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Abstract: We review the current status of the long-term programme of numerical investigation of
Sp(2N) gauge theories with and without fermionic matter content. We start by introducing the
phenomenological as well as theoretical motivations for this research programme, which are related
to composite Higgs models, models of partial top compositeness, dark matter models, and in general
to the physics of strongly coupled theories and their approach to the large-N limit. We summarise
the results of lattice studies conducted so far in the Sp(2N) Yang–Mills theories, measuring the string
tension, the mass spectrum of glueballs and the topological susceptibility, and discuss their large-N
extrapolation. We then focus our discussion on Sp(4), and summarise the numerical measurements
of mass and decay constant of mesons in the theories with fermion matter in either the fundamental
or the antisymmetric representation, first in the quenched approximation, and then with dynamical
fermions. We finally discuss the case of dynamical fermions in mixed representations, and exotic
composite fermion states such as the chimera baryons. We conclude by sketching the future stages of
the programme. We also describe our approach to open access.

Keywords: lattice gauge theory; Sp(2N) gauge group; composite Higgs; composite dark matter;
top partial compositeness; physics beyond the standard model

1. Introduction

The past two decades have seen the publication of the first dedicated lattice stud-
ies of the four-dimensional Sp(2N) gauge theories with N > 1 [1–18]. Large classes of
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Sp(2N) gauge theories confine, and, in the presence of matter fields, chiral symmetry
breaking condensates govern the long-distance dynamics. The interest in these theories
ultimately descends from the nature of Sp(2N) groups and their representations: they
possess symmetries and (dynamically) yield symmetry-breaking patterns that are different
from those of related SU(Nc) theories [19]. New opportunities for model-building and
phenomenology hence emerge, thanks to the peculiar symmetries, symmetry breaking
patterns, spectroscopy, and low-energy effective field theory (EFT) description associated
with Sp(2N) gauge theories. Yet, the microscopic dynamics of Sp(2N) gauge theories
is not dissimilar from SU(Nc)—in particular SU(2) and SU(3)—theories. Having imple-
mented the necessary adjustments to the Monte Carlo update algorithms that generate
the ensembles [2,4,7,10], as well as to the correlation functions used to measure spectral
observables [4,5,7,10,14,15], it is then possible to adapt the modern advancements of lattice
gauge theories to study the non-perturbative regime of the Sp(2N) gauge theories.

The standard model (SM) of particle physics has been spectacularly successful at
describing the strong and electroweak forces through which the known elementary particles
interact among each other. Yet, there is solid evidence that the SM is incomplete and must
be extended to explain several astronomical and experimental observations, among which
are the existence of dark matter, the matter-antimatter asymmetry, and non-zero masses
of neutrinos. Furthermore, the SM is unnaturally fine tuned, since it does not provide a
mechanism that explains why the Higgs boson has a mass at the electroweak scale, rather
than receiving the expected large quantum corrections that would generate a mass at the
Planck scale. To address these shortcomings, much effort has been devoted to developing
models based on novel strongly coupled gauge theories as extensions of the standard model
of particle physics.

This review briefly summarises the phenomenological and theoretical motivations to
study Sp(2N) gauge theories, and then discusses at length the available (lattice) numerical
results, to facilitate their use by model-builders and phenomenologists. We start by intro-
ducing in this first section the main arguments why Sp(2N) gauge theories are a promising
topic of investigation. These are further developed in the body of the paper. They include
phenomenological consideration pertaining to composite Higgs, top (partial) composite-
ness, dark matter physics, and theoretical considerations about finite temperature phase
transitions (and gravitational wave detection), as well as non-perturbative phenomena in
non-Abelian gauge theories, especially in relation to the large-Nc extrapolation. Within
each such topic, we provide the context for the application of Sp(2N) theories, explaining
the main ideas and their historical development. We complement the narrative by an ample
list of references that contain expanded explanations and technical details.

The discovery of the Higgs boson [20,21] has triggered a revival of interest in composite
Higgs models (CHMs) [22–24] (see, e.g., the reviews in Refs. [25–27], the summary tables
in Refs. [28–30], and the selection of papers in Refs. [31–68] and Refs. [69–77]), many of
which also implement top (partial) compositeness [78] (see also Refs. [79–81]). In this
context, the lightest composite spin-0 and spin-1/2 states in a new strongly coupled sector
are identified with the heaviest particles in the Standard Model: the Higgs boson and
the top quark. The former emerges as one of the Pseudo-Nambu–Goldstone Bosons
(PNGBs) associated with spontaneous breaking of the global symmetry in the underlying
microscopic theory. The latter is a generalisation of the baryons, which plays the role of
a top quark partner, and may involve fermions in more than one representation of the
gauge group, so that in the following we call them chimera baryons. These ideas admit a
multitude of possible realisations with strikingly diverse phenomenological implications,
as suggested by the vastness of the literature on this subject. They can be tested by
the future experimental programme of the Large Hadron Collider (LHC), with aid from
computational techniques adapted to the study of the non-perturbative nature of the
underlying strong dynamics.

The natural choice of a non-perturbative instrument for the investigation of strongly
coupled gauge theories is the lattice field theory. Depending on the nature of the repre-
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sentations of the fermion matter field content, three different symmetry patterns emerge.
As in QCD-like theories with N f Dirac fermions in the fundamental representation, in the
presence of complex representations the global non-Abelian SU(N f )× SU(N f ) is broken
into the diagonal SU(N f ) subgroup by the condensates forming in the theory. Real rep-
resentations yield the spontaneous breaking of the enhanced SU(2N f ) symmetry to its
SO(2N f ) maximal subgroup. Pseudo-real representations are characterised by the breaking
of SU(2N f ) to Sp(2N f ). Vacuum alignment arguments can be used to select the vacuum,
on the basis of which deformations are admissible [19]. The resulting cosets, the PNGBs
spanning them, and the masses induced by explicit breaking of the global symmetries, are
the starting point for the construction of CHMs.

A number of dedicated studies of the lattice SU(2) gauge theories relevant to CHMs
have been performed [82–90], which with N f = 2 (Dirac) fermions transforming in the
fundamental representation of the gauge group yield the SU(4)/Sp(4) coset relevant to
the CHMs of interest in this paper. The low-energy theory has five PNGBs, four of which
are interpreted in terms of the SM Higgs doublet, and one as a scalar SM singlet.

Studies of SU(4) gauge theories have also been published [91–97], their field content
consisting of mixed fermion representations, as required in models combining Higgs and
top (partial) compositeness. Lattice studies consider matter consisting of Dirac fermions,
while the minimal model of this class would require odd numbers of Majorana fermions.
With five 2-index antisymmetric Majorana fermions one can see the SU(5)/SO(5) coset
emerge, and the 14 PNGBs can be reorganised into one scalar SM doublet and additional
SM singlets and triplets [39].

Lattice theories with an SU(3) gauge group, in which the antisymmetric representation
of the group coincides with the (conjugate) fundamental, allow for an alternative way of
combining composite Higgs and top compositeness [98]. The chimera baryons, used
as top quark partners, are actual baryons of the new SU(3) theory. By exploiting the
dilaton EFT [99–104] in the new context of near conformal gauge theories and their EFT
treatment [105–117], Refs. [118,119] showed that it is possible to build new CHMs, based on
SU(N f )× SU(N f )/SU(N f ) cosets (see also Refs. [120,121]), with input from lattice data
on the SU(3) theory with N f = 8 fundamental fermions [122–126].

Gauge theories with the Sp(2N) group are special in this context. With N f = 2
(Dirac) fermions in the fundamental representation, they give rise to the same SU(4)/Sp(4)
coset as the aforementioned SU(2) = Sp(2) theories. In addition, with N > 1, N f = 2,
and n f = 3 (Dirac) fermions transforming in the 2-index antisymmetric representation,
they yield bound states of two fundamental and one antisymmetric fermion (chimera
baryons), that can play the role of top partners, hence combining composite Higgs and
top (partial) compositeness [127]. Progress has been made in studying the spectra of
mesons [2,4,5] and chimera baryons [10].1 These theories have also been studied with
semi-analytical techniques [128], based on replacing the fundamental dynamics with four-
fermion interactions, as in the Nambu–Jona-Lasinio model. The theories with n f = 3 and
N f = 0 can also realise alternative composite Higgs and dark matter models [62].

We must mention that an alternative way to study strongly coupled dynamics is based
upon gauge-gravity dualities; special strongly-coupled field theories admit an equivalent
description as weakly coupled theories of gravity living in higher dimensions [129–132].
Indeed, the recent revival of interest on CHMs started before the Higgs discovery, driven by
extra-dimensional models inspired by gauge/gravity dualities, and based on the minimal
SO(5)/SO(4) coset [69–77]. More recently, progress has been made towards building
semi-realistic descriptions of the dynamics of the more complex CHMs that are amenable
to lattice studies, but in the context of bottom-up holography [133–136]. Even the first steps
towards embedding models with SO(5)/SO(4) coset into supergravity (and string theory)
have been taken [137]. The complementary role of these approaches to strong dynamics is
actively being investigated.

A completely independent, compelling argument for new physics extending the
standard model is that it does not provide an explanation for the nature and origin



Universe 2023, 9, 236 4 of 66

of dark matter. This could be explained by the existence of a new dark sector—see
Refs. [138–143] and the review in Ref. [144], for example. This dark sector might con-
sist of a new strongly coupled theory, with matter consisting only of SM singlet fields.
The new strong dynamics would lead to the formation of composite PNGBs and in general
the spectroscopy resembles qualitatively that of a generalisation of Quantum Chromo-
Dynamics (QCD). These proposals go under the names of composite dark matter (CoDM),
as in Refs. [145–153], or strongly interacting dark matter (SIMP), as in Refs. [154–162].
Sp(2N) gauge theories play a prominent role in many of these proposals, and the first
dedicated lattice studies of the spectroscopy of Sp(4) with N f = 2, non-degenerate (Dirac)
fundamental fermions have recently become available [16–18].

The first dedicated lattice exploration of Sp(2N) gauge theories focused on the pure
gauge dynamics, and its confinement/deconfinement phase transition at finite temper-
ature [1]. All Sp(2N) Yang–Mills theories have centre symmetry Z2. The expectation
value of the Polyakov loop behaves as the order parameter of the transition, vanishing
at low temperature (Z2-unbroken phase), and becoming non-trivial above some critical
temperature Tc (Z2-broken phase). In three spatial dimensions, while for Sp(2) = SU(2)
the phase transition is of second order, when N > 1 there is evidence of a first-order
phase transition. If originally this quest had mostly a theoretical motivation, related to the
general characterisation of phase transitions in non-Abelian gauge theories, in recent times
it has acquired new phenomenological relevance, related to the aforementioned context of
strongly interacting dark matter.

Such a dark Sp(2N) sector might undergo a strong enough first order (dark con-
finement) phase transition, in the early universe, to leave behind a relic stochastic back-
ground of gravitational waves [163–168], potentially accessible to present and future
gravitational-wave detectors [169–186]. For recent phenomenological studies, see for
instance Refs. [187–189], and references therein. The finite-temperature behaviour of many
gauge theories has been studied; for examples of SU(Nc) studies see Refs. [190–195], for
Sp(Nc) see Ref. [1], and for G2 see Refs. [196–199]. A handful of dedicated lattice calcu-
lations focus on stealth dark matter with SU(4) gauge dynamics [200–202]. The recent
Ref. [203] critically summarises the history of SU(3) studies, and the technical difficulties
intrinsic to current state-of-the-art lattice calculations. It is hoped that by applying new
ideas in lattice field theory, such as the Logarithmic Linear Relaxation (LLR) algorithm
[204–206], some of these difficulties may be overcome—see in particular Ref. [207] for
zero-temperature studies of SU(3), and preliminary finite-temperature results for SU(4)
in Ref. [208], SU(3) in Refs. [209,210], and SU(Nc) in Ref [211]. Sp(2N) theories can be
explored with the LLR method, but such lattice calculations are not available yet, and we
will not discuss them further.

The final topic we touch upon in this introduction is the observation that, while
different in nature, the sequence of Sp(Nc = 2N) gauge theories shares (in the common
sector of the spectrum of bound states) the same large-Nc limit as obtained with SU(Nc)
theories. One can then study these theories as a complementary way of testing theoretical
expectations, for observables such as the vacuum condensates and the mass spectra of
bound states. One can use the comparison between different sequences of theories to learn
about commonalities and differences, hence deducing general field-theoretical lessons. In
the case of pure Yang–Mills theories, the spectrum of glueballs can be computed, in the
large-Nc limit, with the tools of gauge-gravity dualities—a selection of papers on the topic
includes Refs. [212–220]—or other semi-analytical approaches [221–223]. These can then be
compared to the results of the lattice literature on SU(Nc) Yang–Mills theories [224–233],
and Sp(Nc) theories [2,6,7]. The spectra of mesons and of fermion bound states are more
challenging to compute on the lattice [227], but equally interesting, and the quenched
calculation may soften such difficulties, while producing interesting results—for Sp(2N)
theories, see Ref. [5]. Other non-perturbative objects, such as the string tension (see
Ref. [234] and references therein) and the topological susceptibility of Yang–Mills theories—
see the useful Refs. [235–238]—are also accessible to the lattice [207,239–254]. Recently,



Universe 2023, 9, 236 5 of 66

the topological susceptibility of Sp(2N) theories has been the subject of dedicated studies
summarised in Refs. [11,12].

The paper is organised as follows. In Section 2 we define the gauge actions of Sp(2N)
theories, couple them to matter fields, analyse the low-energy description—borrowing
ideas from the literature on Chiral Perturbation Theory (χPT) and Hidden Local Symme-
try (HLS) [255–263]—and applications in CHM, top compositeness, and SIMP contexts.
Significant parts of this section follow Refs. [2,4,5] and references therein. Section 3 is a
brief summary of lattice field theory numerical techniques used in Refs. [2–13], and we
refer the reader to the original literature for details. We summarise in Section 4 the results
obtained in the (quenched) lattice Sp(2N) theory, in which the only dynamical degrees of
freedom correspond to the gluons. Besides strings (or fluxtubes) and glueballs [2,6,7], we
discuss quenched mesons [5], and topological susceptibility [11,12]. Section 5 considers
observables in lattice studies that implement dynamical fermions [2–4,10,13]. After the
summary and conclusion in Section 6, we devote Appendix A to a summary of technical
details, and the short Appendix B to our open access approach to data and analysis code.

2. Sp(2N) Gauge Theory and Composite Dynamics

In this section we provide the microscopic description of the broad class of Sp(2N)
gauge theories of interest. We discuss the field content and interactions, the symmetries and
symmetry-breaking patterns (including both explicit and spontaneous symmetry-breaking
effects), and some interesting results obtained by deploying perturbation theory and low-
energy EFT arguments. In the process, we fix the notation adopted in the paper. We sketch
the connection with applications in the context of the phenomenology of extensions of
the standard model, focusing on composite Higgs models, on top partial compositeness,
and on composite dark matter. As a note of caution, we highlight that in this review we
almost completely ignore the Abelian U(1) global symmetry factors, except for occasionally
mentioning the anomalous U(1)A ∼ SO(2)A symmetry acting on the fermions.2 Lattice
explorations of the flavour singlet mesons are in their early stages—see for instance Ref. [85].

2.1. Fields, Symmetries, and Observables

We start by defining the short-distance dynamics in continuum field-theory terms.
For convenience, we explicitly write the Lagrangian density of the dynamical theory
relevant to the CHM proposed in Ref. [127] (see also Ref. [28]), but without coupling it
to the SM fields. This is an Sp(4) gauge theory coupled to N f = 2 Dirac fermions QJ a

transforming in the fundamental (f) representation of the gauge group, and n f = 3 Dirac
fermions Ψj ab transforming in the 2-index antisymmetric (as) representation. All other
gauge theories of relevance to this review can be obtained by either replacing the Sp(4)
gauge group by Sp(Nc = 2N) (with N > 1) and/or by changing the number of dynamical
fermion species N f and n f . We follow the notation of Ref. [10]—see also Refs. [2,5] and the
references therein.

Here and in the following, we denote the colour indices in the fundamental representa-
tion by letters at the beginning of the Latin alphabet, as in a, b = 1, · · · , Nc = 4 = 2N. We
capitalise the index to denote the adjoint representation, so that A = 1, · · · , N(2N + 1) =
10 is used to denote the gauge bosons of Sp(4). We reserve the letters in the middle
of the Latin alphabet for flavour/family indices in Dirac fermion notation, so that the
capitalised J, K = 1, · · · , N f = 2 labels the Dirac species in the (f) representation, while
the lower-case j, k = 1, · · · , n f = 3 is used for the Dirac species in the (as) representa-
tion. We also find it useful to denote by characters taken from the second half of the
Latin alphabet the flavour/family indices in 2-component spinor representation, so that
M, N = 1, · · · , 2N f = 4 labels 2-component spinors transforming in the (f) representation,
while m, n = 1, · · · , 2n f = 6 is reserved for the (as) representation of the gauge group. We
use letters taken from the second half of the Greek alphabet to denote Lorentz indices, as in
µ, ν = 0, 1, 2, 3. In different parts of the text we use Minkowski or Euclidean space-time
notation—when possible ambiguities cannot be resolved by the context, we will add the
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subscripts (M) or (E), respectively, to differentiate between the two. Spinorial indices are
denoted by the first letters of the Greek alphabet, and we restrict their use to 2-component
notation, for example by writing α, β = 1, 2, but we mostly omit writing them and leave
them implicit instead.

The symplectic group Sp(2N) is defined as the subgroup of SU(2N) consisting of
2N × 2N matrices U that obey the defining relationship

U Ω UT = Ω , (1)

where Ω is the 2N × 2N symplectic matrix, which we can write in N × N blocks as

Ω ≡
(

ON×N IN×N
ine− IN×N ON×N

)
. (2)

These matrices can also be written in the form

U =

(
A B

ine−B∗ A∗
)

, (3)

with the N × N matrices A and B satisfying the non-trivial relations A†A+B†B = IN×N

and ATB = BTA.3

In Minkowski space-time, with signature mostly −, the Lagrangian density is

L = −1
2

TrVµνVµν +

+
1
2

2

∑
J=1

(
i QJ

aγµ
(

DµQJ
)a
− i DµQJ

aγµQJ a
)
− m( f )

2

∑
J=1

QJ
aQJ a +

+
1
2

3

∑
j=1

(
i Ψj

abγµ
(

DµΨj
)ab
− i DµΨj

abγµΨj ab
)
− m(as)

3

∑
j=1

Ψj
abΨj ab , (4)

where we have suppressed spinor indices, and summations over colour and Lorentz
indices are understood. The irreducible 2-index antisymmetric representation of Sp(4) is
Ω-traceless, so that Tr ΩΨ = 0. In this review, we take the mass matrices for the two species
of fermions to be proportional to the identity matrix—see Ref. [18] for the generalisation
to non-degenerate masses—and denote the masses as m( f ) and m(as), for the (f ) and (as)
representations, respectively. The transformation properties under the action of an element
U of the Sp(4) gauge group are Q→ UQ and Ψ→ UΨUT. Hence, the field-strength tensor,
Vµν, and the covariant derivatives, are given by

Vµν ≡ ∂µVν − ∂νVµ + ig
[
Vµ , Vν

]
, (5)

DµQJ = ∂µQJ + igVµQJ , (6)

DµΨj = ∂µΨj + igVµΨj + igΨjVT
µ , (7)

where g is the gauge coupling, while Vµ = VA
µ TA are matrix-values gauge fields—the TA

matrices are the generators of the gauge group, normalised so that Tr TATB = 1
2 δAB.

