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Abstract. The working environment is constantly changing and companies face
the challenge of adapting to new and constantly changing customer requirements.
Employees are faced with the challenge of identifying and learning new, help-
ful technologies and using them in order to achieve efficiency gains and increase
productivity. This article addresses the three technologies Artificial Intelligence,
Robotic Process Automation and Virtual Reality, which will play an important
role in the future of work and will influence the Work Environment 4.0. Artifi-
cial Intelligence and Robotic Process Automation relieve employees of repetitive
and manual tasks which thus accelerate and simplify business processes. Virtual
Reality offers employees new opportunities to collaborate in virtual environments.
Instead of performing routine tasks, employees will increasingly promote the use
of such technologies in future and orchestrate their application. In addition, it is
important for employees to continuously look for new use cases within their own
organization and to collaborate with external partners. The article aims to describe
the opportunities that arise from the application of the technologies and to explain
their effects on the Work Environment 4.0 and the employee.

Keywords: Artificial Intelligence · Robotic Process Automation · Virtual
Reality · Human-Machine-Interaction

1 Introduction

In industrialized countries, the competence of employees represents the most valuable
resource and locational advantage. Today, however, employees are occupied with rule-
based and time-consuming tasks both in the office and on the shop floor. Therefore, they
are less able to focus on creative and value-adding tasks. Furthermore, collaboration is
needed to connect employees with different domain knowledge and to enable efficient
collaboration across departments and organizations for product development.

In order to take advantage of this opportunity, however, companies face the challenge
of integrating intelligent and modular solutions into their own business processes. The
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key technologies Artificial Intelligence (AI) and Robotic Process Automation (RPA)
play a central role in the newWork Environment 4.0. These technologies take over time-
consuming, tedious, rule-based, and monotonous manual tasks from employees and
free up employees’ capacity for creative and value adding tasks. Furthermore, Virtual
Reality (VR) has the potential to enable collaborative work throughout the product
lifecycle and to visualize products and processes in real-time. In virtual environments,
collaboration enables flexibility and reduces the carbon footprint, as employees do not
have to necessarily travel for meetings, nor do they have to work at the same time.

This article presents and classifies three relevant technologies for digital transfor-
mation and gives an outlook on the Work Environment 4.0. In addition to the technical
explanation, the article describes which competencies of employees are required in
future. The scope of the article ranges from office work at the computer to the shop
floor of industrial companies (Fig. 1). AI and VR address the shop floor and AI and
RPA support employees in repetitive office tasks. Finally, these technologies improve
business processes to meet customer requirements. The human orchestrates the use of
the three technologies inWork Environment 4.0 and needs background knowledge about
the possible approaches and areas of application. At all times, the focus is on the human
being that orchestrates the different technologies through a human-machine-interaction
approach.

Fig. 1. Overview of relevant future technologies which are described in the article (own
representation).



70 S. Kreuzwieser et al.

The article begins with an overview on the three future technologies AI (Sect. 2),
RPA (Sect. 3) and VR (Sect. 4). Each section is structured similarly and starts with the
motivation and introduction. Afterwards the respective technologies are described in
detail and possible use cases are explained using examples to highlight opportunities
offered by the technologies. The reader should be able to identify areas of application
in their own organization, evaluate implementation options, and plan implementation.
Finally, the article ends with implications on future of work, a conclusion and outlook
on further research aspects (Sect. 5). The aim of this article is to understand the oppor-
tunities offered by the three technologies and to be able to better classify them. All
of the technologies presented have the potential to optimize processes and to shape the
Work Environment 4.0. Furthermore, there are also organizational changes and changing
requirements for employees in Work Environment 4.0.

2 Artificial Intelligence

2.1 Motivation and Introduction

Since computing hardware has improved in the 2000s, AI has started to influence many
aspects of daily life and is making rapid advancements e.g. finding anomalies in machine
behavior or optimizing business processes in shop floor and office work. AI is broadly
usable and a technology which changes work environments and will be able to shape
the workplace of tomorrow.

