ansatz for the dissipation function

So far Eq. (15) is unclosed in fw. This function should properly describe
dissipation in the capillary and viscous regimes. Both asymptotic regimes
are commonly distinguished by an impact parameter P , where P ≪ A in
the capillary regime and P ≫ A in the viscous regime with A > 0 being
of order 1. In literature different relations of the form P = WeRe−b have
been proposed with b = 4/5 (Clanet et al., 2004), b = 1/2 (Fedorchenko
et al., 2005) and b = 2/5 (Eggers et al., 2010). Recently, Wang et al. (2022)
proposed by P = WeRe−4/5(1 − cos θ)2 an impact parameter that depends
on the contact angle.

In selecting an ansatz for the dissipation function fw we follow an idea
from Laan et al. (2014). In their rescaling approach, the authors bridged
the dependency of βm in the capillary and viscous regimes by βmRe

−1/5 =
P 1/2/(Aβ + P 1/2) where Aβ = 1.24 is a constant obtained by a least-squares
fit. Here, we use for the relative dissipation function the ansatz

fw =
P c

A+ P c
, (17)

where P = WeRe−b and c > 0. In the capillary regime (P c ≪ A), ansatz (17)
yields the scaling fw ∼ P c/A which results in the inviscid limit P → 0 in
fw → 0. In the viscous regime (P c ≫ A), ansatz (17) yields in the limit
P → ∞ the result fw → 1. Appropriate values for the exponents b and c are
determined in Section 4.2 while the parameter A is determined in Section
4.3.
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4.2. Determination of exponents in impact parameter

The exponents b and c of the impact parameter P are determined by
asymptotic analysis assuming Wer ≫ 1. With parameter a being of order
one, the power law scaling of Eq. (15) with respect to We and Re should not
be affected by the actual value of a. In this subsection, we use a = 1 since
this simplifies mathematical expressions. For Wer ≫ 1 it is w∞ ≈ Wer and

Q ≈ (1− fw)Wer =
A

A+ P c
Wer (18)

where we used ansatz (17). To study the asymptotic model behaviour, we
distinguish two cases depending on the magnitude of the terms in Eq. (15). In
the first case, we assume (Q+cos θ)2 ≈ Q2+2Q cos θ ≫ 4Q(1− cos θ) which
is equivalent to Q ≫ 4−6 cos θ. In the second case we assume Q ≪ 4−6 cos θ
so that 4Q(1 − cos θ) ≫ (Q + cos θ)2. Since Q > 0 and it is 4 − 6 cos θ < 0
for θ < 48.2◦, the latter condition can only be fulfilled for superhydrophobic
surfaces (θ > 150◦).

4.2.1. General case

In the case Q ≫ 4− 6 cos θ we can approximate Eq. (15) using Eq. (18)
and assuming a = 1 as

βm ≈
√

4(Q+ cos θ)

1− cos θ
≈

√
4Q

1− cos θ
≈

√
4Wer

1− cos θ

A

A+ P c
. (19)

For the inviscid regime where P c ≪ A, Eq. (19) yields the approximation
βm ≈

√
4Wer/(1− cos θ) ∼ We1/2. This is the scaling in the large We

regime when in absence of dissipation (Re → ∞) initial kinetic energy is
converted completely into surface energy at maximum spreading. If a sus-
tained gas film layer develops between the advancing liquid and the substrate
as is the case for (skating) free-slip Leidenfrost drops, then Eq. (19) yields
for the inviscid case (P c → 0) in the limit θ → π the relation βm ≈

√
We/6

(Collings et al., 1990). A scaling ∼ We1/2 was also derived by Villermaux
and Bossa (2011) for the maximum diameter of a radially expanding inviscid
liquid sheet using a force/momentum balance.

For P c ≫ A corresponding to the viscous regime, Eq. (19) becomes

βm ≈
√

4AWerP−c

1− cos θ
=

√
A

3

We1−cRebc

1− cos θ
∼ We(1−c)/2Rebc/2. (20)
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The proper choice to ensure the scaling βm ∼ Re1/5 for the viscous regime is
c = 1 and b = 2/5. This results in P = WeRe−2/5, i.e. the impact parameter
of Eggers et al. (2010).

It should be noted that the dissipation models wm = 3WeRe−1β4
m/8 of

Chandra and Avedisian (1991) and wm = WeRe−0.5β2
m/3 of Pasandideh-Fard

et al. (1996) both yield the scaling βm ∼ Re1/4 when Wm ∼ Ek,0 is assumed.
To obtain for Eq. (20) the scaling βm ∼ Re1/4 requires b = 1/2 which yields
the impact parameter P = WeRe−1/2 of Fedorchenko et al. (2005).

