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Medical ultrasound: Time-honored method or emerging research
frontier?
Medical ultrasound is the most commonly used medical
imaging modality worldwide. In the United States, for exam-
ple, it was used in adults aged 18 - 64 years at a rate of 278
per 1000 patients in 2016, compared with 134 for X-ray
tomography (CT), 85 for magnetic resonance imaging
(MRI), and 16 for nuclear imaging (NM) [1]. Ultrasound
diagnostic applications range from the head [2] to the toe
[3] and from conception [4] to death [5]. In recent decades,
new inventions have been made, old concepts have been
revised and revived, and brought into clinical use in ultra-
sound imaging and therapy. This special issue, Recent
Advances in Ultrasound Imaging, is intended to introduce
some of these exciting developments to a wider readership.

Imaging applications of ultrasound technology show a
wealth of ingenuity to overcome earlier obstacles. The first
ultrasound images were produced with single-element piezo-
electric transducers [6], which produced so-called A-mode
(amplitude) lines displayed on oscilloscopes [7]. Antenna
theory and imaging knowledge borrowed from radar led to
the development of array-based [8] B-mode (brightness)
images [9]. These show reflected or scattered acoustic waves
as gray-scale encoded pixel intensities with spatial resolu-
tion. Initially, one-dimensional array technology could pro-
vide 2D images, i.e., depth resolution by time
measurement assuming constant speed of sound and lateral
resolution along the extent of the array. Later, two-dimen-
sional arrays began to provide four-dimensional visualiza-
tions, i.e., time-resolved volumetric data sets. While these
were initially realized by mechanically sweeping one-dimen-
sional arrays, full three-dimensional beamforming is now
possible by using two-dimensional apertures.

Traditionally, these have been implemented as arrays of
diced piezoelectric crystals [10], which presents technical
and cost challenges. With the turn of the millennium, a
new technology emerged on the horizon of ultrasound gen-
eration: capacitive micromechanical ultrasonic transducers,
abbreviated as cMUTs or CMUTs [11,12]. Greatly simpli-
fied, these devices can be thought of as miniature drumheads
that bend due to capacitive charging effects. Photolithogra-
phy can be used to realize electronic transmit and receive cir-
cuits and a large number of transmit/receive drums at very
low cost. This makes CMUTs attractive and has led to many
attempts to revolutionize the field of ultrasound diagnostics.
Herickhoff and van Schaijk provide an overview of this
technology and its challenges and opportunities.

Acoustic attenuation initially limited the use of high fre-
quencies at greater depth due to the low signal-to-noise ratio.
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A coded excitation with matched filters was proposed to
increase the dynamic range by 20 dB [13], resulting in a sig-
nal-to-noise ratio above 70 dB. Although system perfor-
mance could be improved by increasing the transmit
power, this is limited by the maximum sound power and
sound pressure for patient safety. While acoustic waves
propagate at different rates in different tissues of the human
body, general ultrasound equipment assumes not only a con-
stant speed of sound, but often a general speed of sound of
1,540 m/s. Devices are now capable of adapting to an appli-
cation-specific adaptive sound velocity, which improves
phase coherence and thus image quality. Breast tissue has
an average sound velocity of 1,450 m/s versus the general
sound velocity of 1,540 m/s. Reader studies have demon-
strated image enhancements from altering the speed of sound
[14], and algorithms have been developed to automatically
find the optimal speed of sound [15].

Furthermore, the propagation of the acoustic wave is
affected by nonlinear effects as well as spectral aberration
and attenuation. To overcome this, methods such as software
beamformers, coded excitation [13], and harmonic tissue
imaging have been introduced. These methods have dramat-
ically increased the need for faster processing. As graphics
processing units (GPUs) and multicore central processing
units (CPUs) enabled large computational power, developers
were able to rethink ultrasound computed tomography.
Analogous to X-ray-based CT, ultrasound computed tomog-
raphy enables the unfolding of complex wave paths through
tissue [16].

In this issue, Wiskin et al. demonstrate the complex imag-
ing methods that are now possible, both in the analytical
framework of wave propagation and from numerical and
computational perspectives. Ultrasound-based volumetric
breast imaging has now reached a level of detail otherwise
known only from magnetic resonance imaging.