The Lagrangian density in Equation (4) is formally identical to that of the SU(Nc)
theories coupled to Dirac fermions. If the group is taken to be SU(3), then the equiva-
lence of the 2-index antisymmetric representation and the (conjugate) fundamental implies
that this would become an extension of QCD with two fermions with mass m( f ) and
three with mass m(as). However, the representations of Sp(2N) are (pseudo) real, which
leads to an enhancement of the non-Abelian global symmetry from SU(N f )× SU(N f ) and
SU(n f )× SU(n f ), acting on the (f) and (as) fermions, to SU(2N f ) and SU(2n f ), respec-
tively. From here onwards, in the rest of this section we restrict attention to N = 2, N f = 2,
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and n f = 3 [28,127], as reinstating the general dependence on number of colours and
flavours is straightforward.

To demonstrate symmetry enhancement manifestly, we perform the following exercise.
First, we introduce 2-component spinors qM a and ψn ab, transforming in the (f) and (as)
representations of the gauge group, respectively, with M = 1, · · · , 4 and n = 1, · · · , 6. We
then construct the four component spinors via the following definitions:

QJ a ≡
(

qJ a

Ωab(−C̃qJ+2 ∗)b

)
, Ψj ab ≡

(
ψj ab

ΩacΩbd(−C̃ψj+3 ∗)cd

)
, (8)

where C̃ = −iτ2 is the 2× 2 charge-conjugation matrix in spinor space, τ2 is the second
Pauli matrix, J = 1, 2 and j = 1, 2, 3. Because of the contraction with the symplectic matrix
Ω, which raises and lowers the Sp(4) index, the pseudo-real nature of the (f) representation,
and real nature of the (as) representation, what results are two Dirac fermions of type (f) and
three of type (as), which are those appearing in Equation (4). By replacing the definitions in
Equation (4), after some tedious algebra one arrives at the identity

L = − 1
2 Tr VµνVµν +

+ 1
2 ∑4

M=1

(
i (qM)†

aσ̄µ
(

DµqM)a − i (DµqM)†
aσ̄µqM a

)
+

− 1
2 m( f ) ∑4

M,N=1 Ω̃MN

(
qM a TΩabC̃qN b − (qM)†

aΩabC̃(qN ∗)b

)
+

+ 1
2 ∑6

m=1

(
i (ψm)†

abσ̄µ
(

Dµψm)ab − i (Dµψm)†
abσ̄µψm ab

)
+

− 1
2 m(as) ∑6

m,n=1 ωmn

(
ψm ab TΩacΩbdC̃ψn cd − (ψm )†

abΩacΩbdC̃(ψn ∗)cd

)
,

(9)

where the kinetic terms for the 2-component spinors are written by making use of the 2× 2
matrices σ̄µ ≡

(
I2, τi). In these expressions, Ω̃ = Ω, but notice that the former acts on the

flavour space, while the latter acts in the colour space—the former is a 2N f × 2N f matrix,
while the latter is a 2N × 2N one. The matrix ω is defined to be symmetric, and we can use
the explicit expression

ω ≡
(

O3×3 I3×3
ineI3×3 O3×3

)
. (10)

With the Lagrangian density in the form of Equation (9), it becomes manifested
that the theory has a global SU(4) × SU(6) non-Abelian symmetry, and that the mass
terms proportional to m( f ) and m(as) introduce a (small) breaking effect, reducing the
exact symmetry to the subgroups of SU(4) and SU(6) that leave invariant, respectively,
the matrices Ω̃ and ω. Vacuum alignment arguments [19] suggest that fermion bilinear
condensates form in the underlying dynamics, spontaneously breaking the global symmetry
in the same way, and hence PNGBs will emerge that describe the SU(4)/Sp(4) coset in the
(f) sector, and the SU(6)/SO(6) coset in the (as) sector.

We conclude this subsection with a set of counting exercises and symmetry considera-
tion, and characterise the spectrum of lightest bound states of the theory, and the operators
that are used to define spectral observables from correlation functions. Some of the bound
states admit a weakly coupled description as particles associated with fields in the low
energy EFT description of the dynamics. More details and a broader set of considerations
of this type can be found for example in Appendix E and F of Ref. [5], in Appendix C of
Ref. [10], in Section III.C of Ref. [7], and in the references therein.

Let us start with the glueballs. These are bound states that exist in the Yang–Mills
theory, without matter fields, in the confined phase. They do not carry flavour, but they can
have any (integer) spin J, and in general are characterised by JPC, with P the parity and
C the charge-conjugation eigenvalues, except that, at odds with the SU(Nc) cases, in the
Sp(2N) gauge theories C = + for all glueballs. The interpolating operators sourcing the
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glueballs can be built from the Wilson loops, traced path ordered products of links around
closed spatial (contractible) loops, along with appropriate projections to the states with
desired spin and parity quantum numbers. We will return in due time to the subtleties
related to how the continuum rotation symmetry is broken to the octahedral group Oh on a
hypercubic lattice theory. Here we notice only the fact that in the presence of additional
fermionic matter, one expects the glueballs to mix with the flavour-singlet mesons. The
quantitative understanding of these and the related effects, which involve disconnected
diagrams, is an open problem on the lattice—an interesting exploration of this topic in the
SU(2) theory can be found in Ref. [85].

The flavoured mesons made of (f) fermions can be classified by their spin J, the repre-
sentation of the unbroken Sp(4) ∼ SO(5) global symmetry group, and additional discrete
quantum numbers, such as the unbroken parity P—constructed by combining ordinary
spatial parity and discrete internal symmetries. As long as the mass terms are small,
in appropriate units, the lightest states are going to be the PNGBs. These have JP = 0−,
and transform as 5 of Sp(4), the Ω-traceless antisymmetric representation. In the language
of 2-flavour QCD, the PNGBs are identified with the pions π. Their parity partner JP = 0+

mesons transform as 5 of Sp(4), and are the analogous of the a0 in QCD, in the sense that if
U(1)A = SO(2)A were exact, π and a0 would be degenerate. There are then four multiplets
of spin-1 states. Two JP = 1− states transforming as the 10 of Sp(4) correspond to what in
QCD are the ρ and ρ′ states, which have different properties in the global SU(4), but un-
dergo mixing. Two JP = 1+ states exist, one of which transforms as a 5 of Sp(4), and is the
analogue of the a1, and one transforming as a 10, related to the b1 in QCD. We summarise
in Table 1 the operators OM sourcing these states (see also Ref. [265]), and their basic
quantum numbers and properties. We label them as pseudoscalar (PS), scalar (S), vector (V),
tensor (T), axial-vector (AV), and axial-tensor (AT). The (as) fermions give rise to a similar
set of multiplets, but for the fact that the symmetric and antisymmetric representations
are swapped. For example, the 20 PNGBs describing the SU(6)/SO(6) coset are in the
traceless symmetric representation.4

Table 1. Interpolating operators OM built with Dirac fermions of types (f) and (as). Colour and
spinor indices are implicit and summed over, and flavour combinations are denoted generically. More
details can be found in Ref. [5]. We also show the JP quantum numbers, the corresponding QCD
meson sourced by the operator with analogous quantum numbers, and the irreducible representation
of the unbroken global Sp(4)× SO(6) symmetry groups.

Label Interpolating Operator Mesons in
JP Sp(4) SO(6)M OM N f = 2 QCD

PS QIγ5QJ π 0− 5 1
S QI QJ a0 0+ 5 1
V QIγµQJ ρ, ρ′ 1− 10 1
T QIσµνQJ ρ, ρ′ 1− 10 1

AV QIγ5γµQJ a1 1+ 5 1
AT QIγ5σµνQJ b1 1+ 10 1

ps Ψkγ5Ψj π 0− 1 20′

s ΨkΨj a0 0+ 1 20′

v ΨkγµΨj ρ, ρ′ 1− 1 15
t ΨkσµνΨj ρ, ρ′ 1− 1 15

av Ψkγ5γµΨj a1 1+ 1 20′

at Ψkγ5σµνΨj b1 1+ 1 15

We list in Table 2 the explicit form of the operators sourcing the two sets of lightest
chimera baryons in the theory, made of two (f) and one (as) elementary fermions. The two
sets we consider transform both as a 5 of Sp(4), and are one the U(1)A ∼ SO(2)A partner
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of the other, reproducing for these spin-1/2 states the relation between PS and S mesons in
the scalar sector of the spectrum. As is conventional, the chiral projectors are

PL,R ≡ 1
2

(
I4×4 ± γ5

)
. (11)

Table 2. Interpolating operators OCB sourcing the lightest chimera baryons, built with two Dirac
fermions of types (f) and one of type (as), with their Sp(4)× SO(6) quantum numbers. Details can be
found in Ref. [10].

Label Interpolating Operator Sp(4) SO(6)

OL,R
CB,1

(
Q1 aγ5Q2 b + Q2 aγ5Q1 b

)
ΩbcPL,RΨk ca

OL,R
CB,2 i

(
−Q1 aγ5Q2 b + Q2 aγ5Q1 b

)
ΩbcPL,RΨk ca

OL,R
CB,3

(
Q1 aγ5Q1 b −Q2 aγ5Q2 b

)
ΩbcPL,RΨk ca 5 6

OL,R
CB,4 −i

(
Q1 aQ2 b

C + Q2 a
C Q1 b

)
ΩbcPL,RΨk ca

OL,R
CB,5 i

(
−i Q1 aQ2 b

C + iQ2 a
C Q1 b

)
ΩbcPL,RΨk ca

O′ L,R
CB,1 i

(
Q1 aQ2 b + Q2 aQ1 b

)
ΩbcPL,RΨk ca

O′ L,R
CB,2

(
Q1 aQ2 b − Q2 aQ1 b

)
ΩbcPL,RΨk ca

O′ L,R
CB,3 i

(
Q1 aQ1 b −Q2 aQ2 b

)
ΩbcPL,RΨk ca 5 6

O′ L,R
CB,4

(
Q1 aγ5Q2 b

C + Q2 a
C γ5Q1 b

)
ΩbcPL,RΨk ca

O′ L,R
CB,5 i

(
Q1 aγ5Q2 b

C −Q2 a
C γ5Q1 b

)
ΩbcPL,RΨk ca

Other spin-1/2 and spin-3/2 states can be built systematically in a similar fashion [15].
(Table 1 of Ref. [50] shows a classification of top partners for SO(d) gauge theories.) These
operators also form multiplets of the global SU(6) symmetry and its unbroken SO(6)
subgroup, and we will return to this part of the classification later in the paper.

2.2. Perturbative Considerations

The confining, QCD-like dynamics leading to the appearance of light PNGBs, which
are essential to CHMs, can be complemented by implementing the top (partial) compos-
iteness mechanism. Interacting near-conformal theories, with extended fermion matter
content, in which (chimera) baryon operators develop large anomalous dimensions are
best suited to provide an origin for top partial compositeness, for the reasons we discuss
in Section 2.4.2. The underlying strong interactions can be understood in full only with
non-perturbative tools, such as lattice simulations. Yet, perturbative calculations, supple-
mented by other techniques, provide useful insight into their infrared (IR) phase structure,
and guidance in identifying promising theories to be subjected to dedicated numerical
studies. In this section, we briefly discuss the IR behaviour of non-Abelian gauge theories
with fermions in the fundamental and/or two-index representations, and review existing
analytical results relevant to Sp(2N) gauge theories.

Yang–Mills theories are asymptotically free at short distances. Their ultraviolet (UV)
properties can be studied perturbatively, as an expansion in the coupling α ≡ g2/(4π).
When coupled to N f fundamental fermions, there is a maximum NAF

f above which the
theory loses asymptotic freedom. It can be determined from the renormalisation group (RG)
analysis of the beta function β(α) ≡ ∂α/∂ log(µ), estimated at the 1-loop order.5 If N f is
sufficiently small, the theory confines in the IR, and breaks chiral symmetry, as in QCD. For
N f just below NAF

f , the theory admits the Banks–Zaks fixed point [267,268], identified as a
zero of the 2-loop beta function at small coupling. One therefore expects that asymptotically
free gauge theories undergo a zero-temperature quantum phase transition, for a critical
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number of flavours Ncr
f , between the IR conformal and chirally broken phases. The interval

Ncr
f < N f < NAF

f is called conformal window, and has been extensively studied by both ana-
lytical and numerical methods. For N f < Ncr

f , but in proximity of the conformal window,
near-conformal dynamics has been suggested to display potential for phenomenological
applications, in such contexts as (walking) technicolor, composite Higgs, and composite
dark matter (e.g., see Refs. [25–27,269–274]).

The determination of Ncr
f is notably difficult, because the coupling at the IR fixed point

αIR grows in the approach to the lower end of the conformal window. As a first and crude
approximation, one can identify Ncr

f as the number of flavours for which the zero of the
2-loop beta function disappears. This can be systematically improved to higher orders in α,
by solving 0 = β(α) ≡ −2α ∑`max

`=1 b`
(

α
4π

)`, where the coefficients b` are functions of Nc, N f ,
and the fermion representation R, but suffer from the intrinsic limitation of the perturbation
theory. In particular, even if the existence of a fixed point is physical, and hence scheme-
independent, its determination and characterisation are affected by the scheme dependence
of β(α) for ` ≥ 3. For example, in the MS scheme with `max = 4, Ncr

f critical is for various

non-Abelian gauge groups, and representations can be found in Ref. [275].6 Going beyond
perturbation theory, several approaches intended to capture non-perturbative dynamics
have been proposed in the literature, such as the Schwinger–Dyson analysis in the ladder
approximation [279,280], or a conjectured all orders beta function [281,282] inspired by the
better controlled supersymmetric gauge theories—for the latter, see the review Ref. [283].

A number of recent studies [284–292] discuss the determination of the conformal win-
dow in terms of a (Banks–Zaks) expansion in the small physical parameter
∆R ≡ NAF

R − NR, where NR denotes the number of fermions in representation R. Com-
pared to the standard perturbative expansion, it has several salient features. First of all, it
is scheme-independent, as the expansion parameter ∆R is a physical quantity. Secondly,
it has been found that its coefficients are positive, to the highest order known [287,288],
which improves its convergence and stability.

A particularly interesting quantity, directly relevant for model-building considera-
tions, is the anomalous dimension, γ∗, of the fermion bilinear operator, measured at the
IR fixed point. It has been suggested that γ∗IR = 1 at the lower edge of the conformal
window [280,293]. In Refs. [294,295], it has further been shown that the equivalent critical
condition γ∗IR(2− γ∗IR) = 1 computed at a finite order in the BZ expansion results in a
more rapidly convergent series expansion and thus can be used to improve the estimate for
the critical value Ncr

R .7 The results of Refs. [294,295] are in excellent agreement with non-
perturbative lattice results for SU(2) and SU(3) gauge theories coupled to the fundamental
and two-index representations. The left panel of Figure 1, borrowed from Ref. [295], shows
the conformal window of Sp(2N) gauge theories coupled to fundamental, antisymmetric,
and symmetric Dirac fermions. According to this approach, Sp(4) theories with either
two fundamental or three antisymmetric flavours of fermions are in the confining phase.
In the same paper, the uncertainties associated with the truncation of the BZ expansion,
which might capture some non-perturbative effects, are also discussed, and their sizes are
estimated.

In the presence of fermions transforming in distinct representations, the properties of
the IR fixed point depend on all choices of NR. The results for the theory of main interest
in this paper, namely the Sp(4) gauge theory coupled to fermions in the fundamental and
antisymmetric representations, are presented in the right panel of Figure 1 [295]—here,
NF = 2N f and NA2 = 2n f count Weyl fermions. In the figure, the shaded region is the
conformal window estimated from the critical condition γ∗(2− γ∗) = 1 applied to the
results in the 3rd order BZ expansion, while the dashed lines denote the analytical results
obtained by the truncated Schwinger–Dyson analysis (black), the all-orders beta function
(red), and the 2-loop order beta function (green). The red diamond, blue circle, and the
black squares indicate the UV-complete theory proposed in Refs. [28,39,64,127], in the CHM
context. The Sp(4) theory with N f = 2 and n f = 3 is expected to lie near the sill of the
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conformal window, which motivates further dedicated studies with non-perturbative lattice
methods. As mentioned at the beginning of this section, the top partial compositeness
mechanism is most effective with large anomalous dimensions of the chimera baryons.
So far, this has only been estimated at the one-loop order in α in standard perturbation
theory [63].
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Figure 1. Left panel: Conformal window of Sp(2N) gauge theories with NR Dirac flavours in the
fundamental (top, blue), antisymmetric (middle, green), and symmetric (bottom, red) representations.
Right panel: Conformal window of Sp(4) gauge theories with NF = 2N f fundamental and NA2 =

2n f antisymmetric Weyl fermions. The red diamond, blue circle, and black square indicate some
representative CHMs, quoted in the main text. The left and right plots are from Refs. [295] and [294],
respectively.

2.3. Low-Energy EFT

We focus here on the flavoured mesons. The PNGBs have masses that are expected
to be suppressed, in respect to those of other mesons transforming non-trivially under
the action of the unbroken Sp(4)× SO(6) symmetry. At least in principle, if the fermion
masses are small with respect to the dynamical scale of the theory, this would create a
hierarchy of scales in the spectrum, with the sole PNGBs being important in long-distance
observables. This (little) hierarchy is ultimately what drives the interest in applications to
CHMs. By generalising the chiral Lagrangian of QCD, one can write an EFT that captures
the long-distance dynamics within a weakly-coupled field theory description, by retaining
only the fields associated with the PNGBs. Following the notation in Refs. [2,4,5,10] (and
references therein), we recollect here the main properties of this EFT, and of its extension to
include the lightest spin-1 flavoured mesons.