4.2.2. Special case relevant for superhydrophobic surfaces only

In the case Q ≪ 4 − 6 cos θ which becomes Q ≪ 10 in the limit θ → π
we can approximate Eq. (15) using a = 1 as

βm ≈

√
2
√

4Q(1− cos θ)

1− cos θ
≈ 4

√
16Wer
1− cos θ

A

A+ P c
≈ 4

√
8AWer
A+ P c

(21)

where we used Eq. (18). For the inviscid regime (P c ≪ A), Eq. (21) yields
the scaling βm ∼ We1/4 as observed by Clanet et al. (2004) for the impact of
water droplets on a smooth superhydrophobic surface (θe = 170◦). The same
scaling was also observed in experiments on the impact of water drops on
a superhydrophobic substrate comprised of hydrophobic micro-pillars, where
the liquid spreading is lubricated by an air layer between the drop and the
solid surface (Tsai et al., 2011). It should be emphasised that the scaling
βm ∼ We1/4 applies in the limit θ → π for Q ≪ 10 only. For Q ≫ 10
always the scaling βm ∼ We1/2 of the general case (Section 4.2.1) applies
independent on wettability.

By the present analysis, the origin for the two types of Weber number
scaling in the capillary regime can be traced back to the quadratic equation
for β2

m which is obtained from the energy balance when sm is closed by the
approximate spherical cap model with a > 0. Depending whether the term
that is linear in β2

m dominates over the term that is independent on βm or
vice versa, the Weber number scaling We1/2 or We1/4 is obtained. In general,
the Weber number scaling will be βm ∼ Wen where 0.25 ≤ n ≤ 0.5 according
to the two limits as observed e.g. in recent numerical simulations (Wörner
et al., 2021).

For the viscous regime (P c ≫ A), Eq. (21) yields βm ≈ 4
√
8AWerP−c ∼

We(1−c)/4Rebc/4. The proper choice to obtain for the viscous regime the
scaling βm ∼ Re1/5 is c = 1 and b = 4/5 resulting in P = WeRe−4/5, i.e. the
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impact parameter of Clanet et al. (2004). Thus, for the cases of Section 4.2.1
and Section 4.2.2, the same exponent value c = 1 is obtained for the impact
parameter P in the ansatz for the dissipation function, which was not clear
a priori. In contrast, for P itself, a different Reynolds number exponent b is
obtained for the cases of Section 4.2.1 and Section 4.2.2 to ensure the same
scaling βm ∼ Re1/5 in the viscous regime. This suggests that b could actually
be formulated as a function of the contact angle and Q. In the sequel we
will use, however, the value b = 2/5 determined for the more general case of
Section 4.2.1 so that P = WeRe−2/5.

4.3. Determination of regime discrimination parameter

We now determine parameter A. By definition, fw is the ratio between
dissipation upon maximum spread and dissipation upon terminal state. From
division of Eq. (5) by Eq. (11) it follows for this ratio

wm

w∞
=

1− a− 0.25β4
m(β

2
m + 4a)−1 + 0.25β2

m cos θ +Wer

1− 3
√

0.25(2 + cos θ)(1− cos θ)2 +Wer
, (22)

where we used sm = sasc(βm, a) and Eq. (14). To obtain for values β > 1
good agreement of the approximate spherical model with the cylindrical disc
model we choose a = 0.75. With parameter a fixed, equation (22) enables to
estimate values of relative dissipation fw from experimental data where βm

is measured for certain values of We,Re and θ.
At this stage, it is necessary to specify the characteristic contact angle

that shall be used in the present model. The value of the contact angle at
the instant in time when the advancing contact line comes to rest at diam-
eter dm is the advancing contact angle. Therefore, we estimate wm in the
numerator of Eq. (22) using θa. The value of the contact angle at the instant
in time when the receding contact line comes to rest at the terminal diam-
eter d∞ is the receding contact angle. Therefore, w∞ in the denominator of
Eq. (22) should be evaluated using θr = θa−∆θ. With these determinations,
the regime discrimination parameter A becomes a function of the advancing
contact angle and of contact angle hysteresis. This setting has the advantage
that both θa and θr are well defined and can, in contrast to θe, be measured
reproducible with low uncertainty over a wide range of surface wettability
(Liu et al., 2019).

