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The Cell Tracking Challenge is an ongoing benchmarking initiative that 
has become a reference in cell segmentation and tracking algorithm 
development. Here, we present a significant number of improvements 
introduced in the challenge since our 2017 report. These include the 
creation of a new segmentation-only benchmark, the enrichment of 
the dataset repository with new datasets that increase its diversity and 
complexity, and the creation of a silver standard reference corpus based 
on the most competitive results, which will be of particular interest for 
data-hungry deep learning-based strategies. Furthermore, we present 
the up-to-date cell segmentation and tracking leaderboards, an in-depth 
analysis of the relationship between the performance of the state-of-the-art 
methods and the properties of the datasets and annotations, and two 
novel, insightful studies about the generalizability and the reusability 
of top-performing methods. These studies provide critical practical 
conclusions for both developers and users of traditional and machine 
learning-based cell segmentation and tracking algorithms.

The field of automated cell tracking has contributed extremely valuable 
tools to life scientists with which to conduct their research1–3. However, 
the emergence of technical developments that improve the resolu-
tion4, dimensionality5, extent and throughput6 of optical microscopes 
demands new, improved tracking algorithms. Furthermore, the fast 
evolution of machine learning7 is changing the way cell tracking is per-
formed, as deep neural networks rapidly replace classical image analysis 
methods. These models provide impressive results while posing their 

own share of challenges related to their training strategies, quality and 
quantity of available training data, parametrization, and generalization.

The Cell Tracking Challenge (CTC) (http://celltrackingchallenge.
net) is an ongoing initiative that promotes the development and objec-
tive evaluation of automated cell tracking algorithms. Launched in 2013 
under the auspices of the 10th IEEE (Institute of Electrical and Electron-
ics Engineers) International Symposium on Biomedical Imaging (ISBI), 
the CTC provides developers with a rich and diverse annotated dataset 
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a selected part of the embryo is covered. The silver truth consists of 
computer-generated segmentation annotations obtained by fusing the 
results of high-performing benchmarked methods over the training 
sequences, using the detection gold truth to drive the fusion process 
(see ‘Silver standard reference annotation’ in Methods). This silver 
truth improves the cell instance coverage (99.1% on average), providing 
the participants with a larger set of annotated cell instances that can 
be used, for example, to train deep learning models. Supplementary 
Data Tabs 1 and 2 contain the coverage of both gold truth and silver 
truth annotations for all datasets. Note that 100% coverage was not 
attainable because even the best-performing benchmarked methods 
did not always detect and segment all cell instances in a particular 
video. All reference annotations are publicly available for the training 
datasets but are kept secret for the test datasets. This helps prevent 
overfitting by not enabling the methods to be tuned specifically for 
the test data. Thus, it ensures that the performance of the methods is 
evaluated based on their ability to generalize rather than their ability 
to memorize the training data.

Participants, algorithms and handling of submissions
The CTC has witnessed a remarkable increase in participation since 
the time of our last report in 2017 (ref. 9). The number of participat-
ing teams has increased from 16 to 50, representing 19 countries. The 
number of benchmarked algorithms has also increased from 21 to 89. All 
submissions, consisting of labeled segmentation masks and structured 
text files with cell-lineage graphs in the case of tracking results, fol-
lowed standardized naming conventions and were verified by the CTC 
organizers using the provided executable versions of the algorithms. 
A complete list of the participants’ segmentation and tracking algo-
rithms can be found in Supplementary Data Tabs 3 and 4, and a global 
overview of the strategies and techniques used is presented in Fig. 3. 
Approximately one-third of segmentation methods use a separate 
detection step first (DetSeg) instead of segmenting the objects directly 
(Seg). Regarding the tracking task, we confirm the overall dominance 
of methods in which linking is based on a prior per-frame segmentation 
(SegLnk or DetSegLnk) over those in which the linking part is based on 
per-frame detection only (DetLnkSeg) or simultaneous segmentation 
and linking (Seg&Lnk).

Technical performance of the submitted algorithms
The CTC has two benchmarks: the Cell Tracking Benchmark (CTB) and 
the Cell Segmentation Benchmark (CSB). The CTB, which has been 
active since the inception of the CTC, evaluates the segmentation (SEG) 
and tracking (TRA) accuracy of the submitted methods. The CSB, intro-
duced in 2019, focuses on segmentation (SEG) and detection (DET) 
accuracy, without considering the linking of cells over time. All these 
evaluation measures are described in Methods (in the ‘Quantitative 
performance criteria’ section).

The scores of all CSB and CTB submissions received before  
1 June 2022 can be found in Supplementary Data Tabs 5–9 (CSB) and 
Tabs 10–14 (CTB). Figure 4a shows the SEG and DET performance of 
the top-3 CSB methods, along with the overall performance measure 
(OPCSB), calculated as the arithmetic mean of both measures. Likewise, 
Fig. 4b shows the SEG and TRA performance of the top-3 CTB methods, 
along with the overall performance measure (OPCTB). To globally rank 
the methods, we computed the weighted number of occurrences of 
each method or its generalizable version (labeled with an asterisk, 
see ‘Generalizability study’) in the top-3 positions of the CSB and CTB 
leaderboards (Fig. 4). We assigned 1, 2 or 3 points for each top-3, top-2 
and top-1 occurrence, respectively. Based on this calculation, the top-3 
CSB methods are CALT-US (*) (ref. 13), KIT-GE (3) (ref. 14), and (shar-
ing third place) DKFZ-GE15, KIT-GE (4) (ref. 16) and KTH-SE (1) (ref. 17), 
and the top-3 CTB methods are KIT-GE (3), KIT-GE (4) and KTH-SE (1).  
A description of these methods is given in the ‘Top-performing Algo-
rithms’ section in Methods (and on the challenge website).

repository of multidimensional time-lapse microscopy videos along 
with objective measures and procedures to evaluate their algorithms. 
These highly valuable resources are freely available to the scientific 
community for use in their research.

In 2014 the first report was published8, describing the CTC sub-
mission and evaluation procedures and presenting the analysis of the 
results submitted by six participants for a repository containing eight 
datasets. In 2017 an in-depth analysis of 21 algorithms was published9, 
based on the segmentation and tracking results submitted for 13 data-
sets. From the results presented, we concluded that the methods that 
used contextual (that is, spatial and temporal) information and those 
few at the time that followed learning strategies outperformed the 
more conventional methods. Notably, the state-of-the-art U-Net10 archi-
tecture was among the top-performing approaches for cell segmenta-
tion in several contrast-enhanced datasets. It was also notable that 
completely unsupervised tracking methods were still a distant dream. 
The optimal solutions remained dataset specific due to the complexity 
and diversity of the datasets. Moreover, most proposed methods were 
still inadequate for low signal-to-noise ratio videos or for tracking cells 
with complex shapes or textures. Large three-dimensional (3D) data-
sets, such as those of developing embryos, were identified as extremely 
challenging due to the high number and density of cells, as well as the 
computational requirements of their processing.

Since 2017, the CTC has received a significant number of new 
submissions and has addressed many of the challenges previously 
identified in the field of automated cell tracking, as described in the 
following sections.

Results
Datasets
The CTC dataset repository has been extended from 13 data-
sets in 2017 to 20 datasets. The new datasets consist of two- 
dimensional (2D) epi-fluorescence time-lapse videos of human 
hepatocarcinoma-derived cells expressing a fusion yellow fluores-
cent protein (YFP)-TIA-1 protein (Fig. 1a); 2D bright-field time-lapse 
videos of mouse hematopoietic (Fig. 1b) or muscle (Fig. 1c) stem 
cells in hydrogel microwells; 3D time-lapse videos of green fluores-
cent protein (GFP)-actin A549 lung cancer cells (Fig. 1d) and their 
computer-generated counterparts (Fig. 1e) displaying prominent, 
highly dynamic filopodial protrusions; and mesoscopic videos 
(imaged across several millimeters at video frame rate) of develop-
ing Tribolium castaneum embryos available as 3D cartographic pro-
jections (>10 GB per sequence) (Fig. 1f) or as complete 3D datasets 
(>100 GB per sequence) (Fig. 1g). Supplementary Table 1 provides a 
technical description of all of the datasets and Fig. 2 contains a sum-
mary of the main quality properties of the datasets.

