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Abstract
We study a model in which agents with single-peaked preferences can participate in a
costly voting procedure to determine the value of a one-dimensional variable.We show
that, for all positive participation costs and all profiles of individual preferences, there
exists a unique equilibrium outcome with one single participant whenever the voting
rule is strategy-proof, anonymous, and responsive in the sense that the outcome reacts
to a unanimous move of the votes of all agents in the same direction; moreover, the
single participant is always one of the ‘extremist’ voters, i.e. either one with the lowest
or one with the highest peak. While this uncovers a strong tension between strategy-
proofness and participation for all deterministic voting rules on the single-peaked
domain (just as in the case of an unrestricted domain), there are simple probabilistic
and strategy-proof voting rules that induce full participation in equilibrium.
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1 Introduction

The celebrated Gibbard-Satterthwaite Theorem (Gibbard 1973; Satterthwaite 1975)
states that, under very general circumstances, every strategy-proof social choice func-
tion on an unrestricted preference domain is dictatorial. In particular, if voting comes
at some cost all voters except one will prefer not to participate in the election process.
One interpretation of the Gibbard-Satterthwaite Theorem is thus that two fundamental
incentive properties are incompatible on an unrestricted domain: strategy-proofness,
i.e. the incentive to reveal preferences truthfully, and participation, i.e. the incentive
to invest the cost of casting one’s vote.

In this paper, we show that a similar conclusion holds if all voters’ preferences
are single-peaked, which is one of the paradigmatic cases in which there exist non-
dictatorial and strategy-proof voting rules (Black 1948; Moulin 1980). Concretely, the
following is our main result (Theorem 1 in Section 3). Suppose that a group of agents
collectively decides on the level of a one-dimensional variable and that all agents
have single-peaked preferences over that level. Also assume that each agent prefers
not to participate whenever such unilateral abstention does not change the outcome
of the election. Moreover, suppose that the voting rule employed is strategy-proof,
anonymous and responsive in the sense that the outcome reacts to any unanimous shift
of all peaks in one direction. Then, there exists a unique equilibrium in which every
participant uses her (weakly) dominant strategy; in this equilibrium there is a single
participant which is either the agent with the lowest peak, or the agent with the highest
peak.1

Our analysis brings together two different strands of the literature. On the one hand,
we rely on Moulin’s path-breaking characterization of all strategy-proof social choice
functions on the single-peaked domain as the generalized medians, i.e. medians with
a set of ‘phantom voters’ (Moulin 1980); on the other hand, we employ a version of
the pivotal voter model (Downs 1957; Palfrey and Rosenthal 1983) which posits that
rational agents will engage in a voting procedure if and only if the expected benefit of
doing so exceeds its costs. The main departure from the bulk of the literature on the
pivotal voter model is that we assume a one-dimensional space of alternatives with
single-peaked preferences in a complete information environment. Our model thus
applies to decisions in small committees rather than to large elections.

In our setting agents take two decisions: whether or not to participate in the voting
procedure, and if so, which vote to cast. We consider two versions of this general
set-up: a sequential model and a simultaneous model. The sequential model has two
stages: in the first stage agents simultaneously decide whether or not to participate in
a committee, and in the second stage a simultaneous vote is cast by the committee
members on the level of a one-dimensional variable. In the simultaneous model, the
participation and voting decisions are made simultaneously by all agents. In either
model, we assume that agents incur positive cost if and only if they in fact cast a vote.
We shall see that while the two models may lead to different predictions in general,
for our main result the timing of decisions is in fact not relevant.

1 More precisely, the equilibrium outcome is unique since different agents could have the same peaks in
which case there is a coordination issue of who among them votes and who abstains.
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As a simple example, think of a faculty meeting on a Friday afternoon at which the
yearly expenditure shares, say, for research and teaching are to be determined (given
a fixed budget). Each faculty member deliberates about whether or not to participate
in the voting procedure. In the sequential model, one can think of the participation
decision as being taken before the actual meeting. In the simultaneous model, there
could be an announcement during themeeting that a votewould be taken after extensive
discussion, and committeemembersmay decide to leave early thereby abstaining from
the collective decision. The assumption of complete information is strong but does not
seem to be unrealistic in such a scenario; in fact, since all strategy-proof voting rules
(for a fixed set of participants) only depend on the top alternative of each voter, it is
sufficient to know each colleagues’ top choice.

The conclusion of our main result—that under strategy-proofness, anonymity and
responsiveness a single individual casts her vote in equilibrium—stands in stark con-
trast to other voting rules that are not strategy-proof. For instance, if the collective
outcome is determined to be the average of the individual votes (Renault and Trannoy
2005) on a cardinal scale, every voter can shift the outcome by a positive amount
and full participation is indeed an equilibrium if participation costs are sufficiently
small. But while anonymous and responsive, taking the average vote does evidently
not define a strategy-proof rule.

The intuition behind the single participation equilibrium under strategy-proofness
can be explained by looking at the case of two voters. Strategy-proofness and the
responsiveness condition jointly imply that in the case of two voters the outcome must
coincide with one of the two voters’ top alternative; anonymity implies that it cannot
depend on the identity of the voter, hence it must be either the lower or the higher
top alternative. In the first case, if (one of) the agent(s) with the lowest top alternative
participates, no other agent has an incentive to participate, since no other agent can
change the result by unilateral participation; in the latter case, the same holds if (one
of) the agent(s) with the highest top alternative participates. The proof that there are no
other equilibria is more involved (see Section 3). Ultimately then, our ‘impossibility’
result can be traced back to the fact that strategy-proofness necessitates the use of an
asymmetric tie-breaking rule in the case of an even number of participants; and the
counterfactual situation of an even number of participants is of course also relevant for
equilibrium even if the potential and actual number of voters is odd. This observation
suggests that the incompatibility of strategy-proofness and participation may vanish
under a probabilistic and symmetric tie-breaking rule in the case of an even number
of participants, and we show by means of a simple example that this is indeed true.

A full-fledged analysis of the probabilistic case is beyond the scope of the present
paper. But we investigate if the standard symmetric median, i.e. the average of the
two middle tops in case of an even number of voters, can solve the participation
problem in the deterministic case at the expense of loosing the strategy-proofness
property for an even number of voters. We answer this in the negative and provide a
complete characterization of the subgame perfect equilibria of the sequential game if
participation costs are sufficiently small but positive (Theorem 2 in Section 4). Clearly,
the very definition of the symmetric median requires a cardinal scale. Taking without
much loss of generality the unit interval as the outcome space, we show that there are
only two types of equilibria: the single participation of the voter whose peak is closest
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to the midpoint 0.5, or (almost) full participation with the fixed outcome 0.5. In the
latter case, if there is a voter with top alternative at 0.5 that voter will be the only one
to abstain.

