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Abstract

The optimization along the chain processing-structure-properties-
performance is one of the core objectives in data-driven materials sci-
ence. In this sense, processes are supposed to manufacture workpieces
with targeted material microstructures. These microstructures are de-
fined by the material properties of interest and identifying them is a
question of materials design. In the present paper, we addresse this is-
sue and introduce a generic multi-task learning-based optimization ap-
proach. The approach enables the identification of sets of highly diverse
microstructures for given desired properties and corresponding toler-
ances. Basically, the approach consists of an optimization algorithm
that interacts with a machine learning model that combines multi-task
learning with siamese neural networks. The resulting model (1) re-
lates microstructures and properties, (2) estimates the likelihood of a
microstructure of being producible, and (3) performs a distance pre-
serving microstructure feature extraction in order to generate a lower
dimensional latent feature space to enable efficient optimization. The
proposed approach is applied on a crystallographic texture optimiza-
tion problem for rolled steel sheets given desired properties.

Keywords– crystal plasticity, distance preserving feature extrac-
tion, machine learning, materials design, multi-task learning, multidi-
mensional scaling, siamese neural networks, texture optimization
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1 Introduction

1.1 Motivation

The demand for more and more specific and individually designed products
with certain performance requirements has become a driving force in the
world of manufacturing. For this reason, the optimization along the causal
chain processing-structure-properties-performance [1] became a fast growing
research topic in the field of integrated computational materials engineering
(ICME) [2]. Nowadays, such optimization problems can be solved efficiently
with the help of machine learning techniques [3]. On this background, in
a previous work, we investigated the use of reinforcement learning for find-
ing optimal processing routes in a simulated metal forming process aiming
to produce microstructures with targeted crystallographic textures [4]. To
bridge the remaining gap between microstructures and desired properties, we
focus in this work on solving materials design problems. These are to iden-
tify appropriate material microstructures or microstructural features (e.g.
the crystallographic texture) for given desired properties. It is thereby of
particular importance to identify sets of near-optimal and preferably diverse
microstructures in order to guarantee a robust design [5].

1.2 Paper structure

In the following we summarize the related work and point out the contri-
bution of this paper. In Section 2, first, we describe the siamese multi-task
learning and optimization approach. Then, we introduce the fundamentals
in materials modeling that are needed for the purpose of this work. After
that, in Section 3, the results are shown when applying the approach to a
texture optimization problem for steel sheets. In Section 4, the presented
results are discussed. Finally, in Section 5, we summarize our findings and
give an outlook on further research.

1.3 Related work

A recent and very generic approach to solve materials design problems is
the microstructure sensitive design (MSD) approach introduced in [6]. Fol-
lowing [7], MSD can be described by the seven steps. First, the properties
of interest as well as candidate materials have to be defined. After that, a
suitable microstructure definition is applied for these materials yielding a
microstructure design space. On this basis, relevant homogenization rela-
tions are identified and applied over the whole design space. The resulting
properties closure can be used to select desired properties, which are then
mapped back to the microstructure design space in order to identify opti-
mal microstructures. The last step of MSD aims to determine processes and
processing routes needed to produce the identified microstructure.
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The works by Adams et al. [6] and Kalidindi et al. [8] instantiate the
MSD approach for texture optimization. The first one describes how optimal
crystallographic textures can be identified in order to improve the deforma-
tion behavior of a compliant beam. In the latter, a similar approach is shown
to optimize the crystallographic texture for the design of an orthotropic
plate. The core of both approaches lies in the usage of a lower dimensional
spectral representation of the orientation distribution, cf. [9]. For more
complex microstructure representations, like two-point correlations, feature
extraction methods can be applied to reduce the dimensionality. Methods
that are for example used in the context of materials design are principal
component analysis (PCA) [10, 11] and multidimensional scaling [12]. A
general review of dimensionality reduction techniques can be found in [13].

Besides the MSD approach, also machine learning-based approaches for
crystallographic texture optimization exist. [14] and [15] describe iterative
sampling approaches that interact with crystal plasticity simulations aiming
to identify crystallographic textures for given desired properties. Therefore,
an initial set of texture-properties tuples is generated. Via supervised learn-
ing, significant features of the parameterized orientation distribution (and in
[14] also regions) are identified that yield optimal or near-optimal solutions.
Based on the identified features and regions, new texture-properties data
points are sampled in order to get closer to the optima.

Another approach for identifying optimal textures is described in [16].
Therein, a real-coded genetic algorithm [17] is described that interacts with
a crystal plasticity model in order to find optimal combinations of typical fcc
rolling texture components (Cu, Brass, S, Cube and Goss) for given desired
properties. The algorithm starts with an initial set of textures consisting of
different fractions of these components. The set of textures evolves itera-
tively by combining them using operators such as mutation, crossover and
selection [18].

Summarized, for the solution of microstructure design problems, a link-
age from properties to microstructures is required. Such a linkage is often
achieved by genetic or optimization algorithms that interact with numerical
simulations. However, as these algorithms generally need a lot of function
evaluations, it is not reasonable to apply them to complex numerical simu-
lations directly. Instead, the performance can be increased by using numeri-
cally simpler surrogate models [19]. Typically, these are supervised learning
models that learn the input-output relations of the numerical simulation
under consideration.