Reference annotations
The CTC provides two measure-specific reference annotations: seg-
mentation annotations consisting of cell instance masks, which out-
line individual cell regions, and tracking annotations consisting of 
cell markers interlinked between frames to form lineage trees. The 
reference annotations can be classified into three types based on their 
source and how they were generated. For synthetic datasets, generated 
using in-house developed software11,12, the segmentation and detec-
tion and/or tracking reference annotations are the exact, simulated 
digital cell phantoms prior to the addition of distorting noise and blur. 
For real datasets, we distinguish between a gold standard reference 
corpus (in short, gold truth) and a novel silver standard reference 
corpus (in short, silver truth). The gold truth is obtained by taking a 
majority opinion between three experts. The segmentation gold truth 
offers limited cell instance coverage (17.8% on average; Supplemen-
tary Data Tabs 1 and 2) due to the labor-intensive nature of manual 
annotations. The detection and tracking gold truth offers complete 
cell instance coverage, except in large embryonic datasets, where only 
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Globally, the evolution of the CSB scores obtained by the 
best-performing methods from 2017 to June 2022 is given in Extended 
Data Fig. 1a, which shows clear improvement in both detection and 
segmentation on most datasets, with particularly impressive improve-
ments on two of the most complex datasets (Fluo-C2DL-MSC and 
Fluo-N3DL-DRO). In summary, even if the cell detection task seems 
nearly solved for most datasets, the segmentation task still requires fur-
ther attention for some of the old (Fluo-C2DL-MSC, Fluo-C3DL-MDA231, 
Fluo-N3DL-DRO and PhC-C2DL-PSC) and new datasets. Looking at the 
evolution of the CTB segmentation scores (Extended Data Fig. 1c), there 
is also significant improvement in most datasets but more work needs 
to be done to improve the segmentation and tracking performance in 
the same datasets that have been mentioned for the CSB.

Image quality versus algorithm performance
We analyzed the relationship between the technical performance val-
ues obtained by the participants (Supplementary Data Tabs 5–9 and  
Tabs 10–14) and the quality of the datasets listed in Fig. 2. As described 
in the ‘Statistical analysis’ section of Methods, we calculated the Spear-
man’s rank correlation between each numerical quality measure of 
the dataset and the performance of all competing algorithms. The 
analysis was conducted globally, that is, considering all datasets, per 
data modality, and individually. The results are presented in Supple-
mentary Figs. 1–40.

Globally, we discovered that only the cell overlap (Ove) showed 
correlation (moderate, rho = 0.4) with the segmentation performance 
(SEG) of the algorithms (Supplementary Fig. 34). This result, besides 
pointing at other cofactors that may work along with Ove, indicates 
that the cells that do not dramatically change their shape, or show a 

moderate motility, are easier to segment than those with high shape 
variability or high motility.

Looking at the correlations per modality, strong correlations were 
found between the performance of the methods on Fluo-2D datasets 
and the signal-to-noise ratio (SNR; positive for TRA, Supplementary 
Fig. 4), resolution (Res; negative for TRA, Supplementary Fig. 20), 
shape (Sha; positive for SEG, Supplementary Fig. 22) and mitotic divi-
sion rate (Mit; positive for TRA, Supplementary Fig. 40). The positive 
effect of high SNR and regular cell shape (high Sha) could be expected. 
The counterintuitive benefit of a low Res for tracking can be explained 
by the negative effect of the low performance values obtained for 
two complex datasets, Fluo-C2DL-MSC and Fluo-C2DL-Huh7, which 
have relatively high Res levels but which are plagued by irregular cell 
shape (low Sha), high photobleaching (high change in cell signal inten-
sity over time, that is, high Cha), low SNR and low contrast ratio (CR) 
(Fluo-C2DL-MSC), high levels of signal heterogeneity (both inside 
and between cells, that is, Heti and Hetb, respectively) and low Mit 
(both Fluo-C2DL-MSC and Fluo-C2DL-Huh7). These negative factors 
clearly outweigh the benefits of their relatively high Res. Regarding the 
Fluo-3D datasets, the high differences between datasets is reflected in 
the moderate correlations between the performance of the methods 
and Res (positive for SEG and TRA, Supplementary Figs. 18 and 20), Sha 
(negative for SEG, Supplementary Fig. 22), and the spacing between 
cells (Spa; positive for SEG Supplementary Fig. 26).

Bright-field performance values correlate with SNR (positive for 
SEG and TRA, Supplementary Figs. 2 and 4), CR (negative for SEG and 
TRA, Supplementary Figs. 6 and 8), Heti (negative for SEG and TRA, 
Supplementary Figs. 10 and 12), Hetb (negative for SEG and TRA, Sup-
plementary Figs. 14 and 16), Res (negative for SEG, Supplementary  

a b c

d e f g

Fig. 1 | CTC datasets added after 2017. a, Fluo-C2DL-Huh7. b, BF-C2DL-HSC.  
c, BF-C2DL-MuSC. d, Fluo-C3DH-A549. e, Fluo-C3DH-A549-SIM. f, Fluo-N3DL-
TRIC (due to the cartographic post-production of this dataset, the spatial 
resolution varies with position in the image between 0.10 and 0.76 µm per pixel; 

thus, a fixed-size bar is inappropriate for this dataset). g, Fluo-N3DL-TRIF. For the 
definitions of the dataset names please see the Fig. 2 legend. Scale bars:  
a–c,g, 50 µm; d,e, 20 µm.
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Fig. 18), Sha (positive for SEG, Supplementary Fig. 22), and Spa (nega-
tive for SEG, Supplementary Fig. 26). Most of these correlations could 
be expected, except for the counterintuitive effect of Res and Spa. 
This could be explained by the fact that in one of the two bright-field 
datasets (BF-C2DL-HSC), the negative effect of the low Res and Spa, 
compared with the other dataset, BF-C2DL-MuSC, seems to be lower 
than the benefits of a lower Hetb, uniform shape (high Sha) and high 
Ove. Regarding the phase contrast (PhC) datasets, the performance 
values correlate with CR (negative for SEG and TRA, Supplementary 
Figs. 6 and 8), Heti (positive for SEG and TRA, Supplementary Figs. 10 
and 12), Hetb (positive for SEG and TRA, Supplementary Figs. 14 and 
16), Res (positive for SEG and TRA, Supplementary Figs. 18 and 20), Sha 
(negative for TRA, Supplementary Fig. 24), Spa (positive for SEG and 
TRA, Supplementary Figs. 26 and 28) and Cha (negative for SEG and 
TRA, Supplementary Figs. 30 and 32). These results are heavily influ-
enced by the fact that the two types of phase contrast datasets available 
have strikingly different characteristics. This explains, for instance, the 
unexpected negative correlation found with CR, given that the dataset 
with higher CR values (PhC-C2DL-PSC) is more complex to analyze than 
PhC-C2DH-U373, due to the negative impact of other factors, most 
notably a significantly lower Res, Spa and higher Mit. Interestingly, the 
levels of heterogeneity (both Heti and Hetb), positively correlate with 
the performance of the methods for this modality, suggesting that the 
characteristic complex texture and halo-like artifacts of phase contrast 
images are beneficial for methods that are based on the recognition 
of patterns, as is the case for machine learning methods. Finally, no 
correlations were found for the only existing differential interference 

contrast (DIC) dataset, as could be expected due to the low number of 
elements (n = 2 videos) available for the analysis. Beyond these global 
and modality-specific results, other relevant observations (outside  
the scope and length of this paper) relating to the properties that affect 
the segmentation and tracking performances can be obtained from the 
distributions shown per dataset in Supplementary Figs. 1–40.

Annotation quality versus algorithm performance
We next analyzed the relationship between the performance of the algo-
rithms and the quality of the available annotations. Figure 5 reports the 
quality of the gold truth segmentation (MSEGGT), detection (MDETGT) 
and tracking (MTRAGT) annotations, and of the silver truth segmenta-
tion (SEGST) and detection (DETST) annotations. These quality param-
eters were calculated as explained in the Quality of Annotations and 
Human-level Performance section in the Methods. Note that these anno-
tation quality measurements are not mutually comparable because 
the former assesses the difficulty of the manual annotation task itself 
(that is, how much the annotators agreed when manually annotating 
a particular video), whereas the latter assesses the quality of the fused 
computer-generated results.

We next looked at the correlation between the quality of the refer-
ence annotation parameters listed in Fig. 5, and the performance of the 
competing submitted algorithms (Supplementary Data Tabs 5–9 and 
Tabs 10–14). The complete set of results can be found in Supplementary 
Figs. 41–50. Globally, all three gold truth quality annotation parameters 
moderately correlate with the performance of the algorithms (Sup-
plementary Figs. 42, 44 and 46), conveying the arguable expectation 

Name
BF-C2DL-HSC

SNR
CR Het i

Het b
Res

Sha
Spa

Cha
Ove Mit Syn Ent/L

eav

Apo
Deb

1.09
2.01

0.45
9.54
3.18

16.15
20.69
11.32
4.92

22.68
8.06
7.27
2.25
7.18

12.48
2.90
3.12

6.06
6.35
5.30

0.86
0.95
1.00
8.63
1.56
3.23
2.63
5.02
9.99
1.02
3.72
6.90
3.12
2.16
7.11
1.10
1.44
1.64
1.23
1.24