Relation to the Literature

The question of participation when voting is costly has been extensively discussed
in the literature ever since the first formal formulation of the pivotal voter model by
Palfrey and Rosenthal (1983). The vast majority of the contributions in the literature
studies the case of majority voting among two alternatives. Under complete informa-
tion, a key issue is to analyze the equilibrium consequences of the fact that a large
fraction of voters shares the same preferences. The resulting coordination problem is
typically addressed by an analysis of mixed equilibria, see Nöldeke and Peña (2016);
Mavridis and Serena (2018) for recent contributions. The focus of the present paper
is different due to the assumption of a one-dimensional outcome space with single-
peaked preferences. For instance, note that in the case of a rich (e.g. continuous) space
of alternatives, different individuals generically have different preference peaks.

The two contributions in the literature closest to ours are Osborne et al. (2000) and
Cohensius et al. (2017). These authors also study costly voting in committees in a com-
plete information environment with individuals that have single-peaked preferences.
Osborne et al. (2000) assume that agents vote truthfully and show that ‘extreme’ voters
are more likely to participate than ‘moderate’ voters. However, in the relevant results
of Osborne et al. (2000) the outcomewith an even number of participants is determined
by the symmetric median in which case sincere voting does not generally constitute
an equilibrium. While our main result does not contradict the intuition put forward
by Osborne et al. (2000), it qualifies it in an important way. Under the responsiveness
condition, the single participant is indeed always an ‘extreme’ voter: either the agent
with the lowest or the agent with the highest top alternative. But as explained above,
the rationale is not that the moderate voters cancel each other out. More importantly,
without the responsiveness condition, equilibria can occur in which only ‘moderate’
agents participate, see Section 3.1 below.

In independent work, Cohensius et al. (2017) observe that participation by a single
voter is the only equilibrium in the special case of the ‘lower median’ voting rule
(and by symmetry also for the ‘upper median’ rule), but they do not offer a general
impossibility result for the class of all strategy-proof voting rules akin to the main
result provided here.

2 Themodel

We denote the set of agents by N = {1, 2, ..., n}, and by (X ,>) a linearly ordered
set of alternatives; moreover, let x := inf X , x := sup X , and X := X ∪ {x, x}. Our
lead example will be the case in which X is the unit interval [0, 1] ⊆ R; in this case,
a possible interpretation is that each 0 ≤ x ≤ 1 represents the expenditure share for
a public project. But the analysis is completely general; for instance, the elements of
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X could represent abstract positions on a discrete political spectrum. Each agent i
is characterized by a single-peaked (ordinal) preference relation �i over X . Single-
peakedness means that each agent i has a unique top alternative pi ∈ X (the ‘peak’)
such that, for all x, y ∈ X , we have x �i y whenever y < x ≤ pi or pi ≤ x < y.2

Agents decide whether or not to participate in a committee that decides on the level
of the ‘one-dimensional’ variable x ∈ X by a voting procedure. Each agent i faces
a positive participation cost ci > 0. This cost may vary from agent to agent, it may
depend on the finally chosen outcome, and even on the set of the other participating
agents; in fact, all what matters for our purpose is that these costs are strictly positive
for all agents. In particular, we could allow the cost to be private information. For
each possible non-empty set K ⊆ N of participants, there is a social choice function
FK (�1, ....,�#K ) ∈ X that maps every profile of preferences of the agents in K to
an outcome in X . The collection F = {FK }∅�=K⊆N of these social choice functions is
referred to as a voting rule. The employed voting rule is common knowledge among
the agents.

In our model with endogenous participation, we need to specify agents’ preferences
̂�i over pairs (x, K ) of outcomes and sets of participants K who actually cast a vote.
We denote by x0 /∈ X the (exogenously determined) outcome if nobody participates
in the voting process, and will make the following assumptions. For all i ∈ N ,

(i) the outcome x0 is strictly worse than the most preferred outcome with single own
participation, i.e.

(pi , {i}) �̂i (x0,∅),

(ii) for every fixed set K �= ∅ the preference over outcomes is given by �i , i.e.

(x, K ) ̂�i (y, K ) ⇐⇒ x �i y,

(iii) for every fixed x ∈ X , non-participation is strictly preferred to participation (and
indifference with respect to the composition of the set of participants otherwise),
i.e. for all K , K ′ �= ∅,

{i /∈ K or i ∈ K ′} �⇒ (x, K ) ̂�i (x, K ′),
{i /∈ K and i ∈ K ′} �⇒ (x, K ) �̂i (x, K ′).

Condition (i) is very weak and says that voting costs are not prohibitively high so
that agents have a general incentive to participate. Except for this ‘non-triviality’
condition, no assumptions are made about how agents compare an outcome without
participation to a strictly better outcome with own participation; indeed, such trade-
offs would determine the particular magnitude of participation cost which plays no
role in our present analysis. Condition (ii) simply says that the preference for outcomes
does not depend on the set of voters who determine it, and condition (iii) says that

2 Note that we do not need to make any assumptions about the comparisons of alternatives on different
sides of the peak; in fact, the preference relation may even be incomplete and refrain from making such
comparisons.

123



136 M. Müller, C. Puppe

agents would rather abstain provided that they are not pivotal. The latter condition has
been studied by Desmedt and Elkind (2010); Elkind et al. (2015) under the name of
lazy bias.3

We will consider two variants of the model, a simultaneous and a sequential ver-
sion. In the sequential version, agents first simultaneously decide whether or not to
participate and vote simultaneously in a second stage after having observed who the
other participants are. By contrast, in the simultaneous version, both the voting and
participation decisions are made simultaneously. While the equilibria in general dif-
fer in the two models (see the discussion section below), the main conclusion of the
present paper is robust with respect to the timing of decision.

In our main result, Theorem 1 in Section 3 below, we will require the voting rule to
be anonymous and strategy-proof. The anonymity condition has two components: first,
for each given set of participants K , the outcome under FK is invariant with respect
to permutations of the agents in K ; secondly, the employed social choice function FK

should depend only on the number of agents in K . Using the latter condition, we can
write Fk for all social choice functions FK with #K = k, and describe the voting
rule F = {Fk}1≤k≤n in terms of n social choice functions, one for each number of
participants.

Strategy-proofness requires that truth-telling be a (weakly) dominant strategy for
all participating agents: for all K , i ∈ K , �i , �′

i , �K−i ,

Fk(�i ,�K−i ) �i Fk(�′
i ,�K−i ),

where k = #K and �K−i denotes any profile of preferences for the agents in K other
than i .

By awell-known result ofMoulin (1980), the conditions of anonymity and strategy-
proofness jointly imply that all social choice functions Fk are ‘generalized medians’
with k + 1 so-called ‘phantom voters.’ Specifically, for each k ∈ {2, ..., n}, Fk only
depends on the individual peaks, i.e. for some function f k : Xk → X

Fk(�1, ....,�k) = f k(p1, ..., pk),

and there exist fixed values αk
1, α

k
2, ..., α

k
k+1 ∈ X such that

f k(p1, ..., pk) = med{p1, ..., pk, αk
1, α

k
2, ..., α

k
k+1}, (1)

where med denotes the usual median operator and the pi are the peaks of �i for each
participating agent i ; note that there are 2k + 1, i.e. an odd number, of values in (1).
An important example is the standard median rule with an odd number of participants;
in this case, half of the phantom voters are placed at x and half are placed at x .4 We
emphasize that strategy-proofness in the sense considered in this paper is a condition

3 These studies find that in the context of plurality voting, equilibria with lazy-biased voters often (but not
always) involve participation of a single individual, see also Meir (2018) for a recent survey.
4 See Jennings et al. (2020) for alternative characterizations of the class of all strategy-proof social choice
functions on the domain of single-peaked preferences on an arbitrary linearly ordered set.
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imposed on a social choice function for any fixed set of participants; it does not refer
to a property of the overall mechanism (which includes the participation decision).