Unfortunately, we could find in literature only two references where both
the advancing contact angle and contact angle hysteresis are reported for drop
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impact experiments measuring βm. Gao and Li (2014) probe five substrates
with different wettability for We ≈ 134 only. The measurements by Lin et al.
(2022) on four different surfaces are more extensive, but are still insufficient
to determine A = A(θa,∆θ) from Eq. (22). We therefore resort to other
experimental data sets from literature assuming zero contact angle hysteresis
(∆θ = 0) for now.

Figure 3 displays results for the ratio wm/w∞ versus impact parame-
ter P = WeRe−2/5 as evaluated for experiments of Aksoy et al. (2022) by
Eq. (22). As liquids, seven different water-glycerol mixtures were used, in-
cluding pure water and pure glycerol. Independent on glycerol concentration,
an advancing contact angle θa = 100◦ is reported. The data set consists of
294 values of βm measured for Weber and Reynolds numbers in the ranges
57 < We < 460 and 4 < Re < 9200. The minimum value of P is about 3
so that the entire data set is in the viscous regime. Largest values of P are
obtained for pure glycerol, where wm/w∞ ≈ 1. With decrease of viscosity, P
and wm/w∞ decrease as well. Figure 3 shows that the experimental data of
Aksoy et al. (2022) are well fitted by Eq. (17) using A = 1.5

Also included in Fig. 3 are experimental data of Clanet et al. (2004). The
authors studied the impact of water droplets on a superhydrophobic surface
(θe = 170◦) for 2.6 < We < 282. Superhydrophobic surfaces have often
very low contact angle hysteresis so that it is reasonable to assume θa ≈ θe.
Since values of Re are not reported in Clanet et al. (2004) but are required
to determine P , we additionally assume that the water experiments are all
performed with the mentioned diameter d0 = 2.5 mm resulting in the fixed
Ohnesorge number Oh = 0.00236. With 0.19 < P < 8.1 the experimental
data of Clanet et al. (2004) cover both the capillary and the viscous regime.
Associated with the decrease of P is a notable decrease of wm/w∞. For the
the three lowest values of P relative dissipation upon maximum spread is
below 20% of total energy dissipation upon terminal equilibrium. Figure 3
shows that the experimental data of Clanet et al. (2004) are well fitted by
ansatz (17) using A = 2.2. Thus A depends in a yet unknown manner on
the advancing contact angle.

The functional dependence A = A(θa) is determined from Fig. 4 where
experimental data of Lee et al. (2016b) are displayed. The authors stud-
ied the drop impact of three different liquids (ethanol, water, glycerol) on
three different surfaces (glass, steel, parafilm). The ranges of the Weber and
Reynolds numbers are 1 < We < 1200 and 40 < Re < 17 800, respec-
tively. For each liquid-solid combination the authors report the equilibrium
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Figure 3: Relative dissipation upon maximum spread versus impact parameter. Symbols:
Evaluation of Eq. (22) using experimental data of Aksoy et al. (2022) and Clanet et al.
(2004). Lines: fits by Eq. (17) with variable parameter A.

contact angle and the dynamic contact angle where 0◦ < θe < 110◦ and
44◦ < θd < 123◦ (see legend in Fig. 4). Here, we assume θa ≈ θd. From the
in total 604 data points of Lee et al. (2016b), four data points for glycerol
at low values of P give negative values for wm/w∞. Note that due to the
lower limit of the y-axis only one of these data points is visible in Fig. 4. The
nonphysical result of negative values for wm indicates that assuming zero
contact angle hysteresis may be not appropriate here.

From Fig. 3 and Fig. 4 the parameter A in ansatz (17) is determined as
A(θa) = 1.2− cos θa. In the limit θa → 0 it is thus A = 0.2 while for θa → π
it is A = 2.2. The final form of the dissipation function fw = fw(We,Re, θa)
is then obtained as

fw =
WeRe−2/5

1.2− cos θa +WeRe−2/5
. (23)

In contrast to Wang et al. (2022), who proposed an impact parameter that
depends on the contact angle, the impact parameter in the present model is
independent on contact angle. Instead, the parameter A that discriminates
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Figure 4: Relative dissipation upon maximum spread versus impact parameter. Symbols:
Evaluation of Eq. (22) using experimental data of Lee et al. (2016b) assuming θa ≈ θd.
Lines: fits by Eq. (17) with A = 1.2− cos θa for four different values of θa.

the capillary and viscous regimes is shown (by analysis of experimental re-
sults) to depend on the (advancing) contact angle.

Relation (23) for the relative dissipation at maximum spread is obtained
from evaluation of experimental data. This relation suggests that for fixed
P liquid repellent surfaces (cos θa < 0) dissipate less energy upon maximum
spread as compared to liquid attracting surfaces (cos θa > 0). This reflects
why after recoil from maximum spread only droplets impinging on surfaces
with reduced wettability (large θ) may possess sufficient excess energy to
enable bounce back (Fink et al., 2018).