To run optimization algorithms in combination with supervised learning
models it is necessary to limit the region in which they operate to the region,
which is covered by the training data. One way to achieve this is by train-
ing unsupervised learning methods on the input data, as it is for example
done in [20] using support vector machines (SVM). From a machine learning
perspective such an approach can be seen as anomaly detection. Anomaly
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detection aims to separate data that is characteristically different from the
known data of the sample data set, which has been used for training. An
extensive overview of anomaly detection methods is given in [21]. Moreover,
[22] gives an overview on recent deep learning-based approaches for anomaly
detection, from which we want to point out neural network-based autoen-
coders [23], which fit especially well into multi-task learning (MTL) schemes
other than SVMs.

Autoencoder approaches assume that features of a data set can be mapped
into a lower dimensional latent feature space, in which the known data
points differ substantially from unknown data points. By backmapping into
the original space, anomalies can be identified by evaluating the reconstruc-
tion error, see for example [24]. In [24] it is also shown that autoencoder
networks are able to detect subtle anomalies, which cannot be detected by
linear methods like PCA. Furthermore, autoencoder networks require less
complex computations compared to a nonlinear kernel-based PCA.

1.4 Contribution

In the present paper, we introduce a generic MTL-based optimization ap-
proach to efficiently identify sets of microstructures, which are highly divers
and producible by a process. The approach is based on an optimization al-
gorithm interacting with a machine learning model that combines MTL [25]
with siamese neural networks [26]. In contrast to [14, 15] and also to [16], in
our approach a surrogate model is set up in order to replace the numerical
simulation, which maps microstructures to properties. The microstructure-
properties mapping can be executed efficiently by means of the surrogate
model within the optimization procedure.

To address the issue of a producibility, we include a neural network in the
MTL structure, which estimates the validity of a microstructure in the sense
of being producible. The efficiency of the optimization is further increased
by transforming the microstructure representation into a lower dimensional
latent feature space, which is formed by a non-linear data-driven autoen-
coder. The resulting lower dimensional latent feature space delivers the
input for the three neural networks: The first network maps the features to
properties (surrogate model), the second network estimates the validity and
the third network is the decoder-part of the autoencoder. As learning takes
place simultaneously for the encoder and the attached tasks, it is ensured
that the lower dimensional feature space is optimal for all tasks. In addition,
we enforce the latent feature space to preserve microstructure distances by
employing a siamese neural network and multidimensional scaling. On this
basis, we force the optimizer to find a diverse set of solutions in the latent
feature space.
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2 Methods

2.1 Materials design via siamese multi-task learning (SMTL)
and optimization

2.1.1 General Concept

First of all, we present the general concept of our MTL-based optimiza-
tion approach. The approach can be applied to general materials design
problems and starts by defining the desired properties and corresponding
tolerances. This defines a target region, for which the approach is supposed
to identify a diverse set of microstructures. The approach is schematically
depicted in Fig. 1 and basically consists of three components: optimizer,
microstructure-properties mapping (m-p-m) and validity-prediction (v-p).
The optimizer generates candidate microstructures that minimize the com-
bined costs, which result from evaluations based on the m-p-m and v-p
components.

Figure 1: General concept of the MTL-based optimization approach to solve
materials design problems.

The m-p-m component assigns properties to a candidate microstructure.
The deviation of the assigned properties to the target region determines
the cost. In general, the m-p-m component can be realized by a numeri-
cal simulation. However, since numerical simulations are computationally
expensive, a surrogate model is used instead. The surrogate model is real-
ized by a regression model that learns the relations from a priori generated
microstructure-properties data.

The v-p component is realized by an anomaly detection method which
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Figure 2: Schematic illustration of a set of generated microstructures in a
structure space s1, s2. The valid region is the part of structure space, which
is supported by the sampled data. ’Unknown’ microstructures are located
outside the valid region.

determines the validity of a candidate microstructure by comparing it to the
set of valid microstructures. The v-p component returns a value that can be
seen as an estimate of a candidate microstructure being an element of the
microstructure set under consideration. This is for example the set, which
can be produced by a dedicated process (e.g. rolling). The value returned
by the v-p component defines the validity cost and drives the optimizer solu-
tion to a valid microstructure region, which is illustrated in Fig. 2. Besides,
such a microstructure region can also be identified by a further optimiza-
tion algorithm that interacts with a numerical simulation of the dedicated
process, however, such an approach suffers from high computational costs.

The two components m-p-m and v-p can be realized by training two sep-
arate machine learning models. However, when the training procedures are
isolated from each other, the models are not able to mutually access infor-
mation already learned by the other model. Therefore, we combine the two
components as tasks into one MTL model [25]. Both tasks have a common
backbone (the feature extraction part of a network) and different heads (fea-
ture processing part of a network) operating on the backbone output. The
backbone output vectors form the so-called latent feature space. The pro-
posed MTL approach furthermore uses the backbone as an encoder network
of an autoencoder, where the decoder is also attached to the latent feature
space with the purpose to reconstruct the input pattern of the backbone.
This is achieved by adding the reconstruction of the microstructures from
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the latent feature space as a third task. In the MTL approach, all three
tasks are represented by a single neural network-based model. The weights
of the model are trained simultaneously based on a combined loss function.
After training the MTL model, the optimizer can operate very efficiently
in the lower dimensional latent feature space. The remainder of this sec-
tion presents the optimization approach and the MTL approach in detail,
as well as an extension based on siamese neural networks [26] to enforce the
representation of microstructures in the latent feature space to preserve the
microstructure distances in the original representation space.