We will say that Fk , respectively f k , satisfies responsiveness if, for all p1, ..., pk ,
p′
1, ..., p

′
k ,

p′
i > pi for all i ∈ K ⇒ f k(p′

1, ..., p
′
k) �= f k(p1, ..., pk).

Responsiveness can be viewed as a condition of ‘local non-imposition:’ if every agent
desires a strictly higher (lower) outcome, the chosen alternative should move at least
minimally.5 While arguably a weak and plausible condition, responsiveness does
restrict the set of admissible voting rules, as follows.

Observation. The generalized median functions f k in (1) satisfy responsiveness if
and only if all ‘phantom voters’ are either at x or at x ,i.e. for all j = 1, ..., k + 1,
αk
j ∈ {x, x}, and neither are all phantom voters located at xnor all at x . In particular,

in this case the generalized median always coincides with one of the peaks of the
agents and the corresponding voting rule is efficient.

Proof It is easily verified that the stated condition is sufficient for responsiveness. To
show its necessity suppose that, for some k and j0 ∈ {1, ..., k+1}, onehas x < αk

j0
< x .

(Note that the statement evidently holds in the case of two alternatives.) Suppose that
there are � ∈ {1, ..., k + 1} phantom voters with exactly the same location at αk

j0
, and

h ∈ {0, ..., k} phantom voters with a location strictly smaller than αk
j0
. Consider a

profile (p1, ..., pk) that puts the peaks of k − h voters strictly below αk
j0
and the peaks

of h voters at αk
j0
. Then, exactly k elements of {p1, ..., pk, αk

1, ..., α
k
k+1} are strictly

below αk
j0
, and hence med{p1, ..., pk, αk

1, ..., α
k
k+1} = αk

j0
. If we now move the peaks

of the k − h voters strictly below αk
j0
to αk

j0
, and the peaks of the h voters at αk

j0
strictly above αk

j0
, we obtain a profile (p′

1, ..., p
′
n) at which exactly h ≤ k elements of

{p′
1, ..., p

′
k, α

k
1, ..., α

k
k+1} are strictly below αk

j0
, and k + � ≥ k + 1 are below or equal

to αk
j0
; hence med{p′

1, ..., p
′
k, α

k
1, ..., α

k
k+1} = αk

j0
in violation of responsiveness. ��

It is well-known (Moulin 1980) that under efficiency, the generalized median func-
tions f k in (1) canbe assumed to have k−1 insteadof k+1phantomvoters.Generalized
medians for which all k − 1 phantom voters are at one of the two extremes are also
known as the order statistics. Specifically, the choice of the i-th lowest value of the
{p1, ..., pk} is referred to as the i-th order statistic, and corresponds to the generalized
median in which k − i phantom voters are at x and i − 1 phantom voters are at x , see
Caragiannis et al. (2016) for further discussion.

If all social choice functions Fk are strategy-proof, voting truthfully is the unique
(weakly) dominant strategy for every participant in the simultaneous game, and in
every second-stage voting subgame of the sequential game. We will therefore assume
that all participants who actually cast a vote submit their true peak. This assumption

5 Intuitively, it should clearly move in the same direction; in the present context, this slightly stronger
requirement is redundant because it follows from responsiveness plus strategy-proofness.
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138 M. Müller, C. Puppe

could be further justified by an appeal to equilibrium refinement concepts such as
perfectness (Selten 1975), or strong equilibrium (Aumann 1959).6

3 Main result

The following is our main result. Let us call a Nash equilibrium in which each partic-
ipant chooses her unique (weakly) dominant strategy, a truthful Nash equilibrium.

Theorem 1 Suppose that the voting rule is anonymous, strategy-proof and responsive,
and that all individuals’ voting costs satisfy conditions (i)–(iii) above.

a) In every truthful Nash equilibrium of the simultaneous game exactly one agent
participates.

b) In every truthful subgame perfect Nash equilibrium of the sequential game exactly
one agent participates.

In either model, the participating agent is either (one of) the individual(s) with the
highest peak, or (one of) the individual(s) with the lowest peak.

Proof The assumptions on the voting rule imply that, for all non-empty sets K ⊆ N of
participating agents, the outcome is determined by a generalized median with #K − 1
phantom voters. Moreover, by anonymity, the set of phantom voters only depends
on k = #K . Observe in particular that all social choice functions functions f k are
efficient, i.e. for all p1, ..., pk , we have

min
j=1,...,k

p j ≤ f k(p1, ..., pk) ≤ max
j=1,...,k

p j . (2)

First, we show that there exists a truthful Nash equilibrium with a single participant
in the simultaneous game. Assumewithout loss of generality that p1 ≤ p2 ≤ ... ≤ pn .
For #K = 2, there is one phantom voter α2

1, and by the Observation in the previous
section, we have either α2

1 = x , or α2
1 = x . Suppose the former, then the single

participation of any agent with peak p1 (who reports truthfully) constitutes a truthful
Nash equilibrium. Indeed, the outcome then is p1 which by assumption is preferred
by any such agent to x0 (the outcome if nobody participates). Every other agent has
a (weakly) higher peak and can thus not unilaterally change the outcome because
α2
1 = x ; hence, by the participation condition (iii), each other agent prefers not to

participate. The argument is completely symmetric if α2
1 = x , in which case single

participation of any agent with peak pn (who reports truthfully) constitutes a truthful
Nash equilibrium. Clearly, single participation of an agent j with p1 < p j < pn
cannot be a truthful Nash equilibrium since either agent 1 or agent n would have an
incentive to participate. Note that the same argument shows that single participation

6 In the implementation literature, there has been some discussion on the fact that the median rule (as
well as generalized medians) may have other Nash equilibria, in which (some) agents do not follow their
unique weakly dominant strategy; see, e.g., Yamamura and Kawasaki (2013). For instance, if k ≥ 3 and all
agents cast exactly the same (non-truthful) vote nobody is pivotal, hence any such unanimous vote profile
constitutes a Nash equilibrium. However, such equilibria are evidently neither robust against trembles, nor
against deviations by coalitions of agents.
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of either one of the agents with the lowest peak, or single participation of one of the
agents with the highest peak constitutes a truthful subgame perfect Nash equilibrium
in the sequential game. (Of course, the complete strategy in the sequential game
also specifies, for each non-participant, truth-telling in all counterfactual participation
situations.)