3.76
17.26

32.59
1.10
1.04
0.37
0.54
1.07

0.89
0.35
0.64
0.97
0.31
0.29
0.26

13.03
0.87
0.52
0.96
1.07

0.47
0.97
1.42
0.71
0.77
NA

0.48
0.26
0.85
0.61
0.27
0.35
0.19
0.33
0.18
0.87
0.40

NA

271
944

0.82
0.57
0.70
0.65
0.27
0.37

5.73
77.74
7.05

13.57
57.35

NA

0.01
0.00
0.43
0.07

84.42
0.50
4.45
4.44
0.01
2.63
0.21

0.02
1.18
1.62

14.38
0.02
0.08
1.05
0.18
0.17

0.68
0.57
0.91
0.92
0.73
0.89
0.83
0.68
0.92
0.88
0.72
0.88
0.67
0.85
0.77
0.91
0.91
0.94
0.89
0.86

0.16
0.02
0.02
0.23
0.01
NA

0.00
0.17

0.07
1.45
1.74

0.06
1.05
0.43
0.89
0.00
1.99
NA

N
N
N
N
N
N
N
N
N
N
Y
N
N
Y
Y
N
N
N
N
N

N
N
Y
Y
Y
N
Y
Y
Y
Y
N
Y
N
N
N
Y
Y
N
Y
Y

N
N
Y
N
N
N
N
N
N
Y
N
Y
N
N
N
N
N
N
N
N

N
N
Y
Y
N
N
N
N
Y
Y
N
N
N
N
Y
Y
Y
N
N
N

BF-C2DL-MuSC
DIC-C2DH-HeLa
Fluo-C2DL-Huh7
Fluo-C2DL-MSC
Fluo-C3DH-A549
Fluo-C3DH-H157
Fluo-C3DL-MDA231
Fluo-N2DH-GOWT1
Fluo-N2DL-HeLa
Fluo-N3DH-CE
Fluo-N3DH-CHO
Fluo-N3DL-DRO
Fluo-N3DL-TRIC
Fluo-N3DL-TRIF
PhC-C2DH-U373
PhC-C2DL-PSC
Fluo-C3DH-A549-SIM
Fluo-N2DH-SIM+
Fluo-N3DH-SIM+

12 093
6 006
14 349
75 745

497 671
1 306
3 268

610
7 866
19 921
1 832

299
7 558
4 387

143
59 587

1 809
38 388

0.43 186.66
0.48
0.84
0.83
0.46
0.29
0.62
0.83
0.85

14.48
56.29
13.15
2.61

33.39
7.18

6.68
5.93

0.55 104.45
0.59
0.33
0.73
0.76

4.87
NA

19.24
16.35

0.48
0.41

0.49
0.49

Easy Di�icult

Fig. 2 | Quantitative and qualitative properties of the test datasets. For 
individual datasets, the columns show their numerical quality measures: 
signal-to-noise ratio (SNR), contrast ratio (CR), heterogeneity of the signal 
intensity inside the cells (Heti) and between the cells (Hetb), resolution (Res), 
shape (Sha), spacing between cells (Spa), change in cell signal intensity over 
time (Cha), overlap (Ove) and mitotic division rate (Mit). The remaining 
columns list qualitative observations of various features, such as the presence of 
synchronous cell divisions (Syn), cells entering or leaving the field of view (Ent/
Leav), apoptotic cells (Apo) or debris (Deb). For each quantitative property, the 
computed values are first filtered for outliers, that is, values more than 1.5-fold 
the interquartile range below the first quartile, or above the third quartile of the 
data. The remaining values are linearly mapped onto a green-yellow-red color 
scale to indicate the a priori level of complexity. (The outliers are shown with 
the darkest green and the darkest red backgrounds, located before and after 
the white vertical bars on the color key.) These values were computed using 

the methodology established in 2017 (see the ‘Dataset properties’ section in 
Methods). Dataset names: 2D, two dimensional; 3D, three dimensional; A549, 
human lung adenocarcinoma cells; BF, bright-field; C, cytoplasmic staining; CE, 
Caenorhabditis elegans; CHO, Chinese hamster ovarian cells; DIC, differential 
interference contrast; DRO, Drosophila melanogaster; Fluo, fluorescence; 
GOWT1, mouse embryonic stem cells; H, high resolution; H157, human oral 
squamous cell carcinoma cells; HeLa, Henrietta Lacks human uterine cervical 
carcinoma immortalized cells; HSC, mouse hematopoietic stem cells; Huh7, 
human hepatocarcinoma-derived cells; L, low resolution; MDA231, human 
breast metastatic adenocarcinoma lines; MSC, rat mesenchymal stem cells; 
MuSC, mouse muscle stem cells; N, nuclear staining; PhC, phase contrast; PSC, 
pancreatic stem cells; TRIC, Tribolium castaneum (cartographic projection); 
TRIF, Tribolium castaneum (full 3D volume); SIM, simulated cells; SIM+, second-
generation simulated cells; U373, human glioblastoma–astrocytoma cells.
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that what is difficult for humans to do is also difficult for automated 
algorithms to solve. In the context of segmentation, there exists room 
for more consistent annotation, as indicated by the MSEGGT quality 
scores (Fig. 5). Therefore, increasing the consistency of the annotations 
should improve algorithm performance. Our per-modality look at the 
correlations confirm the global trend with different levels of strength, 
except for DIC, which could be partly due to the low number of datasets 
of this modality. Regarding the quality of the silver truth annotations, 
a strong or moderate global correlation of the quality parameters with 
SEGST and DETST was found (Supplementary Figs. 48 and 50). This is also 
expected given that the silver truth annotations were obtained as a 
combination of the best-performing methods, resulting in almost fully 
annotated datasets. Finally, modality-based and individual deviations 
from this rule were also found, in most cases due to a low number of 
datasets of the modality.

Evolution of the segmentation and tracking paradigms
We analyzed how different segmentation and tracking strategies 
(Fig. 3a), as well as individual detection, segmentation and linking 
techniques (Fig. 3b), relate to the technical performance of the bench-
marked algorithms. Our analysis shows that the DetSeg strategies sig-
nificantly outperform the Seg strategies for the datasets with heavily 
clustered cells such as DIC-C2DH-HeLa (Extended Data Fig. 2b). Indeed, 
the machine learning-based detection of individual cells turns out to 
be a crucial factor that reduces the number of under-segmentation and 
over-segmentation errors penalized by DET, as first demonstrated by 

MU-CZ (2) and MPI-GE (CBG) (1) in two dimensions and three dimen-
sions, respectively, in 2019 (Extended Data Fig. 3 and Supplementary 
Data Tabs 3 and 4). Nowadays, this detection-driven strategy dictates 
also the state of the art when analyzing embryonic datasets, as shown 
by the fact that the top three places in terms of DET are mostly occupied 
by detection-driven strategies (IGFL-FR, JAN-US, MPI-GE (CBG) (2), 
MPI-GE (CBG) (3), OX-UK and RWTH-GE (3)) for the Fluo-N3DH-CE, 
Fluo-N3DL-DRO, Fluo-N3DL-TRIC and Fluo-N3DL-TRIF datasets (Fig. 4a).  
In terms of segmentation performance, machine learning-based 
techniques globally outperform traditional thresholding-based and 
region-growing-based techniques. This holds for label-free microscopy 
datasets (Extended Data Fig. 4a–c), for which the establishment of 
appropriate handcrafted features and rules is generally more difficult 
than learning them autonomously using neural networks, and also for 
both the Fluo-2D (Extended Data Fig. 4d) and Fluo-3D (Extended Data 
Fig. 4e) datasets. Over time, one can observe a substantial improve-
ment in the segmentation performance thanks to the introduction of 
self-configured neural networks (Extended Data Fig. 5 and Supplemen-
tary Data Tabs 3 and 4), such as the nnU-Net ('no new U-net') used in 
DKFZ-GE or NAS (neural architecture search) used in UNSW-AU, as well 
as multi-branch predictions used in KIT-GE (3) and KIT-GE (4). Finally, 
we have not found any statistically significant difference in the track-
ing performance (TRA) of machine learning-based and non-machine 
learning-based linking techniques across all datasets (Extended Data 
Fig. 6). Overall, over the 10 year existence of the CTC, one can observe 
a greater performance improvement of the rapidly evolving machine 
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learning-based methods, compared to their machine learning-free 
competitors starting since 2019 in the case of DET (Extended Data  
Fig. 3) and SEG (Extended Data Fig. 5), and since 2021 in the case of TRA 
(Extended Data Fig. 7). This can be attributed not only to the introduc-
tion of the CSB itself, but also to the organization of three ISBI challenge 
editions with a fixed deadline.

Biological performance of the submitted algorithms
The biologically inspired measures (see the ‘Quantitative performance 
criteria’ section in Methods) emphasize some aspects of the algorithm 
results that are of particular interest to the biologist, such as the abil-
ity of the algorithms to retrieve complete tracks (CT) or their large 
fractions (TF, track fractions), the accuracy of identifying division 
events to a tolerance of i frames (BC(i), branching correctness) and the 
accuracy of identifying complete cell cycles (CCA, cell cycle accuracy).  
A leaderboard based on these biological measures, as of 1 June 2022, is 
given in Fig. 6. The complete biological performance of benchmarked 
algorithms is available in Supplementary Data Tabs 15–20. The evolu-
tion of these scores for the best-performing methods from 2017 to June 
2022 is shown in Extended Data Fig. 8.