2.1.2 Multi-task Learning (MTL)

The MTL processing scheme (shown in Fig. 3) starts with an encoder
network which extracts significant features by mapping the microstructure
space x ∈ RK into a lower dimensional latent feature space z ∈ RM via the
learned function

z = fenc(x,θenc), (1)

in which the encoder network is parameterized by its weight values θenc.
All three previously described tasks are attached to the encoder in the form
of feedforward neural networks. Besides, the encoder can be easily adapted
to higher dimensional microstructure representing data types like images
(EBSD or micrograph images) or three dimensional microstructure data by
using for example convolutional neural networks (see [27]), which are used
for example in [28] in the materials sciences domain.

To train the MTL model, a loss function that combines all the three
tasks is needed. This is achieved by a function that cumulates the loss
terms of the three tasks Lregr (regression loss), Lrecon (reconstruction loss)
and Lvalid (validity loss), and weights them using Wregr, Wrecon and Wvalid

to allow for prioritization. The total loss function is defined as

LMTL = WregrLregr + WreconLrecon

+WvalidLvalid + λR(θ),
(2)

where R(θ) is a regularization term that is used to prevent overfitting with
the hyperparameter λ defining the strength of the regularization (also known
as weight decay, see [29] and [30]). Each of the feedforward neural networks
is parameterized by the respective weight values θenc, θregr, θrecon and θvalid,
which are adjusted simultaneously during training and altogether form the
weight vector θ. In the following we will introduce the three individual loss
terms.

1. The forward mapping of the latent feature vector z to the properties
vector p̂ ∈ RN is represented by the learned function

p̂ = fregr(z,θregr) = fregr(fenc(x,θenc),θregr). (3)
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Figure 3: MTL architecture. The MTL model is trained on pairs of mi-
crostructures and corresponding properties (x,p). The input microstruc-
tures are transformed into latent features z. The individual outputs of
the connected tasks are the estimated properties p̂, the reconstructed mi-
crostructure x′ and the reconstructed latent features z′.

The regression loss is given by the mean squared error between the
predicted properties p̂ and the true properties p:

Lregr(p, p̂) =
1

N

N∑
i=1

(pi − p̂i)2, (4)

where N denotes the number of properties.

2. The decoder network, which is responsible for the reconstruction, trans-
forms the latent feature vectors z back to the original microstructure
space:

x′ = frecon(z,θrecon) = frecon(fenc(x,θenc),θrecon). (5)

The reconstruction loss is defined on the basis of a distance measure
between two microstructural feature vectors dist(x,x′):

Lrecon(x,x′) = dist(x,x′). (6)

The distance measure between depends on the microstructure repre-
sentation and has to be chosen appropriately.

3. On the basis of the latent feature space, an extra autoencoder network
is set up transforming z ∈ RM into an even lower-dimensional feature
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sub-space s ∈ RS with S < M and transforming back to z′ ∈ RM via

z′ = fvalid(z,θvalid) = fvalid(fenc(x,θenc),θvalid). (7)

The validity loss is defined by the mean squared error between z and
z′:

Lvalid(z, z′) =
1

M

M∑
i=1

(zi − zi′)2. (8)

2.1.3 Distance preserving feature extraction using siamese neural
networks

The above described MTL approach is used in combination with an opti-
mizer that searches for candidate microstructures with desired properties in
the latent feature space. However, our approach aims to identify a diverse
set of microstructures with high diversity. For the diversity quantification a
distance measure in the latent feature space is required. The MTL approach
as defined above, is not able to preserve the distances of the original space in
the latent feature space. In order to construct a distance preserving latent
feature space, the MTL is embedded in a siamese neural network [26, 31],
which we will describe next.

Siamese neural networks consist of two identical networks, which share
weights in the encoder part, see Fig. 4. Both networks embed different
microstructures ~xL and ~xR as ~zL and ~zR in the latent feature space which is
finally processed by two identical MTL networks. The distance preservation
is enforced by defining a distance preservation loss Lpres that minimizes
the difference between the distance of two different input microstructures in
the original space dist(xL,xR) and the corresponding distance in the latent
feature space dist(zL, zR), with xL 6= xR [32]:

Lpres = (dist(xL,xR)− dist(zL, zR))2, (9)

while dist(xL,xR) and dist(zL, zR) are not necessarily the same distance
measures. Applying such loss terms leads to multi dimensional scaling, see
[33] and [34]. Using the distance preservation loss Lpres, the MTL loss
function, defined in Eq. 2, is extended by the weighted preservation loss
WpresLpres to

LSMTL = WregrLregr + WreconLrecon

+ WvalidLvalid + WpresLpres

+ λR(θ).

(10)

The SMTL approach delivers a function which can map a microstructure
representation in the latent feature space on properties. Now an optimizer
can operate on a low dimensional feature space to find microstructures with
desired properties. The SMTL framework also allows to reconstruct the
original represenation of microstructures, to asses the distances between
them and to validate them in the latent feature space.
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Figure 4: Architecture of the SMTL approach. The dotted line between the
encoders EL and ER indicates shared weights.