Exponents in the dissipation function (23) have been derived from asymp-
totic relations assuming Wer ≫ 1. For zero impact velocity it is We = 0.
Eq. (23) then yields fw = 0, thus predicting zero dissipation at maximum
spread for zero impact velocity, similar to other dissipation models in liter-
ature. For We = 0, the total dissipation is w∞ = e∆s, cf. Eq. (14). The
difference between normalised initial and terminal surface energy e∆s is pos-
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itive for θ ∈ (0, π). This implies that with the present model the excess
surface energy is dissipated completely during the recoil process, which is
not realistic. Furthermore, for We = fw = 0 it is Q = 1 − a and Eq. (15)
yields a relation for βm that depends on parameter a only. This is a further
weakness of the present model. It is related to the modelling of drop shape
at maximum spread as approximate spherical cap while the terminal drop
shape is considered as exact spherical cap, cf. the discussion of Eq. (16).

4.4. Model performance

Aksoy et al. (2022) used their experimental data set to test the per-
formance of four spreading models from literature derived from an energy
balance. The models of Pasandideh-Fard et al. (1996) and Ukiwe and Kwok
(2005) strongly underestimate the spreading of pure glycerol and are found
unsuited for high viscous liquids. The models of Chandra and Avedisian
(1991) and Du et al. (2021) predict the data set of Aksoy et al. (2022) with
an accuracy of about 30% and 20%, respectively. The model of Aksoy et al.
(2022) developed based on their own experiments yields an accuracy of about
10%, which reduces to about 30% for other experimental data sets from liter-
ature. Lee et al. (2016b) compare in Fig. 6 of their paper their experimental
data with the rescaling model for βm developed by the authors. The ordinate
in that figure has, however, no labels. Since the accuracy of the rescaling
model is also not mentioned in the text, the deviation between data and
model in Lee et al. (2016b) is unclear.

The model proposed in this paper is given by equation (15), where θ = θa
and a = 0.75, with Q, w∞ and fw as defined in equations (13), (14) and
(23), respectively. Fig. 5 illustrates the performance of the proposed model
against the three experimental data sets underlying its development (Clanet
et al., 2004; Lee et al., 2016b; Aksoy et al., 2022) by a parity plot. The large
variation of surface wettability (0◦ < θe < 170◦) and liquid viscosity (1 −
1021 mPa s) in the experiments results in wide variations of Weber number
(1 − 1200), Reynolds number (4 − 17 800), impact parameter (0.07 − 188)
and maximum spread factor βm (1.2−5.6). For each individual experimental
data point the value of Q is positive and within the range 0.15 < Q < 5.8
for the entire data set. This indicates the consistency and robustness of the
present model, as for some data of Lee et al. (2016b) negative values of fw
are obtained.

The main diagram of Fig. 5 shows that with exception of the ethanol data
for steel of Lee et al. (2016b) all data form one consistent band. In general,
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Figure 5: Parity plot of βm comparing model predictions with experiments by Aksoy et al.
(2022) (main diagram and upper left inset), Clanet et al. (2004) (main diagram and lower
right inset) and Lee et al. (2016b) (main diagram). Dashed lines in the main diagram and
both insets indicate a deviation by ±20%. For legends to the various symbols see Fig. 3
and Fig. 4.

the proposed model tends to overestimate the experimental data for βm < 3
and to underestimate them for βm > 3. The reasons for these systematic
deviations are unclear. A possible cause could be that kinetic energy at
maximum spreading is neglected in the model. With a maximum deviation
of ±20% the overall agreement of the present model with all experimental
data is reasonable good given the wide ranges of We, Re and wettability.

5. Conclusions

Based on an energy balance approach a new explicit model for the maxi-
mum spread factor (βm) during axi-symmetric drop impact on a dry surface
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in absence of splashing is developed. Normalised gas-liquid surface area at
maximum spread (sm) is modelled by an approximation derived from an ana-
lytical expression valid for a spherical cap. Normalised accumulative dissipa-
tion upon maximum spread (wm) is modelled relative to the upper physical
bound for normalised dissipation (w∞). The latter is determined from a
second energy balance for the terminal state when the drop is at rest pos-
sessing only gas-liquid surface energy according to its terminal shape, which
is modelled as spherical cap.

