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ABSTRACT
Humanoid robots will be able to assist humans in their daily life, in
particular due to their versatile action capabilities. However, while
these robots need a certain degree of autonomy to learn and explore,
they also should respect various constraints, for access control and
beyond. We explore incorporating privacy and security constraints
(Activity-Centric Access Control and Deep Learning Based Access
Control) with robot task planning approaches (classical symbolic
planning and end-to-end learning-based planning). We report pre-
liminary results on their respective trade-offs and conclude that a
hybrid approach will most likely be the method of choice.

CCS CONCEPTS
• Security and privacy→ Access control; • Computer systems
organization → Robotics; • Computing methodologies →
Robotic planning.
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1 INTRODUCTION AND RELATEDWORK
The potential of humanoid robots to assist humans lies in the ability
to learn whatever is needed for assistance. However, ‘whatever is
needed’ has to be restricted to safeguard safety, security, and privacy
policies and preferences. The challenge for classical approaches,
i.e., based on symbols and logical formulas, to ensure constraints
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Personal Room
Please clean the 

table!Dishes: Not 
personal, owned 
by the care home

Newspaper: 
Personally owned, 
can be moved

Diary: Very 
personal, should 
not be moved

Figure 1: An assistive robot is tasked to clean the table in the per-
sonal room of a care home resident. The challenge is to integrate an
abstract “do not move private objects” policy as specific constraints
into robot task planning.

lies in the task universality of humanoid robots. Their wide range
of tasks and deployment favors approaches in which the robot is
granted increased sovereignty and should learn its authorizations
in the field. Learning promises scalability of problem complexity up
to task universality, while keeping manual specification complexity
manageable for humans. However, learning changes the nature of
access control from certain enforcement to probable observance.

In a first attempt to tackle this problem of balancing sovereignty
and ‘obedience’, we proposed a joint modeling framework for robot
task planning and access control [1]. By directly incorporating
access control into task planning, robots are unable to even “think
about” forbidden behavior. While the fit between the notion of an
activity in Activity-Centric Access Control (ACAC) [2] and task
planning was shown in theory, we now report on preliminary
practical insights. Recently, machine-learning-based approaches
to assist or even completely perform access decisions have been
proposed, as seen with Machine-Learning- and Deep-Learning-
based Access Control (MLBAC / DLBAC) [4]. In this poster abstract,
we investigate how the logical and neural approaches to robot task
planning can ensure logical and neural constraints beyond access
control, discuss their trade-offs, and propose a hybrid approach.

As toy example illustrated in Fig. 1, a robot is tasked to clean a
table in a personal room, for which the robot now needs a plan. It
considers whether it is allowed to move objects on the table, i.e., the
authorization to move an object is a precondition of the action for
moving that object. We assume constraints that formalize policies
like “do not move personal items,” which allow, e.g., the removal of
care home owned dishes, but disallow moving a diary.
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Figure 2: Workflow of designing a robot task planner using logical
planning and logical constraints. We differentiate between three
phases: In the development phase, the rules for the constraints are
designed and the modeling for the logical planner is done. The train-
ing phase consists of the incorporation of such constraints into the
planner, while during runtime, the plan is generated and executed.

2 ANALYSIS OF COMBINATIONS
We describe the problem as follows. A prompt is an instruction
given by a user to perform a task to reach a certain goal. A signal-
based prompt is, e.g., a user-written text or a microphone recording.
A symbolic prompt refers to abstract symbols, like subjects, objects,
and locations with attributes. A plan is a sequence of actions to
be performed by the robot to fulfill the task and reach the goal. A
symbolic plan is a sequence of abstract actions with their pre- and
postconditions (effects) that is converted to a signal-based plan in
the form of actuator commands needed for execution. Planning is
the problem of finding such a sequence of actions. Logical planning
(usually called symbolic planning) does so by reshaping logical for-
mulas, and needs a symbolic prompt as input to output a symbolic
plan. Neural planning is the forward pass through a deep neural
network that learned to plan, and can either use a symbolic or
signal-based prompt, to either create a symbolic or signal-based
plan. End-to-end planning infers a signal-based plan from a signal-
based prompt. Constraints are machine-executable representations
of policies that have to be observed by a plan execution monitor.
A logical constraint is a constraint in form of, e.g., a predicate-
logical formula, as in classical access control. A neural constraint is
a constraint in form of a deep neural network.