2.1.4 Microstructure optimizer

The microstructure optimization with respect to desired properties uses
the distance preserving SMTL framework with the tasks microstructure-
property-mapping, validity-prediction and reconstruction. The optimization
minimizes a loss function, which consists of the cost terms Cprop, Cvalid and
Cdivers and the corresponding weights Vprop, Vvalid and Vdivers:

F = VpropCprop + VvalidCvalid + Vdivers(1 + Cdivers). (11)

Cprop, Cvalid and Cdivers denote the property, validity and diversity cost
terms, respectively. While the property cost term drives the candidate mi-
crostructures to lie inside a specified target properties region, the validity
cost aims that the optimizer operates inside the region of valid microstruc-
tures and the diversity cost ensures that candidate microstructures differ
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from each other. To minimize the loss function we use genetic algorithms,
which generate a population set of P candidate microstructures z̃∗ in the
latent feature space in every iteration. The three cost terms are described
in more detail in the following.

1. The property cost is defined by the mean squared error between the
desired properties and the predicted properties from the SMTL regres-
sion model:

Cprop =
1

N

N∑
i=1

(C̃prop,i)
2. (12)

If one of the predicted properties lies inside the target region, the
cost C̃prop,i equals 0. Otherwise, C̃prop,i equals the minimum squared
distance from the predicted properties to the target region borders.

2. The validity prediction is used to asses whether an identified candidate
microstructure is likely to be represented by the sample data set. The
validity cost is defined by

Cvalid = max(A − ξvalid, 0), (13)

in which ξvalid is a threshold to define the maximum tolerated recon-
struction error for valid textures and A denotes the anomaly score

A =
1

M

M∑
i=1

(z∗i − z∗′i )2. (14)

3. The diversity cost is based on the sum of the distances between the
candidate microstructure z∗ in the latent feature space and every other
microstructure in the population:

Cdivers = −
P∑
i=1

dist(z∗i , z
∗), (15)

in which for dist(z∗i , z
∗) the same distance measure has to be used as

for the latent feature vectors in Eq. 9.

2.2 Materials science fundamentals

2.2.1 Representation of crystallographic texture

Crystallographic texture is typically described by the orientation distribu-
tion function, which is defined by

f(g)dg =
V (g)

V
, (16)
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for an orientation g (a point in SO(3)) and the volume V (g) in SO(3).
The orientation distribution function f(g) often underlies specific symmetry
conditions, for which various regions in SO(3) are equivalent. Therefore, de-
pending on the symmetries, orientations can be mapped into an elementary
region of SO(3), the so-called fundamental zone. The orientation distribu-
tion function on the basis of the orientations mapped into the fundamen-
tal zone is then indistinguishable from the original orientation distribution
function. Rolling textures, for example, underlie a cubic crystal and an
orthorhombic sample symmetry, for which 96 elementary regions exist [35].

A popular way to represent the orientation distribution function is by
approximating it via generalized spherical harmonic functions [9]. Yet, as
there is no straightforward way to measure the distance between two ori-
entation distribution functions in terms of generalized spherical harmonics,
we make use of the orientation histogram-based texture descriptor, which is
introduced in [4]. Therefore, the cubic fundamental zone is discretized into
a set O of j nearly uniform distributed orientations oj . For each individual
orientation g in a set of orientations G, a weight vector wg is constructed
via a soft-assignment approach

wg =

{
Φ(g,oj)∑

oi∈Nl
Φ(g,oi)

, if oj ∈ Nl

0, else
, (17)

where Nl is the set of l nearest neighbor orientations of g in terms of the
orientation distance Φ. The orientation distance between two orientations
g and o is defined by

Φ = min Φ(g, o). (18)

where g and o is from the set of all equivalent orientations of g and o in
terms of cubic crystal symmetry. The orientation distance measure in SO(3)
is defined as

Φ(qg, qo) = min(||qg − qo||, ||qg + qo||), (19)

where qg and qo are the quaternion representations of the orientations g and
o [36].

On this basis, the weight vector for the orientation histogram b can
be calculated by a volume average of the weight vectors of the individual
orientations

b =
1

V

∑
j

V (oj)woj . (20)

The distance between two orientation distribution functions can then be
measured via any kind of histogram-based distance measure, such as the
Chi-Squared distance [37]

χ2(b1, b2) =
∑ (b1 − b2)2

b1 + b2
. (21)
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Table 1: Definition of the fibers of bcc rolling textures following [41]

Fiber Location

α from {001}<110> to {111}<110>, parallel to RD
γ from {111}<110> to {111}<112>, parallel to ND
η from {001}<100> to {011}<100>, parallel to RD
ε from {001}<110> to {111}<112>, parallel to TD
β from {112}<110> to {11 11 8}<4 4 11 >

The set of nearly uniform distributed orientations O, needed for the
histogram-based texture descriptor, can be generated using the algorithm
described in [38], which is implemented in the software neper [39]. For the
purpose of this study, we sample 512 nearly uniform distributed orientations
over the cubic fundamental zone and chose a soft assignment of l = 3.

2.2.2 Crystallographic texture of steel sheets

After rolling body centered cubic (bcc) materials, typically so-called fiber
textures are formed. Following [40], these textures are composed of the five
fibers α, γ, η, ε, and β, which are defined in detail in Tab. 1. Among these
fibers, the α and γ fiber are most prominent [41], whereas the presence
of the β fiber is only reported from theoretical predictions [42]. In order
to generate a data base of (artificial) rolling textures, in this work, a 25-
parameter model is used, as it is proposed in [43] to describe steel sheet
textures. The model is based on textures that are composed of the fibers α,
γ, and η.