In this section we define AI and describe the fields of application of AI for practi-
tioners in the Work Environment 4.0. We also describe technologies that are researched
right now and will likely have a significant impact on the workplace. Since employees
in various departments can benefit from these technologies we will present use cases
for both work on the shop floor as well as work in the office. Finally, we will give an
outlook on the implications of these technologies for the human being.

2.2 Theoretical Background

AI has the ability to solve complex problems. For this purpose, methods are used that are
similarly used by humans [1, 2]. For example, AI can communicate with customers, help
to identify anomalies in data, read documents, send out digital ads or predict scenarios.

There are numerous definitions for AI e.g. weak- or strong AI. Weak AI focuses on
solving specific existing problems and on one aspect of mental function. Strong AI is
an approach that tries to reproduce and imitate the human being e.g. empathy [3]. This
article focuses on weak AI, as it is the most commonly used in practice.

Machine Learning (ML) is the area of AI that is mostly associated with the term
today. In the context of Smart Manufacturing and Industry 4.0 ML plays a crucial role
in the intelligent usage of data and thus in the modern industrial process environment.
The amount of data being generated in the processing industry is increasing rapidly.
ML algorithms lead to an effective and efficient use of those data quantities. ML is at
its core about learning from data and can be defined after the general learning task as:
“A computer program is said to learn from experience E with respect to some class of
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tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.” [4].

Deep Learning as a subset of ML refers to neural network architectures that use an
input and output layer of neurons as well as multiple hidden layers [5]. This form of ML
has gathered a lot of interest due to the increased performance of computing hardware
(Graphics Processing Units, Neural Processing Units, dedicated Field Programmable
Gate Arrays) and the resulting feasibility of the execution of more sophisticated artificial
neural network architectures e.g. Convolutional Neural Networks (CNN), Recurrent
NeuralNetworks,GenerativeAdversarialNetworks, TransformerNetworks, etc.MLcan
be divided into unsupervised, supervised and reinforcement learning. The approaches
behind these three categories are explained after introducing the concept of training.

The AI system is supposed to learn a generalized rule or behavior from a dataset.
Thereby, theMLmodel achieves to accurately predict on new and unseen sets of data. In
principle, two stages of model usage are distinguished: training and inference. Training
in this context means the process of building or shaping the model. InML, many kinds of
models can be used, e.g. Decision Trees, Regressions, Support-Vector-Machines (SVM)
or Artificial Neural Networks. The second stage in ML is model inference. At this
stage, an already trained model is executed in order to accomplish the task. Therefore,
the model works on test data or with live data. In some applications data is still used
for further training, in others it is discarded after model execution. Often the decision-
making process of trained ML models is unclear and difficult to verify due to the black
box character of ML methods. For example, a model that identifies bananas does not
look for a curved yellow object, but only for a blue sticker. Recent developments in the
field of explainable AI try to alleviate some of these challenges [6].

Fig. 2. Sample input data for a ML model (own representation).

One approach used in ML is unsupervised learning which uses unlabeled data. This
means that nothing is known except for the input. The resulting model can be used to
identify patterns or groups within a data set. This step is defined as knowledge discovery
[7]. As the example of input data in Fig. 2 shows, amodel for unsupervised learning could
cluster in terms of many different metrics, such as size, shape or color. Nevertheless, a
model could also identify squares and circles that are point-symmetric.



72 S. Kreuzwieser et al.

In supervised learning, the raw data has been labeled before training. Therefore, the
trained model has to learn a mapping between input and output, i.e. shape, size and/or
color of the input [7]. However, the act of labeling can be very time-consuming since
often it is still a manual task involving human labor.

Reinforcement learning is another approach and in contrast to unsupervised and
supervised learning, the feedback to the model is punishment signals or reward. The
algorithm must find the actions which maximize its incentive function [7]. For example,
when playing chess, AI has to take actions that lead to reward and finally to success. The
environment is often represented by aMarkov decision process. Reinforcement learning
is used to solve many problems that are analytically infeasible [8]. When training a
reinforcement model, we try to find an optimal policy for an agent, to find an appropriate
action in any given state of the environment to maximize the reward and to not get stuck
in local optima.