We start by defining the relevant notation and conventions, which for the most part
follow Refs. [5,10]. An orthonormalised basis for the 15 generators T̃A of the global SU(4)
can be chosen so that A = 1 , · · · , 5 denotes the broken generators and A = 6 , · · · , 15 the
unbroken ones. They obey the following relations:

Ω̃T̃A − T̃A TΩ̃ = 0 , for A = 1 , · · · , 5 , (12)

Ω̃T̃A + T̃A TΩ̃ = 0 , for A = 6 , · · · , 15 . (13)

The same applies for the 35 generators tB of SU(6), which we split in B = 1 , · · · , 20
for the broken ones and B = 21 , · · · , 35 for the unbroken ones. They satisfy the relations:

ωtB − tB Tω = 0 , for B = 1 , · · · , 20 , (14)

ωtB + tB Tω = 0 , for B = 21 , · · · , 35 . (15)

We introduce two non-linear sigma-model fields. The matrix-valued Σ6 transforms in
the same way as the bilinear operator in the underlying dynamics ΩabqM a TC̃qN b, in the
antisymmetric representation of the global SU(4). Namely, for any Ũ ∈ SU(4), Σ6 →
ŨΣ6ŨT. Σ21 has the quantum numbers of −ΩabΩcdψm ac TC̃ψn bd, and transforms in the
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symmetric representation of the SU(6) global symmetry: Σ21 → uΣ21uT for any u ∈ SU(6).
In the vacuum, the 2-index antisymmetric representation of SU(4) decomposes as 6 = 1⊕ 5
of the unbroken Sp(4), and the 2-index, symmetric representation of SU(6) as 21 = 1⊕ 20′

of SO(6). We parametrise the non-linear sigma-model fields Σ6 and Σ21 in terms of the
PNGB fields π5 and π20 as

Σ6 ≡ e
iπ5
f5 Ω̃e

iπT
5

f5 = e
2iπ5

f5 Ω̃ = Ω̃e
2iπT

5
f5 , (16)

Σ21 ≡ e
iπ20
f20 ωe

iπT
20

f20 = e
2iπ20

f20 ω = ωe
2iπT

20
f20 . (17)

The shorthands π5 ≡ ∑5
A=1 π5(x)AT̃A and π20 ≡ ∑20

B=1 π20(x)BtB are used to lighten
the notation. The decay constants are denoted by f5 and f20, and are introduced to make
the exponents dimensionless. We choose the conventions used in this parameterisation
and in the Lagrangian density so that, when applied to the QCD chiral Lagrangian, the
decay constant is fπ ' 93 MeV. These relations are equivalent to imposing (and solving) the
non-linear constraints Σ6Σ†

6 = I4×4 and Σ21Σ†
21 = I6×6. With the specific choice of SU(4)

basis in Ref. [87] (which we reproduce in Appendix A), the five PNGBs in the SU(4)/Sp(4)
coset are written as follows [5]:

π5=
1

2
√

2


π 3

5 π 1
5 − iπ 2

5 0 −iπ 4
5 + π 5

5
π 1

5 + iπ 2
5 −π 3

5 iπ 4
5 − π 5

5 0
0 −iπ 4

5 − π 5
5 π 3

5 π 1
5 + iπ 2

5
iπ 4

5 + π 5
5 0 π 1

5 − iπ 2
5 −π 3

5

 , (18)

where we have omitted the explicit dependence on the space-time coordinates. A similar
expression holds for π20, given a choice of basis for SU(6).

The symmetry breaking effects due to the fermion masses in the underlying dynamical
theory are captured in the EFT Lagrangian density with the introduction of (non-dynamical)
spurion fields M6 ≡ m( f ) Ω̃ and M21 ≡ −m(as) ω. Formally, they transform as M6 →
U∗M6U† and M21 → u∗M21u† under the action of the SU(4)× SU(6) global symmetry
transformations—but they are not fields, they are constants. The Lagrangian density
describing the PNGBs of the SU(4)/Sp(4) coset is

L6 =
f 2
5
4

Tr
{

∂µΣ6(∂
µΣ6)

†
}
− v3

6
4

Tr
{

M6Σ6

}
+ h.c. (19)

= Tr
{

∂µπ5∂µπ5

}
+

1
3 f 2

5
Tr
{ [

∂µπ5 , π5
]
[∂µπ5 , π5]

}
+ · · · +

+
1
2

m f v3
6 Tr(Σ6Σ†

6) −
m( f )v3

6
f 2
5

Trπ2
5 +

m f v3
6

3 f 4
5

Trπ4
5 + · · · , (20)

where v6 parameterises the condensate, and where we include only the leading-order terms
in both the derivative and mass expansions. The expansion for the SU(6)/SO(6) PNGBs is
formally identical:

L21 =
f 2
20
4

Tr
{

∂µΣ21(∂
µΣ21)

†
}
− v3

21
4

Tr
{

M21Σ21

}
+ h.c. . (21)

Notice the opposite sign in the definition of M21, which combines with the defining
property Ω̃2 = −I4×4 (as opposed to ω2 = I6×6), so that by just replacing the condensates
v6 → v21 one can recover the same expressions for the physical observables.

By perturbatively expanding the Lagrangian density, one can extract the propagator
and the couplings of the EFT, and compute observable quantities. The definitions and
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conventions are such that the Gell-Mann-Oakes-Renner (GMOR) [297] relation can be
recovered, in both meson sectors:

m2
π5

f 2
π5

= m( f ) v3
6 , (22)

m2
π20

f 2
π20

= m(as) v3
21 , (23)

relating the pion masses mπ5 and mπ20 to the decay constants fπ5 = f5 and fπ20 = f20. One
can then add subleading corrections, following the same process applied for the chiral
Lagrangian—the only technicality worth noting is that the normalisations of multi-trace
deformations depend on the dimension of the matrices, and hence on the number of
fermion species.

Hidden Local Symmetry

Refs. [2,5] report an extension of the EFT description to include the lightest V and AV
states (corresponding to the ρ and a1 in 2-flavour QCD), besides the PNGBs. This is done
within the framework of Hidden Local Symmetry (HLS) [255–259] (see also Refs. [260–263]).
We report here the basic construction, and comment about the applicability of such ap-
proach.

We introduce two meson sectors that are completely independent from one an-
other, which is a reasonable approximation as long as one allows only for single-trace
operators [2,5]. One starts by promoting the unbroken SU(4) and SU(6) global symmetries
acting on the (f) and (as) fermions to SU(4)6B × SU(4)6A and SU(6)21B × SU(6)21A, respec-
tively. One then introduces two sets of sigma-model, matrix-valued fields; Σ6 transforms
in the antisymmetric 2-index representation of SU(4)6A and Σ21 in the symmetric 2-index
representation of SU(6)21A; S6 transforms in the (4, 4̄) bifundamental representation of
SU(4)6B × SU(4)6A, and S21 in the (6, 6̄) of SU(6)21B × SU(6)21A, which can be depicted
by the moose diagrams in Figure 2. Hence, the transformation rules are as follows:

S6 → U6BS6U†
6A , Σ6 → U6AΣ6UT

6A , (24)

S21 → U21BS21U†
21A , Σ21 → U21AΣ21UT

21A , (25)

where U6A and U6B are group elements of SU(4)6A and SU(4)6B, respectively, while
U21A and U21B are in SU(4)21A and SU(4)21B. These fields are subject to the nonlinear

constraints Σ6 Σ†
6 = I4×4 = S6 S†

6 , which are solved by parameterising S6 = e
2iσ6

F and

Σ6 = e
2iπ6

f Ω̃ = Ω̃e
2iπT

6
f . Analogous expressions apply to the SU(6) sector. This process

yields a parametrisation for the exactly massless Nambu–Goldstone bosons describing the
cosets SU(4)6B × SU(4)6A/Sp(4) and SU(6)21B × SU(6)21A/SO(6), respectively.

Figure 2. From Ref. [2], the symmetries and their representations in the low-energy EFT descriptions
based on HLS. In the left panel, SU(4)6A is gauged, while SU(4)6B is a global symmetry and the fact
that S6 and Σ6 are non-trivial in the vacuum breaks the symmetry to Sp(4). As a result, all the gauge
bosons are heavy, and, in addition, one has five PNGBs. In the right panel, the same construction is
applied to SU(6)21B × SU(6)21A and to its breaking to the SO(6) subgroup.

As the next step, one gauges (weakly) the SU(4)6A and SU(6)21A symmetries, by
introducing the appropriate gauge fields, covariant derivatives, field-strength tensors, and
gauge couplings g6 and g21. The Higgs mechanism turns 15 + 35 of the exact Nambu–
Goldstone bosons into the longitudinal components of the resulting massive vectors, which
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have the quantum numbers of the states identified with the ρ and a1 particles in QCD.
In order for the remaining 5 + 20 pseudoscalars to acquire a physical mass as PNGBs
do, one must add sources of explicit symmetry breaking. This is done by writing the M6
and M21 matrices as spurions that, under the action of the global SU(4)6B and SU(6)21B,
transform as follows: M∗6 → U6B M∗6UT

6B and M∗21 → U21B M∗21UT
21B. One then uses Σ6,

Σ21, and their derivatives, as well as M6 and M21, to build all possible operators allowed by
the symmetries, organises them as an expansion in derivatives (momenta p2) and explicit
mass terms, and writes a Lagrangian density that includes all such operators up to a given
order in the expansion. We also restrict attention to operators that can be written as single
traces, as repeatedly anticipated.

The Lagrangian density for the SU(4)/Sp(4) mesons is Equation (2.16) of Ref. [5]:

L6 = −1
2

Tr A µν Aµν − κ

2
Tr
{

AµνΣ(Aµν)TΣ∗
}
+

+
f 2

4
Tr
{

DµΣ (DµΣ)†
}

+
F2

4
Tr
{

DµS (DµS)†
}
+

+b
f 2

4
Tr
{

Dµ(SΣ)(Dµ(SΣ))†
}

+ c
f 2

4
Tr
{

Dµ(SΣST)
(

Dµ(SΣST)
)†
}

+

−v3

8
Tr
{

M S Σ ST
}

+ h.c. + (26)

−v1

4
Tr
{

M (DµS)Σ (DµS)T
}
− v2

4
Tr
{

M S (DµΣ) (DµS)T
}

+ h.c. +

−y3

8
Tr
{

AµνΣ
[
(Aµν)TSTMS− STMSAµν

]}
+ h.c. +

−y4

8
Tr
{

AµνΣ
[
(Aµν)TSTMS + STMSAµν

]}
+ h.c. +

+
v2

5
32

Tr
{

MSΣSTMSΣST
}

+ h.c. .

To lighten the notation, we suppressed the subscript “6” on all fields and parameters,
and the multi-trace operators have been omitted [2]. The covariant derivatives contain the
parameter g6, which controls the strength of the coupling of the spin-1 states. We write

DµS ≡ ∂µS− iSg6 Aµ (27)

and

DµΣ ≡ ∂µΣ + i
[
(g6 Aµ)Σ + Σ(g6 Aµ)

T
]

. (28)

The Lagrangian density in Equation (26) can be adapted to the SU(6)/SO(6) sector.
One replaces Σ6 by Σ21, S6 by S21, M6 by M21 ≡ −mω, AA

6 µ by AA
21 µ, g6 by g21, and fur-

thermore changes the sign of the second term in the first line κ6 → −κ21. With these
conventions, masses and decay constants are given by the same relations as in Ref. [2],
to which we refer the reader for further details.

One has to adopt some caution in the way one uses Equation (26). In particular,
one has to ensure that the parameters are all within a range of values such that the EFT
is weakly coupled. The main source of concern here is the size of the gauge couplings
g6,21, and the related effective couplings ( gρππ). The mass of the vector mesons can
be estimated as M2

ρ ∼ O( 1
4 g2

6,21 f 2
6,21), up to a complicated functional dependence on all

the parameters [2]. Hence, if in comparing to lattice data one finds that Mρ � fπ , this
might imply that the coupling is not small—barring the possibility of cancellations and
fine-tuning. In practice, for the Sp(4) theory, as in 2-flavour QCD, real data seem to sit
half-way between the extremes of trustable perturbative and uncontrolled strong-coupling
regimes: the self-couplings are perturbative, but not small enough that one can do precision
measurements and calculations with the tree-level Lagrangian and its couplings. On the
other hand, this is a non-renormalisable EFT, in which the number of independent couplings
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proliferates, going to higher-order in the loop expansion, make the in principle viable
programme of systematic expansion beyond the leading order unappealing. Nevertheless,
the organisational principles, order-of-magnitude estimates, and general lessons associated
with Equation (26) have general value.

2.4. Phenomenological Applications

In this subsection we consider three examples of applications of the Sp(2N) gauge
theories of interest: a model of composite Higgs, a realisation of top partial compositeness,
and two opportunities arising in the context of strongly interacting dark matter. For the
most part, we make explicit reference to the SU(4)/Sp(4) model with the field content
discussed in Refs. [28,127], but, where appropriate we also highlight considerations that
have more general validity, applicable to larger classes of models.

2.4.1. Composite Higgs

We start by recalling the basic properties of the standard model, and the motivations
for compositeness. For concreteness, we postulate the existence of three right-handed
neutrinos, a singlet, under the SM gauge group. All the fermions are then Dirac particles,
and can be classified in terms of their quantum numbers under the symmetry

SU(3)c × SU(2)L × SU(2)R ×U(1)B−L . (29)

The SU(3)c symmetry is gauged, with coupling gs, and describes the strong nuclear
forces. The SU(2)L and the hypercharge subgroup U(1)Y ⊂ SU(2)R ×U(1)B−L are also
gauged, with couplings gL and gY, respectively, in the electroweak (EW) theory. The
hypercharge generator is Y = T̃3

R + 1
2 (B− L), where T̃3

R is the diagonal generator of SU(2)R,
and B− L is anomaly free; quarks have baryon number B = + 1

3 and no lepton number,
while leptons have no baryon number, and lepton number L = +1. The field content
of the standard model consists of three copies (families) of (Dirac) quarks transforming
as (3, 2, 2, 1/3) of SU(3)c × SU(2)L × SU(2)R × U(1)B−L, and three families of leptons
transforming as (1, 2, 2,−1). The chiral symmetry acting on the left-handed and right-
handed projections of the fermions admits the local isomorphism SU(2)L × SU(2)R ∼
SO(4)EW , which plays an important role in the following.

In the minimal version of the standard model, electroweak symmetry breaking (EWSB)
is implemented by adding to the field content a scalar (Higgs) transforming as Φ ∼
(1, 2, 2, 0). The Lagrangian density for Φ consists of its kinetic term, with appropriate
covariant derivatives, coupling it to the SU(2)L ×U(1)Y gauge fields, a renormalizable
potential with SO(4)EW global symmetry, and Yukawa couplings to the fermions which
break explicitly the SU(2)R global symmetry (as does the hypercharge coupling). It is
customary to write Φ in terms of a doublet of complex scalars transforming as H ∼
(1, 2,+1/2) under the SM gauge group SU(3)c× SU(2)L×U(1)Y, and define the conjugate
field H̃ ≡ iτ2H∗, so that the 2× 2 complex matrix

Φ ≡
(

H̃ , H
)

(30)

transforms under the action of SU(2)L × SU(2)R as Φ → ULΦU†
R. It is at times useful also

to write the Higgs fields in real components h ≡ (h1, h2, h3, h4), defined by

H =
1√
2

(
h3 + i h4
h1 + i h2

)
. (31)

The potential, V , can be written as

V = λ

(
H† H − v2

W
2

)2

=
λ

4

(
Tr Φ†Φ − v2

W

)2
=

λ

4

(
hT h − v2

W

)2
. (32)
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The SO(4)EW global symmetry of V is manifested in the last expression. The minimisa-
tion of the potential yields a vacuum expectation value (VEV) for the scalar, which induces
EWSB. In turn, because of the coupling of H to gauge bosons and fermions, it also provides
them with a mass. With these conventions, the electroweak VEV vW is related to the Fermi
constant GF by vW ≡ 1√√

2 GF
∼ 246 GeV, the mass of the Higgs boson is given by the rela-

tion m2
h = 2λv2

W ' (125 GeV)2 [20,21], the W± bosons have mass MW = 1
2 gLvW ' 80 GeV,

and for the Z bosons M2
Z = 1

4 (g2
L + g2

Y)v
2
W ' (91 GeV)2.

The standard model has successfully passed countless experimental tests. Yet, it is
not a complete theory: several of its interactions (the Yukawa couplings, the U(1)Y gauge
coupling, and the scalar self-coupling λ) are not asymptotically free, and most likely require
ultraviolet (UV) completion above some new physics scale Λ. One way to show how this
may lead to a general problem is by considering quantum corrections on the Higgs potential.
Following Coleman and Weinberg in Ref. [298], the (divergent part of the) 1-loop effective
potential computed (perturbatively) in the external field formalism, in the presence of a
hard cutoff scale Λ, can be written as follows:

δV =
Λ2

32π2ST rM2 +
1

64π2ST r
(
M4 ln

(M2

Λ2

))
, (33)

where M is the mass matrix of all the fields in the classical external field background,
and ST r denotes the super-trace, a trace in which bosons enter with positive sign, while
fermions count with a negative sign. For example, the contributions of the top quark,
that has mass mt ' (173 GeV)2, and the W±, Z, and Higgs boson, to the quadratically
divergent part of this potential are estimated to be [299]

δV =
Λ2

32π2

[
3
(

2M2
W + M2

Z

)
+ 3m2

h − 12m2
t

]2H† H
v2

W
. (34)

If Λ� O(TeV), for example if Λ ∼ O(MP), with MP the Planck scale characterising
quantum gravity, then the experimental value of the Higgs boson mass is reproduced only
at the price of fine-tuning loop effects against appropriately chosen counter-terms.

This fine-tuning phenomenon is usually referred to as the (big) hierarchy problem.
It can avoided by replacing the Higgs sector with a new strongly-coupled dynamical
theory. In the potential in Equation (33), Λ is the characteristic scale of the new physics
sector, above which new particles and interactions appear. Given that the Higgs sector
has the same SU(2)L × SU(2)R ∼ SO(4)EW → SU(2)V ∼ SO(3) global non-Abelian
symmetry breaking pattern as in 2-flavour QCD, it is intuitive to model the new sector as
a generalisation of QCD itself. The new gauge theory, with appropriate matter fields, is
asymptotically free in the far UV, but at scale Λ strongly coupling induces the formation
of composite condensates, EWSB appears, and the theory confines. This idea predates
most of modern particle physics, and goes under the name of technicolor (TC). We are not
going to explore this topic any further, but rather refer the reader to the original papers on
technicolor [300,301], walking technicolor (WTC) [103,302,303], and extended technicolor
(ETC) [304,305], as well as to more recent reviews in Refs. [269–274]. To the present
purposes, it suffices to notice that in its original, QCD-like formulation, the spectrum of
TC would not contain a light state identifiable with the Higgs boson. Furthermore, generic
TC models would struggle to satisfy indirect bounds from electroweak precision physics,
encoded in the S and T parameters of Peskin and Takeuchi [306], and their generalisations
as in Ref. [307], or in the subleading terms of the electroweak chiral Lagrangian [308–312].

The solution provided by CHMs [22–24] relies on the engineering of a two-stage
symmetry-breaking pattern, which introduces a little hierarchy of scales. At the strong
coupling scale Λ, an approximate global symmetry G is spontaneously broken to a sub-
group H. While all other composite particles have massO(Λ), the PNGBs have suppressed
mass, and decay constant fπ . The PNGBs admit an EFT description in terms of weakly
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coupled fields, and by embedding the SM gauge group into G, and coupling the PNGBs
to the SM fermions, one can introduce a perturbative instability, which triggers EWSB in
the vacuum. A hierarchy vW � fπ emerges, between fπ , which originates in the strong-
coupling dynamics, and the electroweak VEV, which has a weak-coupling origin, as a
destabilising perturbation of the vacuum. This vacuum misalignment phenomenon relies
on a special modification of the vacuum alignment arguments ubiquitous in the theory of
phase transitions (and exploited in Ref. [19]).

Let us now return to the SU(4)/Sp(4) model of Refs. [28,127]. We have already estab-
lished that with N f = 2 Dirac fermions transforming as the fundamental representation
of Sp(2N), the strong dynamics give rise to the spontaneous breaking of SU(4) to Sp(4).
Working in the basis, in flavour space, in which Ω̃ = Ω in Equation (2), in Section 2.3 we
chose a parametrisation of the five PNGBs, in Equation (18), and we will present a choice of
generators for SU(4) in Equations (A1) of Appendix A. We now discuss the embedding of
SO(4)EW .8 In Appendix A we define a first embedding SO(4)0, in Equations (A2) and (A3),
so that the vacuum Σ6 ∝ Ω̃ leaves SO(4)0 unaffected. We then define a second embedding
in Equations (A4) and (A5), denoted as SO(4)TC. SO(4)TC is broken at scale fπ to the
SO(3)TC ∼ SU(2)V,TV subgroup; this is the embedding one would use in a traditional
technicolor theory, in which the strong coupling and EWSB scale coincide. In practice,
by doing so one establishes that the EFT field Φ describes light particles that originate
in the fundamental theory as composite excitations sourced by the operator QRQL, with
QL,R as the chiral projections of the two Dirac fields transforming in the fundamental
representation of Sp(2N).