As the η-fiber is not always present in steel sheet textures, we limit
ourselves to textures that consist of an α and γ fiber. Therefore, 6 of the 25
parameters can be neglected. The texture model describes the orientation
distribution function as a set of weighted Gaussian distributions placed along
the fibers. The model parameters Di are listed in Tab. 2 and define the
standard deviations and the mean values of the distributions based on the
fiber thickness and the shifts from their ideal positions. Furthermore, the
model parameters define the weights of the distributions among each other
based on the fiber intensity.

To construct the set of Gaussian distributions, the seven base distribu-
tions from Tab. 2 are placed at their ideal positions with respect to the
shifts. Between these seven distributions, further distributions are placed
with a distance of about 3◦ to each other, leading to overall 41 Gaus-
sians. Their weights wi and the values for the standard deviation σi and
mean value µi are interpolated linearly based on the values of the two
neighboring base distributions. This yields a set of Gaussian distributions
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Table 2: Definition of the parameters Di of the texture model, cf. [43]. The
ideal position is given in Bunge euler angles [◦].

Ideal pos. Intens. Std ϕ2 Std ϕ1 Shift ϕ1 Shift φ Shift ϕ2

a1 0, 0, 45 D1 D7 D7 0 0 0
a2 0, 30, 45 D2 D8 D13 0 D15 0
a3 0, 55, 45 D3 D9 D9 0 D16 0
a4 0, 70, 45 D4 D10 D10 0 D17 0
a5 0, 90, 45 D4 D10 D10 0 0 0
g2 15, 55, 45 D5 D11 D11 D14 0 0
g3 30, 55, 45 D6 D12 D12 0 D18 D19

N1(µ1, σ1), ...,N41(µ41, σ41). The orientation distribution function f(g) is
defined by the normalized sum of this set:

f(g) =
1∑
iwi

n∑
i=1

wiNi(µi, σi). (22)

Based on this definition, discrete orientations can be sampled. In the
following, we denote the set of orientations as G. As f(g) is defined in the
cubic-orthorhombic fundamental zone, it is necessary to add the equivalent
orientations regarding the orthorhombic sample symmetry to the set of dis-
crete orientations. This is done by applying rotation operations gs on each
orientation gi in G

gequiv
i = gs gi. (23)

The rotation operations gs for orthorhombic sample symmetry can be found
in [35].

2.2.3 Material model

The sheet metal properties which we focus on in this study are the Young’s
moduli and the R-values at 0, 45 and 90 degree to rolling direction. In
this study, the properties are calculated by applying uniaxial tension on a
crystal plasticity-based material model. As time efficiency is essential for
the generation of data, a material model of Taylor-type is implemented, as
it is described in [4].

The Taylor-type material model is based on the volume averaged stress
of a set of n crystals [44]:

T =
1

V

n∑
i=1

T (i)V (i). (24)
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In the above equation, T denotes the Cauchy stress tensor, which can be
derived by the stress tensor in the intermediate configuration, given by

T ∗ =
1

2
C : (F T

e · F e − I), (25)

with the second order identity tensor I and the fourth order elastic stiffness
tensor C. The elastic constants C11, C12 and C44 are set to 218.37, 131.13
and 105.34 GPa, respectively [45]. F e is the elastic part of the deformation
gradient F and can be calculated by a multiplicative decomposition

F = F e · F p. (26)

The intermediate stress tensor can be converted into Cauchy stress using
the relation

T ∗ = F−1
e · (det(F e) T ) · F−>e . (27)

To describe the evolution of the plastic deformation, the plastic part of the
velocity gradient Lp is considered by

Lp = Ḟ p · F−1
p , (28)

and the flow rule [46]

Lp =
∑
η

γ̇(η)m(η) ⊗ n(η), (29)

where γ̇(η) denotes the shear rates on the active slip systems η, defined by
the slip plane normal n(η) and the slip directionm(η). For bcc materials, the
slip system families in terms of Miller index are {110}<111>, {112}<111>,
and {123}<111>, while the latter is neglected due to simplicity.

The shear rates are defined by a phenomenological power-law [47]:

γ̇(η) = γ̇0

∣∣∣∣∣τ (η)

r(η)

∣∣∣∣∣
1/m

sign(τ (η)), (30)

where r(η) is the slip system resistance, γ̇0 the reference shear rate and m
the shear rate sensitivity. Here, γ̇0 and m are set to 0.001 sec−1 and 0.0125,
respectively, [48]. Following Schmid’s law, the resolved shear stress on slip
system τ (η) is given by

τ (η) = ((F T
e · F e) · T ∗) : (m(η) ⊗ n(η)), (31)

and the evolution of the slip system resistance is defined by

ṙ(η) =
dτ̂ (η)

dΓ

∑
ξ

qηξ|γ̇(ξ)|. (32)
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The matrix qηξ describes the ratio between self and latent hardening. It
consists of diagonal elements equal to 1.0 and off-diagonal elements q1 and
q2, cf. [49]. Both, q1 and q2, are set to 1.4 [47]. Further, we need to model
the hardening behavior, which is realized by an extended Voce-type model
[50]:

τ̂ (η) = τ0 + (τ1 + ϑ1Γ)(1− e−Γϑ0/τ1). (33)

The material dependent parameters are calibrated to DC04 steel1 and are
τ0 = 94.9 MPa, τ1 = 50 MPa, ϑ0 = 258 MPa and ϑ1 = 32.8 MPa [51]. The
accumulated plastic shear is defined by

Γ =

∫ t

0

∑
η

∣∣∣γ̇(η)
∣∣∣dt. (34)

3 Results

3.1 Texture-property data set

For training, 50000 sets of 2000 discrete orientations are sampled via Latin
Hypercube Design [52], based on Eq. 22. In order to have an independent
test set, further 10000 sets are generated randomly. The ranges inside which
the parameters of the texture model vary are defined such that typical bcc
rolling textures found in literature can be represented, cf. [53, 54, 55, 41, 56,
48, 57]. The parameter ranges are listed in Tab. 3. In addition, to evaluate
the anomaly detection, a set of artificial textures is needed, which slightly
differ from the generated rolling textures. For this purpose, 10000 anomalies
are generated by shifting the α-fiber (i.e. the ideal position of a1, a2, a4 and
a5) about 20 degrees in ϕ1-direction.

Moreover, we want to validate the texture-property-mapping and the
validity-prediction on experimental data. For this purpose, an experimen-
tally measured texture of cold rolled DC04 steel from [58] is used. Based on
this measurement, an orientation distribution function is approximated via
the MATLAB toolbox mtex [59], rotated into its symmetry axis assuming
orthorhombic sample symmetry and mirrored. To visualize the α- and γ-
fiber of the orientation distribution, an intersection plot of the euler space
at ϕ2 = 45◦ is depicted in Fig. 5.

3.2 Validation of SMTL

In this study, the individual tasks of the SMTL model are realized via feed-
forward neural networks with tanh activation functions to obtain features
between −1 and +1 in the latent feature space. The SMTL model is im-
plemented based on the Python TensorFlow API [60]. The base network of

1experiments performed at IUL Dortmund during DFG project Graduate School 1483
[51]

16



Table 3: Parameter ranges for Di

Intensity D1 D2 D3 D4 D5 D6

min 1/6 1/6 1/6 0 1/6 1/6
max 1/3 2/3 2/3 1/3 1 1

Std D7 D8 D9 D10 D11 D12 D13

min 5/3 5/3 5/3 5/3 5/3 5/3 5/3
max 45/3 35/3 35/3 30/3 30/3 30/3 35/3

Shift D14 D15 D16 D17 D18 D19

min −5 −10 −10 −5 −10 −10
max 10 10 5 10 10 10

Figure 5: ϕ2 = 45◦ section of the orientation distribution function to visu-
alize the γ-fiber of the colled rolled DC04 steel texture

.
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Table 4: Used hyperparamters

Hyperparameter Value

Optimizer Adam [64]
Learning rate 0.001
Weight decay 1e-6

Batch size 256

Figure 6: One twin part of the SMTL model with the annotation of the
dimension size of the layers. Fc denotes fully-connected layers and tanh
denotes hyperbolic tangent activation function

the siamese architecture is illustrated in Fig. 6. The Glorot Normal method
[61] is used for weight initialization. In order to adjust the hyperparameters,
a random search method [62] is applied using 5-fold cross-validation. The
best model configuration that was found is shown in Tab. 4. We use the
Chi-Squared distance introduced in Eq. 21 as the distance measure in the
input space. In the latent latent feature space we use the sum of squared
errors (SSE) between two vectors z1 and z2 as distance measure

SSE(z1, z2) =
M∑
i=1

(z1,i − z2,i)
2. (35)

The SMTL model is trained for 200 epochs, while the best intermediate
result of the test set is retained, which can be interpreted as a form of early
stopping [63]. Before the model training is executed, the loss terms are
scaled to values between 0 and 1 in order to make them comparable. The
following weights for the scaled loss terms were found to be appropriate from
hyper parameter optimization: Wregr = 0.05, Wrecon = 0.05, Wvalid = 0.05
and Wpres = 0.85.

The results for the texture-property-mapping and the distance preserva-
tion are shown in Tab. 5, in which the regression errors MAEE and MAEr
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Table 5: Results for varying numbers of latent features (LF) of the texture-
property-mapping and the distance preservation applied to the artificially
generated textures and experimentally measured texture. Regr.(ession er-
ror) MAEE is given in [MPa], Regr.(ession error) MAEr in [-] and Pres.(erve
quality) R2 in [%].