While the technology presented by Wiskin et al. requires
specialized hardware, Ali et al. present a review of
approaches to aberration correction based on pulse-echo
imaging, i.e., non-tomographic imaging. Overcoming or at
least reducing aberration allows for much better spatial res-
olution and image contrast, which will benefit clinicians. An
excellent byproduct of this process is the simultaneous
assessment of local sound velocity, which in itself can be
a diagnostic tool.

Physical effects associated with acoustic wave propaga-
tion have been discovered and exploited to further improve
image quality and thus the diagnostic value of ultrasonogra-
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phy. A significant increase in signal-to-noise ratio was
observed in ultrasonography and was associated with
minibubbles produced by intracardiac injection of saline
[17]. A contrast agent for ultrasonography was born and sub-
sequently developed and engineered [18].

Note that the frequency-dependent peak signal for con-
trast agents with a radius of 3 mm is about 1 MHz. This is
remarkable for two reasons. First, it is fortunate that bubbles
small enough to penetrate the vascular capillary bed resonate
at ultrasound frequencies low enough to penetrate the human
body. Second, it is surprising that 1 MHz excitation in soft
tissue at 1,540 m/s yields a wavelength of 1.5 mm, which
is very large compared to a 6-mm bubble. Therefore, these
contrast agents follow Rayleigh scattering, i.e., k∙a � 1,
here k∙a 0.02, where k is the wavenumber and a is the
diameter of the bubbles. The logical conclusion is that ultra-
sonography should not be able to spatially localize individ-
ual bubbles. However, statistical analysis based on light
microscopic methods [19] allows visualization of the vascu-
lar capillary bed [20].

In this issue, Dencks et al. provide an overview of the
field of ultrasound localization microscopy. They report
how the resolution limit of conventional ultrasound can be
overcome, allowing microscopic localization of microme-
ter-sized contrast bubbles in vivo. A resolution of 9 to 34
mm can be achieved with an imaging system of 15 MHz
and a natural wavelength of 102 mm. Bubble concentration
is a parameter that can be adjusted to be sufficient for effi-
cient sampling of thousands or millions of capillaries while
preventing spatial ambiguities due to overlapping point dis-
tribution functions by falling below a lower mean distance
between bubbles, i.e., maintaining a surrogate population.
As tissue motion can lead to loss of spatial reference, com-
pensation and tracking methods are reviewed.

Song et al. discuss whether super-resolution ultrasound is
ready for clinical use. The ability to resolve microvessels and
preserve vascular morphology is a concept that has signifi-
cantly changed the way ultrasonography is viewed. For
angiographic purposes, it is now possible to penetrate acous-
tically into the lower micrometer range. Optical methods
offer high detail, i.e., high resolution, but cannot penetrate
deeper than a few tens of millimeters into soft tissue. At
the same time, ultrasound has been limited by its native
wavelengths, which undergo frequency-dependent attenua-
tion, so that the achievable wavelength at depths exceeding
the optical penetration depth is more than 100 mm. However,
since bubbles scatter in the Rayleigh range, a spatial resolu-
tion of less than 10 mm can be achieved at depths greater
than 10 cm, which can be considered remarkable.

In addition to the usual physical effects of sound waves
and their propagation, there are other physical effects that
can produce sound waves. The most profound is the experi-
ence of lightning and thunder, that is, the generation of
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sound by the sudden thermal expansion of the atmosphere,
which in turn is due to the massive electric current of the
lightning strike. Within ten microseconds, the atmosphere
heats up to several tens of thousands of Kelvin, generating
sound pressure levels of up to 200 dB [21]. The same con-
cept can be applied to medical ultrasound [22,23]. Photoa-
coustics utilizes the energy absorption of hemoglobin
when exposed to light. Illuminating blood with laser light
can produce ultrasound signals in the megahertz range.
Specific selection of optical frequencies can distinguish
between oxygenated and deoxygenated hemoglobin [24].
When using a clinical ultrasound scanner in receive-only
mode, these acoustic emissions can be directly visualized.
In this way, it is not the acoustic backscattering of tissues
that can be imaged, but rather their ability to produce sound
in response to a specific stimulus. In addition, thermal imag-
ing has also been identified as a potential tool for diagnostic
or therapeutic guidance [25]. Some of the current photoa-
coustic research is focused on clinical applications.