It remains to show that there are no other truthful equilibria. By contradiction,
supposewe have a truthful equilibrium inwhich the set of participants is K ⊆ N where
#K = k > 1. By theObservation above, there exists j ∈ K such that f k(p1, ..., pk) =
p j . First assume that j = 1, i.e. that one of the voters with the lowest peak gets her
most preferred alternative. Then, voter k (the one with the highest peak among the
participants) has an incentive to abstain; indeed, by the efficiency of f k−1 the outcome
without voter k cannot be smaller than p1. By a similar argument, one can show that
j �= k. Note, that if p1 = pk every participant would prefer to (unilaterally) abstain
as the outcome would remain unchanged.

Thus, we must have that 1 < j < k for the individual j who receives her peak p j .
In this case, the assumed optimality of participation by agent 1 implies that

f k−1(p2, ..., pk) = med{p2, ..., pk, αk−1
1 , ..., αk−1

k−2} > p j , (3)

since otherwise agent 1 would prefer not to participate by the participation condition
(iii). Similarly, the assumed participation of agent k implies that

f k−1(p1, ..., pk−1) = med{p1, ..., pk−1, α
k−1
1 , ..., αk−1

k−2} < p j . (4)

Without agent 1 there are at least j − 1 peaks that are below or equal to p j . By (3),
the generalized median f k−1(p2, ..., pk) with k − 1 participants (i.e. agents 2 to k) is
strictly above p j ; this implies that at most (k − 1 − j) of the k − 2 phantom voters
{αk−1

1 , ..., αk−1
k−2} can be located at x . Similarly, without agent k there are at least k− j

peaks above or equal to p j . By (4), the generalized median f k−1(p1, ..., pk−1) with
k − 1 participants (i.e. agents 1 to k − 1) is strictly below p j ; this implies that at
most j − 2 of the k − 2 phantom voters {αk−1

1 , ..., αk−1
k−2} can be located at x . By the

responsiveness, all of the k − 2 phantom voters have to be located either at x or at x .
But we have just shown that under conditions (3) and (4) this is not possible since

(k − 1 − j) + ( j − 2) = k − 3 < k − 2.

Thus, there can be no Nash, or subgame-perfect Nash equilibrium in which more than
one agent participates and all participants vote truthfully. This completes the proof of
Theorem 1. ��

3.1 Discussion

In order to assess the scope and the robustness of Theorem 1, we now consider each of
its assumptions. We explain why they are necessary for the conclusion and we discuss
what happens if they were dropped.
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Truthful voting

The requirement that all participants vote according to their (weakly) dominant strategy
(i.e. truthfully) can neither be dropped in the simultaneous nor in the sequential game.
This can be demonstrated by the following two examples.

Suppose that there are three agents 1, 2, 3, and for simplicity assume that X = [0, 1].
Suppose that with three participants the two phantom voters are both located at 0,
and with two participants the single phantom voter is located at 1. Suppose that the
peaks of the three agents are distributed as follows: p1 = 0.2, p2 = 0.3 and p3 =
0.4; moreover, assume that all agents preferences are symmetrically single-peaked,
i.e. representable by the negative Euclidean distance to the peak. As can be verified, the
vote profile (i.e. the reported ‘peaks’) ( p̃1, p̃2, p̃3) = (0.2, 0.8, 0.5) constitutes a non-
truthful Nash equilibrium in the simultaneous game with full participation. Observe,
however, that this equilibrium is not stable against ‘small’ perturbations: for instance,
if agent 1 abstains with positive probability, agent 2 does not respond optimally.

Next, consider the sequential game. Again, let there be three individuals 1, 2, 3 and
two alternatives x, y ∈ X such that p1 < p2 < p3 < x < y. Suppose all three
individuals use the following strategy: choose p̃i = x if the number of participants is
k = 3, p̃i = y if the number of participants is k = 2, and p̃i = pi under single partic-
ipation. Then, full participation is a non-truthful subgame-perfect Nash equilibrium
for the rule that chooses the median of the votes if k = 3, the upper median if k = 2,
and the unique vote if k = 1. Again, this equilibrium is not stable, since deviations by
coalitions of agents can be profitable in some subgames.

Anonymity

Our anonymity condition has two components. First, it requires the voting rule not
to depend on the ‘names’ of voters for any given set of participants; secondly, it
requires that the same voting rule is employed for all subsets with the same number of
participants. Arguably, both conditions are natural in the present context. The first part
is a standard assumption in voting theory, and in fact Moulin’s characterization of all
strategy-proof rules for single-peaked preferences in terms of phantom voters needs
this assumption. In our present variable electorate context the second part also appears
to be highly plausible. Importantly, it also guarantees the existence of an equilibrium
in pure strategies (and its outcome uniqueness). We show this by means of two simple
examples, as follows.

Assume that all conditions of Theorem 1 are satisfied except the second part of
the anonymity condition, and consider the following examples with N = {1, 2, 3}.
Suppose that if the set of participants consists of agents 1 and 2, the outcome function
f {1,2} chooses the higher peak, i.e. we have α

{1,2}
1 = x for the corresponding phantom

voter; if the set of participants consists of agents 1 and 3, the outcome function f {1,3}
chooses the lower peak, i.e. α

{1,3}
1 = x for the corresponding phantom voter; and

finally, if the set of participants consists of agents 2 and 3, the outcome function f {2,3}
chooses again the higher peak, i.e. α

{2,3}
1 = x for the corresponding phantom voter.

Evidently, this specification violates the (second part of the) anonymity condition.
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Suppose that agents are ordered so that p1 < p2 < p3. For no agent single participation
is an equilibrium: if agent 1 is the single voter, agent 2 has an incentive to join; if agent 2
is the single voter, agent 3 has an incentive to join; and if 3 is the single voter, agent 1 has
an incentive to join. A situation with two participants cannot be an equilibrium either
because, by the responsiveness condition, one of the two gets her peak in which case
the other has an incentive to abstain and save the voting costs. Finally, full participation
cannot be an equilibrium either. Indeed, suppose that all agents participate; again by
the responsiveness condition, one of the agents must receive her peak. If agent 1
receives her peak, agent 2 has an incentive to abstain, because this would not change
the outcome and agent 2 would save the participation cost; similarly, if agent 2 receives
her peak, agent 3 has an incentive to abstain, and if agent 3 receives her peak, agent
1 has an incentive to abstain. Hence, in this example there is no equilibrium in pure
strategies.