Relative dissipation fw = wm/w∞ is modelled as function of the im-
pact parameter P = WeRe−2/5 and a regime discrimination parameter A
allowing for a smooth transition between the scaling in the capillary and
viscous regimes. Exponents of the Weber number and the Reynolds number
in the impact parameter are determined by asymptotic analysis. Thereby
the model is the first one that includes the power law scaling of the viscous
regime where βm ∼ Re1/5 and that of two distinct capillary regimes where
either βm ∼ We1/2 or βm ∼ We1/4, respectively. It is shown that the scaling
βm ∼ We1/4 applies to superhydrophobic surfaces under certain conditions
only. It is argued that the regime discrimination parameter A should be for-
mulated as function of the advancing contact angle (θa) and of contact angle
hysteresis (∆θ). Since information on contact angle hysteresis in drop impact
experiments is missing in literature, the relation A(θa) = 1.2−cos θa is deter-
mined by analysis of experimental spreading data from literature neglecting
any possible dependence on contact angle hysteresis so far.

It is believed that the proposed modelling approach constitutes a phys-
ically sound basis for development of a real universal mechanistic energy
balance model for predicting maximum spread during drop impact. The ac-
curacy of the proposed model in comparison to experimental data by Clanet
et al. (2004), Lee et al. (2016b) and Aksoy et al. (2022) is about 20%. For
further improvement, the model should be tested against more experimental
or numerical data sets. Model refinement should focus on the regime dis-
crimination parameter A, which should be formulated in addition to θa as
function of contact angle hysteresis. For this purpose new experimental data
are required. Further generalisations are the consideration of a non-zero ki-
netic energy at maximum spread and the inclusion of gravitational energy in
the energy balance. Both extensions may affect the modelling of A(θa,∆θ) .
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Appendix A. Derivation of Eq. (8)

The area of the curved surface of a spherical cap with base radius r and
height h is

Ssc = π(h2 + r2). (A.1)

The volume of the spherical cap is

Vsc =
π

6
h(3r2 + h2) =

π

6
d30, (A.2)

where d0 denotes the diameter of a spherical drop with the same volume. By
taking the square of Eq. (A.2) it follows

h2(3r2 + h2)2 = d60. (A.3)

Eliminating h2 from Eq. (A.3) by using Eq. (A.1) and introducing the nota-
tions ssc = Ssc/(πd

2
0) and β = 2r/d0 yields

s3sc +
3

4
β2s2sc −

1

16
β6 − 1 = 0. (A.4)

This cubic equation in ssc has one real solution as given by Eq. (8).
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Attané, P., Girard, F., Morin, V., 2007. An energy balance approach of
the dynamics of drop impact on a solid surface. Phys. Fluids 19, 012101.
doi:10.1063/1.2408495.

Bayer, I.S., Megaridis, C.M., 2006. Contact angle dynamics in droplets im-
pacting on flat surfaces with different wetting characteristics. J. Fluid
Mech. 558, 415–449. doi:10.1017/S0022112006000231.

Bennett, T., Poulikakos, D., 1993. Splat-quench solidification: Estimating
the maximum spreading of a droplet impacting a solid-surface. J. Mater.
Sci. 28, 963–970. doi:10.1007/Bf00400880.

Breitenbach, J., Roisman, I.V., Tropea, C., 2018. From drop impact
physics to spray cooling models: A critical review. Exp.Fluids 59, 55.
doi:10.1007/s00348-018-2514-3.

Budakli, M., 2021. Prediction of maximum spreading factor after drop
impact: Development of a novel semi-analytical model incorporating ef-
fect of surface roughness. Colloid Interface Sci. Commun. 41, 100384.
doi:10.1016/j.colcom.2021.100384.

Butt, H.J., Liu, J., Koynov, K., Straub, B., Hinduja, C., Roisman, I.V.,
Berger, R., Li, X., Vollmer, D., Steffen, W., Kappl, M., 2022. Con-
tact angle hysteresis. Curr. Opin. Colloid Interface Sci. 59, 101574.
doi:10.1016/j.cocis.2022.101574.

Castrejon-Pita, J.R., Baxter, W.R.S., Morgan, J., Temple, S., Martin, G.D.,
Hutchings, I.M., 2013. Future, opportunities and challenges of inkjet tech-
nologies. Atomiz. Sprays 23, 541–565. doi:10.1615/AtomizSpr.2013007653.

Chandra, S., Avedisian, C.T., 1991. On the collision of a droplet with a solid
surface. Proc. R. Soc. Lond. A 432, 13–41. doi:10.1098/rspa.1991.0002.

Clanet, C., Béguin, C., Richard, D., Quéré, D., 2004. Maximal de-
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