In the following section, we will present some technologies that are likely to reshape
Work Environment 4.0.

Human beings communicate and share knowledge using written and spoken lan-
guage.Oftentimes it takes awhole childhood to learn how to formwords, associatewords
with things, form sentences, learn how to read and how to write. Enabling machines to
work together with human is one of the big aims of current AI-research in the field of
Natural Language Processing (NLP). NLP focuses on solving tasks involving the human
language e.g. by analyzing syntax, semantics and context. BERT (Bidirectional Encoder
Representations from Transformers) [9] and all its derived versions, GPT (Generative
Pre-trained Transformer) [10], XLNet (Generalized Autoregressive Pretraining for Lan-
guage Understanding) [11], PaLM (Pathways Language Model) [12] enable machines
to perform increasingly well with a multitude of difficult NLP tasks.

Practical applications in the context of NLP tasks range from the processing of
text using Optical Character Recognition (OCR), handwriting recognition, text summa-
rization, text prediction and Natural Language Generation (NLG), chat-bots, document
understanding, Natural Language Understanding (NLU) or text to image generation.

Furthermore, generative models, in particular “Generative Adversarial Networks”
(GANs) enable the generation of realistic synthetic data in a variety of fields, finding
application e.g. in photo realistic image generation, video generation ormusic generation
[13]. Recent image generation models from OpenAI (DALL-E, DALL-E 2) [14] and
Google’s Imagen [15] enable the creation of artistic and photorealistic images using
simple text-based prompts as input.

With the introduction of CNNs and their improved architectures image classification
tasks can be solved on a level surpassing human ability [16].

2.3 Application

Processes are digitalized and automated in almost all areas within an organization.
Mature technologies which come from the field of NLG, NLU and NLP, e.g. OCR and
handwriting recognition can speed up this process even further. Furthermore, AI influ-
ences jobs which have already been digitized. For example, product development teams
with jobs in design and engineering, simulation and programming may use AI assisted
systems and enhancements which will lower entry barriers, decrease cycle times and
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time to market, speed up decision making processes and increase customer satisfaction
[17].

AI assisted engineering also increases the potential for more complex products and
cost savings in production as well as for a sustainable climate [18]. Repetitive and
pattern-based digital tasks in engineering can be performed faster by using algorithms
which employ deep neural networks [19].

Methods such as SVM, Naive Bayes and k-nearest Neighbor are already used in
industry to ensure quality assurance in production [20–22]. In addition to the early iden-
tification of quality problems, it is also crucial to initiate process improvements imme-
diately and to transfer findings to other production lines or the supplier network in order
to reduce quality costs. Transfer learning offers the opportunity to apply existing ML
models to comparable problems, thereby exploiting synergies and saving development
effort [23].

In the last 50 years, with the emergence of new data processing capabilities, there
have been big changes in the handling of machine maintenance and prognostic health
management. The integration of large-scale sensory data feedback (big data) as well as
edge devices or smart sensors systems on the shop floor enable production data to be
monitored and stored in real time [24].

Data Mining methods facilitate shop floor data association analysis [25].
Additionally, wireless communication technologies enable distributed manufactur-

ing resources to collaborate with each other. By integrating the physical and the infor-
mation layer, the concept of the “Industrial Internet of Things” (IIoT) becomes more
relevant. Industrial big data is therefore particularly concerned with the meaning of the
data and its association with failures and value creating mechanisms [26].

This means that the analysis of industrial big data requires domain knowledge, for
example, in failure mechanisms, process knowledge etc. Fault diagnosis and health
assessment models usually rely on accurate, clean, and frequently adequately labelled
training data, thus making the data quality an essential aspect of the industrial success
of these solutions [27].

The use of digital twin technologies further increases the possibilities for optimiza-
tion, autonomous decision-making as well as increased transparency for management
[28].