Interestingly, the methods that provide the best biological per-
formance, KIT-GE (3), KTH-SE (1) and KIT-GE (4), are also the ones that 

perform best in the technical aspects of the complete tracking tasks, 
even if not directly optimized for the biological measures. As in the 
case of the technical measures, there has been substantial progress 
since our 2017 report. This is particularly evident in the complex 
DIC-C2DH-HeLa dataset, the two mesoscopic datasets Fluo-N3DH-CE 
and Fluo-N3DL-DRO, and the simulated datasets Fluo-N2DH-SIM+ and 
Fluo-N3DH-SIM+. However, given that the methods are not directly 
optimized for these measures, much work is needed to improve the 
biological performance of the cell tracking algorithms, particularly 
in terms of CT and TF, which are essential for accurate and complete 
lineage tracking of embryonic datasets.

Correlation between technical and biological measures
We have analyzed the relationship between the tracking (TRA) meas-
ure and the biologically inspired tracking measures (CT, TF, BC(i) and 
CCA), by means of the Spearman’s rank correlation (see the ‘Statis-
tical analysis’ section in Methods). The results can be found in Sup-
plementary Figs. 51–56. Globally, a strong correlation between TRA 
and TF (rho = 0.698) and a moderate correlation between TRA and CT 
(rho = 0.608) were observed (Supplementary Fig. 51). We also learned 
that the relationship between TRA and TF is nearly linear, whereas it is 
more complex and non-linear between TRA and CT, given that retrieving 
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Fig. 4 | Technical CTC leaderboards. a,b Top-3 CSB (a) and CTB (b) leaderboards 
showing the top-performing methods for each of the available datasets. The 
numbers in parentheses indicate different algorithms submitted by the same 
group. Please see Supplementary Data Tabs 3 and 4 for the naming conventions 

and further details about the methods, and Supplementary Data Tabs 5–9 and 
Tabs 10–14 for a complete list of scores and a full ranking of the methods. For the 
definitions of the dataset names please see the Fig. 2 legend.
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a high number of complete tracks requires a high technical tracking 
accuracy (TRA), but the opposite is not necessarily true. The same 
tendency can be observed for microscopy modalities (Supplementary 
Figs. 52–56) with strong (BF, DIC, Fluo-3D) or very strong (Fluo-2D and 
PhC) correlation between TRA and TF; and moderate (DIC), strong  
(BF, Fluo-2D and Fluo-3D), or very strong (PhC) correlations between 
TRA and CT. The correlations between TRA and BC(i) and TRA and CCA 
are moderate for PhC and strong for Fluo-3D, and show the same type 
of non-linear relationship as TRA and CT.

Generalizability study
We evaluated the ability of the methods to provide competitive results 
across all datasets. To this end, we analyzed only methods that achieved 
a highly competitive OPCSB score, that is, an OPCSB score comparable to 
the third-ranked CSB method for at least one of the 13 included data-
sets, as of 15 January 2021. In this case, ‘comparable score’ meant that 
the difference between the OPCSB score of the method and that of the 
third-ranked CSB method was less than 1 standard deviation of the 
OPCSB scores of the three human annotations for a particular dataset. 
Furthermore, we reasoned that if the methods were trained on 13 train-
ing datasets, they would work well not only across the test datasets of 
these 13 datasets but also on unseen data types. With data types we 
refer to datasets different from the ones used for training.

The aim of the generalizability study was to compare the per-
formance of the methods using six training configurations with dif-
ferent composition and extent: three individual per-dataset training 
approaches (producing an individual model for each dataset) exploit-
ing gold truth; silver truth; and both gold and silver truth (GT + ST); 
versus three merged-all-datasets training approaches (producing a 
common model for all datasets) exploiting gold truth (allGT); silver 
truth (allST); and both gold and silver truth (allGT + allST). These six 
configurations multiplied by 13 datasets yielded a set of 78 results for 
each analyzed method.

In total nine teams participated in the generalizability study, each 
supplying all requested 78 results. Five of these groups also provided 
tracking results along with their segmentation results. To further 

evaluate the generalizability of these methods, we blindly applied the 
submitted solutions to unseen data types, namely to three datasets that 
were not used to train the methods (Fluo-C2DL-Huh7, Fluo-N2DH-SIM+ 
and Fluo-N3DH-SIM+). Extended Data Fig. 9 shows the performance 
of the top-3 most generalizable CSB (Extended Data Fig. 9a) and CTB 
(Extended Data Fig. 9b) methods, along with a more detailed look at 
the per-training configuration and per-dataset results of the top-1 CSB 
(CALT-US) (Extended Data Fig. 9c) and CTB (PURD-US18) (Extended 
Data Fig. 9d) methods. Supplementary Data Tabs 21–33 (CSB) and  
Tabs 34–42 (CTB) contain the results for all of the participants. Interest-
ingly, the only non-machine learning algorithm that entered the study, 
KTH-SE (1), competed at the level of the best machine learning methods 
in the CTB category. This method was optimized with fluorescence data 
only, which shows a high degree of generalizability.

Extracting global conclusions from these results is complex, 
given that the behavior of the methods varies between datasets and 
to a lesser extent between algorithms. A general trend found is that, 
with different intensities and some differences between algorithms, 
the use of an extended per-dataset training configuration (silver truth 
or GT + ST) improves the performance of the algorithm compared with 
using only gold truth. Most of this increase is achieved by applying the 
dataset-specific silver truth alone. This improvement is small or moder-
ate for most datasets, meaning that modern machine learning methods 
can produce competitive results using only the limited amount of train-
ing data contained in gold truth. Larger performance boosts (between 
10% and 15% or higher in the case of PURD-US, Supplementary Data  
Tabs 34–42) can be seen for BF-C2DL-MuSC, DIC-C2DH-HeLa, Fluo- 
C3DL-MDA231, Fluo-N3DH-CE and PhC-C2DL-PSC. A common feature of 
these datasets is that their gold truth is difficult to obtain (medium–low 
MSEGGT scores in Fig. 5) and, except for Fluo-C3DL-MDA231, their gold 
truth annotation is very sparse (from 0.3% to 9%, Supplementary Data 
Tabs 1 and 2), emphasizing the importance of both the annotation 
quality and the coverage factor in the training process.

Furthermore, the improvement provided when training using 
merged-all-datasets configurations is comparable to the one obtained 
using per-dataset training, highlighting that machine learning models 
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Fig. 5 | Quantitative properties of the reference annotations. Quality of the 
human gold standard segmentation (MSEGGT), detection (MDETGT) and tracking 
(MTRAGT) annotations, and of the fused silver standard segmentation (SEGST and 
DETST) annotations, relative to the gold truth for all available datasets. Following 
the coloring scheme of Fig. 2, the color code in this table illustrates the relative 

difficulty of the annotation task, reflected by the level of agreement between 
annotators (gold standard annotations) and the quality of the silver standard 
annotations. See the ‘Quality of annotations and human-level performance’ 
section in Methods for an expanded explanation of how the values were 
calculated. For the definitions of the dataset names please see the Fig. 2 legend.
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can indeed generalize from limited training data. An exception to this 
rule is Fluo-N3DH-CE, for which adding non-dataset-specific sequences 
for training produces worse results than using the silver truth alone. 
This may happen because the properties of this dataset differ greatly 
from the other datasets. Indeed, Fluo-N3DH-CE is the only real 3D 
dataset with approximately spherical objects included in the gener-
alization study. Furthermore, this dataset has a significantly higher 
cell density (that is, low Spa in Fig. 2), higher Ove, higher Mit and a 
lower temporal sampling rate compared with the other fluorescent 
and non-fluorescent datasets. Because of these differences, a model 
trained with merged-all-datasets configurations is not as optimized 
for this dataset as a model specifically trained for it.

Regarding the performance of the most generalizable meth-
ods on data types not seen by their corresponding models dur-
ing their training phase (Fluo-C2DL-Huh7, Fluo-N2DH-SIM+ and 
Fluo-N3DH-SIM+), we observed that the scores achieved are low, 
between 0.4 (Fluo-C2DL-Huh7) and 0.6 (Fluo-N2DH-SIM+ and 
Fluo-N3DH-SIM+). Initially, this suggested that current machine learn-
ing methods have little generalizability capacity. However, focusing on 
Fluo-C2DL-Huh7, we can see a similar performance to its more similar 
dataset (Fluo-C2DL-MSC). In fact, these are the only 2D fluorescent 
datasets with cytoplasmic staining, thus they are quite different from 
the rest of the datasets used in the study. This similarity explains why 
the methods achieve a similar degree of generalization on these two 
datasets. Likewise, the poor performance obtained for the synthetic 
datasets (Fluo-N2DH-SIM+ and Fluo-N3DH-SIM+) when using extended 
training configurations could be explained by the synthetic nature 
of these datasets, given that they have different image properties to 
real datasets, as already discussed for Fluo-N3DH-SIM+ and the most 
modality-similar datasets, Fluo-N3DH-CE and Fluo-N3DH-CHO, and 
can be affirmed also for Fluo-N2DH-SIM+ and Fluo-N2DH-GOWT1.