Here is an example in which there are several equilibria, including one with full
participation. If all agents participate, the social choice function f {1,2,3} chooses
the standard median, in other words, the corresponding phantom voters are given
by α

{1,2,3}
1 = x and α

{1,2,3}
2 = x ; if agents 1 and 2 participate, the social choice

function f {1,2} chooses the lower peak, i.e. the corresponding phantom voter is given
by α

{1,2}
1 = x ; if agents 2 and 3 participate, the social choice function f {2,3} chooses

the higher peak, i.e. the corresponding phantom voter is given by α
{2,3}
1 = x . No

matter how we specify the outcome in the case in which the set of participants consists
of agents 1 and 3, this already implies that for sufficiently small participation costs
full participation is an equilibrium. Indeed, if all agents participate the agent with the
median peak gets her peak and has no incentive to abstain if her participation costs
are sufficiently small; for either of the other two agents, unilateral non-participation
would move the outcome further away from their respective peak, so neither of them
has an incentive to abstain as well. There also exists an additional single participation
equilibrium. Indeed, for the set of participants {1, 3} we either have α

{1,3}
1 = x or

α
{1,3}
1 = x . In the first case, single participation of the agent with the lowest peak

is an equilibrium (since none of the other two agents can unilaterally change the
outcome); in the second case, single participation of the agent with the highest peak
is an equilibrium.

Responsiveness

Above, we have justified the responsiveness condition by an appeal to a ‘local non-
imposition’ property: if all agents uniformlymove in one direction, the outcome should
not remain unchanged. We have also shown that this condition is equivalent to the
property that all phantom voters should be at the two extreme points x or x . There
may exist an even deeper justification for the responsiveness condition in purely ordinal
contexts. Indeed, if the set of alternatives is linearly ordered but in a purely ordinal
way, any specific location of a phantom voter in the interior of X seems arbitrary.
On the other hand, if cardinal information is available, say X = [0, 1] such as in the
example of the dividing a fixed budget, phantoms may be placed in the midpoint (at
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0.5), or distributed uniformly in [0, 1]; the latter specification is also known as the
‘uniform’ or ‘linear’ median, see Jennings et al. (2020). In any case, Theorem 1 fails
without the responsiveness condition. As a simple example, consider the case of an
even number of agents N = {1, 2, ..., 2m}, and suppose that the phantom voters are
located as follows: m − 1 phantom voters are at x , m − 1 phantom voters are at x ,
and one phantom voter is located in the interior, say at x with x < x < x . Also,
suppose that for any set of 2m − 1 participants the standard median is chosen as the
outcome. Consider any distribution such that m agents have their peak below x and m
agents have their peak above x . Then, if all individuals’ costs are sufficiently small,
full participation is an equilibrium. Indeed, the outcome under full participation is x ,
and for any agent unilateral abstentionmoves the outcome further away from her peak.

But even without the responsiveness condition, there often also exist profiles of
peaks such that only one single agent participates in equilibrium. Specifically, let
p1 < p2 < · · · < pN be such that (a) {αk

j }k=1,...,N
j=1,...,k+1 ∩ [p1, pN ] = ∅, i.e. all phantom

voters are either below the smallest peak or above the highest peak, and (b) for all
k = 1, ..., N , min j {αk

j } < p1 and pN < max j {αk
j }. (Note that condition (b) is implied

by efficiency of the voting rule.) Then, we obtain single participation as the unique
equilibrium by the same logic as in the proof of Theorem 1.

Strategy-proofness

The assumption of strategy-proofness (for any fixed set of participants) is essential
for the conclusion of Theorem 1. Strategy-proofness guarantees that truthful voting
is a weakly dominant strategy for every participant, and as shown above, Theorem 1
hinges on the use of that strategy. Not surprisingly then, Theorem 1 fails without the
strategy-proofness property.

To illustrate this, supposewe can use cardinal information and employ the following
symmetric version of the median rule. Let X = [0, 1], and assume that the peaks of the
participants be ordered such that p1 < p2 < · · · < pk ; for an odd number k = 2m−1
the outcome is the standardmedian pm , and for an even number k = 2m the outcome is
the midpoint between the two middle peaks (pm + pm+1)/2. This rule is not strategy-
proof, and therefore we cannot assume that the reported peaks coincide with the true
peaks.7 Consider the peak distribution p1 = 0.1, p2 = 0.45 and p3 = 0.9. Let p̃i
be the reported peak by agent i , and assume that the participation costs of the two
extreme agents 1 and 3 are small but positive. Then, the equilibrium depends, among
other things, on the magnitude of the participation cost (i.e. the precise shape of the
preferences) of the median agent. If the participation cost of agent 2 is sufficiently
small, full participation and truth-telling is an equilibrium in the simultaneous game;
on the other hand, if agent 2 prefers the outcome 0.5 without own participation to the
outcome 0.45 while participating, p̃1 = 0 and p̃3 = 1 is a (non-truthful) equilibrium.

Moreover, it is because of truthful voting in equilibrium that the conclusion of
Theorem 1 is robust with respect to the timing of decisions. Indeed, in the sequential

7 It is well-known that there exist no strategy-proof, anonymous and symmetric (‘neutral’) social choice
functions on the domain of single-peaked preferences for an even number of individuals, see Moulin (1980,
1988).

123



Strategy-proofness implies minimal... 143

model participants’ voting strategy may depend on the set of other participants which
becomes common knowledge after all agents have made their participation decision.
To illustrate this point, consider again the peak distribution p1 = 0.1, p2 = 0.45
and p3 = 0.9 and the symmetric median rule, but now assume that agents move
sequentially. In this case, full participation is no longer an equilibrium; indeed, if
agent 3 does not participate, agents 1’s and 2’s optimal votes are p̃1 = 0 and p̃2 =
0.9, respectively, with the outcome 0.45. Since this is the same outcome as under
full participation, agent 3 prefers to abstain whenever she has positive participation
costs. However, participation of agents 1 and 2 with outcome 0.45 can also not be an
equilibrium since then agent 1 has an incentive to abstain. In this example, if all agents
have sufficiently small (but strictly positive) participation cost, the unique subgame
perfect equilibrium of the sequential voting game is given by participation of agents
2 and 3 with votes p̃2 = 0 and p̃3 = 1, resulting in the outcome 0.5. A complete
characterization of the equilibria under the symmetric median rule in the sequential
model is provided in the next section under the assumption that in the second stage a
strong Nash equilibrium is played.

4 Probabilistic versus deterministic voting rules

One may interpret Theorem 1 as saying that, if voting is costly, no anonymous and
deterministic voting rule can implement the median if all participants vote according
to their unique dominant strategy. Specifically, we have the following corollary of
Theorem 1.

Corollary 1 Suppose that the number of agents is odd. There does not exist an anony-
mous and strategy-proof voting rule that yields the median peak for all distributions of
individual peaks if voting is costly and all actual participants vote according to their
unique dominant strategy.

To verify this simply note that by the remarks in Section 3.1, even without the respon-
siveness condition there always exist (generic) peak distributions for which the unique
dominant strategy equilibrium involves the single participation either of the agent with
the highest peak, or the agent with the lowest peak.8

An important implicit assumption of our analysis is thatwe require voting rules to be
deterministic. Onemay argue that this is a strong assumption; and in fact, together with
anonymity and strategy-proofness it forces an asymmetric tie-breaking rule in the case
of an even number of participants. Consider the following probabilistic voting rule: for
an odd number of participants choose themedian peak, and for an even number choose
a fair lottery that yields the two middle peaks with equal probability of 1/2. Moreover,
suppose that all voters have expected utility preferences with a single-peaked von-
Neumann-Morgenstern utility function. Then, for any fixed number of participants, it
is the unique (weakly) dominant strategy to submit one’s true preference peak as in
the deterministic case. But unlike in the deterministic case, participation and truthful

8 In independent work, Cohensius et al. (2017) have shown that participation of a single agent is the unique
equilibrium under the ‘lower median’ rule, i.e. under the rule that chooses the median if the number of
participants is odd and the lower of the two middle votes if the number of participants is even.
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reporting now always changes the outcome to one’s benefit at profiles with distinct
peaks.9 In particular, at every profile with pairwise distinct peaks full participation
with truthful reporting is an equilibrium if voting costs are sufficiently small.