We write the generators of SO(4)EW as a linear combination of the two:

T̃i
χ,EW ≡ sin(θ) T̃i

χ,TC + cos(θ)T̃i
χ,0 , (35)

for i = 1, 2, 3 and χ = L, R. The vacuum (mis-)alignment angle, θ ≡ vW
fπ

, is determined
dynamically by the interplay between symmetry-breaking terms that stabilise the EW
vacuum, and hence favour θ = 0 and SO(4)EW → SO(4)0, and symmetry-breaking
interactions that destabilise it, and trigger EWSB. A nice discussion of the typical, generic
potential one expects to arise from combining such symmetry breaking terms (which
originate from the masses of the fundamental fermions, the gauging of the SU(2)L ×U(1)Y
subgroup, and the coupling to the SM fermions) can be found in Equation (125) of Ref. [75],
which studies the potential for |h| ≡

√
hTh,

Veff = α cos
( |h|

fπ

)
− β sin2

( |h|
fπ

)
. (36)

The coefficients α and β are model dependent, and determined by the non-trivial
interplay between weakly coupled effects encoded in the EFT, and strongly coupled effects
that can in principle be extracted from matrix elements in the strongly coupled sector.

Other model-dependent quantities are the number, masses, and couplings of the addi-
tional PNGBs, besides H; models with SU(4)/Sp(4) coset predict an additional singlet,
while other CHMs have richer spectra. Precision electroweak (and Higgs boson) observ-
ables are affected by the additional light scalars, and the spin-1 bound states. Except for the
PNGBs, bound states have masses of order the scale Λ, and carry EW quantum numbers;
they can be detected in direct searches at colliders. As anticipated, we do not discuss the sin-
glet sector in this review, although it may have important phenomenological implications
both for collider and dark matter physics. For broader phenomenological considerations,
see Refs. [25–27,29,30] and references therein. The feasibility of direct and indirect searches
depends on dynamical information from the underlying microscopic theory, which requires
non-perturbative methods. Lattice studies can measure, in increasing order of difficulty:
masses of some bound states (relevant to direct searches), decay constants (entering for
instance precision electroweak observables) and other matrix elements (relevant for exam-
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ple for vacuum misalignment), and couplings between bound states (determining width,
production and decay rates of new particles).

2.4.2. Top Partial Compositeness

This subsection is devoted to the mechanism producing the mass of the SM fermions.
We start with the standard model, in which the Yukawa couplings take the form

LY = −Y(u)
ij qi

L H̃ u
j
R −Y(d)

ij qi
L H d

j
R −Y(n)

ij `i
L H̃ n

j
R −Y(e)

ij `i
L H e

j
R + h.c. , (37)

where qi
L ≡

(
ui

di

)
L

and `i
L ≡

(
ni

ei

)
L

are the quark and lepton SU(2)L doublets,

respectively, while ui
R, di

R, ni
R, and ei

R are the right-handed up- and down-type quark,
neutrino, and charged lepton SU(2)L singlets. The index i = 1, 2, 3 labels the three families,
and the 3× 3 complex Yukawa matrices Y(u)

ij , Y(d)
ij , Y(n)

ij , and Y(e)
ij are proportional to the

mass matrices in the EWSB vacuum, via the relations m(φ)
ij = Y(φ)

ij
vW√

2
, for φ = u, d, n, e.

Not only does Equation (37) provide masses for all the fermions, after EWSB, but it also
automatically implements the Glashow-Iliopoulos-Maiani (GIM) mechanism, suppressing
Flavour Changing Neutral Current (FCNC) processes [313].

Let us now discuss what changes if the Higgs field H is composite. Broadly speaking,
there are two ways to couple elementary fermions to a strongly-coupled vector-like theory
that yields EWSB—we find it useful to refer the reader to the discussions in Ref. [81],
although a vast literature on the subject predates it. For concreteness, we refer to the Sp(4)
gauge theory in Refs. [28,127], using the conventions introduced in Section 2.

The first possibility arises because, in the EFT, the quantum numbers of Φ do not
depend on whether it is an elementary SM field, or describes a mesonic composite state.
Equation (37) originates in the coupling to the meson operator QRQL (transforms as Φ):

LETC = − 1
Λ2

ETC

(
c(u)∗ij u

j
R , c(d)∗ij d

j
R

)
QL QR qi

L + h.c. , (38)

and a similar term for the leptons. The dimensionless parameters c(φ)ij are proto-Yukawa
couplings. These interactions involve four-fermion operators, have engineering dimension
6, spoil asymptotic freedom, and force us to introduce the new physics scale ΛETC. This is
the construction adopted in the ETC literature, and above ΛETC a further, more fundamental
theory unifies family/generation physics with the strong dynamics, in such a way that all
the c(φ)ij have a dynamical origin. New physics also produce other four-fermion interactions,
involving only SM fermions, which spoils the GIM mechanism, so that the experimentally
verified suppression of FCNC processes requires that ΛETC � Λ. An example of valiant
effort at producing a semi-realistic implementation of this challenging model-building
programme can be found in Refs. [314–320].

The magnitude of the Yukawa couplings one is likely to generate in this fashion
may be too small. When matching to the low energy EFT at the scale Λ, one replaces
QRQL → 4πκΦΛ2,9 so that Y(φ)

ij = 4πκ Λ2

Λ2
ETC

c(φ)ij is suppressed by the ratio Λ2/Λ2
ETC � 1.

The top quark Yukawa coupling yt ≡
√

2 mt/vW ∼ 1 is particularly problematic, as on
the basis of Naive Dimensional Analysis (NDA) [321], one expects the strong dynamics to
yield κ ∼ O(1). Hence, one would need an unreasonably low scale ΛETC ∼ 3Λ in order to
reproduce a large enough top mass.

If the underlying dynamics is quasi-conformal in proximity of the strong coupling
scale Λ, up to some scale ΛW , and if the scaling dimension of the QRQL operator is y < 3 in

this regime, then the constant κ receives an anomalous enhancement η ∼ O
((

ΛW
Λ

)3−y
)

.

For example, if ΛW = ΛETC, and y = 2 [280,322], then it might be possible to arrive at a
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reasonable estimate, provided ΛETC/Λ <∼ 4π. (If y ∼ 1 were admissible, concerns about
the ratio ΛETC/Λ would be superseded [323]).

Top partial compositeness (TPC) [78] is an alternative way to generate the top mass.
In the microscopic theory, one couples the top fields to strongly coupled operators, BL,R
with spin-1/2, scaling dimensions ∆L,R, and carrying appropriate quantum numbers to
preserve the SM gauge symmetry. Schematically, one writes:

LTPC = − cL

Λ∆L−5/2
TPC

qL BL −
cR

Λ∆R−5/2
TPC

uR BR + h.c. . (39)

The scale ΛTPC � Λ is introduced to compensate for the fact that BL,R are composite
operators, and Equation (39) introduces higher-dimension, non-renormalisable operators.
Matching to the low energy EFT leads to effective Yukawa couplings of the form

Lt = −4πκtcLcR

(
Λ

ΛTPC

)∆L+∆R−5
q3

L H̃ u3
R , (40)

with κt ∼ O(1), another parameter that has its origin in the strong dynamics.
Generically, ∆L,R is expected to be large, suppressing the top mass. For example, in the

SU(Nc) theory, with odd Nc, and with fermion matter fields in the fundamental representation,
the baryons have engineering dimension ∆L,R = 3

2 Nc, so that ∆L + ∆R − 5 = 3Nc − 5� 1.
However, this does not need to be this way. First, if the theory is approximately scale
invariant, the dimensions ∆L,R may be smaller, thanks to the non-perturbative effects.
For ∆L,R ' 5

2 , the suppression factor in Equation (40) would depend logarithmically on
Λ/ΛTPC. Second, BL,R may have a different composition, as is the case for the Sp(4) theory
with N f = 2 and n f = 3 that we introduced earlier in this section [28,127], where BL,R
are identified with the chimera baryons in the top part of Table 2. Whether the former is
also true, and under what conditions, are highly non-trivial questions about the strong
dynamics that future dedicated lattice studies can in principle try to answer (see also
Section 2.2).

In our prototype CHM, the presence of n f = 3 Dirac fermions transforming in the
2-index antisymmetric representation Ψj ab introduces an SU(6) global symmetry, explicitly
and spontaneously broken to SO(6). It also defines a natural SU(3)L × SU(3)R ⊂ SU(6)
subgroup, itself explicitly and spontaneously broken to the diagonal SU(3)c. This coin-
cides with the SM gauge group describing strong nuclear interactions. A specific basis
of SU(3)c ⊂ SU(6) generators is given in Appendix C of Ref. [5]. The traceless, diagonal
generator of SU(6) that commutes with SU(3)c, is also unbroken. As explained in Ref. [28],
a linear combination of this U(1)X generator and of the unbroken T̃3

R yields the SM hyper-
change Y. (X, appropriately normalised, is related to B− L). In the same way in which the
set (π1

5, π2
5, π4

5, π5
5) transforms as a 4 of SO(4)EW , and hence we can identify it with the

Higgs field Φ, the (OCB,1, OCB,2, OCB,4, OCB,5) operators have the same transformation
properties under SU(2)L × SU(2)R. Furthermore, because of the presence of Ψ in the
constituents, the chimera baryons transform as SU(3)c triplets, and the hypercharge Y is
such to match all transformation properties of the quarks, aside from the fact that the field
content is vector-like, rather than chiral. In the literature, sometimes these operators are
said to source the top partners.

Lattice studies of chimera baryons in strongly coupled theories are non-trivial. See
Ref. [92] for a lattice study in a SU(4) theory with multiple fermion representations. Even
in ordinary QCD, the study of the baryons is resource intensive, and produces noisy
numerical signals. Additional difficulties arise with fermions in different representations,
which require developing dedicated software, and a complicated scanning of the multi-
dimensional parameter space of the lattice theory [10]. So far, Sp(4) results are restricted to
the masses of the lightest such states. Measuring scaling dimensions of chimera baryon
operators is an ambitious long-term goal.
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2.4.3. Composite Dark Matter

We anticipated in Section 1 that strongly coupled dark matter sectors have much
phenomenological potential. We extend the discussion in this subsection, focusing on
two examples. First, we follow Refs. [154–158]; relic cold dark matter (CDM) made of
self-interacting particles yields predictions for dark-matter distribution profiles in the small
scale structure of astrophysical objects—for example the centres of dark-matter halos have
cores with spherical symmetry [324]. Second, we follow Refs. [185,187,188], and discuss
how the presence of a first-order phase transition in a dark sector could, in principle,
be detected in experiments such a the LISA [185], which are sensitive to relic stochastic
gravitational wave backgrounds.

In Ref. [154], SIMP models were proposed, in which a strongly self-interacting dark
sector is feebly coupled to the SM particles, but in thermal equilibrium with the visible
sector, and 3→ 2 annihilation processes are strong enough to resolve the ‘core vs. cusp’ [325]
and ‘too big to fail’ [326] problems in small scale structures, while reproducing the same
successful predictions of weakly interacting massive particles (WIMPs) in large-scale
structures. A combination of numerical and observational studies of rotational velocities in
spiral galaxies indicate the existence of a spherical core, in sharp qualitative contrast with
the generic expectation from collisionless CDM models, leading to power-law dark matter
distributions and cusp profiles. Similarly, the highly peaked distribution of dark matter
expected within the WIMP-based CDM paradigm would predict the existence of massive,
satellite subhaloes, which have not been observed experimentally.

Realisations of the SIMP scenario were identified in general strongly-coupled dark
sectors [155] that, in analogy with ordinary QCD, admit a Wess–Zumino–Witten (WZW)
interaction term [327–329]. The Sp(4) gauge theory with N f = 2 fermions transforming in
the fundamental representation is the minimal model realising this paradigm. In studying
the phenomenology of such models, Ref. [156] highlighted the importance of having non-
perturbative information about the spin-1 bound states in the strongly-coupled dark sector,
for example because it determines the phenomenology of models in which a dark photon
mediates the interactions between visible and hidden sector that keep them in thermal
equilibrium at freeze out. This suggestion was further developed in Ref. [157], by noticing
that in the presence of symmetry-breaking, large masses for the PNGBs, the physics of
the vector mesons can have a dominant effect in determining the CDM relic abundance.
Furthermore, in the presence of a small mass splitting within the dark PNGB multiplet, the
observed dark matter density may result from other depletion mechanisms that rely on the
exchange of dark vectors, but do not assume that dark and visible sectors are at thermal
equilibrium with one another (see for instance Ref. [158]).

This brief, incomplete, collection of thoughts about the phenomenological and model-
building developments taking place over the past 10 years of dark matter studies is still
sufficient to support three points of general validity.

• Gauge theories with Sp(2N) group, coupled to N f families of fundamental matter,
might play a central role in SIMP model building, and it is hence a priority to study
them on the lattice, both in the minimal N = 2 = N f realisation and its extensions.

• In dark matter models, the mass of the lightest spin-1 composite state lies between
that of the PNGBs, and about twice of it. This is to be contrasted with the CHM
context, where addressing the little hierarchy problem requires a scale separation
between PNGBs and heavier states. This is diametrically opposite to TC, where gauge
invariance forbids fermion masses. For lattice practitioners, this observation makes
the quenched calculations into a reasonable approximation of the true dynamics in
the phenomenologically relevant region of parameter space.

• Many variations of the mechanism yielding the SIMP dark matter relic abundance
exist, including SIMP adaptations [162] of the freeze-in mechanism [330–334], and
more are likely to be proposed in the near future. This observation suggests to
carry out broad, unprejudiced explorations of the whole parameter space. As high
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precision measurements are not yet a priority, feasible investigation strategies for these
explorations make reasonable use of available computing resources.

A quite significant amount of information can already be found in Refs. [2,4,5,7], that
report the masses and decay constants of PNGBs and other light mesons in Sp(4) theories
with N f = 2 (quenched or dynamical) fermions, as well as the masses of glueballs in Sp(2N)
with N = 1, 2, 3, 4. Future studies of the spectrum of mesons with dynamical matter
transforming in the antisymmetric representation will contribute further. A systematic
study of the mesons in the low dimensional representations of Sp(2N), for varying N,
inside the regime of validity of the quenched approximation, will tabulate dynamical input
that is essential to SIMP model builders. The ongoing programme of study of Sp(4) theories
in the presence of small mass splitting within the fermion sector provides complementary
strong-coupling input for phenomenology [16–18].

Without the pretence of encyclopaedic completeness, we also discuss the potential
implications for the early universe of first-order phase transitions. At the transition, the for-
mation of bubbles of true vacuum, their growth, collisions, and the resulting sound waves
and friction source a relic stochastic GW background, which is detectable, in principle,
in future experiments. The original motivation to consider such scenarios comes from
the miscellaneous environment of hidden sectors and strongly coupled dark matter mod-
els. A broad portfolio of tools has been optimised to analyse the specific reach of future
experimental programmes, and test broad classes of new physics models.

One such tool is the online software package PTPlot [185]. Developed with the spec-
ifications of LISA, PTPlot provides the gravitational wave power spectrum h2ΩGW( f )
predicted for a given choice of input parameters, as a function of the frequency f , and
compares it to the sensitivity curves, determined by the experiment configuration and its ex-
pected noise level. Sound waves are the main source of gravitational waves, and following
Ref. [185] (to which we refer the reader, as to the original literature, for details) we ignore
other sources. The power spectrum is computed from (model-dependent) knowledge of
the following five parameters.

• The (percolation) temperature T∗ (or Hubble parameter H∗) at which the phase transi-
tion ends. The phase transition starts at the critical temperature Tc > T∗.

• The inverse duration of the transition, measured by the bubble nucleation rate β
computed at T∗, defined in terms of S(T), the 3-dimensional action of the system:

β

H∗
≡ T

∂

∂T

(
S(T)

T

)∣∣∣∣
T∗

. (41)

• The parameter α, determining the strength of the transition, depends on ∆θ, the jump
at the transition in trace of the stress-energy tensor θ ≡ e − 3p, and the enthalpy
ω+ = e+ + p+ in the high-T phase:

α ≡ ∆θ

3ω+
. (42)

• The bubble wall speed vW—the efficiency parameter κ (the ratio of bulk kinetic energy
to vacuum energy) depends on α and vW [335].

• The number of degrees of freedom g∗ after the phase transition.

We specify a dark, strongly coupled gauge theory. Following Refs. [187,188], we
assume the transition to be very fast, so that T∗ ' Tc and β/H∗ � 1. Furthermore, we
assume a relativistic bubble wall velocity vW ' 1; a precise determination of the wall
velocity would require dedicated studies of the bubble wall dynamics, and as shown in
Ref. [187] the signal strength depends only mildly on this parameter. We borrow from
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Ref. [193] the lattice indication that p� e ' θ for SU(Nc) Yang–Mills theories near Tc, and
that p varies smoothly across Tc. As a result

α ' 1
3

. (43)

The value of β/H∗ can be obtained by modelling and measuring the effective action, or
with detailed knowledge about the surface tension of the bubbles. For SU(Nc) Yang–Mills
theories, Refs. [187,188] agree in indicating the range

104 <∼
β

H∗
<∼ 105 , (44)

which is affected by large uncertainties, for all Nc. Finally, the number of relativistic degrees
of freedom is the sum of the SM ones and the new dark sector ones. For example, for a
SU(Nc) dark sector coupled to the SM fields (no right-handed neutrinos):

g∗ = n(SM)
B +

7
8

n(SM)
F + n(Nc)

B +
7
8

n(Nc)
F = 106.75 + 2(N2

c − 1) , (45)

while if we treat the SM neutrinos as Dirac particles, then g∗ = 112 + 2(N2
c − 1).

By making use of the online interface of PTPlot [185], one can compare the GW power
spectrum, h2ΩGW( f ), as a function of the frequency f , to the predicted reach of LISA
(3-year exposure). Assuming vW = 1, α = 0.33, and g∗ = 142, one empirically finds that
by holding the product T∗β/H∗ = 10, 000 GeV fixed, the peak of the GW signal appears
at frequencies close to f ' 0.001 Hz, near the best reach of LISA. The GW signal could be
detected by LISA for β/H∗ ≤ 100, which can be compared to the inequalities (44).

Coming back to the topic of this review, the percolation temperature T∗ is essentially
a free parameter, and additional GW experiments are being planned [169–186], which
will be sensitive to higher frequencies and lower values of h2ΩGW . Hence, it is possible
that dark sectors based on Sp(2N) theories that undergo first order phase transitions in
the early universe are testable via their relic stochastic GW background. Furthermore,
the quantities α and β have not yet been computed for Sp(2N) theories with N > 1. (The
Sp(2) = SU(2) case is trivial, as the transition is believed to be of second order.) Large-N
universality suggests that similar results should hold for Sp(2N) as for SU(Nc) theories,
in which the thermodynamics depends mildly on Nc > 2. Some interesting work in this
direction, based on gauge-gravity dualities and their relation to large-Nc theories, can be
found in Refs. [336–343]. However dedicated, non perturbative studies of Sp(2N) theories
at finite temperature are needed, for which the LLR method [204–207] offers an intriguing
opportunity, as argued in Refs. [208–211].