Reusability efforts
Most deep learning-based methods do not perform well on data-
sets that are of a different type to those that they were trained on.  
Therefore, their reusability relies on the possibility to retrain these 
networks using new images. Indeed, fine-tuning of pre-trained mod-
els, such as those submitted to the challenge, can help to reduce the 
amount of new data that would be needed to train a model from scratch. 

Thus, we proposed the following series of optional guidelines for the 
algorithm developers to make their workflows more reusable. First, the 
source code should be made available through a public repository (such 
as GitHub). Second, the repository should include clear instructions 
on how to initialize the model, load pre-trained weights, train it on new 
data and use it with new data. Third, all of the prerequisites to run the 
workflow must be clearly specified, and the authors should provide a 
way to easily install and load the model as part of their workflow. And 
last, for Python codes (commonly used for deep learning methods), 
creation of a Jupyter Notebook compatible with Google Colaboratory 
(Colab) is recommended, where new users can easily go through the 
steps mentioned in the second guideline.

Eleven participants followed the guidelines mentioned above. In 
particular BGU-IL (5) (refs. 19,20), CALT-US (*), DKFZ-GE, IGFL-FR (*)  
(ref. 21), KIT-GE (3), KIT-GE (4), MU-CZ (2*) (ref. 22), MU-US (3*)  
(ref. 23), MU-US (4*) (ref. 24) and PURD-US (*) followed all of the reus-
ability guidelines. KTH-SE (1*), implemented in MATLAB, was also con-
sidered reusable. The Colab notebook implementations are available 
in the CTC GitHub repository (https://github.com/CellTrackingChall
enge/2021-edition-available-colabs).

Discussion
Since our last report9 some important advances have occurred in the 
field, leading to significant improvements in the CTC, as discussed here.

The CTC’s first and possibly most important news, which reflects 
the evolution in the field, is the overwhelming presence of machine 
learning, most notably, deep learning models for cell segmenta-
tion. This is reflected by the number of submitted algorithms that 
rely on machine learning for the segmentation (60 out of 89). More 
importantly, these models outperform traditional, non-machine 
learning-based methods, as four out of the five algorithms at the top 
of the CSB and CTB leaderboards (KIT-GE (3), KIT-GE (4), CALT-US (*) 
and DKFZ-GE) use deep learning-based segmentation strategies. How-
ever, a few algorithms based on traditional segmentation approaches 
remain at the top-1 of the leaderboards for one or more datasets, and 
have a performance at the level of the methods based on machine 
learning. This is the case for KTH-SE (1) and BGU-IL (1), which base 
their dominance on competitive segmentation and outstanding 
detection and linking approaches, and KTH-SE (2), which indeed 
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Fig. 6 | Leaderboard of the top-3 performers in terms of biological 
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shows impressive segmentation and tracking performance for the 
embryonic datasets.

This fast replacement of traditional methods by machine 
learning-based methods is also observed globally, given that the per-
formance of machine learning-based submissions has grown faster 
than that of traditional methods, with performance boosts coinciding 
with specific machine learning developments such as self-configured 
or multi-branched neural networks. Notably, most high-performing 
deep learning-based cell segmentation algorithms use variants of the 
popular U-Net architecture for detection and/or segmentation, with 
only a few using R-CNN25 (region-based convolutional neural network) 
or HRNet (high-resolution net) variants26. For instance, DKFZ-GE uses a 
U-Net that automatically finds the optimal parameters for each dataset 
(nnU-Net); and BGU-IL (5) (ref. 19) uses a recurrent neural network 
based on the combination of convolutional long short-term memory 
(ConvLSTM) layers and the U-Net. These examples show how models 
that evolved from the original U-Net architecture continue to be at 
the top in terms of competitiveness. This dominance of the U-Net for 
cell segmentation could be explained by its relative topological and 
conceptual simplicity. U-Net implements a bottom-up approach in 
which each pixel in the original image is semantically classified in a 
fine-grained fashion. Cell instances are then typically obtained by a 
clustering post-processing step. Thus, by combining shallow local 
details from the encoder and deep semantics from the decoder by the 
skip-connections and feature concatenation, this pixel-wise semantic 
segmentation facilitates fine localization of the cell boundaries.

A few methods are also pioneering the use of machine learning 
for cell linking. For example, this is the case for BGU-IL (5) (refs. 19,20), 
which models the time-lapse sequence as a direct graph and uses a 
graph neural network (GNN) to extract the entire set of cell trajectories 
from the maximal paths in the graph. However, to date there are no 
remarkable differences in the performance of machine learning-based 
and traditional linking techniques. A limiting factor in the widespread 
use and improved performance of deep learning for tracking is the lim-
ited availability of densely annotated, fully tracked datasets. Because 
of this, traditional non-machine-learning based methods are still used 
by most groups. An interesting approach in this context is the recent 
development of algorithms that combine deep learning and traditional 
(for example, optimization27) principles.

Even fewer methods use deep learning to integrate cell segmenta-
tion and tracking. KIT-GE (4) is a noteworthy exception as it incorpo-
rates the linking step as one branch of a two-branched network model. 
The reason for this could be that, in the context of well-segmented 
datasets, no special linking approach seems necessary. This is in 
agreement with the literature, as most published workflows use a 
two-stage approach in which the segmentation part is optimized using 
data-driven objective metrics and the tracking part is tuned indirectly 
or even manually as a post-processing step. This practice limits the 
improvement of cell tracking, as the state-of-the-art tracking methods 
do not incoporate deep learning-based developments already being 
used in the fields of object tracking and motion estimation28,29–32. These 
methods have been used, for instance, for video super-resolution33 
and video rate conversion34 but are yet to be explored in the context 
of cell tracking.

Understanding which parameters affect the performance of a cell 
tracking algorithm is a complex task, given that they are numerous and 
deeply interconnected. On the one hand, the quality of a time-lapse 
microscopy dataset heavily depends on the properties of the sample 
and the imaging and experimental setup. On the other hand, the perfor-
mance of the algorithms also depends on the pre- and post-processing 
steps, the amount and quality of the training data, and the fabric of 
the algorithm itself. Consequently, it is not a surprise that our analy-
sis identified only one factor, the cell overlap in consecutive frames 
(that is, a proxy of the variability of the cell morphology), that globally 
affects algorithm performance. However, a larger set of parameters 

that are important for each modality or for each dataset have also been 
identified. This information should help biologists to optimize their 
imaging or experimental setup, and algorithm developers to address 
the issues that are more relevant for a specific dataset. Furthermore, 
our analysis confirms that the performance of the algorithms is directly 
related to the quality of the reference annotations. This is true for the 
gold standard and, in an even stronger way, for the silver standard 
reference annotations. This highlights the benefits of the increased 
coverage provided by the silver annotations and emphasizes the need 
for future efforts to improve the creation of the silver truth, given that 
improvements in the silver annotation result in direct improvements 
in the segmentation algorithms.

The CTC guidelines for standardizing input and output formats 
help to make algorithms easily reusable. In the case of deep learning 
approaches we have implemented guidelines to encourage participants 
to render pre-trained, easily reusable models. These guidelines pro-
mote open access to the source code, and clear instructions on how to 
retrain the models for new datasets and how to load pre-trained weights 
for transfer learning. To facilitate reusability, we recommend using 
Google Colab Notebooks, which provide a convenient open access tool 
for running code on an external server and provide free GPU access, for 
short training and test sessions. Although these reusability guidelines 
are currently optional, we plan to enforce them for all future challenge 
submissions. At the time of this report, 11 submitted algorithms, includ-
ing all of the top-performing methods, comply with these reusability 
instructions, making it easier to transfer their methodologies to new 
laboratories or experiments.

As part of our efforts to improve the generalizability of the sub-
mitted algorithms, we conducted a study to evaluate how sensitive 
the methods are to changes in the training strategy. To facilitate gen-
eralization, we first produced silver standard reference segmentation 
annotations from the results submitted by the top performers. This is 
of particular interest for datasets with limited gold standard reference 
segmentation annotations. The results of our generalizability study 
are specific to each dataset and algorithm but we concluded that, in 
general, the most competitive methods do not require extensive data 
for training. That is, using a relatively small dataset-specific training 
set, these methods can provide similar results to those obtained by 
training with extra silver truth data from the same and other datasets. 
However, we also found that for certain datasets, particularly those 
with more difficult to obtain and sparse annotations (BF-C2DL-MuSC, 
Fluo-C3DL-MDA231, Fluo-N3DH-CE and PhC-C2DL-PSC DIC-C2DH- 
HeLa), these methods do benefit from the use of extended dataset- 
specific and, to a lesser extent, non-dataset-specific data. Furthermore, 
when we apply these pre-trained methods to unseen data types, their 
performance decreases significantly, indicating that they have difficul-
ties generalizing to unseen data types involving different morphologies 
and/or imaging modalities. All together, these results highlight the 
practical importance of having pre-trained models that biologists can 
use to analyze new data types after fine-tuning on their own datasets.

