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ABSTRACT The separation of music signals is a very challenging task, especially in case of polyphonic
chamber music signals because of the similar frequency ranges and sound characteristics of the different
instruments to separate. In this work, a joint separation approach in the time domain with a U-Net archi-
tecture is extended to incorporate additional time-dependent instrument activity information for improved
instrument track extractions. Different stages are investigated to integrate the additional information, but an
input before the deepest encoder block achieves best separation results as well as highest robustness against
randomly wrong labels. This approach outperforms a label integration by multiplication and the input of
a static instrument label. Targeted data augmentation by incoherent mixtures is used for a trio example
of violin, trumpet, and flute to improve separation results. Moreover, an alternative separation approach
with one independent separation model for each instrument is investigated, which enables a more flexible
architecture. In this case, an input after the deepest encoder block achieves best separation results, but the
robustness is slightly reduced compared to the joint model. The improvements by additional information
on active instruments are verified by using real instrument activity predictions for both the joint and the
independent separation approaches.

INDEX TERMS Music source separation, polyphonic chamber music, active instruments, end-to-end deep
learning.

I. INTRODUCTION
Music Source Separation (MSS) is one of the main parts of
Music Information Retrieval (MIR). Since its aim is to extract
isolated tracks for the sources recorded together, MSS can
either be used in specific scenarios like singing voice [1] or
lead and accompaniment separation [2], or it can be applied
as a preprocessing tool for many subsequent MIR tasks like
music transcription [3] or audio remixing [4].

Although those applications are very useful for various
music sources, especially chamber music instruments, most
multi-instrument source separation approaches concentrate
on the separation of the four target sources ‘vocals’, ‘bass’,
‘drums’, and ‘other’, like in the commonly used MUSDB18
dataset [5]. One reason is the lack of large datasets with
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separated music track recordings of many different instru-
ments. Generating synthesized music tracks [6] is an option
to get large amounts of data, but their variability is very
limited and therefore the dataset is unsuitable for learning
approaches. An example of a small dataset with real instru-
ment track recordings is URMP [7], in which the line-up
changes for the different music pieces, therefore the source
number and source types to separate vary. Additionally, the
separation of chamber music instruments is challenging due
to their similar frequency ranges and sound characteristics.

Generally, MSS has benefited heavily from the intro-
duction of deep learning techniques. They clearly outper-
formed former signal processing approaches by means of
convolutional structures in neural networks [8], denoising
autoencoders [9], and variational autoencoders [10]. Further
improvements could be achieved through data augmentation
and a blending of different neural networks [11]. Nowadays,
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deep learning approaches are used as standard technique in all
kinds of source separation fields. All recent MSS approaches
can be divided into two basic concepts: One concept is the
separation based on time-frequency representations (mostly
the short-time Fourier transform), which is used for exam-
ple in Open-Unmix [12], Spleeter [13], and D3Net [14].
To obtain the final separated sources, masks are calculated
by means of the predicted matrices for each source and
then multiplied with the time-frequency representation of
the mixture. Those masks usually comprise only real values
between 0 and 1, but the separation results can be improved
by complex masks [15]. The second concept is the end-to-end
separation in the time domain, which does not require any
preprocessing and predicts all track signals directly. As this
approach can estimate signal amplitudes and phases directly,
the potential performance is much higher than with mask
multiplication, but in reality systems like Demucs [16] or
Wave-U-Net [17] reach comparable results to those of the
first concept. Latest systems like KUIELab-MDX-Net [18]
and Hybrid Demucs [19] proposed the fusion of two parallel
networks of both domains, which improves MSS perfor-
mance but results in large architectures.

In order to further improve the separation performance,
additional information about the music pieces has been used.
Miron et al. proposed a score-informed system trained on four
synthetic classical instruments [20], but synthetic instruments
are easy to separate because their timbre is well-defined and
has little variability during playing. During an optimization-
based approach, synthesized music signals can help to
improve separation results by means of minimizing the error
between the resynthesized and the input mixture [21]. But
the synthesizer requires an exact audio-synchronized musical
score, which represents a strong limit. This drawback can
be avoided by fusing music separation and transcription like
in [22], where separated instrument tracks and the music
score are predicted jointly in a multitask approach. Multi-
task learning for MSS and instrument activation, i.e. time-
dependent detection of playing instruments, is proposed
in [23]. Both multitask approaches show that each task can
benefit from the fusion, but they need large training datasets
because of the large models.