3. Sp(2N) Lattice Gauge Theories

This section introduces the lattice treatment of the theories of interest. We start by
describing the lattice action, for bosons and fermions, in Section 3.1, and the numerical
Monte Carlo algorithms adopted in Section 3.2. Section 3.3 discusses scale setting and
topology. Section 3.4 introduces the strategy employed in data analysis, focusing mostly on
the two-point functions used for spectroscopy measurements. Additional information on
the lattice theory and its systematic effects are presented in Section 3.5, which discusses the
bulk phase structure and finite volume effects.

3.1. Lattice Action

For the numerical calculations we first rewrite Equation (4) in four-dimensional Eu-
clidean space-time, then discretise the lattice action, which contains the gauge-field term Sg
and the fermion matter-field term S f ,

S = Sg + S f . (46)
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We use the standard Wilson plaquette action for the gauge fields. With the bare lattice
coupling β = 4N/g2, it gives

Sg ≡ β ∑
x

∑
µ<ν

(
1− 1

2N
Re TrPµν

)
, (47)

where the plaquette Pµν is defined as

Pµν(x) ≡ Uµ(x)Uν(x + µ̂)U†
µ(x + ν̂)U†

ν (x) . (48)

The gauge link Uµ(x) ∈ Sp(2N) transforms in the fundamental representation.
The massive Wilson–Dirac action for fermionic fields is

S f ≡ a4
N f

∑
j=1

∑
x

Qj
(x)D( f )

m Qj(x) + a4
n f

∑
j=1

∑
x

Ψj
(x)D(as)

m Ψj(x), (49)

with the definition of the massive Wilson–Dirac operator

DR
mψR

j (x) ≡ (4/a + mR
0 )ψ

R
j (x)

− 1
2a ∑µ

{
(1− γµ)UR

µ (x)ψR
j (x + µ̂) + (1 + γµ)UR, †

µ (x− µ̂)ψR
j (x− µ̂)

}
,

(50)

where we denote as a the lattice spacing, R is the representation, with ( f ) and (as) being
the fundamental and antisymmetric, respectively, and mR

0 is the (degenerate) bare masses

of the fermion fields ψR
i . The link variable for fundamental fermions, U( f )

µ (x), is the same

as Uµ(x) in Equation (48). For the antisymmetric fermions, the link variable, U(as)
µ (x), is

obtained by the construction(
U(as)

µ

)
(ab)(cd)

(x) ≡ Tr
[
(e(ab)

(as) )
†Uµ(x)e(cd)

(as)UT
µ (x)

]
, with a < b, c < d. (51)

The basis matrices are defined as

(e(ab)
(as) )c,N+c ≡ −(e(ab)

(as) )N+c,c ≡


1√

2 a (a−1)
, for c < a,

−(a−1)√
2 a (a−1)

, for c = a,
(52)

for b = N + a with 2 ≤ a ≤ N, and

(e(ab)
(as) )cd ≡

1√
2
(δadδbc − δacδbd) (53)

for b 6= N + a. We assign the multi-index pairs (ab) with the order 1 ≤ a < b ≤ 2N. In this
work, the spatial extents, Lx/a, Ly/a and Lz/a, of the lattice are taken to be the same, while
the temporal extent, T/a, can be different. Periodic boundary conditions are imposed for all
fields in the spatial directions. For the temporal direction, we use periodic and anti-periodic
boundary conditions for the gauge and fermion fields, respectively. Using the lattice actions
described above, we generate gauge-field ensembles with Monte Carlo (MC) methods,
as described in the next section.

The lattice theory with N f = 2 and n f = 3 (massive) Dirac flavours is expected
to exhibit the same global (flavour) symmetry breaking pattern of the continuum the-
ory discussed in Section 2.1. Namely, the breaking patterns are SU(4) −→ Sp(4) and
SU(6) −→ SO(6), for the fundamental and antisymmetric sectors, respectively. This infor-
mation is encoded in the spectrum of the Dirac operator, which can be modelled by chiral
random matrix theory (ChRMT) [344]. In particular, ChRMT predicts that the distribution
of the unfolded density of spacings, s, between subsequent Dirac eigenvalues, P(s), is
described by the Wigner surmise with a Dyson index different for the symmetry breaking
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patterns. In Ref. [10], we computed the Dirac eigenvalues for fermions in the fundamental
and antisymmetric representations from a quenched ensemble with lattice size 44, and
found that the numerical results are in good agreement with the ChRMT predictions of
P(s). We hence confirmed that fermions are correctly implemented in the code used for
numerical simulations and measurements.

3.2. Simulation Strategies

In the lattice studies reported in Refs. [2–15], numerical calculations are carried out by
using the HiRep code [345,346], with bespoke software implementation of Sp(2N) gauge
groups [347]. For pure Sp(2N) gauge theories, gauge configurations are generated with the
heat bath (HB) algorithm, and decorrelation between configurations is improved by micro-
canonical over-relaxation (OR) updates. Similar to the case of SU(Nc) [264], the gauge
links evolve with the minimal set of SU(2) subgroups covering the whole Sp(2N) group to
ensure ergodicity. A variant of the (modified) Gram–Schmidt algorithm allows to correct
the link variables and keep them in the desired group manifold over the updates. This
re-symplectisation procedure is important for correcting the numerical errors arising from
the limit of machine precision.

Simulations with dynamical fermions are performed using the hybrid Monte Carlo
(HMC) algorithm for an even number of Dirac flavours. For simulating an odd number of
Dirac flavours, we resort to the rational HMC (RHMC) algorithm [348]. Contrary to the
HB algorithm, the explicit form of the group generators of Sp(2N) enters the definition
of the molecular dynamics (MD) update (see also Refs. [349,350] for the relevant choice
of integrators and conditioning of the fermion matrices). Again, the link variables are
re-symplectised to correct for machine-precision errors. Beside the Gram–Schmidt method
mentioned above, this can also be achieved by carrying out projections with the quaternion
basis, as described in Appendix C of Ref. [2].

Correlations between consecutive trajectories (Monte-Carlo steps) exist in the algo-
rithms mentioned above. In order to obtain independent gauge-field configurations, we
monitor the average value of the plaquette along Monte-Carlo steps, and investigate its
autocorrelation time in all of our simulations. We find that it is sufficient to perform
measurements for every 12 trajectories in quenched simulations, and for every 8 to 28 trajec-
tories for dynamical calculations. Furthermore, we typically discard a few hundred initial
trajectories for the purpose of thermalisation, which is monitored via the plaquette value.
Statistical analysis employs the standard bootstrap method.

3.3. Scale Setting and Topology

The raw data obtained from lattice calculations are all expressed in lattice units—each
ensemble with a given set of lattice parameters defines a lattice theory at some value of the
lattice spacing, a, which depends on the chosen couplings. It is therefore necessary to set a
common scale to convert all the lattice results to the same continuum theory in a consistent
way, using a procedure of scale setting. The gradient flow method for the scale setting is
particularly suitable for lattice studies of novel strongly coupled theories, such as the ones
considered here. The lattice version of the gradient flow for the gauge fields, the Wilson
flow, is nowadays common practice in the field. Thus we do not venture into a complete
treatment of this technique here, referring the reader to Refs. [351,352] for further details;
we instead briefly define the gradient flow scheme used for this work and discuss the key
numerical results.

The gradient flow is defined via a diffusion equation in which a new gauge field
Bµ(t, x) at a fictitious flow time t (having length dimension two) is defined from the four-
dimensional gauge field Aµ(x) as

dBµ(t, x)
dt

= DνGνµ(t, x), with Bµ(0, x) = Aµ(x), (54)
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where Dν is the covariant derivative and Gνµ is the field-strength tensor. For t > 0 any
gauge invariant observables built out of Bµ(t, x) are renormalised [353]. An observable that
does not generate new operators along the flow time is the action density,

E(t, x) = −1
2

TrGµν(t, x)Gµν(t, x). (55)

After defining a dimensionless quantity using the expectation value of E(t, x),

E(t) ≡ t2〈E(t, x)〉, (56)

one can obtain the scale t0 by imposing the condition

E(t)|t=t0 = E0. (57)

Here, the renormalisation scale can be identified with the diffusion radius µ = 1/
√

8t.
The reference scale E0 is chosen empirically so that the lattice artefacts are minimised.
Two further choices are made: firstly, rather than taking the simple plaquette operator
Gµν = Pµν, in Equation (55) one can replace Gµν with a four-plaquette clover, denoted by
Cµν, that will also be used to define the topological charge density. Second, rather than E(t),
one can consider

W(t) ≡ t
d
dt
{E(t)} , (58)

and define the scale w0 [354] by the relation

W(t)|t=w2
0
=W0 ≡ 0.35 . (59)

Since w0 and t0 are affected differently by discretisation effects, their comparison
allows for an assessment of their magnitude.

While the flow scale shows mild quark-mass dependence in a typical lattice calculation
for QCD with light quarks [354], for the Sp(4) theory involving dynamical fermions
considered here it turns out to significantly depend on the fermion mass, as shown in
Figure 3. Notice that the mass dependence is milder on finer lattices. We introduce the
hatted notation to present physical quantities in units of the Wilson flow scale w0, e.g.,
m̂ ≡ mw0 = mlattwlatt

0 with mlatt ≡ ma and wlatt
0 ≡ w0/a.
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Figure 3. Inverse of the gradient flow scale, a/w0, in the Sp(4) gauge theory coupled to N f = 2
fundamental fermions, as a function to the mass of the lightest pseudoscalar m̂PS = mPSw0. Different
colours denote different β values; from top to bottom: 6.65 (blue), 7.05 (magenta), 7.2 (green), 7.4 (red)
and 7.5 (brown). The plot is taken from Ref. [4].
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When studying Sp(2N) pure gauge theories on the lattice, it is convenient to define a
way to relate the value of the scales obtained at different values of N. It can be shown that
the following relation holds true,

E(t) = 3λ

64π2 C2(F) (60)

at leading order in a perturbative expansion in the ’t Hooft coupling, defined as λ = 4πNcα,
with α(µ) the renormalized coupling in the Wilson Flow scheme and C2(F) = (2N + 1)/4
the quadratic Casimir of the fundamental representation of the Sp(2N) group. It is then
natural, especially in the context of studies about the large-Nc limit of gauge theories, to set

E0 = ceC2(F) , W0 = cwC2(F) . (61)

where ce and cw are empirically chosen constants. The usefulness of this scaling law outside
of perturbation theory can be assessed numerically. The behaviours of E(t) and W(t),
rescaled with C2(F), as a function of the rescaled flow times t/t0 and t/w2

0, respectively, are
displayed in Figure 4. Notice the approximate superposition of the curves corresponding
to different values of N and similar values of the ’t Hooft coupling, which holds beyond
perturbation theory.
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Figure 4. Left panel: E(t)/C2(F) as a function of the rescaled flow time, t/t0. Right panel:W(t)/C2(F)
as a function of the rescaled flow time t/w2

0. Both quantities are computed using the four-plaquette
clover-leaf discretisation on the ensembles corresponding to the finest and coarsest available lattices
for each Nc, with C2(F) = (Nc + 1)/4. The figure adopts the choice ce = cw = 0.225 (horizontal
dashed line). The plots are taken from Ref. [12].

We close this section with a brief discussion on the topological charge Q. The discreti-
sation of this observable is not unique. As a→ 0, valid lattice definitions differ by terms
proportional to a4. Regardless of the definition, lattice measurements of Q are dominated
by UV fluctuations. In order to extract the value of the topological charge at finite lattice
spacing, an efficient strategy is to compute Q on configurations that have been evolved
according to the Wilson flow, Equation (54), up to a finite flow-time t.

In the lattice studies on Sp(2N) we review, the definition of the topological charge QL
is

QL(t) = ∑
x

q(t, x) , qL(t, x) =
1

32π2 εµνρσTr
{
Cµν(t, x)Cρσ(t, x)

}
. (62)

where qL(t, x) and Cµν(t, x) are, respectively, the topological charge density and the four-
plaquette clover-leaf operator computed at space-time site x and flow time t [355,356].
This observable is used for monitoring the simulations. Specifically, for each of the lattice
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settings, the topological charge is computed and its value as a function of simulation
time is inspected to ascertain the absence of topological freezing, so that the Monte Carlo
configuration are not stuck in particular values of QL, which would indicate that one is
not correctly sampling the space of the configurations—more sophisticated ideas exist
to address topological freezing [357–359], and might be implemented in the future. As
an example, the Monte Carlo time history of the topological charge QL is reported in
Figure 5 for the case Nc = 2N = 6. The trajectory of QL does not display any sign
of topological freezing. In the side panel, the frequency histograms of QL are reported.
The distribution of QL is compatible with a Gaussian centred at QL = 0, as expected from
theoretical considerations. When the topological charge plays a quantitative role in the
physics observables of interest, for instance in the measurement of its susceptibility, its
α-rounded version is used in order to further reduce the discretisation effects, see Section 4.3
for details.
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Count

Figure 5. The topological charge QL as a function of simulation time (trajectory) for the ensembles
corresponding to the coarsest (top) and finest (bottom) lattice with Nc = 6. The value of QL is
computed at t = t0, where the value of t0 is obtained from ce = 0.225. The average value of the
topological charge along the trajectory is reported in the bottom left-hand side of the plot. The side
panel contains the cumulative histogram of the values of QL(t0). The orange curve is a Gaussian fit
to the cumulative histogram. The plots are taken from Ref. [12].

3.4. Measurements: Two-Point Functions, Masses, and Decay Constants

Spectroscopy studies are a crucial component in understanding gauge theories. These
studies involve the computation of masses and decay constants of the low-lying hadronic
states, such as those listed in Tables 1 and 2.

Two-point correlation functions are a central tool for these calculations. For mesons,
the structure of a generic two-point correlator (using the notation x ≡ (t,~x)) is

CM,M′(t) ≡∑
~x

〈
OM(x)O†

M′(0)
〉

, (63)

where M and M′ are labels appearing in the first column of Table 1, withOM andOM′ being
the corresponding interpolating operators. These operators overlap with the lowest-lying
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mesonic states with zero spatial momentum. Carrying out the Wick contraction for the
fermion fields in Equation (63), the correlation function is

CM,M′(t) = −∑
~x

Tr
[
ΓMSR(x)ΓM′γ5SR †(x)γ5

]
, (64)

where the trace is taken in both spinor and colour spaces, with ΓM(′) being the relevant
Dirac matrix in OM(′) . In Equation (64), the symbol SR denotes the fermion propagator in
the representation R. We define respectively the ( f ) and (as) fermion propagators as

S i a
Q b αβ(x) = 〈Qi a

α(x)Qi b
β(0)〉 and S k ab

Ψ cd αβ(x) = 〈Ψk ab
α(x)Ψk cd

β(0)〉 , (65)

where a, b, c, d are colour indices while α and β are spinor indices. In the case of a point
source, the meson interpolating operator is constructed at one space-time point, and the
fermion propagator is computed by solving the Dirac equation

DR
aα,bβ(x, y)SR bβ

cγ (y) = δx0δαγδac , (66)

with DR referring to the Dirac operator in representation R. Using Z2 × Z2 single-time
stochastic wall sources [360] (with the number of hits 3, in our case) improves the signal by
increasing the overlap of interpolating operators and the lowest-lying physical state. At
large Euclidean time t→ ∞, the correlator with M = M′ behaves as

CM,M(t)→ |〈0|OM|M〉|2
2mM

[
e−mMt + e−mM(T−t)

]
, (67)

where |M〉 denotes the lowest-lying mesonic state that overlaps with OM, with mM being
its mass, and T the temporal extent of the lattice. The combination M = PS and M′ = AV
is used to determine the pseudoscalar meson decay constant, as the correlator reads

CPS,AV(t)→
〈0|OAV|PS〉〈0|OPS|PS〉∗

2mPS

[
e−mPSt − e−mPS(T−t)

]
. (68)

The decay constants of the PS, V, and AV mesons are extracted from the
matrix elements:

〈0|OAV|PS〉 ≡
√

2 fPS pµ, (69)

〈0|OV|V〉 ≡
√

2 fVmVεµ, (70)

〈0|OAV|AV〉 ≡
√

2 fAVmAVεµ, (71)

where pµ and εµ are the momentum and polarisation four-vectors, respectively. The PS
decay constant, fPS, is normalised by adopting the convention, which yields fPS ' 93 MeV
in QCD. Furthermore, we renormalise the decay constants using the renormalisation
constants obtained in lattice perturbation theory for Wilson fermions at the one-loop level
with tadpole improvement [361].

The zero momentum two-point function of a chimera baryon, after the Wick contrac-
tions, takes the form,

CCB(t) ≡ ∑
~x
〈OCB(x)OCB(0)〉

= −∑
~x

(
Γ2Sk cd

Ψ c′d′(x, 0)Γ2
)

ΩcbΩb′c′ΩadΩd′a′

× Tr
[
Γ1Sb

Q b′(x, 0)Γ1Sa
Q a′(x, 0)

]
, (72)
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where we define Γ ≡ γ0Γ†γ0, with Γ1,2 being the Dirac matrices appearing in the second
column of Table 2. The trace is over the spinor indices. Unlike mesonic correlators,
the chimera-baryon two-point function in Equation (72) contains contributions from both
even and odd parity states. The asymptotic behaviour of such a correlator at t→ ∞ is thus,

CCB(t)→ Pe

[
cee−met + coe−mo(T−t)

]
−Po

[
coe−mot + cee−me(T−t)

]
, (73)

where Pe, o ≡ (1± γ0)/2 are the parity projectors in the non-relativistic limit. We denote
as me and mo the masses of the baryons in parity even and odd states, respectively, while
ce and co are coefficients related to matrix elements of the interpolating operator between
the baryon states and the vacuum. By combining the correlators of both parity projections,
Ce ≡ PeCCB and Co ≡ PoCCB, we obtain

C̃CB(t) =
1
2
[Ce(t)− Co(T − t)] t→∞−−→ 1

2

[
cee−met + coe−mo(T−t)

]
. (74)

The masses are extracted by fitting Equation (67) for a meson and Equation (74) for a
chimera baryon.

Glueballs and torelons are colour-singlet states of the system. Their existence de-
scends from the confining nature of the theory. These states transform according to the
irreducible representations of the spacetime symmetries of the system, which identify
classification channels. In the continuum, the symmetry channels are the JP representa-
tions of the Poincaré group. The lattice is governed by the octahedral group, which is the
symmetry group (rotations and parity transformation) of the cube. Near the continuum
limit, degeneracies of states arise, which restore Poincaré invariance. The masses of the
low-lying glueball states in all JP channels and of the ground state torelon were determined
in Sp(2N) theories for N = 1, 2, 3, and 4—see Ref. [7] and references therein. In the rest of
this section, we provide an overview of the methodology that underpins Ref. [7], with the
results reviewed in Section 4.1.