Another important novelty of the challenge is the addition of new 
datasets that increase the diversity of the available training material. 
This includes light sheet microscopy videos of embryonic develop-
ment, high-resolution real and synthetic confocal microscopy videos 
of highly protruding migrating cancer cells, and bright-field micros-
copy videos of proliferating stem cells. Dataset diversity is especially 
important in the context of deep learning models, which often struggle 
to analyze new datasets for which only a handful of cell images have 
been captured and which could benefit from transfer generation-based 
strategies35. These new datasets pose specific challenges. Light sheet 
microscopy is heavily used in developmental biology, wound repair and 
mechanobiology. Its growing use has led to a need for cell segmenta-
tion and tracking tools that can handle massive datasets. To facilitate 
this, we have extended our dataset repository to contain new Tribolium 
castaneum embryonic datasets in cartographic (20 GB size) and full 3D 
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tomographic versions (470 GB size). These extremely large datasets 
test the algorithms’ accuracy and efficiency in handling large datasets. 
Interestingly, some submitted methods have achieved near annota-
tor performance on these massive datasets (for example, KTH-SE  
(2) (refs. 17,36) and MPI-GE (CBG) (2) (ref. 37). The new real and synthetic 
videos of cancer cells with actin-stained protrusions are relevant for 
the study of mesenchymal cell migration and wound repair and require 
specific attention to accurately define cell boundaries in the presence 
of highly non-uniform and dynamic protruding extensions. The new 
mouse hematopoietic and muscle cells grown in hydrogel microwells 
provide efficient, high-throughput models for studying the effect of 
the microenvironment on stem cell fate, which is important for stem 
cell biology research. These datasets also present a specific technical 
challenge in detecting high mitotic activity.

An important aspect of this work is the establishment of the new 
segmentation-only CSB benchmark, in response to requests from 
researchers who wanted to benefit from our benchmarking efforts for 
the task of segmenting cells without addressing the tracking part of 
the problem. However, as shown by the global evolution of the scores 
since our 2017 report, cell segmentation and tracking continue to 
require new, more refined algorithms to improve both the technical and 
biological measures and, importantly, to improve the generalizability 
of the deep learning-based models provided. Although significant 
progress has been made, more work is needed to fully accomplish the 
linking part of the problem, paying attention not only to the technical, 
but also to the biologically inspired measures. To help with this effort, 
the CTC will launch a new tracking-only benchmark, which will enable 
participants to tune and optimize their algorithms also to our biologi-
cally inspired measures. It is still, however, an open question how the 
biologically inspired tracking measures used in CTC can be reformu-
lated as objective functions directly usable for optimization. It would 
also be useful to further investigate the impact of error propagation 
on tracking measures and on the accuracy of biological results in the 
definition of the track.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-023-01879-y.
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Methods
Gold standard reference annotations
The gold standard reference annotations (gold truth) of the real data-
sets used to evaluate the performance of the algorithms were created 
using majority voting over triplets of manual annotations. The seg-
mentation gold truth consists of manually annotated cell instance 
masks for a subset of cells per video due to the immense manual effort 
that would be required for the segmenting of all cells in all frames. 
The detection and tracking gold truth consists of manually placed 
markers for all cells in the field of interest per video and their linking 
over time, respectively. The detection and tracking gold truth for the 
Fluo-N3DL-DRO, Fluo-N3DL-TRIC and Fluo-N3DL-TRIF datasets cover 
only a biologically relevant subset of cells at the beginning of imaging 
(early nervous system for Drosophila melanogaster and blastoderm of 
the beetle for Tribolium castaneum) and their lineages over time. These 
cells were annotated by one expert, with the lineages being carefully 
checked and curated by another expert.

Silver standard reference annotations
The silver standard segmentation annotations were generated from the 
instance segmentation cell masks produced by the best-performing 
methods for particular datasets. To determine the best performers, 
we analyzed the results of all challenge participants who agreed to 
have their results used for further analysis. For each included dataset, 
we selected up to 16 best-performing methods that simultaneously 
achieved segmentation and detection scores above 50% of the reported 
human performance (see below for definition) on both the training 
and test datasets. Their results were merged using a modified version 
of the label fusion approach38. Specifically, the original approach iter-
ates over individual markers in the detection gold truth, and collects, 
for each marker from the selected results, all segments that overlap 
the majority of this marker. Using pixel- or voxel-wise voting, the col-
lected segments are fused into a single segment by taking only those 
pixels that appeared in more than two-thirds of the collected seg-
ments. The largest connected component of this segment is inserted 
into the output image. If there are fewer collected segments than the 
threshold of two-thirds, no output segment is created and inserted into 
the output image. However, it is possible that the insertion of another 
segment (resulting from the processing of another detection marker) 
into the output image may result in an attempt to overwrite the pixels 
or voxels of some previously inserted segment. Such intersections of 
pixels or voxels from two (or more) segments are detected, and the 
percentage of intersection pixels (PoIP) from the segment’s original 
size is computed for every output segment. Output segments with 
PoIP > 10% are cleared entirely from the output image; otherwise, only 
their intersection pixels are cleared. The absence of output segments 
(false negatives), or reduction of their shapes, decreases the quality 
of the silver truth. Nevertheless, this approach still produces more 
reliable segmentation results than the standard SIMPLE and STAPLE 
algorithms, originally developed for combining single, larger objects 
in medical imaging.

A modification of this method was designed to improve both the 
quantity and quality of the final masks, specifically to increase detec-
tion accuracy (reducing false negatives) and improve segmentation 
accuracy (more accurate boundaries) compared with the gold stand-
ard. To achieve this, the threshold for the pixel- and voxel-wise voting 
was no longer fixed at two-thirds, but instead was optimized automati-
cally for each video to maximize the segmentation score in relation to 
the gold standard. Additionally, if there were fewer input segments 
available for a given object than the threshold for a given video, the 
segment produced by the best-performing method was taken from 
the pool of selected available segments (if any). To address overlapping 
segments more effectively, the modified version uses a marker-based 
watershed method to find the boundary and to create touching seg-
ments from the overlapping ones. The markers are either the created 

segments without the intersection pixels or voxels (PoIP ≤ 20%) or the 
corresponding detection markers (PoIP > 20%).

The silver standard segmentation annotations for all the real (not 
simulated) test datasets were generated using the submissions avail-
able before June 2022. These annotations were kept secret and were 
used only to compute dataset properties for this paper (see below). 
The silver standard segmentation annotations for the training datasets 
were generated using the submissions available by October 2020 to 
release the silver standard corpus in time for the ISBI 2021 competition. 
Due to the low number (less than 5) of submissions that met the qual-
ity threshold at that time, silver truth was not generated for the three 
largest embryogenic datasets (Fluo-N3DL-DRO, Fluo-N3DL-TRIC and 
Fluo-N3DL-TRIF) or for the newly introduced Fluo-C2DL-Huh7 dataset.

Dataset properties
A set of properties introduced earlier was computed to characterize 
each dataset. These properties primarily include a set of measures cal-
culated based on the silver standard segmentation annotations of test 
videos: signal-to-noise ratio, contrast ratio, internal signal heterogene-
ity of the cells (Heti), heterogeneity of the signal between cells (Hetb), 
resolution (Res), regularity of the cell shape (Sha), cell spacing (Spa) 
measured as the average distance to the closest neighbor, an absolute 
change of the average intensity of the cells with time (Cha), and level of 
cell overlap in consecutive frames (Ove). The number of division events 
(Mit) was computed based on the gold standard tracking annotations. 
The remaining qualitative parameters were determined based on the 
visual inspection of the datasets: synchronization of division events 
(Syn), cells entering or leaving the field of view (Ent/Leav), and the 
presence of apoptotic cells (Apo) and of moving debris (Deb).

Quantitative performance criteria
The primary measures used to evaluate the methods and create ranked 
leaderboards (Cell Segmentation Benchmark, CSB, and Cell Tracking 
Benchmark, CTB) are technical measures of interest mainly for the 
developers. The segmentation accuracy measure (SEG) evaluates  
the average intersection over union overlap (IoU) as a measurement 
of the overlap between the reference cell instance masks and the seg-
mentation masks computed by an evaluated algorithm. The tracking 
accuracy measure (TRA) is a normalized weighted distance between 
the tracking solution computed by an evaluated algorithm and the 
reference tracking solution, with weights chosen to reflect the effort 
it takes a human curator to carry out the edits manually39. The TRA 
measure evaluates both detection and linking capabilities. Both SEG 
and TRA definitions can be found in Ulman et al.9.