3 Robotic Process Automation

3.1 Motivation and Introduction

Today employees are responsible for numerous business processes and have to per-
form manual and tedious tasks, whereas creative and value-adding activities like the
development of innovative products are often neglected. In addition to processes on the
production line, activities carried out on the computer offer further potential for automa-
tion. Organizationsmay achieve faster andmore accurate business processes by using the
future technology RPA. Furthermore, employees may focus on customer requirements
and the development of new products and services to ensure competitiveness. RPA is of
particular importance in office work to achieve efficiency gains for organizations and to
respond promptly to customer needs and to secure a sustainable competitive advantage.
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The traditional automation of processes is carried out by Business Process Manage-
ment Systems (BPMS) which are often referred to as workflow systems. Such workflow
systems require the programming of interfaces as well as the adaptation of the IT archi-
tecture. These solutions, known as heavyweight IT, are invasive and fully integrated.
“Heavyweight IT denotes the well-established knowledge regime of large systems,
developing ever more sophisticated solutions through advanced integration.” [29]. In
contrast, RPA depicts lightweight IT and represents a non-invasive option for digitizing
and automating as business processes are automated without changing the existing IT
architecture [29]. The term RPA is often associated with robots that perform manual
operations such as assembly tasks and relieve humans of their daily workload. RPA
technology, however, addresses repetitive time-consuming tasks that are performed by
humans on a computer. Thus, robotic in this context refers to installable and flexible
computer software which supports employees in daily tasks like data transfer or data
manipulation [30].

RPA has become increasingly popular in recent years and is now used in various
industries and companies. In an empirical survey, 400 decision-makers from companies
in theUS,UK, France andGermanywith at least 50 employeeswere questioned. The sur-
vey examined the use of RPA solutions. According to the survey, only 33% have already
deployed RPA solutions, and 31% intend to do so in the next 12 months. Accordingly,
the greatest opportunities are seen in the area of customer experience, as 39% of those
surveyed assume that process automation will have a positive effect on this area of the
company [31]. Today companies have access to a wide range of automation software
to develop RPA solutions like the three leading platforms: UiPath Studio, Automation
Anywhere and BluePrism [32].

In this section we describe the RPA technology and show possible use cases in office
work as well as the combination of RPA and AI.

3.2 Theoretical Background

There are numerous definitions of RPA in the literature. IEEE Corporate Advisory
Group (CAG) emphasizes that a RPA solution is software: “A preconfigured software
instance that uses business rules and predefined activity choreography to complete the
autonomous execution of a combination of processes, activities, transactions, and tasks
in one or more unrelated software systems to deliver a result or service with human
exception management” [33]. The Institute For Robotic Process Automation (IRPA)
also defines RPA as a software solution: “Robotic process automation (RPA) is the
application of technology that allows employees in a company to configure computer
software or a “robot” to capture and interpret existing applications for processing a trans-
action, manipulating data, triggering responses and communicating with other digital
systems.” [34].

RPA solutions are based on the three different technologies: workflow automation,
screen shaping, and AI. Workflow automation automates data transmission and the pro-
cessing and routing of data and files. Screen shaping includes all processes for read-
ing text from computer screens and further processing these data in other software. AI
enables organizations to transfer human learning and automatingmore complex business
processes [35].
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RPA software applications combine these three technologies so that time-consuming,
recurring and error-prone tasks can be performed in Work Environment 4.0. The RPA
solution is faster than the corresponding manual process by humans and the proesses is
also logged. This means that all steps performed in RPA are always traceable and ensure
a higher quality in terms of results.

RPA operates on the user interface of a computer and aims at replacing people [36].
Likewise, RPA is known for the creation of simple procedures which do not necessarily
require programming, but can be created with drag and drop functions. However, pro-
gramming skills are necessary to implement more complex procedures [37]. To get RPA
running in an organization a configuration and scripting of this incident is required once.
After that, the routine can run permanently or may be scheduled to run e. g. daily at the
same time.