On the lattice, states are generated from the vacuum by the action of gauge-invariant
operators. These are defined as the trace of path-ordered, P, products of link variables
along closed space-like lattice paths C,

UC(t, ~x) = Tr P ∏
(x,µ)∈C

Uµ(x) , (75)

where x = (t, ~x) are the coordinates of any site that belongs to the path. Elementary
paths can be linearly combined with suitably chosen weights that preserve the symmetry
channel. This fact can be exploited to optimise the signal-over-noise ratio, for instance
using a variational approach involving the combination of multiple operators for each
given symmetry channel. This observation underpins efficient methods of extraction of
masses from lattice data, such as smearing and blocking.

Glueballs are sourced by operators defined on contractible paths. They transform in
the trivial representation of the centre of the group. As mentioned above, on the lattice the
spacetime symmetries are described by the octahedral group, which has five irreducible
representations, each with two parity sectors. These 10 channels are labelled by A±1 , A±2 ,
E±, T±1 , T±2 , where ± indicate the parity P and A1, A2, etc., the irreducible representations
R in standard crystallographic notation. The ground state mass in channel RP is deter-
mined variationally. Among all the possible linear combinations of operators defined as in
Equation (75), the ones with the maximal overlap with the ground state, denoted by ÕRP

,
are found. The large Euclidean-time behaviour of the two-points correlation functions of
these operators then allows to extract the mass in channel RP, for different choices of the
lattice spacing, at each value of N.
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Torelons are sourced by operators defined on paths that wind around the lattice along
a compactified direction. They transform non-trivial representation under the action of the
centre of the group. From the ground state energy of the torelon, the string tension, σ, can be
extracted. The string tension is defined as the energy per unit length of a fluxtube winding
around a compactified direction of the system. If the length of the winding direction is L
and m is the mass of the torelon, then in general

m = σL

(
1 +

∞

∑
k=1

dk

(σL2)k

)
, (76)

where dk are dimensionless coefficients. The first three subleading terms in this expansion
have been computed and have been shown to be constrained by symmetries (i.e., they are
universal) [234,362–371]. For a winding direction of sufficiently large length,

m = σL , (77)

in agreement with the classical picture of fluxtubes as strings of constant energy per unit
length. In Ref. [7], the value of the string tension σ has been obtained from fits of the
Nambu–Goto formula

mNG(L) = σL
√

1− π

σL2 , (78)

which can be shown to reproduce the universal terms of Equation (76), to order L−5.

3.5. Bulk Phase Structure and Finite Volume Effects

The lattice action in Equation (46) involves at most three bare parameters: the lattice
coupling β and two bare masses m( f )

0, latt ≡ am( f )
0 and m(as)

0, latt ≡ am(as)
0 , as we restrict the

attention to mass matrices that are flavour degenerate. The continuum and massless
counterpart of this lattice theory can be obtained by taking the zero limit of 1/β and mR

latt
(after accounting for the additive renormalisation to the bare mass of the Wilson–Dirac
fermions). Understanding the phase space of the lattice theory is necessary to choose
appropriate values of β, for which numerical simulations are doable on lattices of realistic
size, without severe finite size effects, and yet such as to still be in the weak coupling
regime. The latter condition is particularly important when the strong and weak coupling
regimes are separated as a first order bulk phase transition: the dynamics of the strong
coupling regime could systematically differ from the continuum theory.

The average plaquette value is an order parameter for lattice bulk phase transitions. By
measuring the ensemble average of the plaquette with initial configuration as either unity
or random, on a small lattice (e.g., 44), one associates the presence of (strong) hysteresis
as a sign of first order phase transitions. By computing the plaquette susceptibility and
using different sizes of lattice, the study of the volume dependence can confirm the order
of phase transition and pin down the location of the phase boundaries.

The phase structure of Sp(4) Yang–Mills has first been studied with (unimproved)
Wilson plaquette action in Ref. [1], and later in Ref. [2]. The bulk phase transition disappears
above β & 7.5. With degenerate fermions in a given representation the parameter space
extends to a two-dimensional plane that can be scanned by measuring the average plaquette
values. References [2,3] show that the bulk transition is of first order at strong coupling
in the Sp(4) theory with N f = 2 fundamental and n f = 3 antisymmetric Wilson–Dirac
fermions, respectively. The weak coupling regime is β & 6.7 for the former and β & 6.5 for
the latter. The critical beta value associated with the phase boundary decreases as more
fermionic degrees of freedom are involved. Finally, the phase space of the Sp(4) theory with
fermions in both representations, two fundamental and three antisymmetric Dirac flavours,
has been explored in Ref. [10]—see Figure 6—and the weak coupling region extends to
smaller beta values β & 6.3. The infinite mass limit of either am( f )

0 or am(as)
0 recovers the

phase structure of the theory with the same number of dynamical Dirac fermions in the
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fundamental or antisymmetric representation, which is asymmetric, as represented by the
green solid line in Figure 6.

Figure 6. Schematic diagram of the phase space of Sp(4) lattice gauge theory with N f = 2 and n f = 3
Wilson–Dirac fermions. The black surface denotes the 1st order phase transition. The coloured solid
lines represent three distinct cases with fixed β values: the transition is always 1st order (red), it
becomes crossover for an interval with small masses (blue), and is only 1st order with a large mass of
antisymmetric fermions (green). The image is taken from Ref. [10].

Finite volume (FV) effects are an inherent source of systematic errors in lattice cal-
culations. In confining theories, they are expected to be exponentially suppressed or in
quantities that do not involve scattering states, if the volume is larger than the longest
(intrinsic) scale of the theory, e.g., the Compton wavelength of the lightest state—usually,
the pseudoscalar meson, for which one requires minf

PS L� 1. To quantify the size of FV ef-
fects, we compute mPS by varying the spacial lattice extent L and investigate its dependence
on minf

PS L. Illustrative examples for different dynamical theories are shown in Figure 7: the
top-left and top-right panels are for the Sp(4) theories with N f = 2 fundamental [4] and
n f = 3 antisymmetric fermions [9], respectively, while the bottom panels are for the theory
with both N f = 2 fundamental and n f = 3 antisymmetric fermions [10]. We find that the FV

effects can be safely neglected if the condition minf
PS L & 7.0 is satisfied, except for am f

PS in the
two-representation theory, in which the condition becomes more stringent as minf

PS L & 8.5.
Such conditions are sufficient to ensure that FV effects are within a percent level.
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Figure 7. Volume dependence of pseudoscalar meson masses. Top-left and top-right panels show the
results for the Sp(4) theories containing N f = 2 fundamental and n f = 3 antisymmetric fermions,
respectively. Bottom-left and bottom-right panels display the masses of the PS meson composed of
fundamental and antisymmetric fermions, respectively, but measured in the dynamical Sp(4) theory
containing both N f = 2 fundamental and n f = 3 antisymmetric fermions. The lattice parameters are

β = 7.2, am( f )
0 = −0.79 (top-left), β = 6.8, am(as)

0 = −1.03 (top-right), and β = 6.5, am( f )
0 = −0.71,

am(as)
0 = −1.01 (bottom panels). The mass in the infinite volume limit, aminf

PS , is estimated from the
largest available lattice, except for the top-left panel in which it is determined from infinite volume
extrapolation (dashed line). Plot derived from Refs. [4,9,10].

We highlight that the FV corrections to amPS have the opposite sign for mesons
composed of fundamental and of antisymmetric fermions. This can be understood within
the low-energy description of chiral perturbation theory (χPT), as FV corrections are
dominated by the contribution of PS states wrapping around each lattice spatial direction.
The NLO expression of the PS mass squared at finite volume in the continuum theory is

m2
PS = M2

(
1 + aM

A(M) + AFV(M)

F2 + bM(µ)
M2

F2 +O(M4)

)
, (79)

where M and F are the mass and decay constant of the PS meson defined at the leading
order in the χPT, and µ is the renormalisation scale. A(M) is the chiral logarithm arising
from the one-loop integral at infinite volume, while AFV(M) is the FV contribution obtained
by replacing integrals with discrete sums on a cubic box of size L. A(M) and AFV(M) are
independent of the details of the theory, encoded in the coefficient aM [372]

aM =


− 1

2 − 1
N f

, for SU(2N f )→ Sp(2N f ) ,

− 1
N f

, for SU(N f )× SU(N f )→ SU(N f ) ,
1
2 − 1

2N f
, for SU(2N f )→ SO(2N f ) .

(80)

For the two fundamental and three antisymmetric flavours, corresponding to the first
and the third classes, one finds that aM = −1 and +1/3. The resulting FV corrections
would have an opposite sign and thus agree with our findings in Figure 7.

4. Numerical Investigation I: Pure Sp(2N)

We summarise in this section the main results for the measurement of physical ob-
servables obtained in Sp(2N) lattice gauge theories in which only gauge dynamics is
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included in generating the ensembles. Section 4.1 focuses on string tension and glueball
masses [2,6,7], Section 4.2 reports a selection of measurements of meson masses in the
quenched approximation [2,5], and Section 4.3 reports on the topological susceptibility
of the Sp(2N) theories [11,12]. We only reproduce some illustrative examples, and refer
the reader to the original publications for more extensive selections of numerical results,
and for technical details about the calculations.

4.1. Glueballs and String Tension

Numerical results for glueballs and string tension are available for several values of the
lattice spacing. For each Sp(2N) group, and for each representation RP, the extrapolation
for the ratio mRP /

√
σ is performed with the relation

mRP√
σ
(a) =

mRP√
σ
(1 + cRP σa2) . (81)

The leading-order linear behaviour in a2 in Equation (81) describes the data well for all
channels, as attested by the values of the χ2/Nd.o.f. reported in the figure. As an example,
Figure 8 shows the extrapolations to the continuum limit for all the channels in the case
N = 4. Similar results are obtained for N = 1, 2, and 3 [7]. The values of the masses in
the spectrum extrapolated to the continuum limit are reported in Table 3, and displayed
in Figure 9. The masses in the E± and T±2 channels have degenerate continuum limit,
as expected by rotational invariance. Because the masses are degenerate even at non-zero
values of a, we infer that discretisation effects are small in all the ensembles. The lightest
glueball states in the spectrum are found in the channels 0+, 2+, and 0−, for every value of
N, consistently with the pattern observed in gauge theories with SU(Nc) groups [226].

Table 3. Continuum limit extrapolations of mRP /
√

σ. For N = 2, these values are the weighted
average of those in Refs. [2,7]. In the case of SU(Nc → ∞), we have m/

√
σ = 3.307(53) for the A++

1
channel, 6.07(17) for the A++∗

1 channel, and 4.80(14) for the E++ channel [225]. The table is taken
from Ref. [7].

1 2 3 4 ∞

RP mRP /
√

σ mRP /
√

σ mRP /
√

σ mRP /
√

σ mRP /
√

σ

A+
1 3.841(84) 3.577(49) 3.430(75) 3.308(98) 3.241(88)

A+∗
1 5.22(33) 6.049(40) 5.63(32) 5.58(44) 6.29(33)

A−1 6.20(14) 5.69(16) 5.22(23) 5.36(26) 5.00(22)
A−∗1 7.37(72) 7.809(79) 6.59(49) 7.76(85) 7.31(45)
A+

2 6.81(31) 7.91(16) 7.36(39) 6.5(1.0) 8.22(46)
A−2 8.99(86) 9.30(38) 8.60(67) 7.2(1.4) 8.69(83)
T+

2 5.29(20) 5.050(88) 5.09(16) 4.73(23) 4.80(20)
T−2 6.55(34) 6.879(88) 6.47(43) 6.36(35) 6.71(35)
E+ 5.33(18) 5.05(13) 5.03(13) 4.62(29) 4.79(19)
E− 6.61(37) 6.65(12) 6.34(40) 6.29(29) 6.44(33)
T+

1 8.58(41) 8.67(28) 7.77(59) 8.45(52) 8.33(51)
T−1 9.63(77) 9.24(33) 9.15(69) 8.90(75) 8.76(72)
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Figure 8. Glueball masses in units of
√

σ in each channel RP of the Sp(2N) theory with N = 4, as a
function of σa2. The value at σa2 → 0 is obtained, for each symmetry channel RP, by a likelihood
analysis of the measurements with Equation (81)—see the solid lines. The plots are taken from
Ref. [7].
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Figure 9. Continuum limit of the glueball spectrum of Sp(2N) gauge theories in units of
√

σ for
N = 1, 2, 3, 4 and N = ∞, for each RP channel (bottom horizontal axis), and continuum chan-
nels (top horizontal axis). The spectrum A++

1 , A++∗
1 , and E++ states for SU(∞) is also reported,

for comparison [225]. The boxes represent 1σ statistical errors. The plot is taken from Ref. [7].

The leading-order, finite-N correction to glueball masses near the N → ∞ limit is

mRP√
σ
(N) =

mRP√
σ
(∞) +

cRP

N
, (82)

and is used to perform the large-N limit extrapolation in each RP channel. The results are
displayed in Figure 10, for all symmetry channels. The numerical results are also reported
in the last column of Table 3.
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Figure 10. Glueball masses in units of
√

σ for each channel RP, as a function of 1/2N. The value of
mRP /

√
σ(∞) is obtained from the best fit of Equation (82) to the numerical measurements at fixed N.

The plots are taken from Ref. [7].
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Figure 9 also displays large-Nc extrapolations in the SU(Nc) family of gauge groups [225],
for comparison, showing the compatibility of the results obtained for the two different
group sequences. This is in agreement with the expectation that, in the large-N limit,
the gauge theories based on the Sp(2N) and the SU(Nc) families of groups agree in their
common sector.

Measurements of glueball masses in Sp(2N) and SU(Nc) gauge theories can be used
to test conjectured universal behaviours in Yang–Mills theories. We mention two such tests
here, referring to Ref. [223] and Ref. [6] for details. Ref. [223] suggested that the ratio of the
mass of the lightest 0++ glueball to the string tension, normalised to the ratio C2(F)/C2(A)
of the Casimir operator for the fundamental (F) and adjoint (A) representation, might be a
universal quantity in Yang–Mills theories, denoted as η, dependent only on the space-time
dimensionality. By fitting a constant to the numerical results for Yang–Mills theories in
d = 2 + 1 and d = 3 + 1 dimensions [7,223] yields:

η ≡ m2
0++

σ

C2(F)
C2(A)

=

{
5.388(81)(60), (d = 3 + 1)
8.440(14)(76), (d = 2 + 1)

. (83)

Here, first and second parentheses denote statistical and systematic uncertainties,
respectively, with the latter estimated as the difference between the two sequences of
gauge groups. Although none of them is conclusive, several arguments, based on Bethe–
Salpeter equations, scale anomaly, and sum rules, might be able to explain the strik-
ing agreement between this conjecture and numerical results displayed in Figure 11 for
d = 3 + 1 dimensions—see Ref. [223] for similar results in d = 2 + 1 dimensions. In a
similar spirit, we borrow Figure 12 from Ref. [6], to highlight a regular pattern in the ratio
R ≡ m2++

m0++
, a quantity that can also be compared with a plethora of predictions obtained

with non-perturbative instruments alternative to lattice techniques.
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Figure 11. Top panel: the ratio η for SU(Nc) and Sp(Nc = 2N) theories in d = 3 + 1 space-time
dimensions. Fits of η are shown for the Sp(Nc) family, the SU(Nc) family and their combination.
Bottom panel: ratio m2

0++/ση, plotted as a function of 1/Nc in d = 3 + 1; the lines are the ratios of
the quadratic Casimir operators, C2(A)/C2(F), of the adjoint representation over the corresponding
ones of the fundamental representation. The plots are taken from Ref. [7].
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Figure 12. Numerical and semi-analytical results for the ratio R. Different markers denote lattice
continuum extrapolations in 3 + 1 dimensions for Sp(Nc) and SU(Nc) [225], as well as in 2 + 1
dimensions for SO(Nc) [229] and SU(Nc) [373]. Extrapolations to the Nc → ∞ limit are also included.
Differently rendered lines at R =

√
2, 1.46, 1.57, 1.61, 1.74 are the holographic calculations in the GPPZ

model [214], the circle reduction of AdS5 × S5 [212,220], the holographic model Bconf
8 in Ref. [374],

the Witten model [212,217], and the circle reduction of Romans supergravity [215,217], respectively.
With R =

√
2, 1.64 we report the field theoretical results from Refs. [222] and [375], for YM theories in

3 + 1 and 2 + 1 dimensions, respectively. The plot is taken from Ref. [6].

4.2. Quenched Mesons

The first step in the study of any new gauge theory with fermion matter content is
the measurement of the spectrum of mesons in the quenched approximation as it sets
a reference framework for subsequent dynamical fermion simulations. Furthermore,
this exercise already provides useful information in the mass regime, which is inter-
esting for model-building purposes; for example, both for CHMs and for SIMPs based
on the SU(4)/Sp(4) coset, which are microscopically realised by Sp(2N) theories with
N f = 2 fundamental fermions, the masses of the underlying fermions are not small, so that
the quenched approximation already provides useful estimates of the meson spectrum,
which can then be refined with dynamical simulations. Ref. [5] performed the quenched
analysis for Sp(4), restricted to flavoured mesons, both for fermions transforming in the
fundamental as well as the 2-index antisymmetric representations. Further research will
extend these studies in the future by performing the calculations for chimera baryons
composed of fermions in these two representations [15], as well as considering mesons
composed of fermions in the symmetric representation, and finally by extending the study
to theories with larger groups [9].

A complete description of the ensembles, and the measurements they are used for, can be
found in Ref. [5]. A total of 200 thermalised configurations are generated for each value of the
coupling used for the glueballs in Ref. [7], β = 7.62, 7.7, 7.85, 8.0, 8.2, but on larger lattices,
with Nt × N3

s = 48× 243 for β = 7.62, and Nt × N3
s = 60× 483 for the other ensembles.

In order to ensure that finite-volume effects are negligible, in comparison with statistical
uncertainties, the fermion masses in the propagators are chosen so that mPS, psL & 7.5. By
inspection, one finds that fPSL & 1.6 and fpsL & 2.3 for the fundamental and antisymmetric
representation fermions, respectively, are large enough to ensure applicability of the Chiral
Perturbation Theory. All the measurements have mV, v/mPS, ps < 2, so that the vector bound
states cannot decay.

Figures 13 and 14 are taken from Ref. [5], and show the massless and continuum
extrapolations of the lattice measurements of the flavoured-meson decay constants and
the masses, respectively. Lattice measurements are combined by making use of a double
expansion in small m̂2

PS and â—we recall that the hatted notation uses the gradient flow
scale w0, as discussed in Section 3.5, so that m̂ ≡ m w0, for example—by adopting the
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tree-level NLO Wilson Chiral Perturbation Theory (WχPT) [355,376] (see also Ref. [377],
and Refs. [378,379] on improvement), and writing

f̂ 2,NLO
M ≡ f̂ 2,χ

M (1 + L0
f ,Mm̂2

PS) + W0
f ,M â , (84)

m̂2,NLO
M ≡ m̂2,χ

M (1 + L0
m,Mm̂2

PS) + W0
m,M â , (85)

where f̂ χ and m̂χ are the decay constant and the mass in the chiral limit, while L0 and W0

are low-energy constants to be determined from the fits to the numerical data. Implicit in
this formalism is the replacement of the pseudoscalar mass squared for the fermion mass,
which is justified at this order of the chiral expansion, as long as the relation m̂2

PS = 2Bm̂ f
holds.
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Figure 13. Decay constant squared, as a function of the pseudoscalar meson mass squared,
of flavoured mesons composed of fermion constituents in the fundamental (blue) and antisym-
metric (red) representations in the quenched approximation. The plots are taken from Ref. [5].