LF
Artificial textures Experimental texture

Regr. MAEE Regr. MAEr Pres. R2 Regr. MAEE Regr. MAEr

20 153 0.03 98.2 596 0.04
18 183 0.03 98.0 773 0.11
16 162 0.03 97.8 907 0.05
14 193 0.03 97.0 1282 0.07
12 215 0.04 95.4 1468 0.13
10 238 0.05 92.2 1463 0.13
8 335 0.06 85.7 1575 0.17
6 390 0.07 72.4 1554 0.15
4 664 0.10 34.2 2768 0.12

denote the mean absolute error between the true and predicted Young’s
moduli and R-values depending on the dimension of the latent feature space
z. The quality of the distance preservation is measured by the coefficient of
determination R2, between the distances of two input textures and their cor-
responding latent feature vectors R2(χ2(xL,xR), SSE(zL, zR)). It is shown
that texture-property-mappings with an adequate prediction quality can be
achieved by extensively reducing the dimensionality of the latent feature
space. However, regarding the distance preservation quality, a lower bound
of at least 10 latent features can be identified, below which the distance
preservation is unsatisfactory. Additionally, the texture-property-mapping
is evaluated on the experimentally measured texture and the corresponding
properties. The results are listed in Tab. 5. It can be seen that a satisfac-
tory prediction quality (Regr. MAEE ≤ 1000 MPa and Regr. MAEr ≤ 0.1)
can only be achieved for at least 16 latent features.

On the basis of this 16-dimensional feature space, the validity-prediction
is then evaluated. The anomaly scores for the textures in the test set and
for the artificially generated anomalies are shown in Fig. 7. It can be seen,
that the anomalies can be separated in a sufficient manner from the textures
in the test set.

3.3 Rolling texture identification

To validate the texture identification, we define two target regions in the
property space, see Fig. 8. The first one is defined by the properties of
the experimentally measured texture, which lies in a sparsely populated re-
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Figure 7: Histograms of the anomaly scores for the data from the test set
and the set of artificially generated anomalies. The anomaly scores are based
on the model that uses 16 latent features.

Table 6: Center points of the two target regions (TR). The Young’s moduli
E are given in MPa, the R-values r in [-].

TR E00 E45 E90 r00 r45 r90

1 223145 207148 216599 1.01 1.7 0.4
2 223000 213000 222000 1.3 2.2 2.2

gion and is labeled as Target Region 1. As a consequence of its location in
the sparsely populated region, the anomaly score of this texture is 0.0099
and in the transition zone shiftet towards the generated anomalies (cf. Fig.
7). It is of interest if the optimizer is generally able to find a whole set
of microstructures with properties in this region. The second target region
represents a densely populated region located near the center of the prop-
erties point cloud and is labeled as Target Region 2. The center of the each
target region is listed in Tab. 6. The target regions are defined by adding a
tolerance of ±1000 MPa to the Young’s moduli and ±0.10 to the R-values.
As a baseline, we collect all data points from the training set, that lie in-
side the target regions. In Target Region 1 only two textures can be found,
whereas in Target Region 2 13 textures can be found.

To identify a diverse set of textures, we use the optimization algorithm
JADE [65], which is an extension of the Differential Evolution algorithm
[66]. Before starting the optimization via JADE, an initial population has
to be selected, where 100 textures are sampled from the test set, which are
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Figure 8: Density of the training set projected on different planes of the
property space: the Young’s modulus at (a) 0 vs. 90 degree and (b) 45
vs. 90 degree for the R-values at (c) 0 vs. 90 degree and (d) 45 vs. 90
to rolling direction. The orange and red squares mark the projections of
Target Region 1 and Target Region 2, respectively. The green dots show the
projected samples from the training set that lie inside the target region.
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approximately uniformly distributed over the property space. For the cost
function, defined in Eq. 11, we use the weights Vprop = 0.90, Vvalid = 0.03
and Vdivers = 0.07 and scale Cprops and Cdivers to values between 0 and 1
based on the selected 100 initial a textures. The threshold ξvalid is set to
0.01 based on the maximum anomaly score in the data set, cf. Fig. 7.
The optimization is performed for 300 iterations with a fixed population
size of 100. During the optimization, all valid textures that fulfill the target
properties are collected, according to the texture-property-mapping. Based
on the results from the previous section, we use the trained SMTL-model
with a 16-dimensional latent feature space. The resulting textures for each
target region are discussed in the following.

Target region 1

Our approach is able to find a diverse set of textures that meet the property
requirements of Target Region 1, according to the texture-property-mapping.
Fig. 9 depicts the mutual distances in the latent feature space between all the
found textures and between the two baseline textures. It is shown, that the
set of identified textures contains 1315 diverse textures in contrary to only
two in the baseline set. In order to compare the results to the experimentally
measured texture, the closest texture to the center point of Target Region
1 is depicted in Fig 10 as a section through euler space at ϕ2 = 45◦. By
comparing the two textures, it can be seen that they are roughly the same
in terms of the magnitude of the intensities and the shape of the α- and
γ-fibers. However, they also show differences in terms of smoothness and
the location of the intensity peaks.

Target region 2

Compared to Target Region 1, an even more diverse set of 221 textures can
be identified for Target Region 2, which can be seen in the histogram of the
mutual distances in Fig. 11. To get an idea of the differences between the
textures, two exemplary textures are plotted in Fig. 12 as a section through
the ODF in the euler space at ϕ2 = 45◦. It can be seen that the α- and
γ-fiber of both textures differ significantly in terms of intensity. However,
the locations of the intensity peaks and the thickness of the α- and γ-fiber
are similar.

4 Discussion

The results presented in Section 3.2 show that the two tasks texture-property-
mapping and validity-prediction are solved by the SMTL model. To achieve
a sufficient prediction quality for both tasks in the test set as well as for the
experimentally measured texture, a minimum dimensionality of the latent
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Figure 9: Histogram of pairwise SSE distances of the set of identified tex-
tures and the baseline set for Target Region 1. The distance between the
two textures from the baseline set is indicated by the dashed line.