Using RPA hardly affects the existing IT infrastructure in the company because
RPA works on the user interface [30]. The operation of these routines is simple. If
errors occur during the execution of the automated process, specialized personnel needed
quickly to identify the error and possibly adjust the configuration. In this respect, RPA
is only suitable if the rules or the working environment at the user interface do not
change constantly. Thus human errors can be avoided with RPA, e.g. due to the lack of
concentration and motivation. Thus, RPA has a wide range of applications in companies
and organizations for process automation and acceleration as well as an expansion of
capacity with high quality in the completion of tasks. RPA, however, cannot replace
a human per se; rather, RPA can be used to relieve people of usually quite simple and
often very monotonous and tedious tasks on the computer so that they can attend to more
difficult tasks or other activities.

Companies looking for RPA opportunities have to consider several criteria for identi-
fying the processes best-suited for RPA.A four-step approachwhich supports companies
to evaluate process eligibility is given in literature. According to this approach, automa-
tion only suits rule-based processes that require manual interaction with a software
application [38].

3.3 Application

In the literature, numerous case studies are described in various industries. Typical
tasks that are often replaced by RPA software tools are logging into applications on the
Internet or fromEnterprise Ressource Planning (ERP) providers, merging statistical data
from different IT systems and preparing these data as a graph or report in a program,
any kind of copy and paste activities for data transfer, saving, renaming and moving
documents, executing simple if-then rules. Likewise, bots can perform calculations as
well as generate and send emails even with attachments [39].

Figure 3 lists further processes that can be automated by RPA.
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Fig. 3. Process steps that are particularly suitable for RPA implementation (own representation
based on [39]).

RPA technology has the potential to automate business processes in quality manage-
ment and to ensure product compliance. In a case study, Mercedes-Benz AG achieves a
faster and more accurate business process, saves 5.075 FTE (full-time equivalents), and
increases product quality [40].

A business process outsourcing (BPO) service provider automated the invoicing
process so that over 21%more cases can be processed by employees. Thus, productivity
(measured by cases processed per employee) increases as the RPA solution processes
multiple cases simultaneously [41]. Furthermore, RPA may be used in the field of audit
[42], finance [43], procurement [44], customer service [45], among others.

In contrast to these advantages, there are risks that need to be managed. Immature
RPA solutions carry the risk of decreasing productivity and additional manual steps, and
increase error rates [46, 47]. In addition, stuff members might reject RPA solutions due
to their fear of job losses resulting from the personnel savings which are achieved inci-
dentally. These employees are then freed up for more creative and challenging activities.
At an early stage, however, companies may have to prepare these employees for new
fields of activity in Work Environment 4.0 through training.

Furthermore, smooth operation of RPA software tools can only be guaranteed, if
these solutions are regularly updated and checked. Likewise, when scripting the routines,
engineers have to make sure that they are programmed as robust and stable as possible.
User interfaces that do not change often are an essential prerequisite for stable running
bots, as any change usually means adjustments in the program. Such adjustments and
also errors that occur in bots during operation require skilled personnelwho can intervene
quickly and at any time.

The more intelligent an RPA solution is, for example by using OCR for automated
reading and processing of delivery bills, the more complex and demanding the scripting
of the solution is. In some cases, this requires adjustments to the process and also
specialized personnel who can implement these solutions [48].

Since RPA can be implemented easily on a company’s own computer, in some cases,
even without IT experts, RPA also offers the potential to increase shadow IT in the
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company, especially in the specialist departments. This aspect, in return, can have a
negative impact on IT security and operation as well as on adherence to compliance
guidelines [37].

The following Fig. 4 shows the key advantages of RPA implementations for
companies and organizations.

Fig. 4. Key advantages of RPA implementations (own representation).

RPA softwarewill become evenmore powerfulwith the further development of functions
that incorporate AI. RPA software providers are already offering such functions that play
a central role in Work Environment 4.0.

ML is another growing area of AI related to RPA. This area uses algorithms to
generate artificial knowledge from existing data so that certain patterns are recognized.
The bot learns from these patterns and then applies this knowledge to new data sets. A
typical application here would be a bot that has learned to distinguish invoices from other
documents, scans them by using OCR and enters them correctly into the company’s ERP
system.