Pattyn et al. highlight strategies for spectroscopic assess-
ments in a tomographic setup where wave propagation can
be more fully acquired and understood to overcome artifacts
that result from heterogeneities, similar to the efforts
described above on ultrasound CT.

The wealth of clinical applications that could benefit from
photoacoustics is illustrated in the contribution by Ni et al.
They showcase examples in musculoskeletal imaging,
inflammatory bowel disease, and cancer (colorectal, ovarian,
prostate, and cervical). Smart integration of photoacoustics
with traditional pulse-echo ultrasound (B-mode and flow-
modes) will be able to deliver a more detailed picture of
the underlying anatomy and physiology.

More and more parts of the body are being examined with
ultrasound. One very innovative application is the focus of
the review by Rodriguez et al., namely the oral cavity, more
specifically periodontal tissue. The miniaturization of ultra-
sound transducers and the use of higher frequencies, previ-
ously associated only with dermatologic and intraoperative
applications, have enabled the use of ultrasound as a new
modality. For periodontists and possibly dentists in general,
this is a welcome tool that provides excellent soft tissue con-
trast and does not require ionizing radiation.

Ultrasound is a safe and effective imaging modality, and
undesirable bioeffects are virtually unknown [26]. In con-
trast, however, ultrasound can produce biological effects
when intended. Lithotripsy is a well-established method
for disintegration of kidney stones [27], and newer therapies
include essential tremor [28], uterine fibroids [29], prostate
[30], and breast cancer [31].

Two main categories of ultrasound therapies are often
distinguished, those that use heating of the tissue caused
by viscous effects, i.e., hyperthermia, and those that rely
on the instantaneous impulse of the sound wave leading to
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mechanical effects, i.e., cavitation. Lithotripsy may have
been the first established therapeutic application that utilized
cavitation-based bioeffects. Recently, researchers have redis-
covered this principle to fracture soft tissue, i.e., histotripsy
[32]. However, therapeutic applications also include sophis-
ticated approaches that go beyond direct tissue destruction.
Acoustic droplet vaporization has been introduced [33] as
a method for super-catheterization, tissue occlusion [34],
or drug delivery [35]. Neurostimulation [36] and blood-brain
barrier opening [37] are other examples of the power of
intended and thus controlled bioeffects. In this special issue,
two therapeutic applications of ultrasound are presented.

Aliabouzar et al. review concepts of acoustic droplet
evaporation with emphasis on nucleation and dynamics of
evaporation. This involves exposing perfluorocarbon dro-
plets in the micrometer diameter range to high-intensity
ultrasound, which triggers a phase change from liquid to gas-
eous perfluorocarbon. Often, these droplets are already in a
superheated state, but this need not be the case, as they can
also transition to a supercooled state.

Sharma et al. provide an overview of the improvement of
cavitation-based therapies. While it is known that acousti-
cally driven inertial cavitation of gas bubbles can damage
and kill cells in the human body, it has also been found that
adjacent endothelial cells experience radiation sensitization
as a byproduct. In other words: After focused ultrasound
treatment of a particular breast lesion and with contrast bub-
bles in the region of interest, the soft tissue is weakened in
terms of its response to radiation therapy. While ultrasound
and radiation both have therapeutic effects individually, the
combined effect is greater than their sum and has been
shown to bypass the long-sought method of reliably apoptos-
ing endothelial cells without damaging surrounding normal
tissue.

Many factors have contributed to the phenomenal
advances that ultrasonography has made over the past 50
years. Some of these are discussed in detail in this special
issue. The physical window of available data still offers
years of ingenuity to improve imaging, interpretation, and
new applications. Even when the underlying physics seems
to stand in the way of a particular path for further progress,
researchers seem to be finding alternatives, such as with
ultrasound localization microscopy. Artificial intelligence
and even more computing power are likely to give us med-
ical imaging capabilities that we dream about today but will
take for granted tomorrow.
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