Figure 10: Texture that yields properties which are closest to the center of
Target Region 1. The plot shows the ϕ2 = 45◦ section of the orientation
distribution function.

23



0.0 0.1 0.2 0.3 0.4 0.5 0.6
Pairwise distances [-]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Re

la
tiv

e 
fre

qu
en

cy
 [%

]
Identified Textures
Textures from Baseline

Figure 11: Histogram of mutual distances of the set of identified textures
and the baseline set for Target Region 2.

(a)

(b)

Figure 12: Two exemplary textures from the set of identified textures. Both
plots show ϕ2 = 45◦ sections of the respective orientation distribution func-
tions.
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feature space is needed, where also the dimensionality requirements of the
siamese distance preservation goal has to be considered. 16 latent features
were found to be sufficient for our example task of cold rolled steel. How-
ever, the prediction error for the experimentally measured texture is higher
than for the test set using the same latent feature space dimensionality. This
may be explained by the fact that the corresponding property is in a texture
space region with low sampling density and the model therefore is not well
supported by data. This results also in an instability of the model quality
depending on the dimensionality of the latent feature space in this region.
This instability can be seen by studying the R-value in Tab. 5. By choosing
the latent feature space size of 16, also the results for the experimentally
measured texture are satisfactory, especially keeping in mind that the ex-
perimentally measured texture differs naturally from the simulated data and
additionally lies in a sparsely sampled region, cf. Target Region 1 in Fig. 8.

Due to the sparsity of Target Region 1, the identification of textures in
this region is challenging. Nevertheless, the optimization approach is able
to identify a set of textures that contains more diverse individuals compared
to the two baseline textures from the training set. Regarding the identified
texture, which is closest to the experimentally measured texture in terms of
properties, one can see that they are also similar in terms of crystallographic
texture, what basically proofs the concept of our approach.

The most obvious difference between both textures is smoothness. The
irregular distribution of intensity peaks of the identified texture is due to the
resolution of the histogram-based texture descriptor. Also the orthorhombic
sample symmetry is not represented locally. However, by increasing the
resolution, these two issues can be solved. Furthermore, a higher resolution
of the descriptor decreases the descriptor error, which reflects the deviation
between the properties of the original texture and the properties of the
texture described by the descriptor. However, the choice of resolution is a
trade-off between accuracy and descriptor complexity, which is why we chose
an intermediate resolution to proof our approach. Generally, with the use
of the SMTL model and the incorporated feature extraction, the resolution
is limited only by computational power.

Compared to Target Region 1, the identification task for Target Region
2 seems to be less challenging as the target region is located in a densely
sampled region. However, as there already exists a proper set of diverse tex-
tures in the baseline, the main challenge is to outperform the baseline set in
terms of diversity. Fig. 11 shows that this general materials design problem
(the identification of multiple equivalent microstructures) is accomplished
by the optimization approach. This is exemplarily shown when comparing
two of the identified textures in Fig. 12 with each other: similar proper-
ties can be reached by quite different microstructures. The identification
of such a highly diverse set of microstructures with similar properties is an
important precondition to construct robust optimizing process control al-
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gorithms, which can then choose among multiple optimal paths leading to
desired properties.

5 Summary and outlook

In this work we present an approach to solve materials design problems. The
approach is based on an optimization strategy that incorporates machine
learning models for mapping microstructures to properties and for assessing
the validity of input microstructures in the sense of the likeliness with the
underlying data. To model these tasks, we use a siamese multi-task learning
neural network (SMTL). Furthermore, we incorporate feature extraction
in order to transform input microstructures to a lower dimensional latent
feature space where the optimizer looking for microstructures with dedicated
properties can efficiently operate.

By training the SMTL network with a dedicated loss function term, we
are able to preserve the distances between microstructures in the original in-
put space also in the latent feature space. The distance preservation allows
to directly assess the diversity of the solution set found by the optimizer
directly in the latent feature space and therefore enables optimizers to ef-
ficiently identify sets of diverse microstructures. By applying the approach
to crystallographic texture optimization, we show the ability to identify di-
verse sets of textures that lie within given bounds of properties. Such sets
of textures form the input of optimal processing control approaches like in
[4].

In the present work, we applied our approach on data from mean-field
simulations. The next step is to apply the approach on spatially resolved
data from full-field simulations. The proposed methods can be easily ex-
tended for this task by modifying the encoder part of the SMTL network.
However, the problem arises that typically fewer data can be generated via
full-field simulations. Nevertheless, such sparse high quality data can be
used to support the modeling with lower quality data. Concepts to incoor-
porate such multi-fidelity data fusion approaches [67] in our SMTL model
learning will be considered in the future.

Data availability

The data used to validate the SMTL approach is made available via the
repository Fordatis at https://fordatis.fraunhofer.de/handle/fordatis/
204 [68].
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[58] S. Schreijäg, Microstructure and Mechanical Behavior of Deep Drawing DC04
Steel at Different Length Scales. PhD thesis, Fakultät für Maschinenbau des
Karlsruher Instituts für Technologie (KIT), 2012.

[59] F. Bachmann, R. Hielscher, and H. Schaeben, “Texture analysis with mtex –
free and open source software toolbox,” in Solid State Phenomena, vol. 160,
pp. 63–68, 3 2010.

[60] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
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