NLP functions enable bots to copy texts and insert individual words in other places.
The bots, however, are not yet able to understand these words. Extensions that can be
expected in this direction in the future fall into the areas of NLU and NLG. Then a bot
will also be able to understand texts and generate its own texts. This is also referred
to as “social robots” or “digital assistants”. These will then be able to simulate human
judgment [30].

RPA is also used in combination with Process Mining (PM). PM enables companies
to analyze and improve their existing processes with the help of accumulated data on
the computer. Thereby, transaction data collected in the form of log files is read from
the company’s existing systems, such as ERP and Customer Relationsship Management
(CRM) systems, and imported into process mining software. If the data is factually
assigned correctly, the PM software analyzes the data and presents it by means of a
model of the processes that actually took place. In addition, dashboards can be used to
display various key figures such as the lead time and statistics for the process. These
figures provide information, for example, about all process variants that have occurred
or about existing bottlenecks in the process. On this basis, it is relatively easy to define
and automate a new target process. In addition, processes executed by bots also generate
transaction data, which can also be analyzed and subsequently improved by PM.
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For automation, workflow software can be used for processes with an enormously
high degree of standardization and high case frequency, or RPA software for a medium
degree of standardization and medium to high case frequency [30].

4 Virtual Reality

4.1 Motivation and Introduction

Global events like the pandemic put a spotlight on remote work and on the demand for
virtual education and collaboration across departments and organizations. Embedding
the human user into a virtual learning environment can lower the inhibitions and fear
through the possibilities of free experimentation and the benefit of making errors in
virtual environment without the risk of damage or financial loss. Tutorials can be set up
individually, tailored for the learner’s level of knowledge. More advanced applications
are the training of workers for the configuration, operation and maintenance of products,
machines or production plants.

VR in engineering encompasses the whole product life cycle and supports it with a
variety of applications like the design review during the product development process,
production planning for manufacturing or training applications just to name a few.

The concepts, methods and systems are all well known for years, but struggle to get
adopted, especially in small and medium-sized enterprises. We want to give an insight
into current research and will look at VR from a technology perspective, but also from
the engineer and worker perspective.

In this section we describe the opportunities of VR along the product development
process and present a specific education use case.

4.2 Theoretical Background

According to theReality-VirtualityContinuum[49], two environments are distinguished:
On theonehand, there is the real environmentwhich consists of real objects and illustrates
the real-world and on the other hand, there is a virtual environment with virtual objects
which are monitor-based or immersive. Mixed-Reality (MR) environment is in between
and comprises real objects and virtual objects. The term immersion refers to the feeling
of being in VR. According to studies [50], immersive technologies are suitable for
communication and understanding of emerging products.

The product development process controls and manages all activities linked to the
aim of developing a product that meets customer requirements and also fulfills the
organization’s financial and technical conditions. During the product development, the
development status must be continuously checked and tracked. Therefore, humans need
towork together in interdisciplinary teams and in a collaborative and virtual environment.

There are a few tools that provide the classic range of functions of a design review
tool e.g. IC.IDO from ESI and CMC ViewR from CMC Engineers. Both tools offer a
wide variety of data and communication interfaces in order to be able to visualize CAD
data in immersive VR hardware systems. Then engineers can validate the CAD design
with various tools such as measurement tools, cutting planes, drag-and-drop interaction
or a physics simulation of the model components [51].



Human-Machine-Interaction in Innovative Work Environment 4.0 79

In contrast to these tools, TechViz is a middleware that extends Computer-Aided
Design (CAD) software and other 3D-Software and taps the data as an Open Graphics
Library stream. Since TechViz can display data in immersive VR hardware systems [52]
its focus is on the design review application.

In the field of virtual commissioning, research and development at manufacturers
of automation solutions exists. This includes, for example, Simit [53]. Virtual commis-
sioning generally facilitates extensive validation of the planning data during product
development, especially in individual machine construction. On the other hand, how-
ever, virtual comissioning presents an enormous effort as it entails the effort to create
functional virtual models, to model the dynamics and kinematics, to parameterize the
interaction with scripts and the real-time simulations.