A detailed analysis of costly voting in the probabilistic case is beyond the scope
of the present paper, but we note the following corollary to Theorem 1. Suppose that
we extend the class of voting rules to include all probabilistic rules, and generalize
the notions of anonymity, responsiveness and strategy-proofness in the natural way10;
then, we have:

Corollary 2 Let {Fk}1≤k≤n be a probabilistic voting rule that is anonymous, responsive
and strategy-proof. Suppose that for some h ∈ {2, ..., n}, both Fh and Fh−1 are in
fact deterministic social choice functions. If voting is costly (in the sense described in
Section 2 above), then there does not exist a truthful equilibrium with h participants.

This follows by exactly the same logic as in the proof of Theorem 1 above. By
Corollary 2, randomization must occur for sufficiently many sizes of the participant
sets in order to induce participation when costs are small but positive. For instance,
taking h = n in Corollary 2 we can deduce that full participation requires that either
Fn or Fn−1 must be non-deterministic.

If X = [0, 1], which we assume for the remainder of this section, the fair lottery
over the two middle peaks in the case of an even number of votes yields the sym-
metric median in expectation. One may wonder whether the deterministic symmetric
median11 can ‘mimic’ the randomized median rule and induce full participation (per-
haps under additional assumptions) if costs are sufficiently small. The following result
provides a complete characterization of all subgame-perfect equilibria of the sequen-
tial game if costs are sufficiently small and answers this question to the negative. Note
that in the case of an even number of participants truth-telling no longer constitutes a
dominant strategy (cf. Section 3.1 above). To avoid the discussion of an artificial mul-
tiplicity of equilibria, we assume that in the second stage a strong Nash equilibrium
is played (i.e. an equilibrium such that no subgroup of agents can profitably deviate);
for every fixed number k of participants, a strong equilibrium exists (see Appendix).
Say that a participant with peak pi �= 0.5 exhibits extreme reporting if she reports 0
if pi < 0.5 and 1 if pi > 1.

Theorem 2 Consider the symmetric median rule and assume that individuals have
sufficiently small but positive costs of participation in the sense of conditions (i), (ii)
and (iii) in Section 2 above. Then all subgame-perfect equilibria such that in the
second stage a strong Nash equilibrium is played are of the following four types:

Case 1. There exists at least one agent with peak 0.5. Then, the single participation
of one of these agents (who reports truthfully her peak 0.5) is an equilibrium.
Case 2. The peaks of all agents are on the same side of 0.5, i.e. either pi ≥ 0.5 or
pi ≤ 0.5 for all i ∈ N. Then, the single participation of (one of) the individual(s)
whose peak is closest to 0.5 (who reports truthfully) is an equilibrium.

9 We are grateful to Klaus Nehring and Martin Osborne who independently pointed this out to us.
10 For the relevant probabilistic version of strategy-proofness, see, e.g., Ehlers et al. (2002).
11 Recall that the ‘symmetric median’ selects the standard median in the case of an odd number of votes,
and the average of the two middle votes in the case of an even number of votes.
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Case 3. The number of potential voters n is even with half of them having a peak
strictly below 0.5 and half of them having a peak strictly above 0.5. Then, full
participation with extreme reporting is an equilibrium and the outcome is 0.5.
Case 4. The number of potential voters n is odd, there is an odd number of agents
(smaller than n) with peak 0.5 and the peaks of the other agents are evenly split
to both sides of 0.5. Then, it is an equilibrium that all agents with peak different
from 0.5 participate with extreme reporting; the resulting outcome is 0.5.

In all other cases, there does not exist a pure strategy equilibrium such that in the
second stage a strong Nash equilibrium is played.

(Proof in Appendix)
Note that there are cases inwhich the equilibrium outcome of the symmetricmedian

rule is very far from the median peak. For instance, in Case 2 the median peak could
be close to 0 while the equilibrium outcome is the highest peak which could be even
at 0.5. The intuition behind this equilibrium is as follows. Suppose that only the
agent with the highest peak participates and votes truthfully; clearly, this gives the
best outcome for that agent (given her participation). If any of the remaining agents
decides to participate, the voter with the highest peak can adjust her voting behavior
in the sequential model and receive her peak again by optimally responding to the
vote of the other participant. Thus, the outcome does not change hence none of the
remaining agents has an incentive to participate. In Case 3, the outcome is always 0.5
while the symmetric median (i.e. the midpoint between the two middle peaks) could
be arbitrarily close to 0.25 (resp. 0.75).

Finally, let us compare the findings of Theorem 2 with the intuition put forward by
Osborne et al. (2000) that more extreme voters are more likely to participate. Cases 1,
3 and 4 do not confirm this intuition: in Case 1 the single participant is not determined
by her being ‘moderate’ or ‘extreme,’ but simply by the fact that her peak is at 0.5; in
Cases 3 and 4 we have (almost) full participation (albeit with extreme reporting). On
the other hand, Case 2 comes closer to the intuition since the single participant is either
the voter with the left-most or the right-most peak; however, within the spectrum of
conceivable positions, this is also the voter with the most ‘moderate’ view among all
potential voters since, by assumption, all of them are on the same side of 0.5.

5 Conclusion

Our main result reveals a strong tension between two kinds of incentive properties if
preferences are single-peaked and voting is costly: participation and truthful reporting.
If a voting rule is anonymous, strategy-proof and responsive the only equilibrium in
which all participants follow their unique dominant strategy consists of the single
participation of either one of the agents with the highest, or one of the agents with
the lowest peak. In particular, there is no anonymous and strategy-proof deterministic
voting rule that yields the median peak if participants vote according to their unique
dominant strategy. While in this result the need for a tie-breaking rule in the case of
an even number of actual participants plays an important role, it is remarkable that the
result holds for any number of potential voters.
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A possible way out of the problem is to consider probabilistic rules, and indeed we
have shown bymeans of example that a simple and natural strategy-proof probabilistic
rule implements the median with full participation if voting costs are sufficiently
small. A full fledged analysis of probabilistic rules in the context of costly voting in
committees appears to be a worthwhile subject for future work.
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Appendix: Proof of Theorem 2

We split the proof of Theorem 2 in two parts. Proposition 1 deals with Cases 1 and 2,
while Proposition 2 proves the claim for Cases 3 and 4.