Another possibility for integrating additional information
is conditioned source separation, in which a label vector,
describing whether the respective instrument is playing or
not in the given music piece, is fed into the MSS network.
This one-hot-encoded vector can be integrated directly in
the neural network by multiplication [24] or by means of
a second control network and special layers in the sepa-
ration network, e.g. feature-wise linear modulation (FiLM)
layers [25] or latent source attentive frequency transforma-
tion (LaSAFT) [26]. With the control network, the condi-
tion enables the system to separate different instruments by
the same architecture with only one output track. Beside
a label vector, other input data like an audio sample of
one undisturbed instrument [27] or a video stream [28] can
be given to the control network. Moreover, a conditioning

can even select the task of a unified model that is able
to do music source separation, transcription, or synthesis
for unseen instruments [29]. Core of this approach is a
pitch-timbre disentanglement module, which is based on a
common encoder-decoder architecture like in many source
separation approaches presented above. The conditioning on
unseen instruments is enabled by a query-by-example subnet
that encodes the query spectrogram of a given instrument
sound example, which defines the desired instrument type,
and feeds the result into the latent space.

Most conditioning approaches only include static addi-
tional information like timbre or line-up, but some appli-
cations benefit more from time-dependent information.
Meseguer-Brocal and Peeters improved the singing voice
extraction with known lyrics by conditioning a sep-
aration model with time-aligned phonemes [30]. The
time-dependent phoneme matrix is generated from the
respective lyrics. For instrument recordings, prior knowledge
about time-dependent instrument activity can be introduced
by a temporal segmentation of the mixture [31]. This segmen-
tation has to be done by a user and enables a source separation
model adaption on the given music piece.

In this work, the separation of monaural chamber music
signals from small ensembles with different instruments is
improved by the integration of additional instrument labels.
Existing conditioned approaches consider only static instru-
ment information or need user input, which is not practical for
automated source separation. Since time-dependent instru-
ment activity contains useful information forMSS, especially
in case of chambermusic withmany instruments and different
line-ups, it is integrated here as additional input. The main
contributions of this work are:

• A time-dependent conditioning approach for music
instrument separation of chamber music is introduced.

• Two separation model approaches are investigated, one
joint model that predicts all source signals at the same
time and a more flexible approach that uses independent
source-targeted models for each instrument.

• The integration of time-dependent instrument activity
labels by concatenation is investigated for all encoder
input steps. Furthermore, the robustness against random
label errors is analyzed by means of toggled labels.

• Real instrument activity predictions are analyzed to ver-
ify the results with simulated label errors.

An end-to-end MSS approach is developed whose archi-
tecture is presented in section II. Despite the lack of large
chamber music datasets for MSS, sufficient data can be
generated for predefined ensembles, which is explained
in section III. All experiments and separation results for
different integration of additional input data are analyzed
and discussed in section IV-A for the joint separation mod-
els and in section IV-B for the independent separation
approach. The influence of real instrument activity predic-
tions is investigated in section IV-C. They are necessary if
the time-dependent instrument activity is not available in
advance.
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FIGURE 1. Schematic model structure with channel numbers of each
layer for additional information integration before encoder 4.

II. MODEL ARCHITECTURE
For the core MSS model of this work, an architecture for the
separation in the time domain is chosen due to the improved
potential performance compared to approaches based on
time-frequency representations, as stated in the introduction.
Moreover, the additional time-dependent information about
active instruments can be included more easily in an arbi-
trary fine-grained resolution. An example of the whole model
architecture with additional label integration before encoder
block 4 is given in Fig. 1.

A. SOURCE SEPARATION MODEL
The separation model architecture is inspired by Demucs
[16], which achieved one of the best separation performances
for the MUSDB18 dataset with its target sources ‘vocals’,
‘bass’, ‘drums’, and ‘other’. It consists of a U-Net structure
with several encoder and decoder blocks and two bidirec-
tional LSTMs in the bottleneck of the network. Several mod-
ifications have been made to adapt Demucs on the case of
small chamber music ensembles with different instruments
of partially similar frequency range.