Logical Planning with Logical Constraints. In logical plan-
ning, a planner finds a symbolic plan by searching through possible
robot actions, trying to find transitions that transform the current
state of the robot and its environment to the goal state inferred from
the user prompt. In practice, the de-facto standard for this is the
Planning Domain Definition Language (PDDL) [3], which we used
in the following. Each action has preconditions that need to hold
in order for it to be executed. Typical preconditions are that the
robot has to be at a table to grab an item and thus its hand should
be empty, or that an item has to be unobstructed to be grabbed.
Incorporating safety, security, and privacy constraints in form of
preconditions is a natural approach to generate plans that are aware
of such constraints, as shown in the following.

Since the abstraction of a PDDL transition corresponds toACAC’s
main abstraction of an activity, we propose combining these two
concepts. This workflow is illustrated in Fig. 2. We identify three
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Figure 3: Workflow of designing a neural planner that satisfies neu-
ral constraints. The development phase now consists only of data
collection. The training phase includes the actual training of the
deep neural network, while the neural constraints are being fed into
the training of the planner. During runtime, a forward pass through
the network is performed.

different phases when designing such planner. Only during runtime
we automatically generate plans, while during development and
training time manual work needs to be done. We were able to map1
the preconditions of ACAC directly into the preconditions of PDDL,
as well as the resulting conditions of an activity, which could be
represented as effect in PDDL.

However, ACAC’s contextual conditions and current conditions,
which are checked during the execution of an action, are not di-
rectly translatable. Contextual conditions can be incorporated using
extensions to PDDL, since they rely on querying some external data.
Current conditions interfere with PDDL’s concept of executing an
action instantly that has all its preconditions fulfilled. While it is
possible to incorporate toy examples of ACAC into PDDL to some
extent, we question the scalability up to the humanoid robots in a
care home use case without requiring an equally complex manual
specification. Every possible action, every possible object and every
ACAC policy needs to be considered, inherently prohibiting such
systems from being task-universal.

Neural Planning with Neural Constraints. Recent develop-
ments in the field of machine-learning-based access control showed
the feasibility of access decisions performed by machine learning
methods such as neural networks, as done by Nobi et al. [5]. How-
ever, current systems show quite large error margins, reaching a
precision of about 0.9. Nobi et al. propose the Deep Learning Based
Access Control model, where a neural network directly performs
access decisions. Such systems are mostly trained on access logs
and further user and resource metadata. Note that the neural plan-
ning and neural constraints are learned using the same input. We
can see such a workflow illustrated in Fig. 3. Again we identify
three different phases. Compared to logical planning with logical
constraints, we can now perform the training phase automatically,
while only the development needs manual work, which improves
scalability of solvable problem complexity.

We tested this approach1 by formulating our running example
as natural-language symbolic prompt, and used ChatGPT 3.5 as
neural constraint-observing planner to generate natural-language
1Full artifacts available: https://github.com/kit-dsn/how-to-raise-a-robot-beyond-ac
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symbolic plans, shown in Listing 1. Lines 1 and 12 reduce ChatGPT
to a neural constraint-observing planner for symbolic prompts and
symbolic plans. Lines 2-8 simulate sensors and memory, lines 9-11
instruct ChatGPT with a goal and constraints. We obtain a plan
that reaches the goal of cleaning the table, while not interacting
with the most personal item on the table, the diary. This experiment
shows that we can use a deep-learned neural network to do neural
planning while observing neural constraints inferred from symbolic
prompts. While the dishes were always moved to the kitchen and
the diary was always considered too personal to interact with,
the newspaper was sometimes interacted with and sometimes not,
showing probabilistic instabilities can occur in this approach.
1 Suppose you are a symbolic planning system that generates plans for task−

universal assistive and humanoid robots based on a domain description
that is provided below.