In Figures 13 and 14, each data point has been obtained by subtracting the finite lattice-
spacing correction from the raw data, and the bands denote the results of the fit obtained
after removing the last terms in Equations (84) and (85). The width of the bands represents
the statistical uncertainties. With present accuracy, there is no evidence of corrections
beyond linear order in m̂2

PS, ps, to f̂ 2
PS, ps for m̂2

PS, ps . 0.4 and to all the other observables for

m̂2
PS, ps . 0.6, in agreement with Equations (84) and (85). The masses and decay constants

of mesons composed of fermions transforming in the antisymmetric representation are
always larger than those of fundamental ones, for equal values of the pseudoscalar masses.
A particularly important quantity in the context of CHM and top partial compositeness
is the pseudoscalar decay constant, which shows the hierarchy f̂ 2

ps/ f̂ 2
PS = 1.81(4), in the

massless limit. The masses of vector and tensor mesons are consistent with each other, as
the two channels contain the same states, although these two measurements are affected
by comparatively large discretisation effects [5].
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Figure 14. Mass squared of flavour non-singlet mesons, as a function of the pseudoscalar meson
mass squared, composed of fermion constituents in the fundamental (blue) and antisymmetric (red)
representations in the quenched approximation. The plots are taken from Ref. [5].

Figure 15 summarises the mass spectra of the ground states for (flavoured) mesons
and glueballs in the quenched Sp(4) theory. The meson masses are shown as a func-
tion of the pseudoscalar mass squared, chosen to be the same for the fundamental and
antisymmetric representations. We also include the pseudoscalar decay constants, for com-
pleteness. Glueball masses are denoted by their quantum numbers JP. As seen in the figure,
the mass dependence of mesons in the two different representations are similar to each
other, but the antisymmetric ones are heavier than the fundamental ones, in all individual
channels. The lightest 0+ glueball has a mass of the order of that of heavy mesons in the
antisymmetric representation.

We anticipate, as a closing comment, some of the results of Section 5.1, obtained with
dynamical calculations for mesons in the theory with N f = 2 fermions in the fundamental
representation. The comparison between dynamical and quenched calculations of contin-
uum and chiral extrapolations show discrepancies of about 25% for m̂2

S, 20% for f̂ 2
PS, 10%

for m̂2
V, and smaller for the other measurements. In the case of the two-index antisymmetric

representation, only preliminary results for mesons have been reported recently [14], but
the massless extrapolation has not been made, and thus the analogous comparison is not
yet possible. Dedicated investigations are undergoing and the results will be published in
the near future [13].
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Figure 15. A summary plot of quenched mass spectra of Sp(4) gauge theory. The red and blue colours
denote the mesons composed of fermions in the fundamental and antisymmetric representations,
respectively. The black coloured data are for the glueballs in various channels classified by the
quantum number JP. The plot is taken from Ref. [8].

4.3. Topology

We report here a selection of results taken from Ref. [12], in which the (α-rounded)
topological charge [241], denoted as Q̃L, is studied for several values of β and groups
Sp(2N). The topological susceptibility is then obtained for each value of N and β from

χL(t)a4 ≡ 1
L4

〈
Q̃L(t)2

〉
. (86)

The continuum extrapolations can be obtained with the Wilson flow scale-setting
procedure using the relation

χL(a)t2
0 = χL(a = 0)t2

0 + c1
a2

t0
(87)

where c1 is a dimensionless coefficient. Alternatively, one can adopt w0 to set the scale,
and use the same formula, but replacing t0 with w2

0. These extrapolations are displayed in
Figure 16.

One would like to compare the value of the topological susceptibility in Sp(2N) and
SU(Nc) gauge theories. Scaling arguments (see for instance Ref. [11]) suggest to rescale the
topological susceptibility in units of the squared string tension as follows:

ηχ ≡
χ

σ2
C2(F)2

dG
, (88)

where dG is the dimension of the gauge group, and test whether it captures universal
feature of Yang–Mills theories. In the large-N regime, one expects that

lim
N→∞

χ

σ2
C2(F)2

dG
= b

χ∞

σ2
∞

= ηχ(∞) , (89)
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where b = 1/4 for Sp(2N) and b = 1/8 for SU(Nc). A compilation of results from the liter-
ature on SU(Nc) gauge theories, along with the results for Sp(2N) [11,12], on the rescaled
topological susceptibility, is displayed as a function of 1/dG in Figure 17. A combined
fit yields

lim
Nc→∞

ηχ = (48.42± 0.77± 3.31)× 10−4 , (90)

where the first error is the statistical error from a 2-parameters linear fit in 1/dG. The second
error is the difference between the result of a 2-parameters fit O(1/dG), and a 3-parameter
O(1/d2

G), performed on the same data. Both fits are displayed in Figure 17. We observe
that the naïve dimensional analysis estimate for ηχ(∞) is of the same order of magnitude
as the numerical results.
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Figure 16. Topological susceptibility per unit volume χLt2
0 as a function of a2/t0 (top panels) and

χLw4
0 as a function of a2/w2

0 (bottom), in Sp(Nc) Yang–Mills theories with Nc = 2, 4, 6, 8. We
adopt reference values ce = cw = 0.225 (left panels) and ce = cw = 0.5 (right). Our continuum
extrapolations are represented as dashed lines. The plots are taken from Ref. [12].
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Figure 17. Ratio of topological susceptibility and square of the string tension, rescaled by the group
factor C2(F)2/dG, as a function of 1/dG. Dotted and dashed-line are results of a 2-parameter (dotted
line), and 3-parameter fit (dashed line) including O(1/d2

G) corrections. The horizontal dashed line is
the naïve dimensional analysis estimate 1/(4π)2. The plot is taken from Ref. [11].

5. Numerical Investigations II: Dynamical Fermions in Sp(4)

This section contains a selection of numerical results obtained in Sp(4) gauge theories
with dynamical matter fields. In the case of N f = 2 fundamental Dirac fermions, we
show in Section 5.1 the results for the masses and decay constants of flavoured mesons
in various spin-0 and spin-1 channels, and discuss their implications for low-energy dy-
namics. More complete information can be found in Refs. [2–4]. For theories with other
fermion field content, we discuss in general terms the spectrum of mesons and (chimera)
baryons in Section 5.2. We refer the reader to Refs. [10,13–15] for extended selections of
numerical results.

5.1. N f = 2 Fundamental Fermions

The Sp(4) gauge theory with N f = 2 dynamical fermions transforming in the funda-
mental representation is treated with the Wilson–Dirac formulation and HMC algorithm,
as discussed in Sections 3.1 and 3.2. Careful analysis of the average plaquette value and
its susceptibility indicates the existence of a first-order bulk phase transition [2], that
can be avoided for β & 6.8. Reference [4] hence discusses five values of the coupling:
β = 6.9, 7.05, 7.2, 7.4, 7.5. The bare fermion mass m0 is chosen so that the (pseudoscalar
and vector meson) composite states are lighter than the cut-off scale, identified with the
inverse of the lattice spacing, 1/a.

The gauge ensembles used for the measurements reported in Ref. [4] typically consist
of 100 ∼ 150 thermalised configurations, separated by at least one autocorrelation time. In
order for the size of finite-volume effects, as discussed in Section 3.5, to be negligibly small,
in respect to the statistical uncertainties, the stringent bound mPSL & 7.5 is imposed, and
ensembles that do not satisfy this criterion are discarded.

All dimensional quantities are expressed in terms of the gradient flow scale, w0,
discussed in Section 3.5, in line with the treatment of quenched measurements. While the
gradient flow itself depends non-trivially on both β and m0, yet a mass-dependent scheme is
adopted in the massless and continuum limit extrapolations, in which the gradient flow
scale is measured at a given fermion mass, as in Ref. [91]. This approximation neglects
corrections appearing only in higher-order terms of the effective field theory.

As the Sp(4) theory with N f = 2 fundamental Dirac fermions is expected to lie deep
inside of the chiral symmetry broken phase, classical results such as the GMOR relation
in Equation (22) should hold. The left panel of Figure 18 shows how the pseudoscalar
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mass squared, m̂2
PS, and decay constant, f̂ 2

PS, depend on m̂0 ≡ (m0a)(w0/a) and the critical
value m̂c

0—identified numerically by performing a linear fit to the lightest five data points,
and extrapolating to the limit m̂2

PS → 0—for the choice β = 7.2. The decay constant f̂PS

extrapolates to a finite value in the massless limit. Both f̂PS and m̂2
PS are linear in the fermion

mass when m̂2
PS . 0.4.
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Figure 18. The square of masses (green) and decay constants (blue) of the pseudoscalar mesons as a
function of the bare fermion masses (left panel), and the relation between gradient flow scale w0/a
and squared pseudoscalar masses (right), for β = 7.2. The plots are taken from Ref. [4].

The right panel of Figure 18 shows the relation between w0/a and m̂2
PS, for the same

ensemble with β = 7.2. One expects it to obey the next-to-leading-order (NLO) result [380]:

ŵNLO
0 (m̂2

PS) = ŵχ
0

(
1 + k1

m̂2
PS

(4π f̂PS)2

)
, (91)

and the lightest five points exhibit this linear behaviour. A fit to the data using Equation (91)
yields χ2/Nd.o.f ' 0.5 [4], supporting the adoption of WχPT, as in Equations (84) and (85).

In contrast to the quenched theory, however, in the case of dynamical fermions the
w0 scheme is mass-dependent, as discussed above: m̂2

PS and â are measured in units of
ŵ0(m̂2

PS), with the replacement of ŵ0(m̂2
PS) by ŵχ

0 . The key requirements for the validity of
WχPT can hence be summarised as follows:

mPS

Λχ
, aΛχ < 1 and fPS L > 1, (92)

where Λχ is the symmetry breaking scale, roughly estimated as Λχ = 4π fPS. By restricting
attention to m̂2

PS . 0.4 for pseudoscalar mesons (extended to m̂2
PS . 0.6 for all the other

mesons), the first condition is automatically satisfied. The second condition is satisfied by
restricting the acceptable lattice spacing to â < 1, which is also needed in the expansions in
Equations (84) and (85). The ensembles satisfying these two conditions also have fPS L & 1.5,
satisfying the third one. Continuum and massless extrapolations are restricted to ensembles
satisfying all of these conditions, making use of Equations (84) and (85), as for the quenched
theory. We refer the reader to Ref. [4] for details of the fits, including the values of χ2/Nd.o.f.

As discussed in Section 2.3, HLS further extends the EFT to include the spin-1 states.
Reference [4] focuses on the 11 lightest and finest ensembles with m̂2

PS . 0.4, in which
range one is allowed to replace the fermion mass by the pseudoscalar mass squared. The
resulting expressions involve 10 of the 12 unknown parameters in Equation (20). The final
results of the global (uncorrelated) fit are presented by blue bands in Figure 19, along with
the continuum values of the masses and decay constants. The value of χ2/Nd.o.f ∼ 0.4
supports the EFT fit, and, despite the weak constraints on some other combinations of the
parameters, one finds that gχ

VPP = 6.0(4)(2)—the first and second parentheses—denote
statistical and systematic errors in the numerical fits.



Universe 2023, 9, 236 44 of 66

□

□

□

□

□

□

□

□

□

□

□

��� ��� ��� ��� ���

���

���

���

���

���

□

□

□

□

□

□

□

□

□

□

□

��� ��� ��� ��� ���
�����

�����

�����

�����

�����

�����

□

□

□

□

□

□

□

□

□

□

□

��� ��� ��� ��� ���
���

���

���

���

���

���

□

□

□

□

□

□

□

□

□

□
□

��� ��� ��� ��� ���
����

����

����

����

����

����

□

□

□

□

□

□

□

□

□

□

□

��� ��� ��� ��� ���

�����

�����

�����

�����

�����

Figure 19. Global fit and continuum extrapolation of masses and decay constants of flavour non-
singlet spin-0 and spin-1 mesons, based upon the low-energy EFT considerations based on hidden
local symmetry (HLS). The plots are taken from Ref. [4].

The EFT based on HLS incorporates several striking, testable predictions. The first one
is the GMOR relation extended to include NLO corrections:

m2
PS f 2

PS = m f (v3 + m f v2
5) , (93)

where v and v5 are associated with the spurion mass terms in Equation (20)—see the top-left
panel in Figure 20.
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Figure 20. Continuum extrapolation of GMOR relation and Weinberg sum rules in the Sp(4) gauge
theory with N f = 2 fundamental Dirac fermions. The plots are taken from Ref. [4].

Within this truncated EFT treatment, reasonable assumptions lead to the omission
of certain operators, and one finds that the sum of the decay constant squared for PS, V,
and AV,

f 2
0 ≡ f 2

PS + f 2
V + f 2

AV, (94)
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is independent of m f [2]. The top-right panel of Figure 20 shows the measurements of
f0 at finite mass and the massless extrapolation, providing strong evidence of the mass
independence of f 2

0 . In addition, the violations of Weinberg’s sum rules are independent of
the fermion mass, as shown in the bottom panels in Figure 20.

We conclude this section by comparing several lattice gauge theory calculations taken
from the literature, all with N f = 2 (dynamical) fundamental fermions. We consider the
ratio mV/

√
2 fPS, that, as discussed in Section 4.2, appears in the right-hand side of the

KSRF relation, gVPP = mV/
√

2 fPS. For Sp(4) one finds that the lightest ensemble yields
mV/
√

2 fPS = 5.47(11), while the massless extrapolation is mV/
√

2 fPS = 5.72(18)(13).
The latter is statistically consistent with gχ

VPP = 6.0(4)(2), determined from the global
fit of the EFT, provided that some support for the aforementioned KSRF relation holds.
For QCD, using experimental values of mπ ' 140 MeV, mρ ' 775 MeV, fπ ' 93 MeV,
and Γρ ' 150 MeV, one finds mρ/

√
2 fπ ' 5.9, while one can obtain gρππ ' 6.0 from the

tree-level definition of the decay rate of ρ, Γρ ≡
g2

ρππ

48π mρ

(
1− 4m2

π

m2
ρ

)3/2
.

Figure 21 displays the lattice results for SU(2) [84], SU(3) [381], SU(4) [91], and Sp(4) [4],
as well as the experimental QCD value. In the case of SU(4), the result has been obtained by
using dynamical ensembles with additional n f = 2 dynamical (massive) Dirac fermions in the
two-index antisymmetric representation. Near the threshold of the two-pseudoscalar decay, the
ratio mV/

√
2 fPS in Sp(4) is close to those of SU(3) and SU(4). Large-Nc arguments suggest

that this ratio should be larger for SU(2), as is indeed observed numerically.
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Figure 21. Vector meson masses in units of the pseudoscalar decay constant obtained from several
lattice gauge theories coupled to two fundamental Dirac fermions: magenta, red, blue, and green
colours denote SU(2), SU(3), Sp(4), and SU(4) gauge groups, respectively. The black dot denotes
the real-world QCD value. The plot is taken from Ref. [4].

5.2. Antisymmetric and Multiple Representation Dynamical Fermions

As discussed in Section 2.4, the Sp(4) gauge theory with matter consisting of n f = 3
Dirac fermions transforming in the antisymmetric representation (but N f = 0 in the funda-
mental) is interesting in itself as a completion for alternative CHM and SIMP proposals [62],
and it is hence worth studying it in detail. Most importantly, understanding its dynamics is
a necessary first step towards the study of the theory with multiple species of fermions,
transforming in different representations of the gauge group, which is relevant to TPC
models. A large-scale lattice exploration of the parameter space of this theory is under
way [13]. We comment briefly on some preliminary results of this exploration that have
been presented at the Lattice 2022 Conference [14]. The main focus of the ongoing study
is the spectroscopy of the spin-0 and 1 mesons listed in Table 1, together with the decay
constants for pseudoscalar, vector, and axial vector mesons. Preliminary results for the
ratio mPS/ fPS indicate that this theory is likely in the broken phase, as evidenced by a sharp
drop of the ratio towards the massless limit—see Figure 2 in Ref. [14]. Yet, the theory also
exhibits a strong mass dependence in the gradient flow scale, and it is difficult to lower
the physical mass of the mesons (expressed in units of w0) in the numerical calculations.
These observations might be explained by the proximity of this theory to the lower edge of
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the conformal window, as suggested by the perturbative analysis in Section 2.2. The long
distance dynamical features in this theory in the limit of massless fermions might show sub-
stantial differences from the theory with N f = 2 fundamental fermions, or other QCD-like
theories, but a dedicated study is needed to ascertain this.

A main target for the study of lattice gauge theories with the Sp(4) gauge group is the
theory with N f = 2 Dirac fermions transforming in the fundamental representation com-
bined with n f = 3 transforming in the 2-index antisymmetric representation. The literature
on lattice calculations with multiple fermionic representations is quite limited [10,91–97].
We have developed the necessary software, adapted from HiRep [345], and performed non-
trivial technical tests by studying the bulk phase structure and finite volume effects [10].
The first results characterising the non-perturbative dynamics of phenomenologically
interesting regions of parameter space are available.

Several species of chimera baryon states with different parity and spin quantum
numbers have been identified. Their spectrum for representative examples of parameter
choices are under study [10,15], and future dedicated studies will report on this extensive
work. In Figure 22, we present the combined mass spectrum of mesons composed of
fermion constituents in the fundamental and antisymmetric representations, together with
the lightest chimera baryon. For the one choice of lattice parameters specified in the caption
of the figure, the mass of the chimera baryon with JP = 1

2
+

is slightly lighter than the mass
of the scalar meson composed of constituent fermions in the antisymmetric representation.
A comprehensive study will be carried out in the lattice parameter space to determine
how the masses of chimera baryons depend on bare masses of fermion constituents in
both representations.
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Figure 22. Masses of composite states in the Sp(4) lattice theory coupled to N f = 2 Dirac fermions
transforming in the fundamental and n f = 3 in the antisymmetric representation. Blue and red
colours denote mesons with constituents in the fundamental and antisymmetric representations,
respectively. In magenta we display the chimera baryon composed of two constituent fermions in the
fundamental and one in the antisymmetric representation. The lattice parameters used are β = 6.5,

am(as)
0 = −1.01, am( f )

0 = −0.71, and Nt × N3
s = 54× 283. The plot is taken from Ref. [10].

6. Summary and Outlook

Lattice gauge theories with the Sp(2N) gauge group are interesting for a variety of
reasons, both in abstract terms and in view of applications, and this review summaries just
the first few steps of the systematic programme of explorations of the parameter space of
these theories, a programme that we envision will further develop in the near future. We
listed a number of interesting results, and connected them to the ongoing theoretical and
phenomenological developments. We briefly summarise these results and connections in
this short section, and indicate future avenues for further study.

In the case of pure Yang–Mills theories, we collected results for Sp(2N) theories with
N = 1, · · · , 4, and the extrapolation to the large-N limit. We presented the measurements
of string tension, masses of glueballs, and topological susceptibility. All these quantities
have primarily a theoretical interest, for example because we expect to find agreement
in the large-N extrapolations of the same observables in the SU(Nc) sequence of gauge
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theories. There is also an interesting connection with gauge-gravity dualities, in which the
non-perturbative regime of the large-N theories is captured by perturbative supergravity
calculations. All the quantities we have been able to compute so far show hints of interesting
regular patterns when extrapolated towards the large-N limit, and furthermore it seems
that the convergence is comparatively fast, with Sp(8) being close to the continuum limit for
several observables. Applications, for example in the context of dark-matter model building,
would benefit from the measurement of additional observables, related to interactions
between glueballs (such as 3-point functions, decay rates, and scattering cross-sections).