First, the number of output tracks is set before the training
process to the desired instrument number n that should be
separated. Preliminary experiments showed that four encoder
and decoder blocks performed comparably to six encoder
and decoder blocks like in Demucs, therefore the smaller
architecture with four blocks each is used. Since separation
models in the time domain usually have lots of parame-
ters, model size reduction is very important regarding the
applicability. All encoder and decoder blocks are identical to
those in Demucs, consisting of two 1D convolutions and the
activation functions ReLU and GLU. The channel number
of each encoder and decoder block is set equal to 100 in
the first stage and then doubled in all subsequent stages to
enable the incorporation of a sufficiently large number of
specialized features for the separation. In the bottom layer,
two bidirectional gated recurrent units (GRUs) replace the
two LSTMs of the Demucs architecture, because GRUs have
less parameters than LSTMs and perform comparably inmost
cases, also in MSS [32]. This model architecture consists of
about 41 million parameters, only slightly dependent on n.

The input mixture signal is cut into segments of 65 536
samples due to GPU memory constraints and then fed in the
first encoder block. Input segments with 8 times more sam-
ples were investigated in preliminary experiments because of
the longer input in the original Demucs architecture, but they
did not lead to improvements, so the smaller length is used.
We consider the basic case of monaural mixture and track
signals in this work, to which signals with any higher channel
number can be reduced. Due to the kernel stride of 4 of each
encoder block’s first convolution layer, the input length is
reduced by the factor 4 in each encoder stage.

Beside a joint separation model for all instruments to sep-
arate, using independent separation models for each instru-
ment allows for more flexibility, according to the playing
instruments. Moreover, later model enhancements with fur-
ther instruments can be easily implemented by integrating
additional independent separation models. Therefore that
separation architecture is investigated in this work, too. Each
independent model has the same structure depicted in Fig. 1
with n = 1, but the channel numbers per encoder and
decoder block are halved compared to the case of joint sepa-
ration because each model has only to extract one instrument
track and n independent models need more resources. Each
instrument model has about 11.5 million parameters. The
separation prediction needs about 40ms per model for one
input sequence, whereas the whole calculation time of the
joint approach is about 65ms for one sequence.

B. INTEGRATION OF ADDITIONAL INFORMATION
Additional time-dependent instrument activity information is
included by concatenating one encoder block input with the
activity labels of all considered instruments. Thus, this infor-
mation comprises the activity labels of n instruments in case
of joint separation models and only the particular instrument
in case of independent models. Due to the concatenation at
one encoder stage, the MSS network can already profit from
the additional information during the data compression in
the encoder. Moreover, the concatenation enables the model
to extract only the relevant information from the activity
labels and to be robust to the case of wrong labels, which
is not assured in case of a multiplicative incorporation like
in [24]. A multiplication or an addition of the labels, like e.g.
in positional encoding, would distort the data and is therefore
not suitable for source separation. As no additional layers like
FiLM or LaSAFT are needed, the model size is nearly the
same as without additional information.

Beside the incorporation before encoder 1, which means
the concatenation of the input mixture signal and the instru-
ment activity labels, the additional information can be
included at later encoder stages as well. Then the time resolu-
tion of the labels has to be reduced by the factor 4m to fit the
output length of the preceding encoder blockm, e.g. factor 64
in Fig. 1. If the concatenation is not done in stage 1, the
resulting encoder input is also transmitted to decoder blockm
via the respective skip connection and added to the output of
the preceding decoder block.
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III. DATASET
Existing datasets with chamber music and corresponding
instruments are often not suited to the MSS problem because
the tracks of the different instruments are not available or
every instrument recording comprises only few notes. But
the goal of polyphonic MSS is to separate different melodies
sounding together that are played by different instruments.
Such a polyphonic scenario was considered in the Univer-
sity of Rochester Musical Performance (URMP) dataset [7].
It consists of 44 classical music pieces of small ensembles
(11 duets, 12 trios, 14 quartets, and 7 quintets) with a total
duration of about 80min and a sampling rate of 48 kHz.
The ensembles have various line-ups from 13 instruments
including strings, woodwinds, and brass. In addition, note-
level pitches of all separated instrument tracks are given with
onsets and note duration.