2 Domain:
3 − Care home that uses robots to care for their residents. The care home has lots

of personal rooms for the residents, common spaces like a dining area,
and administrative spaces like a kitchen or offices

4 − Personal Room of a resident that has a table inside
5 − on the table are the following things:
6 − newspaper that was paid for by the resident
7 − dirty dishes that are owned by the care home and are cleaned by the care

home
8 − a diary that most certainly contains very private information
9 Goal: Remove as many objects from the table as possible
10 Constraints: Do not interact with objects that you would consider personal.
11 Possible actions: Move, analyze an object, take an object, place an object
12 Put out the plan in terms of a sequence of actions the robot performs. Put out

the action you used and the object you interacted with or where the
object was placed. You can only use the actions from the list above.
Only put out the sequence of actions as formatted list. The plan must be
conform with all given constraints.

13 # Answer
14 1. Analyze the objects on the table.
15 2. Identify the newspaper as an object that belongs to the resident and should

not be interacted with.
16 3. Take the dirty dishes from the table and place them in the kitchen.
17 4. Analyze the diary and identify it as an object that contains private

information and should not be interacted with.
18 5. Move any remaining objects on the table to a different location in the

personal room where they do not obstruct the table.

Listing 1: A prompt for ChatGPT to generate symbolic plans that
are learned from a basic domain description plus a ChatGPT answer

While this technique requires less human specification to scale
up to higher problem complexity than using logical planning and
logical constraints in combination, changes in the policy make re-
training of the neural planner and neural constraints necessary.
However, ways to tackle policy changes in a manageable way have
been shown regarding DLBAC administration [4]. One could also
consider incorporating neural constraints into the reward calcula-
tion of reinforcement-learning-based planners.

Neural Planning with Logical Constraints. Another possible
combination of activity control and robot task planning is presented
by combining learned planning with rule-based activity control.
Analogously to the previous paragraph, but unconventionally for
Generative Adversarial Network (GANs), we can use logical con-
straints as discriminators to train the end-to-end learning-based
neural planners. Although this approach might not be as scalable
to complex deployments due to manual policy engineering, it is
easier to administrate since the logical constraints do not need to

be retrained after a change. For our running example, we now need
to incorporate policies on what are personal items again, which
makes the whole process inherently more complex. Even though
the neural planner learns its behavior, extensive policy engineering
needs to be done. Once the training of the end-to-end learning-
based planner is finished, this approach behaves similarly to using
a learning-based activity control system: Given a prompt, the robot
performs a forward pass through the neural planning network and
receives a plan that satisfies the desired constraints.

Logical Planning with Neural Constraints. Integrating neu-
ral constraints with logical planning can be done in the same way as
logical constraints. While this alleviates extensive policy engineer-
ing, disadvantages regarding policy administration are retained.

Hybrid Approach. While logical and neural constraints are
quite different compared to each other, the integration in logical
and neural planning is similar. Therefore, we are not limited to
choosing only one combination. We instead argue for a hybrid
approach to combine the best of both worlds: one can use neural
planning and neural constraints for versatility and universality, but
ensure critical policies as logical constraints during runtime. For
critical situations with limited universality, one can also fall back to
logical planning to find an accurate solution slowly. Neural systems
could also serve as recommendation engine for new policies.

3 CONCLUSION
We discussed combinations of logical and neural task planning and
activity control approaches. We highlighted their trade-offs and
showed their benefits and shortcomings. While neural planners
scale better to complex deployments in terms of required manual
specification, they introduce an error margin and hinder admin-
istrability. Designing logical planning systems, however, requires
more manual tasks than neural planning systems. In order to create
deployable systems one should, therefore, strive for hybrid designs
to combine best of both worlds: neural planning with neural con-
straints leads to probable observance of policies, critical policies
will be safeguarded by logical constraints. As next step, we will test
the feasibility of such a hybrid approach in real robot experiments.
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