The automation of the creation of virtual functional and interactive machine models
is a research field that has been addressed at the Institute for InformationManagement in
Engineering (IMI) for several years [54]. This is the basis for allVirtual Engineering (VE)
methods like design reviews during product development, the virtual commissioning of
production lines, training applications, maintenance simulations, material flow simula-
tions and much more. VE as a new working method in product development makes it
much easier for engineers and product managers to validate the partial development or
interfaces between groups, departments and organizations. In addition, Software in the
Loop (SiL) and Hardware in the Loop (HiL) enhances work steps that can already begin
with virtual instead of real components.

In order to consistently validate Mechanical Computer-Aided Design (MCAD) and
ElectronicComputer-AidedDesign (ECAD) aswell as programming, automated virtual-
ization systems must integrate all planning data into a Virtual Twin (VT) of the machine,
system or integrated production line at the push of a button. Generic intelligence is auto-
matically added using SemanticWeb technologies, enabling complex interactive models
that can be used for training, monitoring, and many other applications beyond just val-
idating design data [55]. In order to achieve this high degree of automation, geometry
analysis algorithms are used to capture as much intrinsic knowledge as possible from
the MCAD and thus automatically parameterize kinematic simulation. Such interactive
simulation modules are important to simulate the behavior of machines and processes
and to give the user extensive interaction options. Another aspect is the automated aggre-
gation of all knowledge from the planning data, especially the merging of the component
data in MCAD and ECAD.

The software system used to implement the above-mentioned subsystems, data
interfaces, interactive simulations and VE applications is the VR authoring system
PolyVR. This open source project was initiated in 2009 at the IMI, Karlsruhe Institute
of Technology [55, 56].

The automated virtualization is a fundamental game changer for design reviews with
functional models up to virtual commissioning. But this method also greatly simplifies
the authoring of more advanced applications that can use those functional machine
models for software and HiL, operation and maintenance training applications and VTs
for configuring and monitoring. In this regard, the impact of optimizing data interfaces,
simulating as many aspects of machinery as possible and interactively, goes way beyond
the product development process. For engineers in theWork Environment 4.0, this offers



80 S. Kreuzwieser et al.

a new horizon of possibilities, especially to create and deployVR-supported applications
like training and monitoring in production settings and not only as demonstrators in
academic settings.

4.3 Application in Tunnel Boring

In this use case, we will show how the implementation of a VT coupled with a physical
setup can help human learners to understand processes in a quicker time frame and more
controlled environment (Fig. 5). In this MR training setup, a tunnel boring machine
was replicated virtually and coupled in a HiL approach to behave similarly to the real
counterpart. While the human operator still stands in front of a physical control panel
on the construction site, the tunnel boring machine itself is physically missing and only
digitally existing as a VT. The logic control program of the machine is used to drive the
virtual machine. By running and communicating with the control software in real time,
exactly as it would run in the physical environment on site, we gain the possibility to
design virtual scenarios for individual learning settings. These user specific scenarios
and stress situations can be deployed to emulate failures during the process without the
fear of harm for either the machine or the human worker. Different solution approaches
can be discussed as well as effortlessly and repeatedly tried during the training by the
learner to see how the machine will behave according to varying control inputs.

Fig. 5. On the left: Physical operator terminal, steering panel and display for showing system
status. On the right: Visualization of the virtual tunnel boring machine (own representation).

The simulator consists of three parts (Physical Control Panel, Programmable Logic
Controller (PLC) Program,Machine Simulation) which are subdivided again into further
modules.

The physical control panel with two attached displays is the Human Machine Inter-
face (HMI) which the operator faces on a construction site to control the tunnel boring
machine. This is necessary for both the real machine as well as the simulator to guaran-
tee that the learner has the same haptic feeling and visual cues just like on site. While
within the virtual simulation a virtual representation of the control panel is possible and
implemented as well, the benefits of a real control station already imitate the feeling of
familiarity of the machine operators.

The PLC program is between the physical control panel and the simulation and is
responsible for the behavior of each moving component of the tunnel boring machine.
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In this program the data from all the sensors are consolidated and processed. Depending
on set targets and safety limits, specific behavior (e.g. power cut off, or safety valve
position) is programmed into the software to protect both the machine as well as human
personnel in the vicinity. Reactional behavior according to the operator’s input is also
commanded by this software (e.g. variable pump output, valve position, motor speeds).