Some ensemble line-ups contain more than one player of
the same instrument type. But we aim to separate tracks
of different instruments in this work, so all tracks of the
same instrument and the same music piece are mixed to
one output track of the respective instrument. Consequently,
the music pieces of this modified URMP dataset reduce to
4 solos, 12 duets, 20 trios, and 8 quartets. Those recordings
are divided into 36 train, 5 validation (No. 5, 12, 17, 24,
and 40), and 3 test pieces (No. 8, 18, 41), all consisting of
at least one duet, trio, and quartet. In order to enlarge this
relatively small dataset, single instrument recordings taken
from different music pieces of the original training dataset are
remixed. This data augmentation strategy enables the creation
of a large quantity of incoherent mixtures by combining
various instruments, but decreases the percentage of training
samples with harmonic relation between partials. To ensure
the harmonic separation ability of the trained network, several
coherentmixtures are necessary. Thus, this data augmentation
can only be used to a limited extent.

For the separation of a known ensemble line-up, targeted
data augmentation can focus on training samples with only
the relevant instrument combination, which reduces the aug-
mentation dataset size drastically. That is done in this work,
creating 50 additional music pieces by remixing combina-
tions of the predefined example trio of violin, trumpet, and
flute before the training process of all models presented. All
instrument tracks are shifted in time by a random time offset
and are multiplied by a random loudness factor between 0.7
and 1.3 during the mixing process to ensure a large mixture
variety. The additional music pieces are divided into 45 for
training and 5 for validation, which results in 81 training and
10 validation music pieces for the augmented dataset.

During training, the mixture and track signals are cut in
segments of about 1.365 s due to the model input length
of 65 536 samples and 48 kHz sampling rate. For this seg-
mentation, a random time offset in the range [0, 65535]
is used for every music piece in each training epoch to
avoid overfitting. All non-overlapping segments of the music
piece are extracted based on this time offset. Downsam-
pling could enlarge the time span of the input segments but

could also cause a loss of information, therefore it is not
considered.

Time-dependent instrument activity labels are generated
by means of the note-level pitches of the instrument tracks.
The labels of each instrument represent a binary vector with
length according to the input stage (described in section II-B),
containing ‘1’ in all time samples where a note is active for the
respective instrument and ‘0’ in all the others. Those binary
label vectors of all n sources are fed directly to the respective
independent separation models or they are concatenated and
given to the joint separationmodel as a binary time-dependent
matrix. As time-dependent instrument activity labels are
rarely known in real applications, they can be predicted by
a preceding time-dependent instrument detection approach
like [33], causing some errors in the additional information.
In order to investigate the integration of such imperfectly
predicted labels, a defined percentage of the input instrument
label vector values is toggled. Thereby, the indices of the
toggled values are chosen randomly.

IV. EXPERIMENTS
Several experiments are conducted to analyze the integration
of time-dependent information about active instruments in
MSS. First, the influence of correct and randomly toggled
ground truth labels is investigated for joint as well as inde-
pendent separation model architectures. Thereby, both the
generic case with n = 13 instruments and the targeted case of
the predefined example trio are analyzed. Then the separation
results are validated by real instrument activity predictions
as additional input. The separation models are implemented
in TensorFlow and trained using Adam optimizer [34] with
MSE loss, a learning rate of 3 × 10−4, batch size 32, and
maximum 500 epochs. Early stopping is enabled in case of
no validation improvement during 50 epochs. At the end, the
model with the best performance on the validation dataset
is taken as the resulting separation system. For all random
functions, the same seed (0) is defined at the beginning to
reduce performance variances by different initialization as
well as to make the results more comparable.

Preliminary experiments showed that targeted data aug-
mentation improves not only the separation of the predefined
instruments, but in the vast majority of cases all instrument
results. Therefore the augmented dataset is taken during train-
ing. Performance is evaluated by means of the scale-invariant
signal-to-distortion ratio (SI-SDR) [35], which is a robust
quality metric for separated sources.