For CSB, a new detection accuracy measure (DET) has been intro-
duced. It computes only the detection part of the TRA measure. The DET 
measure is very similar to the F3-Score, an extension of the F1-Score. 
While F1-Score is a harmonic mean of precision and recall, F3-Score 
favors recall over precision, which is advantageous in time-lapse imag-
ing to prevent losing cells. Numerically, DET is defined as a normalized 
acyclic oriented graph matching (AOGM-D) measure for detection39:

DET = 1 −min (AOGM-D,AOGM-D0) /AOGM-D0

where AOGM-D is the cost of transforming a set of nodes (representing 
cells) provided by the participant into the set of gold truth nodes, and 
AOGM-D0 is the cost of creating the set of gold truth nodes from scratch 
(that is, it is AOGM-D for empty detection results). The minimum opera-
tor in the numerator prevents the final value from being negative in the 
case when it is cheaper to create the reference set of nodes from scratch 
than to transform the computed set of nodes into the reference one. 
The normalization ensures that DET always falls in the [0,1] interval, 
with higher values corresponding to better detection performance.

For ranking the algorithms within CTB or CSB, the overall perfor-
mance (OPCTB or OPCSB) is computed by averaging SEG and TRA or SEG 
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and DET values for each pair of test videos and averaging these aver-
ages, that is, OPCTB = 0.5 × (SEGavg + TRAavg) and OPCSB = 0.5 × (SEGavg +  
DETavg). All five measures thus take values in the interval [0, 1], with 
higher values corresponding to better performance.

To assess the algorithm performance also from a biologist’s point 
of view, we have computed four additional measures introduced  
earlier9, in answer to frequent biological questions. Complete tracks 
(CT) measures the fraction of reference cell tracks that a given method 
can reconstruct entirely from the frame in which they appear to the 
frame in which they disappear. CT is especially relevant when a perfect 
reconstruction of the cell lineages is required. Track fractions (TF) aver-
ages, for all detected tracks, the fraction of the longest continuously 
matching algorithm-generated tracklet with respect to the reference 
track. Intuitively, this can be interpreted as the fraction of an aver-
age cell’s trajectory that an algorithm reconstructs correctly once 
the cell has been detected. Branching correctness (BC(i)) measures 
a method’s efficiency at detecting division events with a tolerance of 
i frames. Finally, cell cycle accuracy (CCA) measures how accurate an 
algorithm is at correctly reconstructing the length of cell cycles (that 
is, the time between two consecutive divisions). Both BC(i) and CCA are 
informative about the ability of the algorithm to detect cell population 
growth (that is, proliferation). All of the biologically inspired measures 
take values in the interval [0,1], with higher values corresponding to 
better performance.

Top-performing algorithms
CALT-US (*) is a segmentation-only algorithm that performs semantic 
segmentation with an optimized U-Net followed by post-processing 
probability maps to identify individual cells. It provides excel-
lent results for 2D bright-field datasets with high signal heteroge-
neity (high-Heti and high-Hetb) but varying levels of Res and Spa 
(BF-C2DL-HSC, DIC-C2DH-HeLa and PhC-C2DL-U3T3), and for two 
3D fluorescence datasets that, in general, have image quality dis-
similar to 2D bright-field, as shown in Fig. 2 (Fluo-C3DL-MDA231 and 
Fluo-N3DH-CHO), indicating a high degree of versatility of the method, 
as evidenced by its top rank in the generalizability study (see ‘General-
izability study’ below). The algorithm uses a new regularization term 
for the loss that is designed to handle imbalanced classes and promote 
sharper segmentation, and introduces a novel four class-based seman-
tic representation aimed to improve separation of cells, specially for 
those cases when small gaps exist between adjacent cells40,41.

KIT-GE (3) uses a two-branched 2D U-Net segmentation architec-
ture. One branch predicts cell distance maps in which each cell pixel 
represents a normalized distance to the nearest pixel not belonging 
to the same cell. The other branch predicts neighbor distance maps 
in which each cell pixel represents an inverse normalized distance to 
the nearest pixel of the nearest surrounding cell. Tracking is based on 
the estimation of inter-frame displacement using cross-correlation, 
followed by cell matching across frames using a coupled minimum cost 
flow function42,43. The method has been designed to segment dense (low 
Spa), convex cells (high Sha). Accordingly, good segmentation results 
are obtained for the low resolution (low-Res) BF-C2DL-HSC (Fig. 2). 
However, the combination of cell and neighbor distance maps with an 
adapted tracker for error correction provides reasonable results also 
for more complex cell shapes such as those in the low-Res bright-field 
datasets PhC-C2DL-PSC and BF-C2DL-MuSC, regardless of their, 
respectively, very high mitotic activity (high Mit) and high variability 
(low Ove), and in two completely different 3D fluorescent datasets 
(Fluo-C3DH-H157 and Fluo-C3DL-MDA321). This variety of modalities 
and image properties also demonstrates a high level of versatility.

DKFZ-GE is a segmentation-only method based on a self- 
configuring U-Net pipeline called nnU-Net. It performs well for densely  
annotated datasets (Fluo-N2DH-SIM+, Fluo-N3DH-SIM+, Fluo-C3DH- 
A549 and Fluo-C3DH-A549-SIM+). For each dataset, nnU-Net is trained 
from scratch using no additional external training data. Given that 

nnU-Net is designed for semantic segmentation, instance segmenta-
tion was implemented through conversion into a two-class semantic 
segmentation problem (cell border and center), the predictions being 
converted back to cells by outgrowing the center predictions. The core 
strength of nnU-Net lies in the fact that its recipe for automatically 
configuring the segmentation pipeline was developed and optimized 
on the 10 datasets of the medical segmentation decathlon44, yielding 
more robust design choices and hyperparameters than methods tuned 
on individual datasets.

KIT-GE (4) extends the concept of cell instance learning45 by simul-
taneously segmenting and tracking cells using an efficient, real-time 
deep neural network (ERFNet46). This network predicts the offset of 
each cell pixel to its corresponding cell center in two consecutive 
frames. Because the ERFNet is small and has very few parameters, 
the model avoids overfitting on the training data. This method per-
forms best on two low-Res, bright-field datasets (BF-C2DL-MuSC and 
BF-C2DL-HSC) and one 2D fluorescence dataset (Fluo-N2DH-SIM+).

KTH-SE (1) uses a Gaussian bandpass filter for noise removal. Seg-
mentation is based on a seeded h-dome-based watershed transform, 
which separates clustered cell masks on a thresholded version of the 
filtered image. The tracking part of the algorithm uses a global track 
linking algorithm, which greedily adds tracks one at a time using the 
Viterbi algorithm. The track linking optimizes each track over all frames 
at once and can therefore make linking decisions based on prior and 
future frames. Because of that, it can handle spurious detections as 
well as under- and over-segmentation. This lightweight segmentation 
strategy has outstanding performance for most fluorescence datasets 
(Fluo-C2DL-MSC, Fluo-C3DH-H157, Fluo-N2DH-GOWT1, Fluo-N3DH-CE, 
Fluo-N3DH-CHO, Fluo-C3DH-A549-SIM+ and Fluo-N3DH-SIM+) of 
varying quality properties. It is also the most convenient and compu-
tationally efficient strategy for extremely large mesoscopic datasets. A 
closely related algorithm, KTH-SE (2) (ref. 36), top-1 performer for the 
embryonic datasets Fluo-N3DL-DRO and Fluo-N3DL-TRIC and top-3 for 
Fluo-N3DL-TRIF, takes advantage of the dynamic nature of the nuclei 
motion to preprocess the detected locations using a Gaussian mixture 
probability hypothesis density (GM-PHD) filter.

Quality of annotations and human-level performance
To characterize the quality of gold standard segmentation and tracking 
annotations (gold truth, GT), we calculated the average and standard 
deviation performance of the three independent annotators relative 
to the gold truth that was established by merging the triplets of manual 
annotations. Submitting individual manual annotations as if they were 
standard submissions into the technical and biological measures, a set 
of multiple measurements is defined and denoted with the prefix ‘M’, 
as here, for example, for the SEG measure:

MSEGGT = {SEGAnnotation_k, k = 1, 2, 3}

where Annotation_k denotes the k-th manual annotation. Similarly, the 
sets MDETGT, MTRAGT, MCTGT and so on are obtained, from which their 
averages and standard deviations can be found in the quality control 
criteria sheets of Supplementary Data Tabs 5–9 (CSB), Tabs 10–14 (CTB) 
and Tabs 15–20 (CTB: biological measures), and are also summarized 
in Fig. 5. Note that low values of average human performance and high 
values of standard deviation are typically caused by the high level of 
difficulty of the dataset, not by poor work performance of the annota-
tors. The variability of these human performance values can also serve 
as the baseline for algorithm performance comparisons. To this end, 
algorithms with scores in the range of the average manual scores ±1 s.d. 
can be considered to perform at the level of human annotators, and 
algorithms with scores above or below that range are said to perform 
better or worse, respectively, than the human annotators. Such a clas-
sification of the benchmarked submissions can be found in the Cell 
Segmentation Benchmark, Cell Tracking Benchmark and individual 

http://www.nature.com/naturemethods


Nature Methods

Analysis https://doi.org/10.1038/s41592-023-01879-y

sheets of Supplementary Data Tabs 5–9, Tabs 10–14 and Tabs 15–20, 
with the methods performing above and at the level of human perfor-
mance being highlighted in green and blue, respectively.