The calculation of observables involving quenched fermions provides a good ap-
proximation of the complete dynamical theory if the number of fermion species is small,
and their mass is large. This regime is important for SIMP models, for example, but is also
relevant in the CHM context. We summarised an extensive number of measurements in
the Sp(4) theory, for mesons built with fermions transforming either in the fundamental
representation, or the 2-index antisymmetric one. These studies will be extended in three
directions: we will consider additional fermion representations (e.g., fermions transforming
in the 2-index symmetric representation of the gauge group), study the masses of composite
states containing two fundamental and one antisymmetric fermions (chimera baryons),
and extend the study to Sp(2N) groups with larger N.

The study of theories with dynamical fermions is much more challenging, for a
number of reasons. It requires specifying the number of species of each type of fermion
(in different representations), and for each case one has to identify the regime of lattice
parameters that is useful in numerical studies. So far, rather extensive studies of the Sp(4)
mesons in ensembles with dynamical fermions in the fundamental representation have
been performed, so that the continuum limit can be taken. Masses and decay constants of
mesons relevant to CHM phenomenology have been made available. The masses of the
fermions in these studies are large enough that they preclude the decay of the spin-1 states
onto PNGBs, hence it is not yet possible to measure directly, say, the coupling of a vector and
two pseudoscalar mesons. Similar studies, but with dynamical matter transforming in the 2-
index antisymmetric representation, are under way. High precision calculations performed
with lattice parameters closer to the massless (chiral) regime require a new numerical
strategy, which combines smaller fermion masses with larger volumes, and, possibly,
adopts an improved action, to accelerate the convergence towards the continuum limit.

In the case of Sp(4) with multiple dynamical fermion representations (fundamental
and 2-index antisymmetric), the phase space of the lattice theory is rather complicated, as we
have shown in a relevant example, and this observation affects the choice of parameters
that allows us to approach the continuum limit. Preliminary results have been published
for one choice of lattice parameters, showing that both meson and chimera baryon 2-point
correlation functions can be measured. This study will be extended, to allow for a systematic
study of the continuum and massless extrapolations, by making use of an extended selection
of ensembles. Work on the observables themselves is also being carried out, to gain access to
an extended set of composite states and, where possible, their excitations. These are the first
necessary steps towards testing whether the minimal models combining composite Higgs
and top partial compositeness are viable. A critical requirement is also to understand how
the couplings and dimensionalities of the composite operators are affected by the presence
of many fermions in the dynamics; the presence of large, non-perturbative anomalous
dimensions would have important model-building implications, but it is not known what
theories yield them.

To make contact with CHM phenomenology, one would couple the SM fields to the
strong coupling sector—the Sp(2N) gauge theories. For example, this would allow to
compute the contributions to the effective potential for the PNGBs, and to study vacuum
(mis-)alignment. In this way, one would be able to directly test the properties of the strong
coupling sector and its heavy resonances. Part of this programme can be performed by
approximating the dynamics of the combined system of strong and weak coupling fields
by ignoring the back-reaction of the latter on the former, which is along the lines of what
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is routinely done for QCD in the B-mesons system, for instance, and hence by computing
matrix elements of higher-order operators in the strongly coupled theory.

Last but not least, finite temperature studies are currently being performed, aimed
at characterising the confinement/deconfinement phase transition of Sp(2N) theories,
and hence extending the pioneering work in Ref. [1]. The results of this investigation might
play an important role in the context of dark matter, for example as a source of (detectable)
stochastic gravitational wave background. In general, the complete characterisation of
such phase transitions is a topic that has great potential to reveal new, theoretical and
phenomenological, possible developments.

Lattice studies of Sp(2N) gauge theories represent a lively field of research, which
is still in its infancy. We have gathered a large compilation of results, yet this is simply a
taster of the wealth of information contained in the original literature [1–18]. This is the
first stage of what will be a fertile ground for testing new ideas, and learning new lessons,
which are going to inform further theoretical developments as well as applications.
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Abbreviations
The following abbreviations are used in this manuscript:

(as) 2-index antisymmetric (representation)
(A)T (Axial-)Tensor (operator, particle)
(A)V (Axial-)Vector (operator, particle)
BZ Banks-Zaks
CB Chimera Baryon
CDM Cold Dark Matter
CERN European Organisation for Nuclear Research
CHM Composite Higgs Model
ChRMT Chiral Random Matrix Theory
CoDM Composite Dark Matter
(E) Euclidean (space-time)
EFT Effective Field Theory
ETC Extended Technicolor
EW(SB) ElectroWeak (Symmetry Breaking)
(f) fundamental (representation)
FCNC Flavor Changing Neutral Current
FV Finite Volume
GIM Glashow-Iliopoulos-Maiani (mechanism)
GMOR Gell-Mann-Oakes-Renner
GW Gravitational Wave
HB Heat Bath
(R)HMC (Rational) Hybrid Monte Carlo
IR Infra-Red
KSRF Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (relation)
HLS Hidden Local Symmetry
HPC High Performance Computing
LHC Large Hadron Collider
LISA Laser Interferometer Space Antenna
LLR Logarithmic Linear Relaxation
(M) Minkowski (space-time)
MC Monte Carlo
MD Molecular Dynamics
NDA Naive Dimensional Analysis
NLO Next-to-Leading Order
OR Over-Relaxation
PNGB Pseudo-Nambu–Goldstone Boson
PS Pseudoscalar (operator, particle)
QCD Quantum Chromodynamics
RG(E) Renormalisation Group (Equation)
S Scalar (operator, particle)
SIMP Strongly Interacting Massive Particle
SM Standard Model (of particle physics)
(W)TC (Walking) Technicolor
TPC Top Partial Compositeness
URL Uniform Resource Locator
UV Ultra-Violet
VEV Vacuum Expectation Value
WIMP Weakly Interacting Massive Particle
WZW Wess–Zumino–Witten (interaction term)
(W)χPT (Wilson) Chiral Perturbation Theory

Appendix A. Groups, Algebras and Technical Details

We collect in this Appendix the technical details, in particular regarding conventional
choices and group theory notions, that support the main narrative of the paper.
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We start from the generators of the global symmetry group SU(4). We adopt the
convenient parametrisation of the 15 generators of SU(4) in Ref. [87]. The generators obey
the relations TrT̃AT̃B = 1

2 δAB, and are written as follows—see Equations (12) and (13).

T̃1 = 1
2
√

2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , T̃2 = 1
2
√

2


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

 ,

T̃3 = 1
2
√

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , T̃4 = 1
2
√

2


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 ,

T̃5 = 1
2
√

2


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 , T̃6 = 1
2
√

2


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 ,

T̃7 = 1
2
√

2


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 , T̃8 = 1
2
√

2


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 ,

T̃9 = 1
2
√

2


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 , T̃10 = 1
2


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ,

T̃11 = 1
2
√

2


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , T̃12 = 1
2


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 ,

T̃13 = 1
2
√

2


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , T̃14 = 1
2
√

2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ,

T̃15 = 1
2
√

2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



(A1)

Following Refs. [5,87], we define the unbroken subgroup SO(4)0 ∼ SU(2)L,0 ×
SU(2)R,0 as the subset of the unbroken global Sp(4) ⊂ SU(4) that is generated by the
following elements of the associated algebra:

T̃1
L,0 = 1

2


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , T̃2
L,0 = 1

2


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

 ,

T̃3
L,0 = 1

2


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 ,

(A2)
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T̃1
R,0 = 1

2


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , T̃2
R,0 = 1

2


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

 ,

T̃3
R,0 = 1

2


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

 .

(A3)

The TL,0 and TR,0 generators satisfy the algebra
[

Ti
L , T j

L

]
= iεijk Tk

L,
[

Ti
R , T j

R

]
=

iεijk Tk
R, and

[
Ti

L, T j
R

]
= 0. In the vacuum aligned with Ω̃, this is the natural choice of

embedding of the SO(4)EW symmetry of the Higgs potential that leaves it unbroken. These
are linear combinations of the generators T̃10, T̃12, T̃6, T̃9, T̃14, and T̃15 in Equation (A1).

The following alternative choice of generators defines SO(4)TC ∼ SU(2)L,TC×
SU(2)R,TC [87]:

T̃1
L,TC = 1

2


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , T̃2
L,TC = 1

2


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 ,

T̃3
L,TC = 1

2


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 ,

(A4)

T̃1
R,TC = − 1

2


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , T̃2
R,TC = − 1

2


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 ,

T̃3
R,TC = − 1

2


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

 .

(A5)

These are linear combinations of the generators T̃1, T̃2, T̃3, T̃8, T̃13, and T̃14 in
Equations (A1). The vacuum Σ6 ∝ Ω̃ breaks SU(2)L,TC × SU(2)R,TC to its diagonal sub-
group SU(2)V,TC.

Appendix B. Data and Analysis Code

Recently, our collaboration has resolved to openly release full datasets for the work
that goes into our future publications, as well as, where possible, the analysis software
used, both to obtain these data and to prepare them for publication. By doing so, we
enable other researchers to make maximal use of our results, and to fully understand the
process by which they are obtained. Starting from Refs. [10–12], our analysis can be fully
reproduced,10 by means of the data and analysis code packages referred to within the
publications themselves. The intended benefits of this policy include (but are not limited
to) the following.

• A potential reader might be interested in learning how to apply one of the techniques
that we have used in our work to their own research. Some technical detail might have
been omitted from the published paper for presentation reasons (length or readability
constraints). The reader will benefit from direct inspection of the complete procedure
we followed, which can be found in the associated code release.
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• A reader, who seeks to independently replicate one of our findings, might discover
some tension between the results of our and their own implementation of the analysis.
Direct inspection of the software we used would enable this reader to identify at
what point the divergence between the two processes occurs, avoiding protracted
arguments on reproducibility—see, e.g., the case described in Ref. [383].

• Lattice studies frequently generate more data than what can be feasible to fully exploit
for a single group of researchers. The interested reader may perform their own,
additional analysis on our data, with alternative methodologies, without the need
to regenerate the data from scratch (which might require a significant investment
of computer time). For example, more advanced fitting algorithms may give more
detailed or precise results, or gain access to additional observables.

• Phenomenologists and other researchers who look to build on the numerical results of
lattice computations may import the data from our work directly into their computa-
tional environment, without the need to resort to copying and pasting from published
tables (or reading numbers off published plots). By doing so, one reduces the risk of
introducing additional uncertainties, and avoids one source of potential human error.

In the following, we discuss our approach to releasing our data, our analysis code,
and other components of our workflow that affect the reproducibility of our work, be-
fore briefly returning to discussing the benefits we see in our process for the robustness
of our final results. This appendix will focus on the approach that has been taken to date
by our collaboration, with specific reference to Refs. [10–12]; a more general, pedagogical
guide to adopting this approach is in preparation [384].

Appendix B.1. Data Release

The primary data we publish are plaintext output files from production of config-
urations and from subsequent computation of observables (measurements). We do not
release gauge configurations used for Refs. [10–12], due to the unavailability of a suitable
hosting platform with adequate capacity, but restrict our release to the measurements. Even
in the case where such capacity were to be available, releasing the measurement output
files significantly reduces the barrier to entry (in terms of computer time and capability
required) for those readers who are looking to reproduce the analysis.

To be more specific, we release four primary classes of data:

Raw data, such as correlation functions and gradient flow histories, are released in their
native formats as generated by the HiRep code [345,347], in accordance with the principle
of “keeping raw data raw” [385]. By doing so, we reduce the chances of human error in
transcription of data formats, while increasing the opportunity to detect such type of errors
in a subsequent validation process.
Reformatted raw data, obtained by taking the output files of raw data, condense the salient
information in tables stored in HDF5 format [386]. Commonly available library functions
can read the data in this format, so that one does not need to write a parser to interpret the
bespoke formats generated by HiRep. Currently this information is generated from the raw
log files as part of the analysis process.
Metadata are collections of parameter values that identify the analysis performed. They
include physical parameters, such as the lattice coupling β, algorithmic ones, such as the
number of trajectories between successive configurations, and analysis ones, such as the
start and end of plateaux in effective mass plots. The metadata we publish are primarily
those which enable the analysis.
Final results, also presented in tabular form in the corresponding publications, are released
in CSV format; they are typically compact enough that using a denser format such as HDF5
would not yield a significant benefit (in file size, for example), and the use of CSV files
makes the data accessible without specialist software tools.
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If a data format is not formally defined, we also include in the release detailed de-
scriptions to enable the user to understand and parse the data. This aids users who are
unfamiliar with data formats used by bespoke software packages, such as HiRep.

We publish the data to Zenodo [387], a general-purpose data repository maintained
by the European Organisation for Nuclear Research (CERN). Each data set (or each version
of a dataset, in cases where revisions are necessary) is allocated a Digital Object Identifier
(DOI) which may be used to cite the data directly. Unlike a Uniform Resource Locator
(URL), typically used to refer to a web page, a DOI is designed to avoid “link rot”, where
changes in website structure cause links to become invalid. Zenodo, as other dedicated
data repositories, is planned to outlast a typical institutional affiliation, and its data sets are
expected to remain available past the time when the author has retired, changed institutions,
or simply stopped paying a hosting bill. The Zenodo DOI is cited from the paper in order
to alert the reader to its availability.

Appendix B.2. Analysis Code Release

We automate the analysis leading to a publication: our tooling takes the data and
metadata release, and its output consists of the full set of plots and tables in the paper. This
analysis kit is not written a priori and then run on the data obtained from High Performance
Computing (HPC) simulations. Rather, any manual steps are subsequently translated into
data that can be used a posteriori to compute the result. To provide a concrete example, our
choice of plateaux in mesonic correlation functions is not fully algorithmic: the positions of
the plateaux are identified by a member of the collaboration in a semi-algorithmic way, and
then the results (start and end time of the plateaux) stored in text files are subsequently read
by the analysis code to be released. The end user of the release does not have to identify the
plateaux manually (which would compromise the reproducibility), yet they may inspect
and test our choices.

Our collaboration has developed a body of bespoke software, coded in several different
computer languages: Python [388] (in particular the packages Numpy [389], Scipy [390],
and Matplotlib [391]), Mathematica [392], and to lesser extent Bash [393]. Individual
analysis tools are combined together using GNU Make [394], which offers a few significant
advantages over using a hard-coded shell script.

1. Dependencies between steps are automatically managed. The ordering of steps is
automatically decided, rather than requiring the user’s input.

2. Steps can automatically be run in parallel, with Make ensuring that no step runs
before its prerequisites are complete. This allows the analysis process to scale with
the available compute capacity.

3. The workflow can be interrupted partway and resumed subsequently, without the
need to re-run previously completed steps.

4. Make is able to re-run only the steps of the analysis that depend on specific files, if
data are updated, thereby expediting the debugging cycle.

The moderate cost to pay for these benefits is that writing and debugging a Makefile
for the type of workflow we automate is relatively complex.

The workflows for Refs. [10–12] were originally run interactively, hence required
postproduction reworking and automation before release. Reformulating our toolchain to
be written in an automation-first way is an ongoing internal project that will significantly
reduce the effort required for future code releases.

We verify that repeated runs of the analysis give identical output. Small fluctuations
(within uncertainties) due, for example, to changes in the bootstrap samples have been
removed by fixing the random seeds based on metadata about the files being processed.

Where possible, we specify the full software environment used to perform the
analysis—for example, the version of Python and all Python packages used. Doing so is nec-
essary to enable reproducibility, as some libraries give quantitively different results when
switching between versions. We specify this such via an environment.yml file compatible
with the Conda package manager [395].
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Analysis tools are held in GitHub [396] while they are being actively developed, and
then pushed to Zenodo [387] when they are ready for publication, where they acquire
a persistent identifier (DOI). This process also identifies the specific revision of the code
used to generate the publication; as we move to building tools that are used for multiple
publications and modified or updated in between, this will remove any ambiguity regarding
the software version. As with the data release, the analysis code release on Zenodo is cited
in the paper to alert the reader to its availability.

Appendix B.3. Closing Remarks

Not all data sets can be released, due to the excessive requirements of storage and
computer time, but also not all steps of a computation can be automated. We document as
much of the process as possible in the steps of our computations that cannot be prepared
and published as automated reproducible pipelines. As an example, while we make use of
the open-source tool HiRep [346], we have also made a number of customised modifications
on it, including adapting the Monte Carlo to the Sp(2N) groups and implementing the
measurement of the chimera baryon correlators. These modifications are publicly released
elsewhere [347], and the specific branch used is identified in our publications.

In the process of preparing data and analysis software for release, we identified a num-
ber of minor inconsistencies in our data sets that otherwise might have been overlooked,
and ultimately did not affect the conclusions of our work. The mentioned inconsistencies
originate from the fact that working with a large number of files and data is inherently
prone to unavoidable human error. They might have adversely affected the ability of
someone else to replicate our work. The very adoption of our open release policy ultimately
had the serendipitous consequence of adding one more layer of independent consistency
checks, making our scientific output more robust.

We refer the reader to Refs. [397,398] and references therein for recent surveys on
open science.

Notes
1 We borrow the terminology and nomenclature associated with mesons and baryons from QCD, when referring to the analogous

composite states in new strongly coupled gauge theories.
2 In the presence of fermions transforming in different representations of the gauge group, the triangle anomaly gives mass to

only one linear combination of the PNGBs associated with the breaking of the chiral U(1) symmetries acting on the different
flavour species. The phenomenological implications are discussed for example in Ref. [47].

3 This property is useful in defining the Cabibbo–Marinari [264] updating algorithm for Sp(2N); see Appendix A of Ref. [7] for
technical details.

4 We denote the set of PNGBs of SU(6)/SO(6) as 20′, for consistency with the conventional notation of SU(4) ∼ SO(6), as there
are three inequivalent representations with 20 degrees of freedom, usually denoted as 20, 20′, and 20′′ [266].

5 Although only integer values of N f are physically meaningful, N f is treated as a continuous variable. An alternative argument
could be made by taking the large-Nc (Veneziano) limit while holding fixed the continuous ratio x f = N f /Nc.

6 After the 5-loop beta function was computed [276,277], the conformal window has also been studied for `max = 5, and in
Ref. [278] the authors report on a strong instability of the perturbative expansion over a wide range of N f in the would be
conformal window of SU(3) gauge theories.

7 This critical condition should agree with γ∗IR = 1, yet it gives rise to different results at finite order in the expansion. This
critical condition reproduces the value of the critical coupling αcr obtained from the Schwinger–Dyson analysis in the ladder
approximation [296], and furthermore |1− γ∗IR| has a square-root singularity with respect to when the IR and UV fixed point
merge [295].

8 By preserving the whole SO(4)EW , the model preserves custodial symmetry, suppressing new physics contributions to the T
parameter [306].

9 The important difference between CHMs and TC is that vW � fπ , so that Λ can naturally be larger than the TeV scale.
10 In this work we use “reproduce” to mean “perform the same analysis on the same data and obtain the same result”, and “replicate”

to mean “repeat the same or a similar analysis on freshly-obtained data and obtain compatible results”, as suggested by the
Turing Way [382].
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