A. JOINT SEPARATION MODELS
The modified URMP dataset comprises 13 instruments,
therefore joint models predicting n= 13 instrument tracks are
investigated first. For the integration of the time-dependent
instrument activity labels, all possible input stages in the
encoder are analyzed, whereby the input stage is named by
the subsequent encoder block. As the three music pieces
of the test dataset comprise only six playing instruments,
Table 1 lists the averaged separation results for those six
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TABLE 1. SI-SDR results in dB for test dataset instruments and different stages of additional information integration in a joint separation model.

instruments. The estimated signals of the other seven instru-
ments consist mostly silence and are therefore not evaluated
in detail here. Beside the separation results with additional
information at the input of all encoder blocks and the first
GRU block, the results for the predicted tracks of a model
without additional instrument activity labels (-) are given as
a reference. Further references are the mixture signal without
any applied separation algorithm as ‘worst case’, the litera-
ture approach Open-Unmix [12] with time-frequency matrix
input and independent instrument models trained with our
augmented dataset, and the multiplication of the instrument
activity labels with the respective track estimation of the sepa-
rationmodel without additional information. Their separation
results are added in Table 1. To investigate the improvement
due to time-dependency of the activity information, constant
labels for each instrument are fed in the separation model at
the 4th encoder block, which represents the best stage for the
time-dependent case. This third reference is also added in the
result table.

As given in Table 1, the integration of time-dependent
instrument activity labels improves the average separation
results for all input stages by at least 1.21 dB. The best
separation results are achieved by an integration of the addi-
tional information before the last encoder block (encoder 4).
Thus, the instrument activity labels seem to be very useful in
combinationwith ‘higher’ features with a large receptive field
like in the latent representation. But a subsequent encoder
block is advantageous to connect the additional information
with features of the preceding encoder, in contrast to the
integration directly before GRU. Although the label input
before encoder block 4 has a lower time resolution of about
1.33ms, it is still time-dependent over 1024 values.

An integration of time-dependent instrument activity by
multiplication with the estimated instrument tracks improves
the separation results of its basis, the separation model with-
out additional information, only marginally. The multiplica-
tion suppresses artifacts and other instrument sounds during
the time in which the target sources are not played, so the
basic separation model seems to suppress the majority of
those sounds by itself. Consequently, the concatenation of the
additional information in the model increases its separation
ability and performance. Time-dependent instrument activity
labels lead to a further performance improvement, because

FIGURE 2. SI-SDR results for randomly toggled labels of defined
percentage and joint separation models with 13 instruments.

the separation results with input stage before encoder block 4
and a constant instrument label, like e.g. in the literature
approach of Slizovskaia [24], are 0.53 dB lower than the
results for the time-dependent case. For the other input stages,
the improvement due to time-dependency compared to the
constant label case is even higher.

The usage of the augmented dataset improves the sepa-
ration results by at least 1.98 dB, even in the investigated
case of models with 13 instruments. Especially for the input
stage before encoder 2, data augmentation is necessary for
acceptable separation results, because the SI-SDR of the
original dataset is with −8.62 dB far below the mixture case
without any separation. Obviously, that model cannot extract
the relevant features to separate the instrument signals. One
reason is the direct transmission of the additional information
to the last decoder block through the highest skip connection
(compare Fig. 1). From the combination of the resulting
113 decoder channels and the small amount of data, the last
decoder block and therefore the whole model learns wrong
connections during training. These connections lead to very
low SI-SDR values for bassoon and trumpet. In the case
of encoder 2 with data augmentation, the performance is
comparable to the other stages. Therefore data augmentation
should be used for a better separation with small datasets.

Toggled labels mimic wrong input labels which influence
the separation results. The specific performance reduction
for different percentages of randomly toggled labels (only
during testing) is visualized in Fig. 2. Input stages near
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TABLE 2. SI-SDR results in dB for test dataset and defined trio with
different stages of additional information integration in a joint separation
model.

the latent representation, like encoder 4 or GRU, are more
robust against wrong input labels than input stages in the
first encoder blocks, whose separation results decrease very
fast for high percentages of toggled labels. That strengthens
the explanation of better separation results by combining
additional information with higher or more abstract features.
In our case, the best additional information integration stage
before encoder 4 improves the separation performance up to
a toggled labels rate of 30%.

Further separation improvements can be achieved in case
of a known ensemble line-up by targeting the model output.
Exemplarily, the predefined trio of violin, trumpet, and flute
is investigated here, so n = 3 instrument tracks have to be
separated. The averaged separation results for this trio model
are listed in Table 2. Moreover, the previously discussed
references of label multiplication and constant instrument
label input before encoder block 4 are added to the result
table. Similar to the separation of 13 instruments, additional
information integration improves MSS results for all input
stages and the best input stage is before encoder block 4.