The following lemma ensures that in all subgames on the second stage of the
sequential voting game there exists a strong Nash equilibrium and additionally, that if
several strong Nash equilibria exist, they necessarily result in the same outcome.

Lemma 1 Consider the symmetric median rule with a fixed number of participants k.
There always exists a strong Nash equilibrium. Moreover,

• if k is odd, the outcome is the median of the peaks in all strong Nash equilibria.
• if k is even, the outcome is the median of {p k

2
, 0.5, p k

2+1} in all strong Nash

equilibria, given that the peaks p1, ..., pk are ordered.

Proof Let k be odd. Thus, the symmetric median rule coincides with the median
rule which is well-known to be strategy-proof. Hence, there exists a strong Nash
equilibrium, and in all strong equilibria the outcome is the median of the peaks of the
participants.

Next, let k be even.
Case 1: p k

2
< 0.5 < p k

2+1.
In this case, it is easily verified that there is a unique strong Nash equilibrium: the k/2
agents with peak lower than 0.5 vote for 0, while the k/2 agents with peak larger than
0.5 vote for 1, resulting in the outcome 0.5.
Case 2: p k

2
≤ p k

2+1 ≤ 0.5.
In this case strong Nash equilibrium is not unique (unless p k

2+1 = 0.5) but all
strong equilibria in fact result in the same outcome. If p k

2
< p k

2+1, then in all strong

equilibria the k/2 agents with the lowest peaks vote for 0, agent k
2 + 1 votes for

2 · p k
2+1 (≤ 1), and all other agents submit a vote between 2 · p k

2+1 and 1, resulting in
the outcome p k

2+1. If p k
2

= p k
2+1, then there exist at least two individuals with peak
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p k
2+1. In this case there exist further strong equilibria in which all those individuals

coordinate their votes such that the outcome corresponds to their common peak p k
2+1.

Case 3: 0.5 ≤ p k
2

≤ p k
2+1.

Analogously to Case 2, in all strong equilibria the k/2 individuals with the highest
peaks vote for 1, individual k/2 votes for 2 · p k

2
− 1 (≥ 0), and all other individuals

submit a vote between 0 and 2 · p k
2

− 1 resulting in the outcome p k
2
. Again, there

might exist further equilibria, but in all of those the outcome is identical to the case
described here. ��

As the symmetric median rule differentiates between odd and even number of
participants, so do we in our equilibrium analysis, starting with an odd number of
participants.

Lemma 2 Consider the symmetric median rule. There are no subgame-perfect equi-
libria in which a strong Nash equilibrium is played in the second stage with an odd
number of participants greater than 1.

Proof By contradiction, let k > 1 be the number of participants and let k be odd.
Then, in every (strong) Nash equilibrium, the median participant i = k+1

2 determines
the outcome by truthfully revealing her peak p k+1

2
.

Case 1: p k+1
2

= 0.5.

Then, there are as many participants (at least k+1
2 ) with a peak at or below 0.5 than

there are participants with a peak at or above 0.5. Hence, if agent k+1
2 abstains, the

outcome will be the median of p k−1
2
, 0.5 and p k+3

2
by Lemma 1, that is the outcome

will be 0.5. Thus, since the outcome would not change, agent k+1
2 has an incentive to

abstain.
Case 2: p k+1

2
< 0.5.

If an agent i > k+1
2 (i.e. an agent with peak at or above the outcome) abstains,

the outcome becomes the median of p k−1
2
, 0.5 and p k+1

2
by Lemma 1. But since

p k−1
2

≤ p k+1
2

< 0.5, this means that the outcome does not change; hence, agent i will
rather abstain.
Case 3: p k+1

2
> 0.5.

This case is symmetric to Case 2. ��
With the help of Lemma 2, we can characterize all equilibria with an odd number

of participants.

Proposition 1 Consider the symmetric median rule. There exists a single participation
equilibrium (with a strongNash equilibrium played in the second stage) for all positive
participation costs if and only if one of the following two conditions holds:

1. There exists at least one individual j ∈ N with peak p j = 0.5.
2. The peaks of all individuals are on the same side of 0.5, i.e. either pi ≥ 0.5 for all

i ∈ N or pi ≤ 0.5 for all i ∈ N.

In Case 1 the single participant is (one of) the individual(s) with peak p j = 0.5. In
Case 2 the single participant is an individual whose peak is the closest to 0.5.
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Proof Case 1: It is easy to see that the existence of an individual j with peak p j =
0.5 leads to a single participation equilibrium with this individual being the single
participant. If j is the single participant, the outcome is p j = 0.5. Whenever one
individual joins, individual j will adapt her vote such that the outcome remains 0.5.
Hence, no individual (apart from j) has an incentive to participate. Moreover, there is
no other single participant equilibrium with an individual with a peak different from
0.5 for all positive participation costs since individual j could move the outcome to
0.5 by joining which is profitable for her for sufficiently small participation costs. Note
that if there are several individuals with peak 0.5, then obviously single-participation
of any one of them is an equilibrium.

Case 2: Assume that all peaks are on the same side of 0.5, w.l.o.g. assume pi ≥ 0.5
for all i ∈ N . Then by a similar argument one can show that there is only one type
of a single participation equilibrium in which individual 1 (or another individual with
the same peak as individual 1) is the only participant. As before, if another individual
decides to join her, she can adapt her vote such that the outcome doesn’t change. Thus,
no individual has an incentive to join. Moreover, individual 1 has an incentive to join
given that there is a single participantwith a different peak as she canmove the outcome
to her peak which again is profitable for sufficiently small costs of participation. The
case of all peaks below 0.5 can be dealt with by replacing individual 1 by individual
n (and individuals with the same peak as individual n, respectively), who in this case
is the individual with peak closest to 0.5.

It remains to show that in all other cases there exists no single participation equilib-
rium for all positive participation costs. As neither Case 1 nor Case 2 apply, there is no
individual with a peak of 0.5 and given ordered peaks we have p1 < 0.5 < pn , i.e. at
least one individual with a peak strictly below 0.5 and at least one individual with a
peak strictly above 0.5. Assume that there is a single participation equilibrium for all
positive participation costs with an individual with peak below 0.5. Then individual n
has an incentive to join, as she could move the outcome to 0.5 by participating, which
is profitable for sufficiently small participation costs. Analogously, if there were a sin-
gle participation equilibrium with an individual with peak above 0.5, then individual
1 has an incentive to join for sufficiently small costs of participation. Hence, there
exists no single participation equilibrium for all positive participation costs if neither
Case 1 nor Case 2 applies. ��

One can easily see that if there exists a single-participation equilibrium for some
participation cost, then this equilibrium remains an equilibrium if participation costs
increase. Even with the lower costs of participation all non-participants preferred to
abstain and the single-participant will never want to abstain. Thus, we obtain that
there are no other single-participation equilibria for small but strictly positive costs of
participation, than the ones identified in Proposition 1.

We now turn to the analysis of an even number of participants, startingwith a lemma
stating that in a strong Nash equilibrium with a fixed even number of participants the
outcome is 0.5. Moreover the peaks of the participants need to differ from 0.5 and
need to be evenly distributed to both sides of 0.5.