To characterize the quality of silver standard segmentation anno-
tations (silver truth, ST), we compared these annotations with the gold 
standard annotations (gold truth). Specifically, to evaluate how similar 
the masks in silver truth are to those in gold truth, we computed SEGST 
using the standard SEG measure as if the silver truth was a participant’s 
result. Similarly, the detection quality of the silver truth was calculated, 
and is denoted as DETST. Owing to how silver truth is constructed (see 
‘Silver standard reference annotations’ above), DETST can decrease from 
1.0 only due to false negatives because silver truth annotations cannot 
have false positives. The DETST values, therefore, implicitly reflect the 
coverage of the silver annotation. The SEGST and DETST values are sum-
marized per dataset in Fig. 5 .

Note the subtle differences in the interpretation of the quality 
measurements. Although all of the segmentation quality measure-
ments are compared against the same reference, that is, the gold stand-
ard annotation for segmentation, MSEGGT provides merely feedback 
on the merger process by showing the similarities of the individual 
inputs to the product of their merger, thus reflecting the difficulty of 
the manual annotation task itself. SEGST, however, is compared directly 
with another (alternative) segmentation annotation. The MDETGT 
values are also unable to be compared directly with the DETST values 
because the latter evaluate the annotations for which the creation 
process (unlike those in the former case) was supervised, as explained 
in the previous paragraph.

Statistical analysis
The association between the quantitative image characteristics and 
segmentation (SEG) and tracking (TRA) performance in the Image 
Quality Versus Algorithm Performance section and between technical 
and biological measurements in the Correlation Between Technical and 
Biological Measures section was evaluated using the non-parametric 
Spearman’s rank correlation, given that the normality of the data dis-
tribution was rejected in some cases. We define the levels of positive 
(negative for negative values of rho, respectively) correlation accord-
ing to these intervals: from 0 to 0.2 as very weak or no association; 
from 0.2 to 0.4 as weak association; from 0.4 to 0.6 as moderate asso-
ciation; from 0.6 to 0.8 as strong association and from 0.8 to 1 as very  
strong association.

For a comparison of detection, segmentation and linking tech-
niques in the Evolution of the Segmentation and Tracking Paradigms 
section, a non-parametric two-sided Kruskal–Wallis test with Dunn’s 
post-hoc test was applied. We focused on a pairwise comparison of 
the techniques with machine learning techniques. The P value of the 
post-hoc test was corrected for multiple comparison testing using 
Holm’s correction. If only two groups were compared with each other, 
a non-parametric two-sided Mann–Whitney test was applied instead 
of the Kruskal–Wallis test. An absolute difference between the median 
values of two groups is expressed as ‘diff’.

All boxplots used in the above mentioned sections (Image Quality 
versus Algorithm Performance, Correlation Between Technical and 
Biological Measures, and Evolution of the Segmentation and Tracking 
Paradigms) were constructed with a bold line representing the median 
value and a box showing an interquartile range. In the case of outliers, 
that is, values higher or lower than 1.5-fold the interquartile range, 
points (outliers) exceed the whiskers.

The Evolution of the Segmentation and Tracking Paradigms sec-
tion includes plots with descriptive statistics for the machine learning 
and the non-machine learning techniques separately, by year. In these 
plots, median values are represented by a solid line; a dashed line plots 
the mean values. This analysis also consists of sums of the median and/
or mean values per dataset over the years (Extended Data Figs. 3, 5 and 
7). For each year, the median and/or mean value of the performance on 

existing datasets was computed for each group (machine learning and 
non-machine learning) separately. These median and/or mean values 
were summed up and plotted in connected lines.

The significance level (alpha) was set at 0.05 in all of the statisti-
cal analyses. Furthermore, to screen out low-performing or poorly 
fine-tuned CTC submissions, only those algorithms that simultaneously 
achieved DET and SEG scores (in the case of the CSB submissions), and 
SEG and TRA scores (in the case of the CTB submissions) above 50% of 
the reported human performance were considered.

All statistical analyses were performed using R Statistical Software 
(v3.4.3; R Core Team)47.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The training datasets with their reference annotations and test datasets 
used in the challenge are publicly available at the CTC website (http://
celltrackingchallenge.net). With regard to the raw data for individual 
Figures and Tables, Source data are provided with this paper.

Code availability
The evaluation routines used to produce the results reported in this 
article are freely available at the CTC website or the CellTrackingChal-
lenge update site as a Fiji plugin, the source codes of which can be 
found at https://github.com/CellTrackingChallenge/. Furthermore, 
this public GitHub repository contains links to the executable ver-
sions of the individual algorithms and Colab Notebooks of those 11 
participants who agreed to share their tools in a reusable form. The 
parameters used by the participants to produce their benchmarked 
results are listed on the CTC website.
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Extended Data Fig. 1 | Evolution of technical measures from 2017 to 2022. 
(a) Evolution of CSB segmentation (SEG) and detection (DET) performance 
based on the top-ranked performing methods. (b) Evolution of CSB global (OP) 
performance based on the top-ranked performing methods. (c) Evolution of CTB 

segmentation (SEG) and tracking (TRA) performance based on the top-ranked 
performing methods. (d). Evolution of CTB global (OP) performance based on 
the top-ranked performing methods.
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Extended Data Fig. 2 | Detection (DET) performance according to detection 
technique and modality. a) Bright-field (BF) b) DIC c) Phase Contrast (PhC), d) 
Fluorescence 2D (Fluo 2D) and e) Fluorescence 3D (Fluo 3D). For comparison of 

the techniques Kruskal–Wallis test with Dunn’s post-hoc test were performed (or 
Mann–Whitney test in case of only two groups). The absolute difference between 
particular medians is reported as diff.
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Extended Data Fig. 3 | A sum of detection (DET) scores according to the use of machine learning (ML) or other (non-ML) techniques over years. For each year, the 
median/mean value of the performance on existing datasets was computed for each group (ML and non-ML) separately. These median/mean values were summed up 
and plotted in connected lines.
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Extended Data Fig. 4 | Segmentation (SEG) performance according to 
segmentation technique and modality. a) Bright-field (BF) b) DIC c) Phase 
Contrast (PhC), d) Fluorescence 2D (Fluo 2D) and e) Fluorescence 3D (Fluo 3D). 

For comparison of the techniques Kruskal–Wallis test with Dunn’s post-hoc  
test were performed. The absolute difference between particular medians is 
reported as diff.
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Extended Data Fig. 5 | A sum of segmentation (SEG) scores according to the use of machine learning (ML) or other (non-ML) techniques over years. For each 
year, the median/mean value of the performance on existing datasets was computed for each group (ML and non-ML) separately. These median/mean values were 
summed up and plotted in connected lines.

http://www.nature.com/naturemethods
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Extended Data Fig. 6 | Tracking (TRA) performance according to linking technique and modality. a) Bright-field (BF) b) DIC c) Phase Contrast (PhC), d) 
Fluorescence 2D (Fluo 2D) and e) Fluorescence 3D (Fluo 3D). For comparison of the techniques Kruskal–Wallis test with Dunn’s post-hoc test were performed.  
The absolute difference between particular medians is reported as diff.
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Extended Data Fig. 7 | A sum of tracking (TRA) scores according to the use of machine learning (ML) or other (non-ML) techniques over years. For each year, the 
median/mean value of the performance on existing datasets was computed for each group (ML and non-ML) separately. These median/mean values were summed up 
and plotted in connected lines.
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Extended Data Fig. 8 | Evolution of biological measures from 2017 to 2022. 
(a) Evolution of complete tracks (CT) performance based on the top-ranked 
performing methods. (b) Evolution of track fractions (TF) based on the top-
ranked performing methods. (c) Evolution of branching correctness (BC(i)) 

performance based on the top-ranked performing methods. (d) Evolution of 
cell cycle accuracy (CCA) performance based on the top-ranked performing 
methods.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Generalizability results. (a) The top-3 most 
generalizable CSB methods. (b) The top-3 most generalizable CTB methods.  
(c) Results of the most generalizable CSB submission (CALT-US). (d) Results of the 
most generalizable CTB submission (PURD-US). The methods were ranked based 
on three different aspects: overall performance across all 78 evaluated cases, OP 
(All); overall performance of best training configurations per dataset, OP (Best); 
and average rank over training configurations, Avg Rank, leading to practically 

stable rankings across all the three ranking schemes used (see Supplementary 
Data (Tabs 21–33) (CSB) and (Tabs 34–42) (CTB) for more details). Dataset-
specific algorithm configurations trained on gold truth (GT), silver truth (ST), or 
both (GT+ST) are compared to universal configurations trained on all 13 datasets 
(prefix all). The unseen data types are marked by (U) and naturally miss dataset-
specific configuration results. Legend for datasets names: (Please see Fig. 2).

http://www.nature.com/naturemethods
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