Targeted data augmentation leads to an improvement of at
least 4.42 dB compared to the original URMP dataset. This
is higher than the improvement of the trio separation without
additional information of about 4 dB. Thus, the joint separa-
tion models can benefit more from the data augmentation of
music pieces and their corresponding labels than only from
the augmentedmusic pieces. As for the separationmodel with
13 instruments, the multiplication of the instrument labels
with their respective track estimations lead to only marginally
improvements. The usage of time-dependent labels improves
the separation results by 0.69 dB for the trio model and input
stage before encoder block 4. In case of the other input stages,
the separation improvements are similar.

B. INDEPENDENT INSTRUMENT MODELS
An alternative to the joint separation model analyzed in sec-
tion IV-A is the separation system approach with n indepen-
dent instrument extraction models. The main advantage of
this approach is the flexibility of the line-up to be separated.
For example, the separation system for the predefined trio of
violin, trumpet, and flute, to which the data augmentation
is tailored in this work, can easily be created by choosing
only the three particular independent models. If a separation

TABLE 3. SI-SDR results in dB for test dataset and independent models
for each trio instrument with different stages of additional information
integration.

systemwith independent models of all 13 instruments is used,
the separation results of the trio instruments remain the same
as in the trio case, in contrast to the joint separation approach.
The resulting SI-SDR scores for the trio instruments and
different input stages of the additional time-dependent instru-
ment activity information are presented in Table 3. Addition-
ally, the results for the literature approach Open-Unmix [12]
with time-frequency representation input, a multiplication of
time-dependent labels and the estimated instrument tracks
from the separation system without additional information,
and the results for a static label concatenation before the first
GRU block are given as references.

According to Table 3, the separation performance benefits
from the time-dependent instrument activity integration at
input stages before encoder block 3, encoder block 4, and the
first GRU block. Those stages contain complex features with
a larger receptive field than earlier stages. These features have
also proven to be beneficial in the joint separation approach.
Early input stages before encoder block 1 or 2 lead to worse
results than without instrument activity (-), especially for the
trumpet. That could indicate overfitting to the instrument
activity labels in those early stages. Consequently, they are
not suitable for an additional information integration. With-
out data augmentation, the separation results for all input
stages are better than those of the approach without addi-
tional information. That strengthens the positive effect of
instrument activity integration for MSS with small datasets.
In case of augmented trio data, all separation performances
are improved, therefore data augmentation is useful during
training of the independent models.

Similar to the joint separation approach, a multiplication of
time-dependent instrument activity labels with its respective
estimated tracks leads only to a marginal improvement. The
separation by independent models suppresses other instru-
ments and artifacts during pauses of the target source suc-
cessfully by itself. If the additional label input comprises
only a constant label about the instrument presence in the
whole music piece, the separation performance is decreased
by 0.66 dB in case of the input stage before the first GRU
block. For the other input stages, a similar increase is detected
using time-dependent additional information. Using time-
frequency input matrices like in Open-Unmix, the violin can
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FIGURE 3. SI-SDR results for randomly toggled labels of defined
percentage and 3 independent separation models of the defined trio.

be separated very well, whereas the trumpet separation is very
difficult. Since the violin is the predominant instrument in
most music pieces, a separation based on time-frequency rep-
resentations could focus more on the predominant instrument
than an appoach in the time domain like ours. However, the
average separation result of Open-Unmix is comparable to
our separation model without additional label input.

Although the average results for the best separation sys-
tems in Table 2 and Table 3 are nearly the same, the SI-SDR
scores of the three instruments are very different. The separa-
tion of the flute and the violin track seem to include activity
information of other instruments because the results are much
better for almost all joint separation models than the respec-
tive independent ones. In contrast, the SI-SDR values for the
trumpet are drastically decreased using additional inputs of
other instruments, probably because the independent trumpet
model can focus more on the special instrument characteris-
tics. But for rarely present instruments in the training dataset,
the activity information about other instruments should in
general be useful.