On the virtual side of the simulator, the virtual representation covers the tunnel boring
machine up to a certain degree of detail (Fig. 6). In the best case of implementation, the
machine would be virtually identical to the real counterpart but due to typical restrictions
such as computational power of the simulators and the required real-time capabilities of
the simulation only a scaled down VT is deployed in this use case.

The VT of the tunnel boring machine consists of the machine’s visual representa-
tion, which is derived from the CAD-model. This model’s geometries are positioned
in real time to show the current position and direction in 3D-space as well as to depict
functionality such as cylinder expansions of the cutting head’s steering capabilities and
it’s cutting wheel speed. To calculate these parameters, the virtual simulation is imple-
mented on a physically based model of the machine. The modular architecture of the
simulation contains the following subsystems of the tunnel boring machine: The propul-
sion of the whole machine is handled by hydraulically actuated cylinders which have
pressure sensors to show how much force is applied to drive the boring machine into the
earth.

Fig. 6. On the left: Propulsion cylinders in red. In the middle: Directional steering cylinders
marked with arrows. On the right: Visualization of the underlying physics simulation of the
steering cylinders (own representation).

The movement speed of the whole machine results from the interplay of how much
earth is removed in front of it and how hard these cylinders press the machine into the
earth. The cutting head’s parameters define the behavior of the boring machine such as
the direction (controlled by hydraulic steering cylinders) and the rotational speed of the
drill. The quicker the head spins, the more volume is removed by the boring machine.
The loosened and disheveled sediment is transported out of the tunnel by a pipe system
which provides the transportmedium to the cutting head. The back flowingwatermixture
is filtered, recycled and moved by pumps and controlled by valves. After the maximum
length of one tunnel segment is reached, the propulsion cylinders are retracted and a new
segment is added to the setup (Fig. 7).
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Fig. 7. On the left: Operator panel of the water cycle, the deployed valves and pumps are marked
in green transparent cycles. On the right: Top: Operator visual feedback display of the machine’s
water cycle. Bottom: Virtual display of the water cycle simulation (own representation).

By means of this simulator, the learning operator gains a tool worked out with all the
necessary components, safety settings andmachine behavior whichmirrors real working
situation on a construction site. Thereby, the operator is able to concentrate on the control
strategies without the possibilities of real damage to physical parts or human co-workers.

5 Conclusion

The future of work will change continuously and the three technologies presented in
this article may increase productivity and efficiency of organizations. The requirements
on employees at shop floor and office work will constantly change. At office work,
efficiency increases and productivity gains will result from AI and RPA. Instead of
processing rule-based tasks, employees will see themselves in the role of identifying
rule-based and monotonous work themselves and automating it using suitable RPA and
AI solutions. In addition, cross-departmental and cross-organizational processesmust be
optimized, digitized and finally automated. Constantly changing external requirements
require continuous adaptation of business processes and thus adaption of RPA and AI
solutions. Employees need technical know-how and process knowledge to plan, build,
run and manage automation solutions.

In addition, the use of VR enables new possibilities for collaboration. Collaborative
working is becoming an essential part of our everyday lives, with multiple individuals
organizing themselves into teams to jointly developproducts and services. The increasing
networking of individuals is not only influencing our social life but therefore also our
everyday work. Tomorrow’s engineer will need to understand and handle much more
complex systems and tools to cope with the ever increasing demands and complexity
of product development. These methods will not focus on simplifying modeling and
planning as CAD systems do, but rather on simulations and AI to enable much faster
development, much more advanced optimizations and much more efficient validation
iterations.

It is necessary that employees get to know the three proposed technologies and
acquire knowledge. The further development of the three technologies is progressing
and thus even more use cases will be possible in the future that will help organizations
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to maintain their competitiveness. RPA and VR solutions will become more intelligent
through the use of AI and their areas of application will expand as well as improve their
performance.
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