Lemma 3 Consider an equilibrium of the sequential participation game under the
symmetric median rule with an even number of participants. Given that in the second
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stage participants play a strong Nash equilibrium, the outcome is 0.5. Moreover, in
all such equilibria half of the participants have a peak strictly above and half of the
participants have a peak strictly below 0.5.

Proof Assume, byway of contradiction, that there exists an equilibrium of the required
sort with an even number of participants k and an outcome that is different from 0.5.
We will show that this is not possible. By Lemma 1, the outcome is the median of
p k

2
, 0.5 and p k

2+1. As the outcome is assumed to be different from 0.5, we must have
either p k

2
≤ p k

2+1 < 0.5 or 0.5 < p k
2

≤ p k
2+1.

Case 1: p k
2

≤ p k
2+1 < 0.5.

In this case, Lemma 1 implies that the outcome is p k
2+1. If an agent i < k

2 +1 (i.e. with

a peak at or below p k
2+1) abstains, then there are as many participants (at least k

2 + 1)
with a peak at or below p k

2+1 as there are participants with a peak above p k
2+1. Hence,

j = k
2 + 1 is the median participant and the outcome is p k

2+1. Since the outcome is
unchanged, agent i has an incentive to abstain whenever her participation costs are
positive.
Case 2: 0.5 < p k

2
≤ p k

2+1.

By a completely symmetric argument, one shows that in this case every agent i > k
2

(i.e. with a peak at or above p n
2
) has an incentive to abstain since this would again not

change the outcome.
Hence, we have shown that the outcome in equilibrium is 0.5. This implies directly

that the number of participants whose peak is below 0.5 needs to be same as the number
of those participants with a peak above 0.5. Furthermore, there cannot be individuals
with peak 0.5. Otherwise, some individual will find it profitable to abstain since the
outcome will not change as 0.5 will be the median vote after the abstention. ��

With the result of Lemma 3, we obtain an equilibrium characterization result for
an even number of participants. We find full participation equilibria when the number
of individuals is even, and equilibria in which all but those individuals with peak at
0.5 participate, when the number of individuals is odd. We say that a participant with
peak pi �= 0.5 exhibits extreme reporting if she reports 0 if pi < 0.5 and 1 if pi > 1.
In both types of equilibria we find that all participants exhibit extreme reporting.

Proposition 2 Consider the symmetric median rule. The only subgame-perfect equi-
libria such that a strong Nash equilibrium is played in the second stage with an even
number of participants for small but positive participation costs are of one of the
following types:

• The number of potential voters n is even with half of them having a peak strictly
below 0.5 and half of them a peak strictly above 0.5. Then, full participation with
extreme reporting is an equilibrium and the outcome is 0.5.

• The number of potential voters n is odd and there exists a set M ⊂ N of individuals
with #M = m such that m is odd, m < n, p j = 0.5 exactly for all j ∈ M, and the
peaks of the other n −m individuals are evenly split on both sides of 0.5. Then, it
is an equilibrium that exactly the individuals in N \ M participate with extreme
reporting; the resulting outcome is 0.5.
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In all other cases there does not exist an equilibrium of the specified form (with an
even number of participants).

Proof Let the peaks p1, . . . , pn be ordered. Independently of the number of individu-
als, we always have #{i ∈ N : pi < 0.5} = #{i ∈ N : pi > 0.5}, which by Lemma 2
and Lemma 3 is a necessary condition for the existence of an equilibrium with more
than one participant.
Case 1: n is even.
By Lemma 3 we obtain that the outcome if all individuals participate is 0.5. If an
individual i with peak below0.5 abstains, the outcome shifts to p(n/2)+1 which isworse
for individual i for sufficiently small participation costs. Similarly, if an individual i ′
with peak above 0.5 abstains, the outcome changes to pn/2 which again is worse for
individual i ′ for sufficiently small participation costs. Hence full participation is an
equilibrium given this distribution of peaks.
Case 2: n is odd.
By Lemma 3 we obtain that the outcome if exactly the individuals in N \M participate
is 0.5. Evidently no participant has an incentive to abstain for small but positive
participation costs. As the outcome corresponds already to their common peak, there
is no incentive for individuals inM to participate, hence this constitutes an equilibrium.

It remains to show that the existence of these types of equilibria implies the even
distribution of the peaks required in the proposition. Assume that there exists an
equilibrium with full participation if n is even, and with an odd number of abstentions
(not exceeding the number of individuals) if n is odd. Since the number of participants
is even in both cases, we know by Lemma 3 that there need to be as many individuals
with a peak strictly below 0.5 as there are with peak strictly above 0.5. If n is odd,
there exists at least one individual who did not participate and even for small costs has
no incentive to participate. This implies that the peak of all of those individuals have
to correspond to the outcome, which is 0.5.

It finally remains to show that there are no other equilibria with an even number of
participants, i.e. no other equilibria in which an individual in N \ M abstains. As we
have an even number of participants, we know by Lemma 3 that the outcome is 0.5.
If an individual j ∈ N \ M abstained, then she could shift the outcome closer to her
peak by participating. For (sufficiently) small participation costs this is profitable for
her. Hence this cannot constitute an equilibrium. ��

Theorem 2 follows from combining Propositions 1 and 2. We conclude with two
examples. The first demonstrates that there could be several equilibria of the sort
required in Theorem 2 in the sequential model, the second shows that there could exist
no equilibria in pure strategies.

Example 1 Let p1 = 0.1, p2 = 0.5 and p3 = 0.7. Then there exists an equilibrium
of the sort required in Theorem 2 with one participant, and another one with an even
number of participants and outcome 0.5. Indeed, if agent 2 is the only participant,
the outcome is 0.5, and neither agent 1 nor agent 3 has an incentive to participate
since the outcome would not change. If, on the other hand, agents 1 and 3 participate
the outcome is again 0.5, hence agent 2 has no incentive to participate. If cost are
sufficiently small, agents 1 and 3 indeed prefer to participate, since otherwise the
outcome changes to 0.1 or 0.7, respectively.
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Example 2 Let p1 = 0.1, p2 = 0.8 and p3 = 0.9. Then there is no equilibrium of the
sort required in Theorem 2 (provided that costs of participation are small). This can
be seen as follows. With full participation the outcome would be the median of the
votes cast, that is: 0.8. In that case agent 1 has an incentive to abstain, since without
her the outcome remains unchanged: indeed, agent 2 would vote p̃2 = 0.6 and agent
3 would vote of p̃3 = 1 in the equilibrium of the subgame. But this situation cannot
constitute an equilibrium either, since agent 3 would rather abstain. If agents 1 and 2,
or agents 1 and 3 are the participants, the outcome is 0.5. But for small participation
costs, the respective abstainer would prefer to join and change the result to 0.8. Finally,
all single participation cases do not constitute an equilibrium since then there always
exists a non-participant who could profitably change the outcome to 0.5 (provided that
participation costs are sufficiently small).
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