In order to analyze the robustness of the separation systems
with independent instrumentmodels, randomly toggled activ-
ity labels are fed in the systems. The resulting SI-SDR values
for the defined trio are illustrated in Fig. 3 as a function of the
percentage of toggled labels during testing. An input of addi-
tional information before encoder 1 and 2 remains unsuitable
due to bad separation results as well as low robustness against
label errors. The input stages before encoder block 3 and
encoder block 4 show highest robustness because of the slow
SI-SDR score decrease for high percentages of toggled labels.
However, the input stage before the first GRU block offers
the best separation performance until approximately 20% of
random label errors. It achieves an improved separation per-
formance by additional label integration until approximately
23% of toggled labels.

C. REAL PREDICTIONS AS ADDITIONAL INFORMATION
In real MSS applications, time-dependent instrument activ-
ity is no available information and has to be estimated.
Exemplarily, the impact of such real time-dependent label

FIGURE 4. SI-SDR results of the joint trio model with input before
encoder block 4 for toggled labels and real instrument predictions.

predictions by a pretrained ResNet approach [33] is investi-
gated here. The predictions with a time resolution of about
100ms are only used during testing in order to use exact
labels during supervised training. Depending on the chosen
detection thresholds for the predictions, which define the
minimum estimation values to detect an instrument as active,
different label accuracies can be achieved. All thresholds
are selected individually for each instrument. During the
experiments, different detection thresholds are investigated.
The corresponding separation results (average of test dataset)
are illustrated in Fig. 4 for the joint trio model and different
label accuracies of real time-dependent instrument activity
predictions. As a reference, the separation results for the
randomly toggled ground truth inputs are given.

The separation results with real predictions are not as
robust as those with randomly toggled labels because real
predictions contain coherent sections of false labels. These
sections of many time steps result from musical notes not
taken into account, unknown or unusual instrument character-
istics, unsuitable thresholds, or jittered audio signals. Single
label errors due to toggling can be handled relatively easy
by means of the surroundings or other instrument activity
labels, but larger sections of false labels influence the sep-
aration performance drastically. Nevertheless, the separation
approach with real time-dependent instrument activity pre-
dictions still outperforms the approach without additional
information if the instrument detection accuracy is higher
than 80%. With the best instrument detection accuracy of
about 87.59%, an average trio separation performance of
2.20 dB is achieved.

For the separation based on independent instrument mod-
els, the influence of label errors on the separation perfor-
mance can be analyzed isolated for each instrument. The
separation results are only affected by the label errors of this
instrument. In Fig. 4, the results of the independent flute
and violin models are visualized exemplarily for different
accuracies of real instrument activity predictions as well
as simulated estimation errors by toggled labels. Using the
best detection thresholds, the SI-SDR scores of the separated
instrument signals are 2.45 dB for flute and 0.06 dB in case of
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FIGURE 5. SI-SDR results of independent violin and flute model with
input before the first GRU block for toggled labels and real instrument
predictions.

violin, which are still better than the results without additional
information input in Table 3.

In contrast to the joint separation case in Fig. 4, the data
points of real label predictions validate the relation between
toggled labels and separation performance of flute and violin.
The most important reason for this successful validation is
the focus on one instrument, which neglects any influence
of other instrument labels on the separation results. Between
approximately 15% and 50% of label errors, the separation
performance of violin is a little lower for real predictions
than the results for toggled labels. But in general, the sepa-
ration results for real instrument activity predictions match
the curves for toggled labels. Consequently, the robustness
of separation systems with independent instrument models
can be analyzed by toggled labels to simulate time-dependent
instrument activity prediction errors.

V. CONCLUSION
An MSS system for polyphonic chamber music signals
is presented in this work. The integration of additional
time-dependent instrument activity information improves
the separation performance of the basic joint time domain
approach. Although it is possible to integrate the additional
information in different stages of the U-Net architecture,
the integration before the deepest encoder block ensures
best separation and highest robustness against randomly tog-
gled instrument labels. Furthermore, an alternative separation
architecture with independent instrument models is inves-
tigated. This approach enables a more flexible separation
line-up and shows best separation results with an integration
of additional information before the first GRUblock. The sep-
aration improvement by additional information is verified for
real instrument predictions and both separation architectures.

In future work, the generalization ability of the presented
models has to be analyzed by signals with other record-
ing conditions than in the dataset used in our experiments.
Moreover, the instrument activity labels can be extended to a
larger range of values. Several active instruments of the same
instrument category can be labeled by a value higher than 1,
like e.g. the first and second violin, which would improve the
additional information given to the separation model.
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